
 

ÇANKAYA UNIVERSITY 
GRADUATE SCHOOL OF SOCIAL SCIENCE 

DEPARTMENT OF MANAGEMENT 
 
 
 

MASTER THESIS 
 
 
 
 
 
 

FUZZY RULE-BASED MODELING 
IN QUEUING SYSTEMS 

 
 
 
 
 
 
 
 
 
 
 
 
 

FARZANEH GHOLAMI ZANJANBAR 
 
 
 
 
 
 
 
 
 
 
 

SEPTEMBER 2012



 

Title of the Thesis: Fuzzy Rule-Based Modeling in Queuing Systems 

 

Submitted by: Farzaneh Gholami Zanjanbar 

 

Approval of the Graduate School of Social Sciences, 

Çankaya University 

 
 

Prof. Dr. Taner ALTUNOK. 
                                                                                                Director 

 
I certify that this thesis satisfies all the requirements as a thesis for the degree of 
Master of Science. 

 
 

Prof. Dr. Öznur YÜKSEL. 
Head of Department 

 
This is to certify that we have read this thesis and that in our opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Master of Science. 

 
 

 
Asst. Prof. Dr. Đnci ŞENTARLI 

       Supervisor 
 

Examination Date :      20- 9- 2012 
 

Examining Committee Members 
 
Prof. Dr. Đsmail Burhan Türkşen   (TOBB univ.)                                                   . 

 

Prof. Dr. Hasan Işın DENER     (Çankaya Univ.)                                                  . 

 

Asst. Prof. Dr. Đnci Şentarlı        (Çankaya Univ.)                                                 .



 

iii  

STATEMENT OF NON PLAGIARISM 

 
I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare that, 

as required by these rules and conduct, I have fully cited and referenced all material 

and results that are not original to this work.  

 
 
 

Name and Surname : Farzaneh Gholami Zanjanbar 

 Date :   20-9-2012 

 Signature :   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

iv 

ABSTRACT 

 
 

FUZZY RULE-BASED MODELING 
IN QUEUING SYSTEMS 

 

Farzaneh GHOLAMI ZANJANBAR 

M.S, Social Sciences 

Supervisor: Asst. Prof. Dr. Đnci ŞENTARLI 

 

September 2012, 60 pages 

 
In this thesis, a new hard clustering method is proposed to provide objective 

knowledge for the fuzzy queuing systems. In this method, locally linear controllers 

are extracted and translated into the first-order Takagi-Sugeno rule based fuzzy 

model. In this extraction process, the region of fuzzy subspaces of available inputs 

corresponding to different implications is used to obtain the clusters of outputs of the 

queuing system. Then, the multiple regression functions associated with these 

separate clusters are used to interpret the performance of queuing systems. Some 

applications of the proposed method including calculations of performances and cost 

analysis with some comparisons are presented and the results are discussed. 

 

Keywords: queuing system, fuzzy rule base, clustering, linear controller, 
performance. 
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ÖZ 

 

KUYRUK SĐSTEMLERĐNDE BULANIK KURAL TABANLI MODELLEME 
 

GHOLAMI ZANJANBAR, Farzaneh 

  Yükseklisans Tezi, Sosyal Bilimler  

                              Tez Yöneticisi: Asst. Prof. Dr. Đnci ŞENTARLI 

Eylül 2012, 60 sayfa 

 

Sistemlerin kontrol uygulamarında bulanık mantığın kullanıldığı tipdekı 

problemlerde büyük başarı ve  beğeni kazanılmıştır. Dolayısıyla, gerçek yaşamlarda, 

kuyruk sistemlerinin bulanık kavramı ile tasarımı ve kontrolü daha gerçekçi ve 

uygulanabilir olacaktır. 

Bu tez çalışmasında, bulanık kuyruk sistemleri için nesnel bilgi sağlamaya yönelik 

yeni bir sabit kümeleme yöntemi önerilmiştir. Bu yöntemde, yerel doğrusal 

denetleyicileri ayıklanıp birinci dereceden bulanık kural tabanlı Takagi-Sugeno 

modeline dönüştürülmektedir. Bu ayıklama işleminde, kuyruk sisteminin çıktı 

kümelerini elde etmek için farklı yansımalara karşılık gelen varolan girdilerin 

bulanık altuzayları bölgesi kullanılır. Daha sonra, bu ayrı kümeler ile ilişkili çoklu 

regresyon fonksiyonları kuyruk sistemlerinin performansını değerlendirmek için 

kullanılmıştır. Önerilen yöntem ile performanslar ve maliyet analizi hesaplamalarını 

içine alan bazı uygulamalar sunulmuştur ve sonuçlar tartışılmıştır. 

 

Anahtar Kelimeler:  kuyruk sistemi, bulanık kural tabanı, kümeleme, lineer 

kontrolör, performans. 
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INTRODUCTION 
 

In this thesis, a new hard clustering method is presented to provide objective 

knowledge for the fuzzy queuing systems. In many literatures, probability 

distributions estimate the arrival times and service times. On the other hand, in many 

real-world applications there are the linguistic terms, such as “Crowded” arrivals, 

“Fast” or “Slow” services that describe the arrival and service patterns instead of the 

probability distributions. As you know in most of practical applications, both arrival 

times and service times are possibilistic. Therefore, design and control of the queuing 

system with fuzzy concept is more realistic and applicable. Controlling the queues 

occupy is an important place in our lives where control applications in decision 

making and management based on fuzzy logic has had the highest success. 

With using the Zadeh’s extension principle (Zadeh, 1978), the possibility 

concept, and fuzzy Markov chain (Stanford, 1982), the problem of fuzzy queues has 

been inquired by Li & Lee (1989), Buckley (1990), Negi & Le (1992) and so on. 

Aydın & Apaydin (2008) the fuzzy queuing control parameters with different 

membership functions are considered. Wang & Yang and Li. (1999) the fuzzy 

queues are transformed to a group of crisp queues by using the cut−α method and 

Zadeh’s extension principle. 

Three key features of control systems are: inputs, outputs, and control 

parameters or, control actions (Timothy, 2004). For instance, priority dicipline 

machine for entering customers to different queues in the banks is a control 

mechanism where inputs are arrival and service time rates of customers, outputs are 

the length of the queues, and the control actions are the altering the queue disipline, 

capacity and etc. 

Consider to a wide-range of real-world practical applications, description of 

dynamic systems with available input-output data is a critical moot point of the 

scientific research. Usually the input and output relationship of a process in fuzzy 

logic controller is expressed by “if-then rules”, as: 

If    the interarrival is crowded   then   the length of queue is long. 
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 Since many real systems are innately nonlinear, the conventional systems can 

not identify these systems by linear models (Ljung, 1987). Currently, there are many 

capable studies to improve the nonlinear system identification methods using 

available data. The TSK (Takagi, Sugeno, & Kang) method was proposed in 

generating fuzzy rules using available input-output data set (Takagi and Sugeno, 

1985; Sugeno and Kang, 1988). In the TSK rule based fuzzy model, a linear 

membership function in each implication is formed to describe the real relation of 

input-output in the system. Comparisons of clustering algorithms in the identification of 

Takagi-Sugeno model (Fazel Zarandi, 2012; Abonyi, 2000; Johansen, 2000) are 

presented by Vernieuwe (2006).   

