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Abstract: This article aims to study numerically the rotating, steady, and three-dimensional (3D) flow
of a hybrid nanofluid over an exponentially shrinking sheet with the suction effect. We considered
water as base fluid and alumina (Al2O3), and copper (Cu) as solid nanoparticles. The system of
governing partial differential equations (PDEs) was transformed by an exponential similarity variable
into the equivalent system of ordinary differential equations (ODEs). By applying a three-stage
Labatto III-A method that is available in bvp4c solver in the Matlab software, the resultant system of
ODEs was solved numerically. In the case of the hybrid nanofluid, the heat transfer rate improves
relative to the viscous fluid and regular nanofluid. Two branches were obtained in certain ranges of
the involved parameters. The results of the stability analysis revealed that the upper branch is stable.
Moreover, the results also indicated that the equations of the hybrid nanofluid have a symmetrical
solution for different values of the rotation parameter (Ω).

Keywords: hybrid nanofluid; dual branches; 3D flow; symmetrical solution; stability analysis

1. Introduction

For a number of industrial uses, such as the manufacture of rubber pads, the flow of fluid on the
shrinking sheet must be considered. In the production phase, the moving surface is supposed to be
compressed to its plane and the shrinking sheet connects with the surrounding fluid both thermally
and mechanically. The behavior of a shrinking surface may occur in several materials with specific
strengths. Initially, Sakiadis [1] proposed the idea of a flow of the boundary layer on a stretching
sheet. Later, Crane [2] modified the concept of Sakiadis and applied it to both exponential and linear
stretching surfaces. Recently, the flow over a stretching sheet has received a lot of consideration.
Several recent studies [3–8] have been conducted in this respect, in which numerous impacts have been
examined. Due to the high demand and applications of the shrinking surface, we have considered a
3D flow on the shrinking sheet in this research.
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Several researchers have been focusing on nanofluid analysis due to the problem of improving
the rate of heat transfer. This fluid can be characterized as a homogenous mixture of nanoparticles and
conventional fluids. This concept of a mixture of solid particles and fluid was introduced by Maxwell
in the 19th century as an attempt to improve the thermal conductivity of fluids. Compared to the
micro-particles, nanoparticles remain dispersed longer and continue in dispersion almost indefinitely if
they are below the threshold level or enhanced with the surface. It is observed that various approaches
to nanofluid analysis have been adapted, but the most efficient approaches are computational and
experimental approaches.

However, the experimental approach is very costly, and therefore the computational approach is
preferred to investigate nanofluid by using various models. Initially, the results of these models were
compared to the experimental results and found to be in excellent agreement. Hassan et al. [9] used
copper oxide particles and concluded that “when particles are added in fluid, convection heat transfer
rate is improved but flow velocity is declined”. Naramgari and Sulochana [10] considered nanofluid
on the exponential sheet and obtained two solutions by using a Buongiorno model of the nanofluid.
Tiwari and Das’ model of a single-phase nanofluid was considered by Dero et al. [11] during the
examination of the Casson based nanofluid. They concluded that "velocity profiles and corresponding
boundary layer thicknesses decrease by a suspension of nanoparticles of silver and copper, whereas
the silver nanoparticles show the greater rate of heat transfer enhancement as compared to copper
nanoparticles when suspended in Casson fluid”. Biswakarma et al. [12] examined the aluminum oxide
water-based nanofluid and concluded that the heat transfer coefficient is enhanced by as much as
13.8% with the nanofluid. Further, Giri et al. [13] considered the fluid flow in the vertical channel
in which they found that both the Nusselt number for local sensitive heat and the Nusselt number
for local condensation decline monotonically along the axial direction. Later, Giri et al. [14] used the
simpler algorithm to investigate the governing equations of the model. Some interesting outcomes of
the nanofluid for various physical conditions and effects can be found in these papers [15–17].

