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A B S T R A C T   

The nonlinear Riemann wave equations (RWEs) and the Landau-Ginsburg-Higgs (LGH) equation are related to 
plasma electrostatic waves, ion-cyclotron wave electrostatic potential, superconductivity, and drift coherent ion- 
cyclotron waves in centrifugally inhomogeneous plasma. In this article, the interactions between the maximum 
order linear and nonlinear factors are balanced to compute realistic soliton solutions to the formerly stated 
equations in terms of hyperbolic functions. The linear and nonlinear effects rheostat the structure of the wave 
profiles, which vary in response to changes in the subjective parameters combined with the solutions. The 
established solutions to the aforementioned models using the extended tanh scheme are descriptive, typical, and 
consistent, and include standard soliton shapes such as bright soliton, dark soliton, compacton, peakon, periodic, 
and others that can be used to analyze in ion-acoustic and magneto-sound waves in plasma, homogeneous, and 
stationary media, particularly in the propagation of tidal and tsunami waves.   

Introduction 

The studies of the nonlinear wave equations (NLWEs) have devel
oped steadily with notable advancement over many decades. These 
equations raised in nonlinear science, mathematical physics, and engi
neering have significant properties to describe nonlinear wave incidents 
such as dispersion, dissipation, diffusion, reaction, convection, etc 
[1–5]. Because of the accessibility of the typical computation frame
works Maple and Mathematica, which empower us to perform complex 
computations on computers, the study of exact traveling wave solutions 
for NLWEs has immersed sensibly these days to disclose these properties. 
Besides, traveling waves appear with physical characteristics in solitary 
wave theory such as bell-shaped solitons, kink, peakon, cuspon, com
pactons, periodic, complexiton, positon, negaton, etc. Indeed, solitons 
are localized traveling waves that are asymptotically zero at great 

distances. For integrable models, the interactions between soliton so
lutions are fully elastic. Here, elastic interaction means that if a soliton 
collides with another similar soliton, they interact behind losing their 
own identities. That is, after a nonlinear interaction, a soliton’s ampli
tude, velocity, and waveform remain unaffected. However, in some 
soliton models, when unique conditions between the wave trajectories 
and velocities are fulfilled, such as in compactons, fully non-elastic in
teractions can occur. For real-world physical models, one can find soli
ton phenomena in organic membrane and macromolecule materials, 
SrBaNi oxidation crystal and waveguide, even-clump DNA, shallow 
water waves, matter waves in Bose-Einstein condensates, surface man
ifestations of internal gravity waves, ultrashort pulses in nonlinear op
tics, signal processing in optical fiber, geophysics, plasma physics, 
nuclear physics, hydrodynamics, etc. [6–8]. Because of this, numerous 
analysts have developed different techniques [9–32] for tracing soliton 
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solutions, each of which has its own set of constraints, arising for the 
advancement of existing schemes or the require for new techniques. In 
this regard, the present paper examines the solitary wave profiles of two 
distinct classes of integrable NLWEs of any order. The (2 + 1)-dimen
sional generalized breaking soliton equation was proposed in the form 
[33]: 

Ut + aUxxx + bUxxy + cUUx + dUUy + eUx∂x
− 1Uy = 0 (1) 

where about a, b, c, d, e are real parameters. Eq. (1) indicates that it 
has the Painleve property for the parametric choice a = 0 by applying 
singularity structure analysis [34]. The unique property of the family of 
these equations is that the spectral parameter availed in the Lax repre
sentations exhibits the breaking behavior. The spectral value thus de
velops a multivalued function. As a result, the solution of these 
equations can also turn into multivalued. In consequence, Eq. (1) is 
connected to the (2 + 1)-dimensional breaking soliton equations [34]: 

Ut + aUxxx + bUxxy + cUUx + dUWx + eUxW = 0 (2a)  

Uy = Wx (2b) 

Eqs. (2a) and (2b) were first thoroughly investigated where over
lapping solutions were evaluated [35]. Moreover, Eqs. (2a) and (2b) 
have many special classes of NLWEs as explained by Xu [36]. In what 
follows, we study the Riemann wave model of the form [37]: 

Ut + lUxxy +mUWx + nUxW = 0 (3a)  

Uy = Wx (3b) 

where l, m, and n are nonzero parameters. Eqs. (3a) and (3b) describe 
the (2 + 1)-dimensional interaction of the Riemann wave propagating 
along the y-axis with a long wave along the x-axis. These equations are 
fully integrable and have numerous applications in the propagation of 
ocean tsunamis and tidal waves. Another important feature of the 
equations (3a) and (b) is the representation of the turbulent state by the 
combination of the whistle wave packets with the finite-amplitude 
random phases. The Whistler turbulence interacts with the magnetic- 
sound wave, resulting in the damping of the latter which dampens the 
electrostatic wave in the plasma [38]. 