In recent researches, clustering technique is being utilized for extracting fuzzy 

rule consequences which requires the user to identify structure of the knowledge or 

the rule base. Clustering is a method of classification of patterns or data item or 

observations into clusters or groups and is helpful in constructing fuzzy rules from 

data (Timothy, 2004). The clustering algorithm needs the user to define the initial 

location of the cluster. Every cluster represents a set of typical data points covering 

the range of data behavior. There are various clustering algorithms using optimization 

techniques to identify the antecedents of a system in some literatures such as Gath-Geva 

clustering algorithm (1989), modified Gath–Geva fuzzy clustering algorithm (Abonyi, 

2002), the Gustafson-Kessel clustering algorithm ( 1979), the subtractive clustering 

algorithm (Chiu, 1994). 

This thesis shows a new hard clustering method in identification and 

simulation of fuzzy queuing systems just only using available input data set (Şentarlı 

and G. Zanjanbar, 2013). We proposed estimated an output data set and develop a 

mathematical approach in generating a rule based fuzzy model using a given input 

and the virtual output data sets. A crisp output data set is produced, using arrival and 

service rate data sets and the queuing system performance expression function. The 

calculated output data set is separated into few clusters due to the region of fuzzy 

subspaces of available inputs. Each cluster generates approximate linear membership 

function for related implication. In this thesis, a computer source code is provided for 

the new mathematical approach which derives the linear membership functions to 
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explain the real input and calculated output relation of the queuing system 

performances based on human interpretable information. 

 

This thesis consists of 3 chapters. In the next section, we have a glance on the 

basic knowledge about fuzzy theory and the classical and fuzzy queuing systems 

with infinite capacity. Chapter 2 will be devoted to define the proposed new method 

of clustering to develop the first-order Takagi-Sugeno rule based fuzzy model on 

field of multi server queuing systems, using input data. In chapter 3, the realistic 

examples are illustrated the applicability of proposed approach. In this chapter, a cost 

analysis of a queuing system via new method and the comparisons of the proposed 

method with the conventional method are presented. The comparisons between new 

proposed model and the fuzzy N-Policy queuing system based upon α-cut method 

results on predicting performances in a queuing system are presented, too. 

Conclusions are provided at the end of this study. 

 

CHAPTERS: 
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CHAPTER I 

FUZZY LOGIC ESSENTIALS 

1.1. BENEFITS OF FUZZY LOGIC 

 
Fuzzy logic is a technique that systematically and mathematically attempts to 

analyze human reasoning and decision making. Fuzzy logic provides engineers with 

a clear and intuitive way to implement control systems, decision-making and 

diagnostic systems in various branches of industry (Babuska, 1997). So that, fuzzy 

logic allows exploiting engineers’ empirical knowledge represented in the “if/then” 

rules and transfer it to a function. Fuzzy logic algorithms can be used for advanced 

applications in industrial automation such as:  

 

• Intelligent control systems: Fuzzy control solutions are especially useful for 

complex systems where standard control fails. Fuzzy logic is an advantage 

in conventional analytical-process models which are too involved. Fuzzy 

logic can be easily combined with conventional controllers and mainly 

improved their functionality, that, it is another advantage of fuzzy logic. For 

instance, fuzzy rules interpolate between a sets of locally linear controllers 

and plan improvements of a system controller based on changing operating 

conditions. So fuzzy rules do not necessarily have to displace conventional 

control methods, but rather develop their potentialities. 

• Process diagnostics, fault detection: If an analytical process model is not 

accessible or is too compound to be run in real-time, empirical knowledge 

can be used to classify process conditions and early detect faults. 

• Decision-making and expert systems: Fuzzy rules can analyze an 

experienced human operator in real time, e.g. select appropriate ingredients, 

components or machines according to specific situations in the 

manufacturing process. 
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1.2. FUZZY SETS 

Prof. Lotfi Zadeh introduced the concept of fuzzy sets in 1965. Since then, the 

theory has been developed by many researchers and application engineers. 

In classical set theory, a membership function define a set that assigns each element a 

degree of membership (0 or 1) so that, 0 means the element is not member of the set 

and 1 means the element is member of the set. The classical (crisp) Fuzzy sets 

include the degree of memberships in which are any values in the real unit interval 

[0, 1]. 

 

 

Let’s assume that we have defined three classical sets “Not Crowded“, 

“Moderate“ and “Crowded“ for variable arrival rate (see Figure. 1.1). If we want to 

classify (evaluate degree of membership) for example for value 23 to these sets, we 

get value 1 for set “Moderate“ and 0 for sets “Not Crowded“ and “Crowded“. Vague 

classification will be more realistic and thus closer to human reasoning, because no 

sharp distinction usually exists between moderate and crowded arrival rates, as one 

arrival rate reading can be moderate to some extent (0.8) and crowded to another one 

(0.2), see Figure. 1.2. 

Figure 1.1 Classical sets. 
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Figure 1.2 Fuzzy sets. 

 

1.3. MEMBERSHIP FUNCTIONS 

A function-theoretic form maps fuzzy set elements to a universe of membership 

values. In this text, a set symbol with a tilde above strike, denote a fuzzy set; for 

example, Ã is the fuzzy set A. each element of a fuzzy set Ã is assigned to a real 

number value on the interval 0 to 1 with a membership function. 

If x is a member of fuzzy set Ã, then this mapping is extracted by [ ]1,0)(~ ∈x
A

η .  

        In our particular example, the variable x is the arrival rate, X is the range [5, 

40], Ã is e.g. “moderate” and for x=23 we get 8.0)23(~ =
A

η . 

The variable x is called the linguistic variable and corresponding fuzzy sets 

defined on the range are called linguistic terms described by membership function. 

For example, the linguistic variable arrival rate has terms “Not Crowded”, 

“Moderate” and “Crowded”. The process of classification of a particular value of the 

variable x to corresponding fuzzy sets is called fuzzification. 

The most commonly used membership functions are in Figure 1.3. Singleton, whose 

degree of membership is 1 just for a single value c and 0, otherwise, is used just for 

output linguistic variables. 
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Figure 1.3 Types of membership functions. 

1.4. FUZZY SET OPERATIONS 

Suppose two fuzzy sets A
~

 and B
~

 on the universe X. For Xx∈∀ , the 

following union, intersection, and complement function operations are denoted forA
~

 

and B
~

on X: 

 

Union                         )()()( ~~
)

~~
(

xxx
BABA

ηηη ∨=
U

 

Intersection                 )()()( ~~
)

~~
(

xxx
BABA

ηηη ∧=
I

 

Complement               )(1)( ~~ xx
AA

ηη −=  

1.5. FUZZY SYSTEMS 

A fuzzy system is a static or dynamic system which utilizes fuzzy sets or fuzzy 

logic. To involve the fuzzy sets in a system, there are some ways (Babuska, 1997), 

such as: 

• In the explanation of the system: A number of if-then rules or fuzzy relations 

with fuzzy means can explain a system. For instance, the relationship 

between the arrival rate  and the length of queue in a queuing system is 

described by a fuzzy rule as : 

 

If     the arrival rate is crowded   then   the expected length of queue will be long 

 

• In the system’s parameters specification: An algebraic or differential 

equation can explain a fuzzy system, where the parameters are fuzzy 

numbers, not real numbers.  
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• The fuzzy input sets and system state variables: Vague information related to 

human linguistic terms can extract fuzzy inputs, such as fast, slow, etc. Fuzzy 

systems can process the information of this type of data, which is not usable 

with conventional (crisp) systems. 