As mentioned earlier, due to the increase in the heat transfer rate, many academics and scholars
are interested in studying nanofluid. Nanofluid has many applications in new technology eras such
as bio-labeling, biocatalysts, biosensors, transportation, biomolecules separation and purification,
engine cooling, vehicle thermal management, thermal storage, cooling in nuclear systems, solar water
heating, production of glass fiber, defense, and drug delivery. Due to the rising demand for the heat
transfer rate from various sectors of the industries, researchers have been attempting to mix many solid
nanoparticles with various kinds of base fluids which leads to the discovery of a “hybrid nanofluid” as
the new kind of nanofluid. Waini et al. [18] examined a hybrid nanofluid and found that the capacity
of the heat transfer rate of the hybrid nanofluid is greater than the regular nanofluid. The same state of
heat transfer rate was obtained by Lund et al. [19,20] during the examination of a hybrid nanofluid.
Yan et al. [21] also found similar results when they analyzed a hybrid nanofluid over the exponential
surface with joule heating effects. Further, it is stated that “the skin friction coefficient, f ′′ (0), enhances
for the first solution when the suction S and magnetic M parameters are increased, while f ′′ (0) reduces
for the higher effect of the velocity slip factor, δ”. Some important articles about hybrid nanofluids for
various effects can be accessed in these articles [22–26].

Mathematical analysis of the fluid flow problems for multiple solutions is important since these
solutions cannot be seen experimentally [27]. In this regard, researchers claimed that these solutions
exist because of the existence of non-linearity in equations of the fluid model and depend on the values
of the applied parameters [28,29]. Many researchers have discussed the importance and applications
of multiple solutions/branches. These solutions play an important role in developing the industry’s
alternative flow option in an emergency. According to Khashi'ie et al. [30], “if the problem has
non-unique solutions but the researchers manage to find one solution only, there is a probability that
the solution is the lower branch solution (unstable/not real). This will lead to the misinterpretation of
the flow and heat transfer characteristics”. According to Mishra and DebRoy [31], “multiple solutions
have many important applications when these are related to heat transfer because the final qualities and
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structure of many products of material processing in the industries can be improved by the concept of
multiple solutions”. Analysis of the stability is necessary to determine the stable branch when multiple
branches occur. Many researchers have stated that only a stable branch has a physical significance
which means that only a stable branch can be used in practical applications. Weidman [32] recently
discussed the possibility that more than one solution could also be stable. According to him, “since
the triple solutions appear to be upper branches (which cannot be continued to their lower branches),
then those solutions will also be stable”. Therefore, multiple solutions/branches were considered in
this study along with their stability analysis due to their important applications.

After evaluating the published literature, the motivation of this work is to examine the heat
transfer characteristics of the rotating, steady, and 3D flow of the hybrid nanofluid. According to our
best knowledge, no such study has been carried out for a hybrid nanofluid especially for the multiple
solutions/branches.

2. Mathematical Description of the Problem

The flow of a three-dimensional hybrid nanofluid on an exponentially elastic shrinking surface is
considered in a rotating frame of reference x, y, z. The velocity of the surface is uw = −ae

x
l , where a

is the characteristic velocity of the surface (See Figure 1). Momentum boundary layers of a hybrid
nanofluid flow with energy equations without viscous dissipation and thermal radiation can be
described as

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ w
∂u
∂z
− 2Ω̃v =

µhn f

ρhn f

∂2u
∂z2 (2)

uu
∂v
∂x

+ w
∂v
∂z

+ 2Ω̃u =
µhn f

ρhn f

∂2u
∂z2 (3)

uu
∂T
∂x

+ w
∂T
∂z

=
khn f(
ρcp

)
hn f

∂2T
∂y2 (4)

The related boundary conditions (BCs) (2–5) are{
v = 0 , u = uw, w = w0e

x
2l , T = Tw at z = 0

u → 0, v → 0, T → T∞, as z → ∞
(5)

where
(
ρcp

)
hn f
µhn f , , khn f and,ρhn f are the corresponding heat capacity, dynamic viscosity, thermal

conductivity, and density of hybrid nanofluid. Moreover, subscript hn f shows the thermophilic
properties of hybrid nanofluid. Further, w0 > 0 indicates the suction, and w0 < 0 indicates the injection,
and Ω̃ = Ω0e−

x
l is the local rotation parameter. The thermophysical properties are given in Tables 1 and 2.
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Table 1. Thermophysical features of hybrid nanofluid.