On the contrary, a new class of nonlinear evolution equations 
(NLEEs) with a nonlinear term of any order [39] is of the form 

Utt + a1Uxx + a2U + a3Up + a4U2p− 1 = 0 (4) 

where a1, a2, a3, a4, and p ∕= 1 are all arbitrary constants. When p is 
changed to a different constant, a new equation is formed. The special 
case of the NLEEs [40] when p = 3, a4 = 0 is stated as 

Utt +αUxx + βU + γU3 = 0 (5) 

A typical form of the NLEE (5) is specified as the LGH equation 
[41,42] 

Utt − Uxx − a2U + b2U3 = 0 (6) 

where U(x, t) defines the ion-cyclotron wave electrostatic potential, a 
and b are real parameters, and x, tdenote the spatial and temporal co
ordinates. The LGH Eq. (6) was developed by Landau and Ginzburg for 
interpreting superconductivity and drift cyclotron waves in centrifugally 
inhomogeneous plasma for coherent ion-cyclotron waves [43]. 

Searching for explicit solutions to both RWEs (3a) and (3b) and the 
LGH equation (6) using a variety of approach is a crucial part of math
ematical physics, and it has recently become as the most fascinating and 
exciting subject of study. When studying the physical processes of nat
ural phenomena characterized by RWEs and LGH equations, the exact 
solutions to these equations should be investigated. There are a few 
typical schemes to find exact solutions to the integrable RWEs as well as 
the LGH equations in the literature [44–60]. Therefore, we aim in the 
present article to establish inclusive, standard, significant and 

comprehensible soliton structured solutions to the RWEs and the LGH 
equation that are localized in all directions of (2 + 1)-dimensions uti
lizing the extended tanh-function procedure [61,62], where a finite 
power series in tanh is used as an ansatz. 

The layout of this article is arranged in the ensuing paragraphs: In 
paragraph 2, we present succinctly the extended tanh function tech
nique. In paragraph 3, the exact solutions of the considered NLWEs are 
established. In paragraph 4, graphical depictions and physical expla
nations are provided. In paragraph 5, we compare the obtained solutions 
with the solutions existing in the literature. Finally, the conclusion of 
this article has been drawn. 

Overview of the extended tanh-function technique 

This section describes the extended tanh function technique for 
obtaining ample exact solutions for NLWEs. The core idea behind this 
process is to express the solution as a polynomial in hyperbolic func
tions, and then to solve a system of algebraic equations implies to solve 
the corresponding NLWEs. To start with, we apprehend an NLWE built 
in a function U = U(x, y, t) of the form 

S
(
Ut,Uxt,Uxx,Utt,Uxyt,⋯

)
= 0 (7) 

wherein the function U = U(x, t) is to be evaluated, S is a polynomial 
of the unknown variable U and also its derivatives, Ut ,Uxt,Uxx,Utt,Uxyt ,

⋯ in space and time coordinates. 
A new transformation, name wave variable 

U(x, y, t) = U(λ), λ = gx+ hy − ct (8) 

where U(λ) embodies the localized wave solutions traveling at speed 
c, and g, h define the wavenumbers, modifies (7) into the ensuing 
nonlinear differential equation 

R(U’,U’’,U’’’,⋯) = 0 (9) 

Now, we consider a formal solution structure of Eq. (9) in the 
following 

U(λ) =
∑M

j=0
pjZj +

∑M

j=1
qjZ− j (10) 

wherein 

Z = tanh(kλ) (11) 

and k is an arbitrary constant. In Eq. (9), the highest derivative and 
nonlinear term yield the balance number M. 

Introducing solution (10) along with Eq. (11) into Eq. (9), a poly
nomial in Z(λ) is a consequence. A series of algebraic equations for pj(j =
0, 1,2,⋯,M) and qj(j = 1, 2,⋯,M) is obtained by setting each coefficient 
of the resultant polynomials to zero. Finally, the required solutions 
through the values of pj(j = 0,1, 2,⋯,M) and qj(j = 1, 2,⋯,M) will be 
determined. 

Analysis of solutions 

This module constructs the extended tanh function scheme for 
establishing the traveling wave solutions to the Riemann wave equations 
and the Landau-Ginsburg-Higgs equation. 