Some of the above properties can be included in a fuzzy system. Table 1.1 

presents the relationships in fuzzy and crisp system descriptions (Babuska, 1999).  

 

Table 1.1 Crisp and fuzzy data in some system descriptions. 

System 

description 

Input data Conclusion  Mathematical  

method 

Crisp Crisp Crisp conventional analysis 

Crisp  Fuzzy Fuzzy Zadeh’s and Mamdani 

extension principle 

Fuzzy Crisp/Fuzzy Fuzzy fuzzy analysis 

1.5.1. Fuzzy Inference 

A fuzzy inference is a mechanism for evaluation of the fuzzy system, i.e. 

computing output values from input values. The fuzzy analysis consists of the 

following steps: 

 

1. Fuzzification: Inputs are classified to corresponding linguistic terms to get 

premises membership functions. 

2. Fuzzy rules evaluation: The membership function term of conclusions are 

calculated from premise membership function terms and logical operations. 

3. Defuzzification: Output linguistic terms are converted to a real crisp value 

according to their membership functions. 

1.5.1.1.Defuzzification 

In the most of processes, to analyze the output result of a fuzzy inference, we 

need a single scalar amount instead of a fuzzy set. Just as fuzzification is the 

alteration of an exact amount to a fuzzy amount, defuzzification is the alteration of a 

fuzzy amount to an exact amount. Recently, in many literatures, weighted average 

method is proposed for defuzzifying fuzzy output membership functions. 
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• Weighted average method: The output is computed with weighted average of 

the each output of the set of rules, based on knowledge of the system. This 

type of defuzzification method is defined as: 

∑

∑

=

== n

i
i

n

i

i
i

w

yw
Y

1

1  

where Y  is the defuzzified output, 
iy  is the membership function of the output 

of each rule, and iw  is the weight of each rule. This fast and easy computable 

method gives adequately precise conclusion. In this thesis, this method has been 

first summarized and then illustrated in examples. 

• α – cut method: The study begin by considering a fuzzy setA
~

, then define 

an α -cut set, αA , where 0 ≤ α≤ 1.The set αA  is a crisp set called the (α)-cut  

set of the fuzzy set A
~

,where { }αµα ≥= )(~ xxA
A . Note that the α -cut 

set A
~

 does not have a tilde above score; it is a crisp set derived from its 

parent fuzzy set, A
~

. Whereas an infinite number of values α in the interval 

[0, 1], every fuzzy set A
~

can be translated into an infinite number of α -cut 

sets. Any element αAx∈   associates toA
~

with a grade of membership that 

is greater than or equal to the value α.  

 

1.5.2. Some Practical Relevancy of Fuzzy Modeling 

• Lacking or Ambiguous knowledge about systems. The system behaviors can 

be described by conventional system theory just using crisp mathematical 

methods. For instance, mathematical models of queuing systems can be 

achieved with algebraic equations. In the most of systems, the 

comprehensions’ of the fundamental phenomenon’s is incompletely and crisp 

conventional methods can not be analyzed or too complex. The 
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biotechnology, finance, chemical, sociology, ecology are examples of such 

systems. The knowledge of human expert’s is available as a useful part of 

information about these systems. Explanation of this ambiguous and 

uncertain knowledge may be too difficult for crisp conventional methods. On 

the other hand, it seems often possible to define the behavior of systems in 

the form of if-then rules, by terms of natural language. “Fuzzy rule-based 

systems can be used as knowledge-based models constructed by using 

knowledge of experts in the given field of interest “(Pedrycz, 1990; Yager 

and Filev, 1994). Hence, fuzzy systems are very much alike to intelligence 

systems researched widely in the “symbolic” artificial intelligence (Buchanan 

and Shortliffe, 1984; Patterson, 1990). 

• Imprecise information processing. Crisp exact numerical results with 

conventional mathematical methods only can be extracted with the correctly 

known parameters and input data. A modeling framework is required the 

processable data and associated uncertainty. Dealing with uncertainty is a 

usual way in stochastic approach. However, the stochastic framework cannot 

deal all types of uncertainty. Fuzzy logic and set theory is one of various 

alternative approaches which have been proposed (Smets, 1988). 

• Fuzzy modeling and identification. Today’s, in scientific researches, 

identification of dynamic systems from input data are an important matter. 

Linear models used in conventional system identification, cannot extract 

many nonlinear real systems (Ljung, 1987). Newly, the nonlinear system 

methods are developed successfully from available data. Mathematical 

approaches in fuzzy systems can approximate other approaches or functions 

flexibility with a wanted precision. This effect is called “general function 

approximation” (Kosko, 1994; Wang, 1994; Zeng and Singh, 1995). In 

comparison to other well-known techniques like artificial neural networks, 

fuzzy systems provide a more clear description of the system according to the 

possible linguistic reasoning by the structure of implications. The logical 

structure of the rules makes the analysis of the model easier and close to 

human linguistics. 
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1.6. RULE-BASED FUZZY MODELS 

The relationships between input-output data in rule-based fuzzy models are 

described by means of fuzzy if–then rules as form of: 

If     antecedent proposition       then       consequent proposition. 

      The type “x  is Ã” is always a fuzzy antecedent proposition where x  is a 

linguistic variable and Ã is a linguistic term. The degree of x  in fuzzy set Ã is a real 

number between zero and one. Two main types of rule-based fuzzy models are 

specified based on the form of the consequent: 

• Linguistic fuzzy model:  the fuzzy propositions are composed of the 

antecedent as well as the consequent 

• Takagi–Sugeno (TS) fuzzy model: The only fuzzy proposition is antecedent 

and the consequent is in the form of a crisp function. 

 

Notice to the explanation of these two different fuzzy models in the following 

subsections in detailed meaning. 

1.6.1. Linguistic Fuzzy Model 

 Available qualitative knowledge in this model (Zadeh, 1973; Mamdani, 

1977), translates into the form of if–then rules: 

:iR   If x is iA
~

 then y  is iB
~

     i=1, 2, ..., n. 

In this expression, x denotes the antecedent input variable, and iA
~

 resembles 

the antecedent linguistic terms. Alike, y denotes the consequent output variable and 

iB
~

resembles the consequent linguistic terms. The crisp x or y  are defined in the 

regions of their universe base variable sets: Xx∈ and Yy∈ . The membership 

functions of the antecedent and consequent fuzzy sets are: [ ]1,0:)( →Xxη , 

[ ]1,0:)( →Yyη . Fuzzy domains are defined by fuzzy sets iA
~

 in the antecedent 

space, depending on the related consequent space. The linguistic terms iA
~

and iB
~

 are 

usually chosen from sets of terms, such as “Slow”, “Fast”, etc. By meaning of these 

sets by A
~

andB
~

, we have AA i ~~ ⊂  and BB i ~~ ⊂ , respectively. The rule set 
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{ }niRR i ,...,2,1==  and the constitute of the sets A
~

and B
~

, make available the 

basic knowledge consider to the linguistic model. 