Properties Hybrid Nanofluid

Dynamic viscosity µhn f =
µ f

(1−φAl2O3 )
2.5
(1−φCu)

2.5

Density ρhn f = (1−φCu)
[(

1−φAl2O3

)
ρ f + φAl2O3ρAl2O3

]
+ φCuρCu

Thermal conductivity
khn f =

kCu+2kn f−2φCu(kn f−kCu)
kCu+2kn f +φCu(kn f−kCu)

×

(
kn f

)
where kn f =

kAl2O3+2k f−2φAl2O3 (k f−kAl2O3 )
kAl2O3+2k f +φAl2O3 (k f−kAl2O3 )

×

(
k f

)
Heat capacity

(
ρcp

)
hn f

= (1−φCu)
[(

1−φAl2O3

)(
ρcp

)
f
+ φAl2O3

(
ρcp

)
Al2O3

]
+ φCu

(
ρcp

)
Cu

Table 2. The thermophysical properties of nanofluid.

Fluids P (kg/m3) Cp (J/kg K) K (W/m K)

Alumina (Al2O3) 3970 765 40

Copper (Cu) 8933 385 400

Water (H2O) 997.1 4179 0.613

We will employ similarity variable (6) in Equations (1)–(4) in order to obtain the similarity solutions

u = ae
x
l f ′(η) , v = ae

x
l g(η), θ(η) =

(T − T∞)
(Tw − T∞)

, η = z

√
ϑa
2l

e
x
2l (6)

Using the relationship between Equations (1) and (6), we obtain

w =

√
ϑa
2l

e
x
2l
{
f (η) + η f ′(η)

}
(7)

which leads to

f (0) = wo

√
2l
ϑa

= S (8)

Substituting the stream function relationship with Equations (6)–(7) in Equations (2)–(5) yields

f ′′′ + ξ1ξ2
[

f f ′′ − 2 f
′2 + 4Ωg

]
= 0 (9)

g′′ + ξ1ξ2[ f g′ − 2 f ′g− 4Ω f ′] = 0 (10)(
khn f /k f

)
ξ3

Pr
θ′′ + fθ′ = 0 (11)

along with BCs {
f (0) = S, f ′(0) = −1, g(0) = 0,θ(0) = 1
f ′(η) → 0, g(η) → 0 θ(η)→ 0, as η→∞

(12)

ξ1 =
{
(1−φCu)

[
1−φAl2O3 + φAl2O3

(
ρAl2O3
ρ f

)]
+ φCu

(
ρCu
ρ f

)}
ξ2 = (1−φCu)

2.5
(
1−φAl2O3

)2.5

ξ3 = 1(1−φCu)

1−φAl2O3
+φAl2O3

(ρcp)Al2O3
(ρcp) f

+φCu
(ρcp)Cu
(ρcp) f


(13)

where prime represents the differentiation with respect to η, Pr = ϑ
α is Prandtl, and Ω = Ω0l

a is the
constant dimensionless rotation parameter.
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Physical quantities are the skin friction coefficient and local Nusselt, which are expressed as

C f x =
µhn f

ρ f a2

(
∂u
∂z

)
|z = 0 , C f y =

µhn f

ρ f w2
0

(
∂v
∂z

)
|z = 0 , Nux = −

khn f

k f (Tw − T∞)

(
∂T
∂z

)
|z = 0 (14)

By substituting Equation (6) in Equation (14), the following is obtained

2
√

ReC f x = 1(
1−φAl2O3

)2.5
(1−φCu)

2.5
f ′′ (0);

2
√

ReC f y = 1(
1−φAl2O3

)2.5
(1−φCu)

2.5
g′(0)

√
Re
2 Nux = −

khn f
k f
θ′(0)

(15)

where Rex = al
ϑ e

x
l is the local Reynold number.