The Riemann wave equations 

The RWEs (3a) and (3b) are considered in this sub-module in order to 
develop advanced and broad-spectrum solitary wave solutions. The 
wave variable (8) remodels the Eqs. (3a) and (3b) into the following 
system 

hlg2U’’’+mgUW’+ nWU’ = 0 (12)  
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hU’ = gW’ (13) 

Eq. (13) has been integrated considering zero integration constant, 
thus it is found 

W = (h/g)U (14) 

Replacing W and W’ in Eq. (12) provide the subsequent nonlinear 
equation 

hlg2U’’’+ h(m+ n)UU’ − 2cU’ = 0 (15) 

Integrating and omitting the integration constant yields 

2hlg2U’’+ h(m+ n)U2 − 2cU = 0 (16) 

By leveling the highest derivative and nonlinear term occupied in Eq. 
(16), the index number M = 2 is revealed from which a particular form 
of Eq. (10) can be set as 

U(λ) = p0 + p1Z + p2Z2 + q1Z− 1 + q2Z− 2 (17) 

wherein p0, p1, p2, q1 and q2 are the arbitrary constants to be 
calculated. Placing the solution (17) together with equation (11) into Eq. 
(16) leads to a nonlinear system in terms of Z(λ). Then after equating the 
coefficient of Z(λ) and setting them to zero, a certain nonlinear system of 
algebraic equations is generated below: 

Z(λ)0
: hq2

(
12lg2k2 +mq2 + nq2

)
= 0 (18)  

Z(λ)1
: 2hq1

(
2lg2k2 +mq2 + nq2

)
= 0 (19)  

Z(λ)2
:
( (

2p0q2 + q1
2)m+

(
2p0q2 + q1

2)n − 16q2lg2k2 )h − 2cq2 = 0 (20)  

Z(λ)3
:
( (

2p0q1 + 2p1q2
)
m+

(
2p0q1 + 2p1q2

)
n − 4q1lg2k2 )h − 2cq1 = 0

(21)     

Z(λ)5
:
( (

2p0p1 + 2p2q1
)
m+

(
2p0p1 + 2p2q1

)
n − 4p1lg2k2 )h − 2cp1 = 0

(23)  

Z(λ)6
:
( (

2p0p2 + p1
2)m+

(
2p0p2 + p1

2)n − 16p2lg2k2 )h − 2cp2 = 0 (24)  

Z(λ)7
: 2hp1

(
2lg2k2 +mp2 + np2

)
= 0 (25)  

Z(λ)8
: hp2

(
2lg2k2 +mp2 + np2

)
= 0 (26) 

Different ramifications of solutions are obtained as a result of solving 
the above nonlinear system of algebraic equations: 

Cluster 1 
c = − 16hlg2k2, p0 = −

8lg2k2

m+n , p1 = q1 = 0, p2 = −
12lg2k2

m+n , q2 =

−
12lg2k2

m+n . 
The values of the parameters available in Cluster 1 constitute an 

explicit solution in terms of tanh and coth functions 

U(λ) = −
lg2k2

m + n
(
8+ 12tanh2(kλ)+ 12coth2(kλ)

)
(27) 

which can be reconstructed using the hyperbolic formula with 

respect to space and time coordinates 

U(x, y, t) = −
lg2k2

m + n
(
8+ 12tanh2(k(gx + hy − ct) )

+ 12coth2(k(gx + hy − ct) )
)

(28) 

The similar solution (14), on the other hand, becomes 

W(x, y, t) = −
hlgk2

m + n
(
8+ 12tanh2(k(gx + hy − ct) )

+ 12coth2(k(gx + hy − ct) )
)

(29)  

Cluster 2 
c = 4hlg2k2, p0 =

12lg2k2

m+n , p2 = −
12lg2k2

m+n , p1 = q1 = q2 = 0. 
The values of the parameters presented in Cluster 2 generates an 

explicit bell-shaped soliton solution concerning sech function 

U(x, y, t) =
12lg2k2

m + n
sech2(k(gx + hy − ct) ) (30) 

Another respective solution (14) becomes 

W(x, y, t) =
12hlgk2

m + n
sech2(k(gx + hy − ct) ) (31)  

Cluster 3 
c = − 4hlg2k2, p0 =

4lg2k2

m+n , p2 = −
12lg2k2

m+n , p1 = q1 = q2 = 0. 
The values of the parameters presented in Cluster 3 put together 

another closed solution regarding sech functions 

U(x, y, t) = −
lg2k2

m + n
(
8 − 12sech2(k(gx + hy − ct) )

)
(32) 

And the pair solution (14) turns into 

W(x, y, t) = −
hlgk2

m + n
(
8 − 12sech2(k(gx + hy − ct) )

)
(33)  

Cluster 4 
c = 16hlg2k2, p0 =

24lg2k2

m+n , p1 = q1 = 0, p2 = −
12lg2k2

m+n , q2 = −
12lg2k2

m+n . 
On the other hand, introducing the values of the constraints gathered 

in Cluster 4 into (17), it can be found solution for U(x, y, t) that is 
comparable to solution (28). And, based on (14), the solution for 
W(x, y, t) is comparable to solution (29). There is just a variation in 
constant, which does not alter the profile of any wave but only trans
locate it. Thus, the solutions have not been written for the values in 
Cluster 4. 