1.6.2. Takagi–Sugeno (TS) Fuzzy Model 

The linguistic model explains a given system behaviors by means of linguistic 

if-then rules with the fuzzy antecedents and fuzzy consequents using Zadeh’s 

extension principle. On the contrary, instead of fuzzy consequent, the crisp 

consequent functions are used in the TS fuzzy rule based model. Therefore, there is a 

relation between linguistic and mathematical regression equation where the fuzzy 

domains are defined by antecedents according to the input space in which consequent 

equations are valid. The TS rules are produced as: 

iR : If   x  is 
iA

~
then )(xfy ii = ,      i=1, 2…, n            (1.1) 

In most cases, a vector-valued function if is extracted from a nonlinear function. 

The functions if  have the same structure with the different parameters in each rule. 

Simple and practically useful linear parameterizations in the rules have the form: 

iR : If   x  is 
iA

~
 then   iTii bxay += ,      i=1, 2… n   (1.2) 

where
ia  is a parameter vector and 

ib is a scalar offset.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4  Takagi–Sugeno fuzzy model resembled by pieces of linear approximations of a nonlinear 
function. 

 



 

13

1.7. QUEUING SYSTEM WITH INFINITE CAPACITY (M/M/S) 

In this thesis, a multi servers M/M/s queuing system with infinite capacity is 

considered. In this system, following assumptions are supposed: 

• There is a single server in each waiting line. 

• The frequencies of arrival rate are resembled by a Poisson distribution (λ). 

• The service times obey an exponential probability distribution. 

• There is first-come, first-served (FCFS) discipline in the queue. 

• There is no balking or reneging. 

Various arrival and service time stochastic processes within the system are 

assumed to be independent of each other. Here, qL  and qW resemble the expected 

number of customers in the queue and the expected waiting time in the queue, 

respectively. Consider the two system performances qL  and qW  can easily be 

derived by a Markov chain approach. It follows that 

 

0
2 Pr)/1(!

)/()/(

µλ
µλµλ

sS

s
L

S

q −
=    (1.3) 

    

   where                  

)()/(!/1)/(!/1

1
1

0

0Pr
λµ

µµλµλ
−

+







=

∑
−

= s

s
Sn S

S

n

n

 

λ
q

q

L
W =           (1.4) 

 

For the steady-state conditions, we have   0 < λ /µ < 1 and λµ >s . 

1.8. FUZZY QUEUING SYSTEM WITH INFINITE CAPACITY FM /FM/S 

A fuzzy multi server queuing system with infinite capacity is considered with 

following assumptions: 

 

• The frequencies of fuzzy arrival rate are resembled by a Poisson 

distributionλ~ . 
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• The fuzzy service times obey an exponential probability distribution.. 

• λ~and µ~  are uncertain. 

• λ~and µ~  by the convex fuzzy sets are represented. 

• )(~ ληλ and )(~ µηµ define the trapezoidal membership functions of λ~  andµ~ , 

respectively.  

For this FM/FM/s queue model we have: 

{ }ληλ λ ∈= xxx ))(,(
~

~  

{ }µηµ µ ∈= xxx ))(,(~
~  

where λ and µ  consists of the crisp sets of the arrival and service rates, respectively 

as: 

{ }mλλλλ ,,, 21 K= , { }nµµµµ ,,, 21 K=  

 

1.9.  FUZZY N-POLICY QUEUING SYSTEM BASED UPON α-CUT MODEL 

In this part, we consider to present an FM/FM/1 N-policy fuzzy queuing model 

with infinite capacity based upon α-cut model. This fuzzy queuing model is 

developed by the N-policy M/M/1 queuing system utilizing the fuzzy set theory. The 

fuzzy arrival rate and the fuzzy service rate values are used to develop the 

membership function using a mathematical approach of the system performance. The 

fuzzy queues are translated to a group of crisp queues based on the α-cut model and 

Zadeh’s extension principle.  

        Let qW define the expected waiting time in the queue. qW  can be simply derived 

by a Markov chain approach. It is: 

)(2
1

λµµ
λ

λ −
+−= N

Wq         (1.5) 

where 0 < λ /µ < 1 since we have the steady-state condition. 

Suppose ),( yxf define the system performances. Since λ~andµ~ are fuzzy 

numbers, )~,
~

( µλf  is also a fuzzy number. With Zadeh’s extension principle (Zadeh, 

1978 and Zimmermann, 2001), the membership function of the system 

performance )~,
~

( µλf  is obtained as: 
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{ }),()(),(minsup)( ~~
)~,

~
(

yxfzyxz
f

==
Ω

µλµλ ηηη    (1.6) 

where }{ 0,0, 〉〉∈∈=Ω yxYyXx  

In the N-policy M/M/1 queuing system, when the arrival rate x  and the 

service rate y  are crisp values, the crisp expected waiting time in the queue is such 

as: 

)(2
1

xyy

x

x

N
Wq −

+−=    (1.7) 

 

The membership functions of qW
~

 as a result, become: 









−
+−=

Ω )(2
1

)(),(minsup)( ~~~
xyy

x

x

N
yxz

qW µλ ηηη      (1.8) 

For practical use, the membership function in equation (1.8) is not explained 

in the typical forms and inferring the shapes of the related membership function with 

qW
~

 is too difficult. Therefore, the α-cuts of qW
~

 can be derived by applying the 

Zadeh’s extension principle to solve this problem. Consider to above explains, let us 

define the α-cuts of λ~and µ~ as follows: 

{ }αηαλ λ ≥∈= )()( ~ xXx     (1.9) 

{ }αηαµ µ ≥∈= )()( ~ yYy     (1.10) 

λ~  resembles the fuzzy arrival rate and µ~  resembles the fuzzy service rate of the N-

policy FM/FM/1 system. Hence, consider to equations (1.9) and (1.10), the crisp α-

cut sets of λ~and µ~  can be redefined in such as: 

 

[ ] { } { }[ ]αηαηαλ λλαα ≥∈≥∈==
∈∈

)(max,)(min,)( ~~ xXxxXxxx
XxXx

UL          (1.11) 

[ ] { } { }




 ≥∈≥∈==

∈∈
αηαηαµ µµαα )(max,)(min,)( ~~ yYyyYyyy

YyYy

UL         (1.12) 

“From equations (1.11) and (1.12), it indicates that λ~and µ~ are lying the range of 

[ ]UL xx αα ,  and[ ]UL yy αα , , respectively, at a possible level α” (Yin Wang, 2010). As you 

see, the N-policy FM/FM/1 queue decreases to a group of crisp N-policy D/D/1 

queue with different α-level sets { }10)( << ααλ  and{ }10)( << ααµ . The upper and 
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lower bounds of λ~and µ~ can be presented as functions of α as )(max 1
~ αηλα
−=Ux , 

)(min 1
~ αηλα
−=Lx , )(max 1

~ αηµα
−=Uy and )(min 1

~ αηµα
−=Ly  by the principal property of 

convex fuzzy numbers (Zimmermann, 2001). Since, α is the parameter of the 

membership function qW
~

 therefore, the α-cuts approaches are used to develop the 

membership function qW
~

. 