3. Temporal Stability Analysis

The findings of the boundary layer problem (9–11) demonstrate that multiple branches occur.
An analysis of stability is then carried out which has been performed by many researchers [33–36].
For the stability study, the unsteady forms of equations are supposed to be used. Henceforth,
Equations (2)–(4) can be expressed as

∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z
− 2Ω̃v =

µhn f

ρhn f

∂2u
∂z2 (16)

∂v
∂t

+ u
∂v
∂x

+ w
∂v
∂z

+ 2Ω̃u =
µhn f

ρhn f

∂2u
∂z2 (17)

∂T
∂t

+ u
∂T
∂x

+ w
∂T
∂z

=
khn f(
ρcp

)
hn f

∂2T
∂y2 (18)

where t indicates the time. By considering t in terms of τ, the current similarity variables (6–7) for the
unsteady flow are as follows.

u = ae
x
l fη(η, τ), v = ae

x
l g(η, τ), η = z

√
ϑa
2l e

x
2l

w =
√
ϑa
2l e

x
2l
{

f (η, τ) + η fη(η, τ)
}
, τ = a

2l e
x
l .t

θ(η, τ) = (T−T∞)
(Tw−T∞)

(19)

By substituting Equation (19) into Equations (16)–(18), we obtain

fηηη + ξ1ξ2

[
f fηη − 2

(
fη
)2
+ 4Ωg− fτη

]
= 0 (20)

gηη + ξ1ξ2
[

f gη − 2 fηg− 4Ω fη − gτ
]
= 0 (21)(

khn f /k f
)
ξ3

Pr
θηη + θη f − θτ = 0 (22)

While BCs (12) can be: {
f (0, τ) = S, fη(0, τ) = −1, g(0, τ) = 0,θ(0, τ) = 1
fη(η, τ) → 0, g(η, τ) → 0 θ(η, τ)→ 0, as η→∞

(23)
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According to Weidman et al. [37], “the stability of the steady flow solutions f (η) = f0(η),
g(η) = g0(η) and θ(η) = θ0(η) are identified by writing F(η, τ), G(η, τ), and H(η, τ)” as follows

f (η, τ) = f0(η) + e−ετF(η, τ), g(η, τ) = g0(η) + e−ετG(η, τ), θ(η, τ) = θ0(η) + e−ετH(η, τ) (24)

where ε is the unknown eigenvalue parameter, while functions F(η, τ), G(η, τ), Hη, and (τ) are small
relative to f (η) = f0(η), g(η) = g0(η), and θ(η) = θ0(η). The following system of equations is
obtained by putting Equation (24) into Equations (20)–(23).

Fηηη + ξ1ξ2
[

f0Fηη + F( f0)ηη − 4( f0)ηFη + 4ΩG + εFη
]
= 0 (25)

Gηη + ξ1ξ2
[

f0Gη + F(g0)η − 2( f0)ηG− 2Fηg0 − 4ΩFη + εG
]
= 0 (26)(

khn f /k f
)
ξ3

Pr
Hηη + f0Hη + F(θ0)η + εH = 0 (27)

with the following BCs{
F(0, τ) = 0, Fη(0, τ) = 0, G(0, τ) = 0, H(0, τ) = 0

Fη(η, τ) → 0, G(η, τ) → 0, H(η, τ)→ 0, as η→∞
(28)