Cluster 5 
c = − 4hlg2k2, p0 =

4lg2k2

m+n , p1 = p2 = q1 = 0, q2 = −
12lg2k2

m+n . 
The values of the parameters obtained in Cluster 5 form a different 

explicit solution in terms of coth function 

U(x, y, t) =
lg2k2

m + n
(
4 − 12coth2(k(gx + hy − ct) )

)
(34) 

The solution (14) then changes to 

Z(λ)4
:
( (

p0
2 + 2p1q1 + 2p2q2

)
m+

(
p0

2 + 2p1q1 + 2p2q2
)
n+ 4lg2k2(p2 + q2)

)
h − 2ca0 = 0 (22)   
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W(x, y, t) =
hlgk2

m + n
(
4 − 12coth2(k(gx + hy − ct) )

)
(35)  

Cluster 6 
c = 4hlg2k2, p0 =

12lg2k2

m+n , p1 = p2 = q1 = 0, q2 = −
12lg2k2

m+n . 
Furthermore, placing the parameter values involved in Cluster 6 to 

(17) yields a solution of U(x, y, t) that is equivalent to the solution (32). 
Besides, the solution of W(x, y, t) based on (14) is equivalent to the so
lution (33). There is just a difference in constant that does not affect the 
profile of any wave, but merely translates it. Therefore, the solutions are 
written for the values of Cluster 6. 

The Landau-Ginsburg-Higgs equation 

In this parameter, the LGH model (6) will be investigated to ascertain 
advanced and inclusive solitary wave solutions. The wave variable 
defined by 

U(x, t) = U(λ), λ = βx − ct (36) 

remodels the LGH (6) into the ensuing equation 
(
c2 − β2)U’’ − a2U + b2U3 = 0 (37) 

The balancing principle in Eq. (35) provides the index number M =

1. As a result, finite series (10) becomes the subsequent form 

U(λ) = p0 + p1Z + q1Z− 1 (38) 

where p0, p1 and q1 be the unrevealed constants to be evaluated. 
Embedding the solution (38) together with (11) into Eq. (37) provides a 
nonlinear system in terms of Z(λ) to be zero. 

2k2c2q1 − 2k2β2q1 + b2q1
3 = 0 (39)  

3b2p0q1
2 = 0 (40)  

− 2k2c2q1 + 2k2β2q1 − a2q1 + 3b2p0
2q1 + 3b2p1q1

2 = 0 (41)  

− p0a2 + b2p0
3 + 6b2p0p1q1 = 0 (42)  

− 2k2c2p1 + 2k2β2p1 − p1a2 + 3b2p0
2p1 + 3b2p1

2q1 = 0 (43)  

3b2p0p1
2 = 0 (44)  

2k2c2p1 − 2k2β2p1 + b2p1
3 = 0 (45) 

The above nonlinear system of algebraic equations provides solu
tions separated into some clusters given in the underneath: 

Cluster 1 

c = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4k2β2 − 2a2

√

2k , p1 = ±a
b, p0 = q1 = 0. 

For evaluating the exact solution, we insert the values of the pa
rameters in solution (38) and achieve the tanh function solution of the 
form 

U(λ) = ±
a
b

tanh(kλ) (46) 

which can be outlined in terms of space and time coordinates 

U(x, t) = ±
a
b

tanh(k(βx − ct) ) (47)  

Cluster 2 

c = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
6k2β2 − 2a2

√

4k , p0 = 0, p1 = q1 = ±0.5a
b . 

Placing the values of the unspecified parameters in solution (38) 
reveal an exact solution with the combination of tanh and coth functions 

U(x, t) = ±
0.5a

b
(tanh(k(βx − ct) )+ coth(k(βx − ct) ) ) (48)  

Cluster 3 

c = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4k2β2+a2

√

2k , p0 = 0, p1 = q1 = ±
̅̅̅̅̅̅̅̅
− 0.5

√
a

b . 
Inserting the values of the unspecified parameters in solution (38) 

formulate the ensuing solution in terms of tanh and coth function 

U(x, t) = ±

̅̅̅̅̅̅̅̅̅̅
− 0.5

√
a

b
(tanh(k(βx − ct) )+ coth(k(βx − ct) ) ) (49)  

Wave profile analysis 

This section consisting of two subsections addresses the graphical 
representations and discussions of numerous solitary waves of the 
determined solutions to the RWEs and LGH equation. Several forms of 
3D and contour surfaces are represented using the mathematical sym
bolic computation program Wolfram Mathematica by taking appro
priate values of the unspecified parameters to contemplate the 
mechanism of physic illustrated by the RWEs and LGH equations. Here, 
the contour profile is used to investigate the wave nature and how 
various parameters affect the transformation of three-dimensional wave 
profiles into two-dimensional plots. One variable, x, is chosen on the 
horizontal axis, and the second variable, y, is chosen on the vertical axis, 
to create a contour map. The third variable z, is represented by a color 
gradient and isolines. These graphs are frequently used in data analysis, 
particularly when searching for the highest and lowest in a set of tri
variate data. 

