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The complex Ginzburg–Landau (CGL) equation which describes the soliton propagation

in the presence of the detuning factor is firstly considered; then its solitons as well as

Jacobi elliptic function solutions are obtained systematically using a modified Jacobi

elliptic expansionmethod. In special cases, several dark and bright soliton solutions to the

CGL equation are retrieved when the modulus of ellipticity approaches unity. The results

presented in the current work can help to complete previous studies on the complex

Ginzburg–Landau equation.
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INTRODUCTION

One of the very hot topics in many of today’s research is the search for exact solutions of non-linear
partial differential (NLPD) equations. As it is known, exact solutions of NLPD equations play a
significant role in a wide variety of applied sciences and provide meaningful information about
physical phenomena modeled by non-linear partial differential equations. Fortunately, with the
development of symbolic computation packages, a variety of systematic methods [1–34] (Hosseini
et al., under review) have been proposed to obtain exact solutions of NLPD equations. Many of
these methods are based on considering the solution as a finite series in terms of the solutions of
well-known ordinary differential equations such as Bernoulli, Riccati, and Jacobi equations. Among
these methods, the modified Jacobi elliptic expansion (MJEE) method [21–27] has achieved a great
deal of attention. For instance, El-Sheikh et al. [25] extracted elliptic function solutions of non-
linear Boussinesq-like equations using the MJEE method. Hosseini et al. [26] applied the MJEE
method to find optical solitons of the Fokas–Lenells equation. Hosseini et al. [27] also obtained
exact solutions of a (3+1)-dimensional resonant non-linear Schrödinger equation through the
MJEE method. Such results encouraged the authors of the present article to employ the modified
Jacobi elliptic expansion method to derive complex wave structures of the following complex
Ginzburg–Landau equation [28–34] (Hosseini et al., under review)
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which describes the soliton propagation in the presence of the
detuning factor. In the CGL Equation (1), α1 and α2 are the
coefficients of the group velocity dispersion and the Kerr law
non-linearity while α3 and α4 denote the coefficients of the
perturbation effects, especially α4 comes from the detuning effect.
Recently, the main subject of a lot of studies has been focused on
the complex Ginzburg–Landau equation and its exact solutions.
Osman et al. [30] reported several complex wave structures to
the CGL equation using a modified auxiliary equation method.
In another paper, Abdou et al. [31] obtained dark-singular combo
solitons of the CGL equation through the extended Jacobi elliptic
expansion method. Solitons of the CGL equation were derived
by Arshed in [32] with the help of the exp(−ϕ(ǫ))-expansion
method. Rezazadeh [33] listed a series of soliton solutions to the
CGL equation using a new extended direct algebraic method, and
finally, Arnous et al. [34] employed the modified simple equation
method to generate optical solitons of the CGL equation. This
paper is arranged as follows: In Section the modified Jacobi
elliptic expansion method and its fundamental, the modified
Jacobi elliptic expansionmethod and its fundamental is reviewed.
In Section complex Ginzburg–Landau equation and its exact
solutions, exact solutions of the CGL equation are given by
applying the MJEE method. Section conclusion is devoted to
summarizing the conclusions.

THE MODIFIED JACOBI ELLIPTIC
EXPANSION METHOD AND ITS
FUNDAMENTAL

To explain the basic ideas of the modified Jacobi elliptic
expansion method, we consider the following NLPD equation

P (u, ux, ut , uxx, uxt , utt , ...) = 0, P is a function, u is

an unknown (2)

and suppose that it can be converted to an ODE as follows

O
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through considering the transformation u (x, t) =

U (ξ) ei(−κx+ωt+θ) which ξ = x− ν t.
Now, assume that the non-trivial solution of Equation (3) can

be expressed as
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where c0, ci, and di (1 ≤ i ≤ N) are constants to be found later,
N is the balance number, and J (ξ) is a known function satisfying
the following Jacobi elliptic equation

(

J′ (ξ)
)2

= D+ EJ2 (ξ) + FJ4 (ξ) . (5)

The Jacobi elliptic Equation (5) admits the following exact
solutions (See Table 1):

TABLE 1 | Jacobi elliptic function solutions of Equation (5).