The membership function of the expected waiting time in the queue )(~ z
qW

η  is 

the minimum of )(~ xλη and )(~ yµη that is derived based on the Zadeh’s extension 

principle. 

By solving the corresponding parametric nonlinear program the lower L
qW α)(  and 

U
qW α)( upper limiting values of α-cuts of qW

~
  can be found as: 

)
)(2

1
(min)(

xyy

x

x

N
W L

q −
+−=

Ωα ,                         (1.13) 

s.t.        UL xxx αα ≤≤    and UL yyy αα ≤≤  

and 

)
)(2

1
(max)(

xyy

x

x

N
W U

q −
+−=

Ωα                           (1.14) 

s.t.       UL xxx αα ≤≤   and  UL yyy αα ≤≤ . 

The optimal solution changing’s are characterized by mathematical 

approaches in this model withLxα , Uxα , Lyα  and Uyα  when value of α modifies between 

0 and 1 . This model is a part of parametric NLP (Gal, 1979). 

According to equations (1.10) and (1.11), we can replace )(αλ∈x  and 

)(αµ∈y by [ ]UL xxx αα ,∈ and [ ]UL yyy αα ,∈ , respectively. It is worthy of mention that α-

cuts of x and y form an embedded structure based upon α (Zimmermann, 2001). 

Considering the two possibility levels 1α and 2α  , we have  

 

[ ] [ ]ULUL xxxx
2211

,, αααα ∈ and [ ] [ ]ULUL yyyy
2211

,, αααα ∈  
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where 0 < 2α  < 1α  ≤ 1. Thus, as α increase for L
q

L
q WW

21
)()( αα ≥ , L

qW α)( increases and 

for U
q

U
q WW

21
)()( αα ≤ , U

qW α)(  decreases. Therefore, the membership function )(~ z
qwη  

will be computable. Defining an ascending function L
q

L
q WW αα α )(:)( →  and a 

descending function U
q

U
q WW αα α )(:)( →  help us to explain the membership 

function )(~ z
qwη , with invertible the both L

qW )(  and U
qW )( , based upon α such as: 









≤≤
≤≤
≤≤

=

==

==

==

U
q

U
q

U
q

L
q

L
q

L
q

w

WzWzR

WzW

WzWzL

z
q

01

11

10

~

)()(),(

)()(,1

)()(),(

)(

αα

αα

αα

η         (1.15) 

 

where the left shape function )(zL is [ ] 1
)(

−L
qW  and the right shape function )(zR is 

[ ] 1
)(

−U
qW . In section 3.2.1, an example shows the alteration of the membership grade 

of the system performances at a different α level.  
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CHAPTER II 

PROPOSED RULE BASED FUZZY MODEL IN QUEUING SYSTEMS 

In this chapter, the new rule based fuzzy model in the field of queuing system is 

investigated making use of the Takagi-Sugeno-Kang (TSK) first-order rule based 

fuzzy model. 

2.1 KNOWLEDGE-BASED DESIGN FOR BUILDING PROPOSED FUZZY 

MODEL 

Generally, a fuzzy model according to available expert knowledge is designed as 

the following steps: 

1) Choose variables resembling the input and output, the form of the rules, and 

the deduction, and methods to defuzzify the solutions. 

2)  Determine the required amount of linguistic terms for each rule and 

determine the related functions resembling the membership. 

3)  Translate the knowledge possessed using the fuzzy if-then rules. 

4) Approve the model. If the expected performance is not visible, repeat the 

above steps. 

 

 

2.2 FIRST-ORDER TSK RULE BASED FUZZY MODEL 

The TSK first-order rule based fuzzy model a given system is described by 

means of linguistic if-then rules with two inputs and an output. A fuzzy system is 

represented by first-order TSK model as form of the following implications: 

1R :    If  1x   is  1

1

~
xA   and  2x   is   1

2

~
xA  then 1y  

  M   M  

nR :    If  1x   is  n
xA

1

~
  and  2x   is   n

xA
2

~
 then ny      (2.1) 

where 
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iy            Output linear membership functions in the consequences.  

21,xx        Crisp variables in the premises.   

21
, xx AA     Membership functions of the fuzzy sets in the premises. 

210 ,, PPP    Parameters of linear membership functions in the consequences. 

 n             The number of implications (rules). 

 

The crisp final output of the system is obtained via a weighted average 

defuzzification, as shown in Figure 2.1.  

Final output 

∑

∑

=

== n

i
i

n

i

i
i

w

yw
Y

1

1           (2.2) 

where )
~

,
~

(
21

i
x

i
xi AAMinw =         (2.3) 

 

 
Figure 2.1 The first order Takagi-Sugeno-Kang fuzzy rule based model. 

 

After above explanations, the proposed fuzzy model is denoted by a queuing 

system in detail in the next sections. 
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2.2.1 The Linguistic Terms in Premises:  

A fuzzy queuing system process involving two fuzzy input sets is analyzed; 

arrival rateλ~and service rate µ~ to predict crisp performances as expected length of 

queue, qL , and expected waiting time in queue, qW . 

In the form of TSK fuzzy rule based model in a queuing system, in order to model 

(2.1), we have: 

iR : If   λ  is iλ~ and µ is iµ~   then iy ,      i=1, 2…, n               (2.4) 

Where iλ~ and iµ~ are the premise linguistic terms. The linguistic terms iλ~ and iµ~ are 

selected from sets of human linguistic terms, such as crowded, slow, fast and etc. 

The fuzzy sets iλ~ and iµ~ are defined in their regions over their respective crisp 

interval variables λ and µ . Fuzzy sets iλ~ and iµ~ define fuzzy regions in the 

antecedent space, according to the respective consequent propositions. By denoting 

these sets by λ~and µ~ respectively, we have λλ ~~ ⊂i and µµ ~~ ⊂i . 

 

Example 3.1: Suppose that the crisp interval arrival rate set is λ= [1, 2, 3, 4] 

per hour and the interval service rate set is µ= [11, 12, 13, 14] per hour as premise 

values. 

The linguistic terms “Crowded” and “Not Crowded” fuzzy subsets of arrival rate and 

“Fast” and “Slow” fuzzy subsets of service rate set show in Table 2.1 and Table 2.2.  

Table 2.1 Linguistic terms, interval arrival rates set and its fuzzy subsets. 

 Domain element 

linguistic term 1 2 3 4 

Crowded 0 0 0.67 1 

NotCrowded 1 1 0 0 

 

Table 2.2 Linguistic terms, interval service time rates set and its fuzzy subsets. 

 Domain element 

linguistic term 11 12 13 14 

Fast 0 0 0.67 1 

Slow 1 0.67 0 0 
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Trapezoidal membership functions define the meaning of the linguistic terms, as you 

see in Figure 2.2 and Figure 2.3.  