The wave profile of the RWEs 

It is crucial to note that the characteristics of the wave profiles are 
determined by the values of the existing parameters in the RWEs. To 
illustrate the point, different depictions of the solution functions (27)- 
(35) are drawn for some definite values of c, m and n, where the free 
parameters l, g, h, k affect the wave velocity c, and the parameters l, g, h,
m, n are related to the coefficient of the greatest power of the linear and 
nonlinear terms of Eq. (16). We draw the steady propagation of all the 
solitary wave findings in this article for RWEs in x and y coordinate only 
due to the difficulty in drawing (2 + 1)-dimensional shapes in 3D and 
contour maps. The solution U(x, y) obtained in (28) signifies a flat 
parabolic soliton for g = − 2, h = − 0.21, k = − 0.23, l = m = n = − 2 pre
sented in 3D as well as contour into the range 2 ≤ x, y ≤ 7 shown in 
Fig. 1(a). By increasing the values g = − 0.01,k = 0.09, decreasing h =

− 1.41, choosing positive l = 0.64, and unchanging m, n, the solution 
W(x, y) in (29) depicts also a flat parabolic soliton apparent in the 3D 
unchanged spatial and the contour as portrayed in Fig. 1(b). 

The solutions (30) and (31), on the other hand, describe the other 
shapes induced by considering another specific value of the wave ve
locity c which is determined by allocating the parameters g,h, as well as 
the coefficient l of the linear factor in Eq. (16) randomly. For the values 
g = 0.22,h = − 0.21,k = l =m = n = − 2, the solution U(x, y) results as 
in smooth bright soliton delineated in Fig. 2(a). While decreasing the 
values of the free parameter g = − 0.27,h = − 0.23, increasing l = 0.87 
and keeping k, m, n, unchanged, the pair solution W(x, y) reflects the 
identical propagation of this shape when displaced from its original 
location and converts to the smooth bright soliton which is outlined in 
Fig. 2(b). The boundary − 5 ≤ x, y ≤ 5, is chosen both for 3D and con
tour figures. 

It is notable that the solution functions (32) and (33) demonstrate 
another identity of the solitary waves with compact support. The solu
tion U(x, y) shows the compacton wave for choosing the positive h =

0.11, k = 0.03 and the negative g = − 0.12, l = m = n = − 2. Likewise, 
the pair solution W(x, y) also produces the compacton for choosing only 
positive g = 0.09 and all negative h = − 0.08, k = − 0.16, l = − 1.62,
m = n = − 2. These indicate that the location of the figure can be 
shifted, compressed, or stretched simply by changing the value of the 
weight k, the coefficient of the linear term, and the wavenumbers that 
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produce the wave’s speed velocity c with finite wavelength and compact 
support. The 3D and contour profiles have been depicted in Figs. 3(a) 
and 3(b) respectively within the limit − 20 ≤ x, y ≤ 20. It is 

characterized by the absence of the exponential wings, wherein U(λ), λ 
depends on x, y, and t in Eq. (8) does not tend to zero as λ→∞. The 
analysis of compactons will show a variety of nonlinear events, such as a 

Fig. 1a. Flat parabolic wave of solution (28) for g = − 0.63, h = − 0.01, k = 0.09, l = − 0.33,m = n = − 2  

Fig. 1b. Flat parabolic wave of (29) for g = − 0.01, h = − 1.41, k = 0.09, l = 0.64, m = n = − 2.

Fig. 2a. Propagation of bright solitary wave solution (30) for.g = 0.22, h = − 0.21, k = l = m = n = − 2  

Fig. 2b. Propagation of bright solitary wave solution (31) for.g = − 0.27, h = − 0.23, l = 0.87, k = m = n = − 2  
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cluster’s hydrodynamic model, liquid drop fission and fusion mecha
nisms, super-deformed nuclei, etc. 

For different values of the parameters related to the solutions (34) 
and (35), we attain parabolic shapes for both U(x, y) and W(x,y). If the 
values of the parameters g = 1.2,h = − 0.21,k = − 0.21, l = 0.24,m =

n = − 2, the solution U(x, y) classifies a parabolic solitary wave and 

with the same value of g, h, l,m, n but different k = − 2, the solution W(x,
y) implies alike parabolic solitary wave exposed by 3D and contour maps 
confined by 0 < x, y ≤ 1 in Figs. 4(a) and 4(b) respectively. 

Based on the above investigation, it is noted that we have identified a 
variety of waveforms to the RWEs, including bell-shaped soliton, para
bolic, flat parabolic, compacton, etc. Besides, we have examined how 

Fig. 3a. Plot of compacton solution (32) for g = − 0.12, h = 0.11, k = 0.03, l = m = n = − 2.  