No. D E F J(ξ )

1 1 −
(

m2 + 1
)

m2 sn (ξ)

2 1−m2 2m2 − 1 −m2 cn (ξ)

3 m2 −
(

m2 + 1
)

1 ns (ξ)

4 −m2 2m2 − 1 1−m2 nc (ξ)

By substituting the solution (4) along with the Jacobi elliptic
Equation (5) into Equation (3) and performing a series of
calculations, we arrive at a set of non-linear algebraic equations
whose solution yields exact solutions of the NLPD Equation (2).

The Jacobi elliptic functions include some interesting
properties that are reviewed below [35]:

• sn2 (ξ) + cn2 (ξ) = 1.
• sn (ξ) = sn (ξ ,m) → tanh (ξ) whenm → 1.
• ns (ξ) = (sn (ξ ,m))−1 → coth (ξ) whenm → 1.

COMPLEX GINZBURG–LANDAU
EQUATION AND ITS EXACT SOLUTIONS

To gain exact solutions of the CGL equation, we first apply a
complex transformation in the form below

u (x, t) = U (ξ) ei(−κx+ωt+θ), ξ = x− νt,

where ν is the velocity of the soliton whereas κ , ω, and
θ are the wave number, the frequency, and the phase
constant, respectively. Such a complex transformation
results in

(−α1 + 4α3)
d2U (ξ)

dξ 2
+
(

κ2α1 + ω + α4

)

U (ξ) − α2U
3 (ξ) = 0 (6)

where the velocity of the soliton is

ν = −2κα1.

Now, based on the Jacobi elliptic expansion method and the
balance numberN = 1, the solution of Equation (6) is considered
as follows

U (ξ) = c0 + c1
J (ξ)

1+ J2 (ξ)
+ c2

1− J2 (ξ)

1+ J2 (ξ)
, c2 = d1,

where c0, c1, and c2 are constants to be found later. By inserting
the above solution along with the Jacobi elliptic Equation (5) into
Equation (6) and performing a series of calculations, we will get a
set of non-linear algebraic equations as

−κ2α1c0 − κ2α1c2 + α2c0
3 + 3α2c0

2c2 + 3α2c0c2
2 + α2c2

3

−4Dα1c2 + 16Dα3c2 − ωc0 − ωc2 − α4c0 − α4c2 = 0,

−κ2α1c1 + 3α2c0
2c1 + 6α2c0c1c2 + 3α2c1c2

2 − 6Dα1c1

+24Dα3c1 + Eα1c1 − 4Eα3c1 − ωc1 − α4c1 = 0,

−3κ2α1c0 − κ2α1c2 + 3α2c0
3 + 3α2c0

2c2 + 3α2c0c1
2
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FIGURE 1 | (A) The 3-dimensional graph of |u1 (x, t)| for α1 = 1, α2 = 1, α3 = 1, α4 = 1, κ = 0.1, and θ = 0; (B) The 3-dimensional graph of |u3 (x, t)| for α1 = 1,

α2 = 1, α3 = 1, α4 = 1, κ = 0.1, and θ = 0.

−3α2c0c2
2 + 3α2c1

2c2 − 3α2c2
3 + 12Dα1c2 − 48Dα3c2

−8Eα1c2 + 32Eα3c2 − 3ωc0 − ωc2 − 3α4c0 − α4c2 = 0,

−2κ2α1c1 + 6α2c0
2c1 + α2c1

3 − 6α2c1c2
2 + 2Dα1c1 − 8Dα3c1

−6Eα1c1 + 24Eα3c1 + 2Fα1c1 − 8Fα3c1 − 2ωc1 − 2α4c1 = 0,

−3κ2α1c0 + κ2α1c2 + 3α2c0
3 − 3α2c0

2c2 + 3α2c0c1
2

−3α2c0c2
2 − 3α2c1

2c2 + 3α2c2
3 + 8Eα1c2 − 32Eα3c2

−12Fα1c2 + 48Fα3c2 − 3ωc0 + ωc2 − 3α4c0 + α4c2 = 0,

−κ2α1c1 + 3α2c0
2c1 − 6α2c0c1c2 + 3α2c1c2

2 + Eα1c1

−4Eα3c1 − 6Fα1c1 + 24Fα3c1 − ωc1 − α4c1 = 0,

−κ2α1c0 + κ2α1c2 + α2c0
3 − 3α2c0

2c2 + 3α2c0c2
2 − α2c2

3

+4Fα1c2 − 16Fα3c2 − ωc0 + ωc2 − α4c0 + α4c2 = 0.