 

 

 

 

 

 

 

 

 

 

Figure 2.2 ‘‘Crowded’’ and ‘’NotCrowded’’ arrival rates per hour. 

 

 

 

 

 

 

 

 

Figure 2.3 ‘’Fast’’ and ‘’Slow’’ service time rates per hour. 

 

Remember that there is not universal way to define the linguistic terms. The 

numerical variables are selected arbitrarily.  

As you see in Figure 2.4 when we use a “Crowded 2

~λ “ arrival rate and 

“slow 1
~µ “  service rate, we get out of the process large values of  performances in 

queue; when we input “Not Crowded 1
~λ “and “ Fast 2

~µ “  into the system, the 

performances reach to small values; when we input “Not Crowded 1

~λ “ and “ 

Slow 1
~µ “  or “Crowded 2

~λ “ and “ Fast 2
~µ “  into the system, the performances reach 

to moderate values. 
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Figure 2.4  The little inputs produce small values and big inputs produce large values on the fuzzy 
queuing system performances. 

 

2.2.2 Implication Numbers Identification:  

In the rule based fuzzy method, the behavior of system translates to some 

implications. The fuzzy setsiλ~ and iµ~  are defined in their regions over their 

respective crisp interval variables λ and µ .If the number of fuzzy subspaces iλ~ is 

“A” and the number of fuzzy subspaces iµ~  is “B”, (Sugeno, 1985) each model 

consists of )( BA× implications. Hence, a queuing system represented by some 

implications as: 

 

   








××××     then  ~  is   and  
~

   is      if:

    then ~  is    and  
~

   is      if:

)()()()(

1111

BABA
k

BA
k

BA

kk

yR

yR

µµλλ

µµλλ
MM (2.5) 

 The rule set { })(,,2,1 BAiRR i ×== K  and the knowledge base of the linguistic 

model is constituted with the sets λ  and µ . 

Example 3.2: 

  As you see in Example 3.1, λ~ is divided into two fuzzy subspaces “Crowded” 

and “Not Crowded”, and µ~ is divided into two fuzzy subspaces, “Fast” and “Slow”. 



 

23

Therefore, this model consists of )22( × implications. If the iy  is the expected length 

of queue, implications having the form such as:  













                long   is L    then  )~slow(     is          and          )
~

crowded(   is      if          :R

moderatehigh     is   L        then)~fast(   is          and        )
~

crowded(   is        if           :R

   moderate low  is L      then )~ slow(   is         and   )
~

(NotCrowded   is       if         :R

short        is L      then )~fast(      is        and  )
~

(NotCrowded   is      if:R

q12
4

q22
3

q11

2

q21

1

µµλλ
µµλλ
µµλλ
µµλλ

 

2.2.3 Consequence Parameters Identification: 

Suppose ),( yxf define the system performance and let redefine an FM/FM/s 

queue system in order to model (2.4) by following rules as:  

 
iR : If   λ  is iλ~ and µ   is  iµ~   then ),( µλii fy = ,      i=1, 2…, n  (2.6) 

 
where the functions of ),( µλif  is a clarified piece by piece linearization of a 

nonlinear function with different parameters in each rule consequence. Commonly, 

the fuzzy clustering techniques can estimate these parameters from the available 

data. 

In this thesis, for the purpose of to be able to use the linguistic terms to 

estimate vector-valued function ),( µλif , an output data is produced with available 

input and expression performance system function. Using the new hard clustering 

method, we divide the computed output to some clusters and derive the ),( µλif of 

the queuing system performance for every implication that related to each cluster.  

Figure 2.5 A fuzzy system includes the hard clustering method. 
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In the rule based model (2.6), ),( µλif is a vector-valued function with 

parameterization as form iTiTii pppf 021 ..),( ++= µλµλ  

where ii pp 21,  are parameters of vector and ip0 is a scalar offset. 

The inference formula of the TSK model is a straightforward extension of the (2.2): 

∑

∑

=

=

++
= n

i
i

TiTiTi
n

i
i

w

pppw
Y

1

021
1

)..( µλ
                      

         The proposed rule based fuzzy model in a queuing system can be observed as a 

clarified piece-wise approximation of the interval performance function, depicted in 

Figure 2.6. 

 

 

 

 

 

 

 

 

 
Figure 2.6     The proposed fuzzy model as a clarified piece-by-piece linearization of a nonlinear 

performance function. 
 

The line iy displays the linear function in the consequence of implication iR . 

The equation in a consequence is extracted to define a law based on the fuzzy 

subspace definition in premise and its calculated output in a consequence. 

The utilization of hard clustering method to extract the linear consequences is 

presented in the next subsection completely. 

 

2.3 HARD CLUSTERING METHOD 

Suppose a data universe Y with n data members. Clustering identifies the 

number of c clusters in Y where (2 ≤ c < n). For algebraic data, the member values of 

each cluster are more mathematically similar to each other than to members of other 
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clusters. To clustering identification we must determine the similarity between 

observations and classify the partitions. 

2.3.1 Application of Interval Function to Evaluation of Consequence Parameters  

Fuzzy systems are inferred from descriptions of crisp interval-valued systems, 

which are crisp systems in general. Figure 2.7 illustrated this with an example of 

a function and its interval and fuzzy forms. In this figure, the evaluation of the 

function for crisp, interval and fuzzy data is depicted too. Remember that a 

function YXf →: is a relation that can be observed as a subset of the Cartesian 

product YX × .  As you see in the Figure 2.7, the vertical dashed lines show the 

extension of the given input into the product spaceYX × . After finding the 

intersection of this extension with the relation, this intersection is projected onto 

Y  that is shown with horizontal dashed lines. 

Since the function and the data (crisp, interval, fuzzy) are independent, this 

function evaluation makes clear up the use of fuzzy relations for inference in fuzzy 

modeling. 

 

 

 

 

Figure 2.7   Crisp, interval and fuzzy arguments for evaluation of a crisp, interval and fuzzy function. 
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Fuzzy systems can supply various aims, such as data analysis, modeling, 

forecasting or decision making. In this research, a new fuzzy rule-based system is 

studied, for simplicity, attentive to its realized eventual purpose in field of queuing 

systems. 

To introduce the evaluation interval function, we define a sample set of 

)( nm×  data that we wish to classify: 

















=

mnm

n

yy

yy

Y

L

MMM

L

1

111

                  (2.7) 

defined by Yf →× µλ:  where f is a binary function which takes two inputs λ  

with m  factors and µ  with n  factors, 

where [ ]Tmλλλλ L21= , [ ]nµµµµ L21= and Y is the calculated output 

set. 

It is noted that mλλλ <<< L21 and nµµµ <<< L21 . 

The evaluated membership functions ),( µλif  for a given input (arrival and 

service rates) of each implication are depicted in Figure 2.8.  

  

 

 

 

 

 

 

 

Figure 2.8   Evaluation of interval performance function with interval arrival and service time rates in 
the M/M/s queuing system. 

 

To evaluate the interval performance function in each implication, we have to 

determine the related region (partition) in the calculated outputY .  