Fig. 3b. Plot of compacton solution (33) for g = 0.09, h = − 0.08, k = − 0.16, l = − 1.62,m = n = − 2.  

Fig. 4a. Trace of parabolic wave of solution (34) for g = 1.2, h = − 0.21, k = − 0.21, l = 0.24,m = n = − 2.  

Fig. 4b. Trace of parabolic wave of solution (35) for g = 1.2, h = − 0.21, k = − 2, l = 0.24,m = n = − 2.  
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the obtained solutions changed the nature of the waves produced and 
exposed that the coefficient of the utmost power of the linear and 
nonlinear terms of Eq. (16) has a great influence on the wave structures. 
Thus, accepting several values of l, g, h and k, the structure of the waves 
merely changes only for the variation of g, h but here except for the 
change of direction, the impacts of the values of l, k,m, n are minimal. 

The wave profile of the LGH equation 

With the assistance of the mathematical program Wolfram Mathe
matica, the acquired solutions to the LGH equation are picturized in 3D 
and contour plots with standard values of the related parameters in this 
sub-section. In general, the results (47)-(49) reflect various forms of 
solitary waves depending on the wave speed c and the coefficient of the 
highest power of the nonlinear term of Eq. (37). For the positive values 
a = b = 2 and the negative values c = − 0.06,k = − 0.69,β = − 1.69, 
the traveling wave solution (47) depicts a smooth kink soliton. The 
activation function of the neural networks model with weight k is 
considered to be the kink soliton in terms of tanh(kλ). Within the limit 
− 4 ≤ x, t ≤ 4, the 3D and contour profiles have been depicted in Fig. 5 
(a). 

Similarly, by choosing a = 1.75,b = − 1.6,c = 0.75,k = − 0.25,β =

− 1, the solution (47) yields general sigmoid function revealed in soli
ton. The 3D and contour profiles have been depicted in Fig. 5(b) within 
the limit − 5 ≤ x, t ≤ 5. The sigmoid feature is used in the van 
Genuchten-Gupta model for crop yield response to soil salinity. Sigmoid 
functions are often used in artificial neural networks for efficiency, are 
used as wave shaper transfer functions in audio signal processing to 
simulate the sound of analog circuitry clipping, are used to model. Some 
sigmoid functions are used in computer graphics and real-time 
rendering to merge colors or geometry between two values efficiently 
and without visualization or discontinuities. Due to the logarithmic 
aspect of the pH scale, titration curves between strong acids and strong 
bases have a sigmoid form. 

On the contrary, the negative sign of solution (47) represents a steep 
kink soliton for the wave speed c = 0.62 and the parameters a = b =

− 2, k = − 0.92, β = 0.62. The 3D and contour profiles have been 
exhibited in Fig. 6(a) within the limit − 10 ≤ x, t ≤ 10. 

The other trigonometric identity of (47) depicts a periodic soliton by 
expanding the value of the coefficient of nonlinear term b = − 1.31 with 
ascending a = − 1.16 and k = 0.61, but descending wave velocity c =

− 1.16 and β = 0.01. The 3D and contour profiles have been asserted in 
Fig. 6(b) within the limit − 10 ≤ x, t ≤ 10. Periodic factors such as the 
influence of environmental factors in mathematical biology, seasonal 
effects of weather, food supply, mating habits and harvesting, period
icity of parameters are more practical and significant. The study of pe
riodic phenomena occurring in applied problems in technology, natural, 
and social sciences is the focus of this special solitary wave. 

From the estimation (48), we accomplish two distinguish figures 
when choosing another set of values of c, linear and nonlinear co
efficients a, b, wave number β, and weight k involved in Eq (37). With 
regard to this, considering negative estimation of all a = − 0.10, k =

− 0.08, b = − 0.04, β = − 1.41 as well as the wave speed tends to zero i.e., 

for c = − 0.01, the result (48) refers to the soliton. Furthermore, when 
the coefficient of the nonlinear term b = 1.62 is increased and different 
values of a = − 1.92, c = − 1.83, k = − 0.18, β = − 1.90 are used, the ab
solute value of result (48) shows peaked soliton and is simply called 
peakon. In Figs. 7(a)-7(b), both the 3D and the contour are exemplified 
under the constraints 1 ≤ x, t ≤ 10 respectively. 

On the other hand, if we accept the negative sign in solution (48), it 
shows a general soliton shape for the wave velocity c = 0.28 and other 
standards a = − 0.23, b = − 0.14, k = − 0.06, β = − 0.14. The 3D and 
contour profiles have been depicted after extending the spatial and 
temporal coordinates within the limit 3 ≤ x, t ≤ 20 in Fig. 8(a). Addi
tionally, with different values of a = 1.67, b = − 0.47, c = − 0.3, k =

− 0.35,β = − 0.25, the absolute result U(x, t) in (48) expresses another 
soliton. The respective 3D and contour profiles have been depicted after 
attenuating the spatial and temporal coordinates within the limit 1 ≤ x,
t ≤ 10 in Fig. 8(b). 