Solving the above set of non-linear algebraic equations leads to
the following cases:

Case 1.WhenD = 1, E = −
(

m2 + 1
)

, and F = m2, we obtain

• c0 = 0, c1 = ±

√

−
32α1−128α3

α2
, c2 = 0, ω = −κ2α1 − 8α1 +

32α3 − α4, m = 1,

• c0 = 0, c1 = 0, c2 = ±

√

−
−8α1+32α3

α2
, ω = −κ2α1 + 4α1 −

16α3 − α4, m = 1,

• c0 = 0, c1 = ±

√

−
8α1−32α3

α2
, c2 = ±

√

−
−2α1+8α3

α2
, ω =

−κ2α1 − 2α1 + 8α3 − α4, m = 1,

• c0 = 0, c1 = ∓

√

−
8α1−32α3

α2
, c2 = ±

√

−
−2α1+8α3

α2
, ω =

−κ2α1 − 2α1 + 8α3 − α4, m = 1.

Now, the following exact solutions to the CGL equation
are retrieved

u1,2 (x, t) = ±

√

−
32α1 − 128α3

α2

tanh (x+ 2κα1t)

1+ tanh2 (x+ 2κα1t)

×ei(−κx+(−κ2α1−8α1+32α3−α4)t+θ),

u3,4 (x, t) = ±

√

−
−8α1 + 32α3

α2

1− tanh2 (x+ 2κα1t)

1+ tanh2 (x+ 2κα1t)

×ei(−κx+(−κ2α1+4α1−16α3−α4)t+θ),

u5,6 (x, t) =

(

±

√

−
8α1 − 32α3

α2

tanh (x+ 2κα1t)

1+ tanh2 (x+ 2κα1t)

±

√

−
−2α1 + 8α3

α2

1− tanh2 (x+ 2κα1t)

1+ tanh2 (x+ 2κα1t)

)

×ei(−κx+(−κ2α1−2α1+8α3−α4)t+θ),

u7,8 (x, t) =

(

∓

√

−
8α1 − 32α3

α2

tanh (x+ 2κα1t)

1+ tanh2 (x+ 2κα1t)

±

√

−
−2α1 + 8α3

α2

1− tanh2 (x+ 2κα1t)

1+ tanh2 (x+ 2κα1t)

)

×ei(−κx+(−κ2α1−2α1+8α3−α4)t+θ ).

The 3-dimensional graphs of |u1 (x, t)| and |u3 (x, t)| which
indicate dark and bright soliton solutions have been shown in
Figure 1 for a series of the involved parameters.

Case 2. When D = 1 − m2, E = 2m2 − 1, and F = −m2,
we acquire

c0 = ±

√

−
−α1 + 4α3

2α2
, c1 = 0, c2 = ±

α1 − 4α3

α2

√

−
−α1+4α3

2α2

,

ω = −κ2α1 +
5

2
α1 − 10α3 − α4, m =

1

2
.

Now, the following Jacobi elliptic function solutions to the CGL
equation are derived.

u9,10 (x, t) = ±

√

−
−α1 + 4α3

2α2

±
α1 − 4α3

α2

√

−
−α1+4α3

2α2

1− cn2
(

x+ 2κα1t,
1
2

)

1+ cn2
(

x+ 2κα1t,
1
2

)

×ei
(

−κx+
(

−κ2α1+
5
2α1−10α3−α4

)

t+θ
)

.
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FIGURE 2 | (A) The 3-dimensional graph of |u11 (x, t)| for α1 = 1, α2 = 1, α3 = 1, α4 = 1, κ = −0.1, and θ = 0; (B) The 3-dimensional graph of |u13 (x, t)| for α1 = 1,

α2 = 1, α3 = 1, α4 = 1, κ = −0.1, and θ = 0.