The stabilization of heat transfer solutions and steady-state flow solutions f0(η), g0(η), and θ0(η)

can be obtained by setting τ→ 0. Therefore, the functions F(η, τ) = F0(η), G(η, τ) = G0(η),
and H(η, τ) = H0(η) can be written in Equations (25)–(27). Thus, the following problem of linearized
eigenvalue can be expressed as:

F′′′0 + ξ1ξ2
{

f0F′′0 + F0 f ′′0 − 4 f ′0F′0 + 4ΩG0 + εF′0
}
= 0 (29)

G′′0 + ξ1ξ2
[
G′0 f0 + g′0F0 − 2

(
f ′0G0 + F′0g0

)
− 4ΩF′0 + εG0

]
= 0 (30)(

khn f /k f
)
ξ3

Pr
H′′0 + θ′0F0 + H′0 f0 + εH0 = 0 (31)

subject to the following BCs:{
F0(0) = 0, F′0(0) = 0, G0(0) = 0, H0(0) = 0

F′0(η)→ 0, G0(η) → 0 H0(η)→ 0, as η→∞
(32)

Note that the smallest eigenvalue (ε) can be determined by easing the boundary condition [38,39].
In this analysis, the condition F′0(η)→ 0 was relaxed and Equations (29)–(31) were solved along with
a new relaxed BC F′′0 (0) = 1 for a fixed value of the applied parameters.

4. Numerical Method

The three-stage Labatto III-A method is adopted to solve the above system of Equations (9)–(12)
numerically with the help of a bvp4c solver in the MATLAB software. Shampine et al. [40] provides a
detailed explanation of this method and how it works in MATLAB. We kept the tolerance at 10−5 to
obtain good accuracy in the solutions. According to Raza et al. [41] and Lund et al. [42], “this collocation
polynomial and formula offers a C1 continuous solution in which mesh error control and selection are
created on the residual of the continuous solution. The tolerance of relative error is fixed 10−5 for the
current problem. The suitable mesh determination is created and returned in the field sol.x. The bvp4c
returns solution, called as sol.y., as a construction. In any case, values of the solution are gotten from the
array named sol.y relating to the field sol.x”. To determine the stable solution, the three-stage Labatto
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III-A method is also used to obtain the values of the smallest eigenvalue. For a better understanding,
the algorithm of the method is illustrated in Figure 2.Symmetry 2020, 12, x FOR PEER REVIEW 7 of 14 
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5. Results and Discussion

The system of nonlinear ODEs (9–11) along with BCs (12) was solved numerically by employing
the three-stage Labatto III-A method. We have kept fixed Pr = 6.2 for the water-based hybrid nanofluid
at room temperature 25 ◦C. The Using Keller box method, the obtained results were compared with
the published results of Rosali et al. [43] as shown in Table 3 for the coefficients of the skin friction
f ′′ (0) and g′(0) for numerous values of the local rotating parameter Ω and found to be in excellent
agreement. Therefore, it can be concluded that the current numerical technique can be employed with
considerable confidence to solve the considered problem. Table 4 was constructed for the values of the
f ′′ (0) g′(0) and −θ′(0) of hybrid nanofluid.

Table 3. Comparison of f ′′ (0) and g′(0) for various values of Ω when = 2, Pr = 1, φCu = φAl2O3 = 0.

Results of [43] Present Results

Ω f ′′ (0) g′(0) f ′′ (0) g′(0) −θ′(0)

0.2 1.1449077 0.76030466 1.14491145 0.76028572 1.65895348

0.5 1.7030846 1.06450099 1.70307504 1.06449792 1.72967817

1 2.2015332 1.45971480 2.20152305 1.45971069 1.77530624

2 2.8466686 2.03340224 2.84665295 2.03339910 1.81789928

5 4.0629311 3.18470073 4.06290502 3.18469911 1.86820205

10 5.4008517 4.48862880 5.40081392 4.48862871 1.90024712
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Table 4. Values of f ′′ (0), g′(0) and −θ′(0) for the various values of φCu, φAl2O3 when
Pr = 6.2, S = 2.5, Ω = 0.01.