Moreover, choosing the positive values of the coefficient a = 0.77,
b = 0.54, c = 0.01, k = 0.11 but negative β = − 2, the solution (49) 
shows a flat kink wave shape presenting the 3D and contour profiles in 
Fig. 9(a) within the boundary 1 ≤ x, t ≤ 10. However, choosing all 
positive values a = − 0.23, b = − 0.23, c = − 1.5, k = − 1.56, β =

− 1.58, the solution (49) provides other spike kind soliton of extreme 
amplitude and ultra-short duration that can be generated in a laser 
cavity. The 3D and contour profiles have been depicted in Fig. 9(b) 
within the limit 5 ≤ x, t ≤ 50. 

The results, we have established are the hyperbolic and trigono
metric solutions for the LGH equation, and the wave profiles are kink, 
periodic, peakon, sigmoid, spike like solitons, and others. In addition, 
we have analyzed how the obtained solutions to the LGH equation 
change the behavior of the waves with respect to the values of related 
coefficient of the highest power of the linear and nonlinear terms. 

Comparison of the results 

In this module, the established solutions have been compared with 
other solutions derived by some other researchers. 

Comparison of solutions to the RWEs 

Several researchers studied the RWEs using some techniques and 
obtained some exact solutions, as for example, Peng and Krishnan [34] 
obtained only two types of rational solutions of sech and tanh functions 
by choosing the Jacobi elliptic functions in which the periodic waves 
were derived by the singular manifold scheme. Yong et al. [45] used the 
generalized expansion technique of the Riccati equation and found non- 
traveling wave solutions, constant function soliton-like, singular soliton- 
like solutions, triangular and complex function solutions in terms of 
hyperbolic and trigonometric structures but there were no traveling 
wave solutions to describe the interaction of the Riemann wave propa
gation. Zhang and Meng [47] used the variable separation procedure in 
which Backlund transformation was set up to build the compacton-anti- 
compacton and peakon-anti-peakon solitons through trigonometric 
function solutions only. However, in this study, the extended tanh 

Fig. 5a. Plot of smooth kink wave of solution (49) in terms of a = 2, b = 2, c = − 0.06, k = − 0.69, β = − 1.69.  
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scheme covers a wide range of exact traveling wave solutions of RWEs, 
including tanh, coth, and sech functions, and generates kink, bell-shaped 
soliton, compacton, parabolic, concave soliton, etc. which was not found 
earlier. The ascertained results are also graphically presented to 
examine how a solitary wave propagates with the change of space and 
time coordinates. In this section, the analytical solutions obtained are 
compared with the solutions obtained by Jawad et al. [37] with the help 
of the tanh method in Table 1. 

From the above table, it is observed that only sech and tanh functions 
are found in the solutions determined by Jawad et al. [37]. On the other 
hand, in the present article, we have established different types of 

analytic solutions integrating tanh, coth, sech functions that are illustra
tive, compatible and advanced which internment a sort of evolutionary 
phenomena. 

Comparison of solutions to the LGH equation 

The LGH equation has also been studied by means of several tech
niques and accomplished some exact solutions. For instance, Iftikhar 
et al. [41] merely established one general solution set of hyperbolic 
(sinh, cosh) and trigonometric (sin, cos) functions through 
(G’/G,1/G)-expansion technique. But there was no explanation about 

Fig. 5b. Plot of smooth kink wave of solution (47) in terms of a = 1.75, b = − 1.6, c = 0.75, k = − 0.25, β = − 1.  

Fig. 6a. Shape of steep kink wave of solution (47) in terms of a = − 2, b = − 2, c = 0.62, k = − 0.92, β = 0.62.  

Fig. 6b. Shape of periodic wave of solution (47) in terms of a = − 1.16, b = − 1.31, c = − 1.16, k = 0.61, β = 0.01.  

Fig. 7a. Figure of soliton of solution (48) in terms of a = − 0.1, b = − 0.04, c = − 0.01, k = − 0.08, β = − 1.41.  
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the characteristics of the solutions and these solutions possess a few 
general shapes to describe the traveling waves. Bekir and Unsal [42] 
determined only two rational solutions with exponential function by 
employing the first integral method. The behavior of the acquired so
lutions was not documented there. Cevikel et al. [56] found only the 
bright and dark solitons using the ansatz solutions sechpτ and tanhpτ 
respectively through the solitary wave ansatz method. Irshad et al. [57] 
simply developed some exponential function solutions by the new 

modified simple equation scheme and obtained only kink, singular kink, 
and singular periodic shapes. In this article, we have ascertained a va
riety of hyperbolic function solutions and sketched their shapes, such as, 
peakon, kink soliton, flat kink soliton, sigmoid as well as some other 
general solitons which are different from earlier solutions. In this sub
module, the attained solutions are compared with Cevikel et al. [56] 
solutions estimated by the solitary wave ansatz technique in Table 2. 