Case 3. WhenD = m2, E = −
(

m2 + 1
)

, and F = 1, we obtain

• c0 = 0, c1 = ±

√

−
32α1−128α3

α2
, c2 = 0, ω = −κ2α1 − 8α1 +

32α3 − α4, m = 1,

• c0 = 0, c1 = 0, c2 = ±

√

−
−8α1+32α3

α2
, ω = −κ2α1 + 4α1 −

16α3 − α4, m = 1,

• c0 = 0, c1 = ±

√

−
8α1−32α3

α2
, c2 = ±

√

−
−2α1+8α3

α2
, ω =

−κ2α1 − 2α1 + 8α3 − α4, m = 1,

• c0 = 0, c1 = ∓

√

−
8α1−32α3

α2
, c2 = ±

√

−
−2α1+8α3

α2
, ω =

−κ2α1 − 2α1 + 8α3 − α4, m = 1.

Now, the following exact solutions to the CGL equation
are retrieved

u11,12 (x, t) = ±

√

−
32α1 − 128α3

α2

coth (x+ 2κα1t)

1+ coth2 (x+ 2κα1t)

×ei(−κx+(−κ2α1−8α1+32α3−α4)t+θ),

u13,14 (x, t) = ±

√

−
−8α1 + 32α3

α2

1− coth2 (x+ 2κα1t)

1+ coth2 (x+ 2κα1t)

×ei(−κx+(−κ2α1+4α1−16α3−α4)t+θ),

u15,16 (x, t) =

(

±

√

−
8α1 − 32α3

α2

coth (x+ 2κα1t)

1+ coth2 (x+ 2κα1t)

±

√

−
−2α1 + 8α3

α2

1− coth2 (x+ 2κα1t)

1+ coth2 (x+ 2κα1t)

)

×ei(−κx+(−κ2α1−2α1+8α3−α4)t+θ),

u17,18 (x, t) =

(

∓

√

−
8α1 − 32α3

α2

coth (x+ 2κα1t)

1+ coth2 (x+ 2κα1t)

±

√

−
−2α1 + 8α3

α2

1− coth2 (x+ 2κα1t)

1+ coth2 (x+ 2κα1t)

)

×ei(−κx+(−κ2α1−2α1+8α3−α4)t+θ ).

The 3-dimensional graphs of |u11 (x, t)| and |u13 (x, t)| which
denote dark and bright soliton solutions have been presented in
Figure 2 for a series of the involved parameters.

Case 4. When D = −m2, E = 2m2 − 1, and F = 1 − m2,
we acquire

c0 = ±

√

−
−α1 + 4α3

2α2
, c1 = 0, c2 = ∓

α1 − 4α3

α2

√

−
−α1+4α3

2α2

,

ω = −κ2α1 +
5

2
α1 − 10α3 − α4, m =

1

2
. (7)

Now, the following Jacobi elliptic function solutions to the CGL
equation are derived.

u19,20 (x, t) = ±

√

−
−α1 + 4α3

2α2

∓
α1 − 4α3

α2

√

−
−α1+4α3

2α2

1− nc2
(

x+ 2κα1t,
1
2

)

1+ nc2
(

x+ 2κα1t,
1
2

)

×ei
(

−κx+
(

−κ2α1+
5
2α1−10α3−α4

)

t+θ
)

.

CONCLUSION

The complex Ginzburg–Landau equation as a famous NLPD
equation was studied successfully in the current paper. A
modified version of the Jacobi elliptic expansion method was
formally adopted to carry out this goal. A wide variety of exact
solutions to the CGL equation in the presence of the detuning
factor were derived. Particularly, several dark and bright
soliton solutions were derived when the modulus of ellipticity
approaches unity. Although, the exact solutions given in the
present paper provide useful information about the complex
Ginzburg–Landau equation, seeking other exact solutions of the
CGL equation can be considered as an important task in our
future works.
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