.  
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When a hard clustering approach is used, it is required to divide the data into 

different and unique clusters, where each data element exists exactly in one cluster. 

Based on the similarity between members within a cluster, we consider the similarity 

in value components of every member of each cluster. This means, every member in 

each cluster is calculated with same pair ),( ji µλ  of same sub interval values of 

λ andµ . Hence, interval inputsλ andµ  are divided toA  subsets iλ  and B  subsets 

iµ  in order to iλ~ and iµ~  fuzzy subset numbers (2.2.2 section definition). We 

have λλ ⊂i and µµ ⊂i . 

In general, there seems no theoretical approach available for the number of 

divisions. 

LetL and K are vectors of orders )1( −A and )1( −B  respectively: 

[ ]121 ,...,, −= AlllL and [ ]121 ,...,, −= BkkkK          (2.8) 

where al and bk represent the division space points (
bakly ) in matrix Y.  

Therefore, the )( nmY × matrix is divided into )( BA× clusters so that the crisp data of 

every cluster are related to an implication as you see in Figure 2.9. 
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Figure 2.9    Division of matrix )( nmY ×  into )( BA× clusters. 
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Define a family of clusters { baklC , a = 1, 2, . . . , A-1  , b=1,2,...,B-1  } as a 

hard c-partition of Y, where )( BAc ×=  is the number of clusters(2 ≤ c < )( nm× ). 

The following set-theoretic forms apply to these partitions:  

 

 YC
A

a

B

b

kl ba =
= =
UU

1 1

                       for all ba kl ,                           (2.9) 

φ=I baba klkl CC                      for all ),(),( baba klkl ≠         (2.10) 

YC bakl ⊂⊂φ                          for all  ba kl ,                          (2.11) 

 

Equation (2.9) expresses the fact that the set of all clusters exhausts the universe of 

data sample. Equation (2.10) indicates that none of the clusters overlap in the sense 

that a data sample can belong to more than one cluster. Equation (2.11) expresses 

that a class cannot be empty and it cannot contain all the data samples. 

Consequently, we define a hard cluster for Y as the following matrix set:  

{ } { }
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)2()1()2()1(
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1111

1111
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µµµλλλ

µµµλλλ

µµµλλλ
    

(2.12) 

)( ijC
ybkalχ  is defined as the hard membership function-theoretic expression which 

resembles the regression of all dataijy in baklC cluster. 

For simplicity in notation, our membership assignment of the )( ji × th data point in 

the rth baklC  cluster of data universe Y, is defined to be  

j
r

i
rr

ijCijC
pppyy

rbkal
r

µλχχ ..)()( 210 ++=≡                  (2.13) 

where 210 ,, PPP are the linear function constant parameters.  

In this sense, our system is inferred from descriptions of crisp interval-valued 

systems. 
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Figure 2.10   (a) The hard clustering model, (b) the function valued data points and their interpolation 
linear functions. 

 
 

As you see in Figure 2.10, our model can be observed as a relation among the input 

data in premise and the parameters of a linear system as a consequence. 

Therefore, using (2.5) and (2.13), the implications of queuing system have the form: 
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The step-by-step procedures in this hard clustering method are summarized into six 

steps: 

1. Calculate matrix Y with crisp interval input data sets λ andµ . 

2. Divide λ andµ crisp sets into desired parts and initialize A and B values: 

)( BAc ×=  

Then, do r = 1, 2... 

3. Initialize [ ]121 ,...,, −= AlllL and [ ]121 ,...,, −= BkkkK  

4. Determine )( ij
kl

r yC ba . 

5. Obtain j
r

i
rr

ijC pppy
r

µλχ ..)( 210 ++=  

6. If r=c,  

       Stop; otherwise set r = r + 1 and return to step 4. 

 

A good illustration of our clustering method is visible in the next chapter. 
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CHAPTER III 

APPLICATION OF THE PROPOSED MODEL 
IN FUZZY CONTROL AND DISCUSSION OF THE RESULTS 

 
 
In order to demonstrate applying the proposed fuzzy rule based model to the fuzzy 

queuing system, we considered some case studies in this chapter. 

 

3.1 APPLICATION IN PERFORMANCE CALCULATIONS USING T HE        
PROPOSED FUZZY MODEL 

 
In this section, let us consider a case study on measuring performances in a 

fuzzy queuing system. 

3.1.1.Computations of the Expected Length of Queue in the FM/FM/s Queuing 
System  

 
To illustrate above examples, we have λ= [1, 2, 3, 4] and µ= [11, 12, 13, 14] 

per hour, and each set is divided into two parts (A=2, { } { }4,3,2,1 21 == λλ  

B=2, { } { }14,13,12,11 21 == µµ  [ ]2=L and [ ]2=K  ). The number of partitions is 

4)( =×= BAc  . If the number of server s=2, and the expected length of queue, qL , 

is a binary function, using (1.3) and (2.7) we have:    



















=

00595.000746.000952.001243.0

00249.000311.000397.00052.0

00073.000092.000117.000152.0

00009.000011.000014.000019.0

qL
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According to fifth step of clustering algorithm, equivalent linear functions related to 

each cluster or implication in the fuzzy queuing system for expected length of queue, 

are: 














−+
−+−
++
−+

=

µλ
µλ
µλ
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µλ

0021.00064.0009.0

0006.00039.00004.0
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:
0003.0001.00032.0:

0001.00007.0001.0:

),(

4

3

2

1

longR

tehighModeraR
elowModeratR

shortR

Lq                           

 

Clusters of the function valued crisp data points and their interpolated linear 

functions data of the expected length of queue are depicted in Figure 3.1. 
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Figure 3.1 Clusters of the function-valued results and the corresponding linear interpolation for the 
expected length of queue as crisp data points in the M/M/s queuing system. 
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Figure 3.2   Input-output data of the length of queue in the crisp M/M/s queuing system. 
 

The expected length of queue for all pairs ),( ii µλ  regarding to their position 

in a particular cluster and implication are calculated in related membership 

function iy  as Table 3.1: 

Table 3.1 The expected lengths of queue for all pairs ),( ii µλ , according to the related linear 

membership function. (Shown in bold) 

),( ii µλ  1y  2y  3y  4y  

(1,11) 0.00039 0.00048 -0.00341 -0.0072 

(1,12) 0.00028 0.00014 -0.00404 -0.0093 

(1,13) 0.00016 -0.00019 -0.00466 -0.0113 

(1,14) 0.00004 -0.00053 -0.00529 -0.0134 

(2,11) 0.00112 0.00151 0.00047 -0.0008 

(2,12) 0.00099 0.00117 -0.00015 -0.0029 

(2,13) 0.00088 0.00083 -0.00077 -0.0049 

(2,14) 0.00077 0.00049 -0.00140 -0.0070 

(3,11) 0.00184 0.00254 0.00436 0.0060 

(3,12) 0.00172 0.00220 0.00374 0.0035 

(3,13) 0.00160 0.00186 0.00311 0.0015 

(3,14) 0.00149 0.00152 0.00249 -0.0006 

(4,11) 0.00256 0.00356 0.00825 0.0120 

(4,12) 0.00244 0.00322 0.00763 0.0099 

(4,13) 0.00232 0.00289 0.00700 0.0079 

(4,14) 0.00221 0.00255 0.00638 0.0058 
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Table 3.2 Calculation of the expected waiting time in a fuzzy/FM/s queuing system. 