It is noticeable that Cevikel et al. [56] found only two types of 

Fig. 7b. Figure of soliton of solution (48) in terms of a = − 1.92, b = 1.62, c = − 1.83, k = − 0.18, β = − 1.9.  

Fig. 8a. General soliton of solution (48) in terms of a = − 0.23, b = − 0.14, c = 0.28, k = − 0.06, β = − 0.14.  

Fig. 8b. General soliton of solution (48) in terms of a = 1.67, b = − 0.47, c = − 0.3, k = − 0.35, β = − 0.25.  

Fig. 9a. Sketched of flat kink of solution (49) in terms of a = 0.77, b = 0.54, c = 0.01, k = 0.11, β = − 2.  
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analytic solutions, that is, tanh and sech function solutions. Only the tanh 
function solution is matched with the solution (47) of the LGH equation 
and the remaining solutions are diverse. Moreover, the solutions of the 
present article represent peakon, ideal kink soliton, flat kink soliton, 
sigmoid, and other soliton shapes which are not portrayed by Cevikel 
et al. [56]. 

Conclusions 

In this article, we have investigated the nonlinear wave equations, 
namely the (2 + 1)-dimensional Riemann wave equations and the 
Landau-Ginsburg-Higgs equation by the aid of the extended tanh 
method as well as using the solitary wave hypothesis. A variety of 
explicit traveling wave solutions are established by assigning different 
particular values of the embodied parameters. The derived results are 
standard and consistent solitary wave profiles defining by the combi
nation of hyperbolic functions. The established wave estimations might 
be useful to comprehend nonlinear phenomena, like Landau damping 
electrostatic waves in plasmas and the electrostatic potential of the ion- 
cyclotron wave to explain superconductivity and drift coherent ion- 
cyclotron waves in radially inhomogeneous plasma as well as the ion- 
acoustic and magneto-sound waves in plasma, and many others wher
ever there is a research of soliton theory. For the precision of the out
comes, the 3D and contour profiles have been outlined by allocating 
different parametric preferences. This technique has the advantage of 

being direct, compatible, and useful in investigating analytical solutions 
that are significant in discussing nonlinear events in science and engi
neering. Therefore, the executed technique may be applicable for 
searching other NLWEs and this is our upcoming work. 
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Fig. 9b. Sketched of flat kink of solution (49) in terms of a = − 0.23, b = − 0.23, c = − 1.5, k = − 1.56, β = − 1.58.  

Table 1 
Comparison of the results ascertained by RWEs and results ascertained by Jawad et al. [37]  

Jawad et. al. [37] results Results ascertained in this article 

The results (89) and (90) are 
g(x, y, t) = A1sech2(B(B1x − B2y − vt) ). 
h(x, y, t) = A2sech2(B(B1x − B2y − vt) ).  

The results (30) and (31) are 

U(x, y, t) =
12lg2k2

m + n
sech2(k(gx + hy − ct) ). 

W(x, y, t) =
12hlgk2

m + n
sech2(k(gx + hy − ct) ).  

The results (46) and (47) are 

u(x, t) = k2 −
ω

8αβ
−

3
2αk3tanh2(kx+ αy+ ωt+ θ0). 

v(x, t) = αk −
ω

8kβ
−

3
2
k2tanh2(kx+ αy+ ωt+ θ0).  

The results (28) and (29) are 

U(x, y, t) = −
lg2k2

m + n

(
20 − 12sech2(k(gx + hy − ct) ) + 12coth2(k(gx + hy − ct) )

)
. 

W(x, y, t) = −
hlgk2

m + n

(
20 − 12sech2(k(gx + hy − ct) ) + 12coth2(k(gx + hy − ct) )

)
. 

The solutions (34) and (35) are 

U(x, y, t) =
lg2k2

m + n

(
4 − 12coth2(k(gx + hy − ct) )

)
. 

W(x, y, t) =
hlgk2

m + n

(
4 − 12coth2(k(gx + hy − ct) )

)
.   

Table 2 
Comparison of the ascertained results with Cevikel et al. [56]  

Cevikel et. al. [56] results Results ascertained in this article 

The result (63) isu(x, t) = λtanh(η(x − vt) ).  The result (49) of this article isU(x, t) = ±
a
b

tanh(k(βx − ct) ).  
The result (48) isu(x, t) = λsech(η(x − vt) ).  The result (50) of this article isU(x, t) = ±

0.5a
b

(tanh(k(βx − ct) )+coth(k(βx − ct) ) ).   
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