Upper Lower

φAl2O3 φCu f ′′ (0) g′(0) −θ′(0) f ′′ (0) g′(0) −θ′(0)

0 0.01 1.803107 0.026679 14.648604 −0.018593 0.250665 14.599120

0.05 2.304795 0.023603 12.924215 −0.498357 0.454046 12.840883

0.1 2.710236 0.022151 11.100902 −0.977529 0.682433 10.978038

0.01 0.01 1.808890 0.026631 14.188081 −0.023519 0.252548 14.136747

0.05 2.287739 0.023678 2.5184567 −0.480112 0.445739 12.433579

0.1 2.672587 0.022263 10.752889 −0.929227 0.658664 10.629077

0.1 0.01 1.735351 0.027287 10.736454 −0.0382667 0.229348 10.673921

0.05 2.045129 0.024944 9.4760101 −0.2360146 0.338429 9.3837847

0.1 2.275158 0.023735 8.1418098 −0.4667501 0.439678 8.0172755

The effects of φCu on the coefficients of skin friction f ′′ (0), g′(0), and the heat transfer rate −θ′(0)
against various values of the suction parameter S are given in Figures 3–5. Here, we focus solely
on multiple branches. The non-uniqueness of the branches is only possible when Ω = 0.01 (refer to
Figure 6). Furthermore, dual branches for the Equations (9)–(11) exist when S ≤ Sc where Sc is the
critical value. No solution exists when S > Sc. It is observed that the corresponding critical values of
φCu = 0.01, 0.05, 0.1 are Sc = 1.3914, 1.3249, 1.2793, respectively.

Symmetry 2020, 12, x FOR PEER REVIEW 8 of 14 

 

Table 4. Values of 𝑓 (0) , 𝑔 (0)  and −𝜃 (0)  for the various values of 𝜙 , 𝜙  when 𝑃𝑟 =6.2, 𝑆 = 2.5, Ω = 0.01. 

   Upper   lower  𝜙  𝜙  𝑓′′(0) 𝑔′(0) −𝜃′(0) 𝑓′′(0) 𝑔′(0) −𝜃′(0) 
0 0.01 1.803107 0.026679 14.648604 −0.018593 0.250665 14.599120 
 0.05 2.304795 0.023603 12.924215 −0.498357 0.454046 12.840883 
 0.1 2.710236 0.022151 11.100902 −0.977529 0.682433 10.978038 

0.01 0.01 1.808890 0.026631 14.188081 −0.023519 0.252548 14.136747 
 0.05 2.287739 0.023678 2.5184567 −0.480112 0.445739 12.433579 
 0.1 2.672587 0.022263 10.752889 −0.929227 0.658664 10.629077 

0.1 0.01 1.735351 0.027287 10.736454 −0.0382667 0.229348 10.673921 
 0.05 2.045129 0.024944 9.4760101 −0.2360146 0.338429 9.3837847 
 0.1 2.275158 0.023735 8.1418098 −0.4667501 0.439678 8.0172755 

The skin friction increases (decreases) by increasing the copper volume fraction in the upper 
(lower) branch. It is also examined that when the volume fraction of the copper enhances, the 
separation of the boundary layer expands. The heat transfer rate reduces when 𝜙  increases in both 
branches, while it is increasing the function of the suction parameter. 

 
Figure 3. Effect of 𝜙  on 𝑓′′(0). 

 
Figure 4. Effect of 𝜙  on 𝑔′(0). 

Figure 3. Effect of φCu on f ′′ (0).

Symmetry 2020, 12, x FOR PEER REVIEW 8 of 14 

 

Table 4. Values of 𝑓 (0) , 𝑔 (0)  and −𝜃 (0)  for the various values of 𝜙 , 𝜙  when 𝑃𝑟 =6.2, 𝑆 = 2.5, Ω = 0.01. 

   Upper   lower  𝜙  𝜙  𝑓′′(0) 𝑔′(0) −𝜃′(0) 𝑓′′(0) 𝑔′(0) −𝜃′(0) 
0 0.01 1.803107 0.026679 14.648604 −0.018593 0.250665 14.599120 
 0.05 2.304795 0.023603 12.924215 −0.498357 0.454046 12.840883 
 0.1 2.710236 0.022151 11.100902 −0.977529 0.682433 10.978038 

0.01 0.01 1.808890 0.026631 14.188081 −0.023519 0.252548 14.136747 
 0.05 2.287739 0.023678 2.5184567 −0.480112 0.445739 12.433579 
 0.1 2.672587 0.022263 10.752889 −0.929227 0.658664 10.629077 

0.1 0.01 1.735351 0.027287 10.736454 −0.0382667 0.229348 10.673921 
 0.05 2.045129 0.024944 9.4760101 −0.2360146 0.338429 9.3837847 
 0.1 2.275158 0.023735 8.1418098 −0.4667501 0.439678 8.0172755 

The skin friction increases (decreases) by increasing the copper volume fraction in the upper 
(lower) branch. It is also examined that when the volume fraction of the copper enhances, the 
separation of the boundary layer expands. The heat transfer rate reduces when 𝜙  increases in both 
branches, while it is increasing the function of the suction parameter. 

 
Figure 3. Effect of 𝜙  on 𝑓′′(0). 

 
Figure 4. Effect of 𝜙  on 𝑔′(0). Figure 4. Effect of φCu on g′(0).



Symmetry 2020, 12, 1637 9 of 14
Symmetry 2020, 12, x FOR PEER REVIEW 9 of 14 

 

 
Figure 5. Effect of 𝜙  on −𝜃′(0). 

 

Figure 6. Effect of 𝑆 on 𝑓′′(0). 

Figures 6–8 were plotted to demonstrate the effect of Ω on 𝑓′′(0), 𝑔′(0), and −𝜃′(0) against the 
fixed values of 𝑆. It was observed that skin friction coefficient 𝑓′′(0) and heat transfer −𝜃′(0) are 
increasing functions of the rotating (Ω) parameter when suction 𝑆 increases. It is also shown that 𝑓′′(0) increases for the higher values of rotational parameter Ω in both positive and negative sides. 
Moreover, in the case of Ω 0, 𝑔′(0) increases when Ω increases. Furthermore, it is revealed from 
Figure 7 that the skin friction increases with the decelerated flow. (i.e, Ω 0) and decreases with the 
accelerated flow (i.e, Ω 0). On the other hand, no solution is found when Ω = 0 for the fixed value 
of 𝑆 = 1. Furthermore, the symmetrical behavior of the branches is shown in these figures. 

Figure 5. Effect of φCu on −θ′(0).

Symmetry 2020, 12, x FOR PEER REVIEW 9 of 14 

 

 
Figure 5. Effect of 𝜙  on −𝜃′(0). 

 

Figure 6. Effect of 𝑆 on 𝑓′′(0). 

Figures 6–8 were plotted to demonstrate the effect of Ω on 𝑓′′(0), 𝑔′(0), and −𝜃′(0) against the 
fixed values of 𝑆. It was observed that skin friction coefficient 𝑓′′(0) and heat transfer −𝜃′(0) are 
increasing functions of the rotating (Ω) parameter when suction 𝑆 increases. It is also shown that 𝑓′′(0) increases for the higher values of rotational parameter Ω in both positive and negative sides. 
Moreover, in the case of Ω 0, 𝑔′(0) increases when Ω increases. Furthermore, it is revealed from 
Figure 7 that the skin friction increases with the decelerated flow. (i.e, Ω 0) and decreases with the 
accelerated flow (i.e, Ω 0). On the other hand, no solution is found when Ω = 0 for the fixed value 
of 𝑆 = 1. Furthermore, the symmetrical behavior of the branches is shown in these figures. 

Figure 6. Effect of S on f ′′ (0).

The skin friction increases (decreases) by increasing the copper volume fraction in the upper
(lower) branch. It is also examined that when the volume fraction of the copper enhances, the separation
of the boundary layer expands. The heat transfer rate reduces when φCu increases in both branches,
while it is increasing the function of the suction parameter.

Figures 6–8 were plotted to demonstrate the effect of Ω on f ′′ (0), g′(0), and −θ′(0) against the
fixed values of S. It was observed that skin friction coefficient f ′′ (0) and heat transfer −θ′(0) are
increasing functions of the rotating (Ω) parameter when suction S increases. It is also shown that f ′′ (0)
increases for the higher values of rotational parameter Ω in both positive and negative sides. Moreover,
in the case of Ω > 0, g′(0) increases when Ω increases. Furthermore, it is revealed from Figure 7 that
the skin friction increases with the decelerated flow. (i.e, Ω < 0) and decreases with the accelerated
flow (i.e, Ω > 0). On the other hand, no solution is found when Ω = 0 for the fixed value of S = 1.
Furthermore, the symmetrical behavior of the branches is shown in these figures.
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Figure 8. Effect of S on −θ′(0).

Figure 9 was plotted to examine the effects of Ω on the hybrid nanofluid velocity f ′(η). It was
detected that the velocity of the hybrid nanofluid declines as the rotation (Ω) parameter is increased.
Moreover, no oscillation behavior is found in f ′(η) for the higher values of Ω. It happened due to
various effects, such as the effects of the shrinking parameter, volume fraction, and suction.
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Figure 10 was plotted to examine the effects of the rotation parameter Ω on the hybrid nanofluid
velocity g(η). When Ω is increased, the velocity of hybrid nanofluid contains duality in the behavior.
For the negative and positive values of the rotation (Ω) parameter, the behavior of the velocity profile
was found to have the same behavior. Physically, this indicates that there is a symmetrical solution to
the hybrid nanofluid problem.
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The values of the smallest eigenvalues ε for different values of S and φCu are shown in Table 5.
The positive eigenvalue causes the initial decay of disturbance and thus stabilizes the flow. In contrast,
the negative results of the smallest eigenvalue show that the flow is unstable. Table 5 shows that ε is
positive for the upper branch, whereas ε is negative for the lower branch.

Table 5. Smallest eigenvalue ε for different values of S and φCu when Ω = 0.01; Pr = 6.2; φAl2O3 = 0.1.

φCu S ε

Upper branch Lower branch

0.01 1.4 0.0527 −0.02652

1.6 0.26126 −0.13272

1.8 0.56249 −0.63379

0.05 1.5 0.15122 −0.17922

1.7 0.42821 −0.50293

1.9 0.79456 −0.73434

0.1 1.5 0.26055 −0.27788

1.7 0.49440 −0.53679

1.9 0.84495 −0.80766

6. Conclusions

In this study, the flow of rotating, steady, and three-dimensional heat transfer of a hybrid nanofluid
on a penetrable exponential shrinking surface together with the suction effect were investigated
numerically. The governing PDEs have been converted to a system of ODEs using the suitable
exponential similarity transformation. The three-stage Labatto III-A technique was then implemented
for the solving of the system of ODEs. Numerical results indicate that the current outcomes of f ′′ (0)
and g′(0) are in good agreement with the results previously published. The point-wise conclusions are
the following:
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1. In comparison to a viscous fluid, the heat transfer rate of the hybrid nanofluid is better in the
attendance of hybrid nanoparticles.

2. Two branches exist in the specific ranges of physical parameters.
3. The upper branch remains stable while the lower branch is unstable.
4. Rate of heat transfer upsurges for the advanced values of the mass suction in both branches.
5. Hybrid nanofluid has a symmetrical solution.
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