),( ii µλ  
1w  2w  3w  

4w  ∑∑
==

=
4

1

4

1

/.
i

i
i

i
iL wywY

q
 

(1,11) 0 0 0 1 0.000394 

(1,12) 0 0 0 0.67 0.000185 

(1,13) 0 0 0.67 0 -0.000129 

(1,14) 0 0 1 0 -0.0005314 

(2,11) 0 0 0 1 0.001115 

(2,12) 0 0 0 0.67 0.000666 

(2,13) 0 0 0.67 0 0.000555 

(2,14) 0 0 1 0 0.0004947 

(3,11) 0 0.67 0 0 0.0029097 

(3,12) 0 0.67 0 0 0.00249 

(3,13) 0.67 0 0 0 0.00149 

(3,14) 0.67 0 0 0 -0.000566 

(4,11) 0 0.67 0 0 0.00825 

(4,12) 0 1 0 0 0.00508 

(4,13) 0.67 0 0 0 0.007897 

(4,14) 0.67 0 0 0 0.00584 

 
 

                Table 3.2 presents the 321 ,, www and 4w  for every implication and the 

final weighted defuzzification crisp output of the expected length of queue. 
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),( ii µλ  qL  
qLY  %deviation 

(1,11) 0.00019 0.000394 107.4 

(1,12) 0.00014 0.000185 32.1 

(1,13) 0.00011 -0.000129 217.3 

(1,14) 0.00009 -0.000531 690.4 

(2,11) 0.00152 0.001115 26.6 

(2,12) 0.00117 0.000666 43.1 

(2,13) 0.00092 0.000555 39.7 

(2,14) 0.00073 0.000495 32.2 

(3,11) 0.0052 0.002910 44.0 

(3,12) 0.00397 0.00249 37.3 

(3,13) 0.00311 0.00149 52.1 

(3,14) 0.00249 -0.000566 122.7 

(4,11) 0.01243 0.00825 33.6 

(4,12) 0.00952 0.00508 46.6 

(4,13) 0.00746 0.0079 5.9 

(4,14) 0.00595 0.00584 1.8 

Figure 3.3 The comparison of the final output results of the proposed fuzzy model and the 
conventional approach for the expected length of queue. 

 

      Referring to Figure 3.3, the results of the expected length of queue in the 

proposed fuzzy model and crisp inferences are close approximately, expect of 

(3,13)and(3,14) points in “High Moderate” region and (3,11), (3,12), (4,11), and 
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(4,12) points in “long” region. In these points, the expected length of queue in fuzzy 

inference is estimated shorter. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 The input-output relation found using the proposed fuzzy model to interpret the 
expected length of queue. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure3.5   Darker squares correspond to bigger values for the expected length of queue in the fuzzy 
system. 
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3.1.2.Computations of the Expected Waiting Time in Queue in the FM/FM/s 

Queuing System   

According to the expected waiting time equation (1.3) and matrix (2.7) for 

qW  as matrix Y we have:    
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Figure 3.6  Input-output data of the expected waiting time in queue in the crisp M/M/s queuing 
system. 

 

According to fifth step of clustering algorithm, equivalent linear functions related to 

each cluster or implication in the fuzzy queue system for expected time in queue are: 
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Clusters of the function-valued crisp data points and their interpolation linear 

functions of expected waiting time in queue are depicted in Figure 3.7. 
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Figure 3.7  Clusters of the function-valued and their interpolation linear functions crisp data 

points of expected waiting time in the M/M/s queuing system. 
 
 
 
The expected waiting times in queue for all pairs ),( ii µλ  regarding to their position in 

a particular cluster and implication are calculated in related membership functioniy  

as Table 3.3: 
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Table 3.3  The expected waiting time in queue for all pairs ),( ii µλ , regarding to the related 

linear membership functions. (Shown in bold) 

),( ii µλ  1y  2y  3y  4y  

(1,11) 0.00026 0.00019 0.00022 -0.00063 

(1,12) 0.00021 0.00015 -0.00086 -0.00120 

(1,13) 0.00015 0.00010 -0.00039 -0.00178 

(1,14) 0.00009 0.00006 -0.00070 -0.00235 

(2,11) 0.00054 0.00076 0.00096 0.00059 

(2,12) 0.00048 0.00072 0.00065 0.00002 

(2,13) 0.00042 0.00067 0.00035 -0.00056 

(2,14) 0.00037 0.00063 0.00004 -0.00113 

(3,11) 0.00081 0.00133 0.00170 0.00181 

(3,12) 0.00076 0.00128 0.00139 0.00124 

(3,13) 0.00070 0.00124 0.00109 0.00066 

(3,14) 0.00064 0.00120 0.00078 0.00009 

(4,11) 0.00109 0.00190 0.00244 0.00303 

(4,12) 0.00103 0.00185 0.00213 0.00246 

(4,13) 0.00097 0.00181 0.00183 0.00188 

(4,14) 0.00092 0.00177 0.00152 0.00131 
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Table 3.4  Calculations of the expected waiting time in queue in a fuzzy FM/FM/s queuing 
system. 

),( ii µλ  )( 1w  )( 2w  )( 3w  )( 4w  ∑∑
==

=
4

1

4

1

/.
i

i
i

i
iW wywY

q
 

(1,11) 0 0 0 1 0.000263 

(1,12) 0 0 0 0.67 0.000137 

(1,13) 0 0 0.67 0 0.000068 

(1,14) 0 0 1 0 0.000059 

(2,11) 0 0 0 1 0.000539 

(2,12) 0 0 0 0.67 0.000320 

(2,13) 0 0 0.67 0 0.000448 

(2,14) 0 0 1 0 0.000629 

(3,11) 0 0.67 0 0 0.001134 

(3,12) 0 0.67 0 0 0.000930 

(3,13) 0.67 0 0 0 0.000662 

(3,14) 0.67 0 0 0 0.000087 

(4,11) 0 0.67 0 0 0.002441 

(4,12) 0 1 0 0 0.001423 

(4,13)    0.67 0 0 0 0.001881 

(4,14)    0.67 0 0 0 0.001306 

 
Table 3.4 presents the 321 ,, www and 4w  for every implication and the final 

weighted defuzzification crisp output of the expected waiting time, WqY . 
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),( ii µλ  qW  
qWY  % Deviation 

(1,11) 0.00019 0.000263 38.4 

(1,12) 0.00014 0.000137 2.1 

(1,13) 0.00011 0.000068 38.2 

(1,14) 0.00009 0.000059 34.4 

(2,11) 0.00075 0.000539 28.1 

(2,12) 0.00058 0.000320 44.8 

(2,13) 0.00046 0.000448 2.6 

(2,14) 0.00037 0.000629 70.0 

(3,11) 0.00172 0.001134 34.1 

(3,12) 0.00132 0.000930 29.5 

(3,13) 0.00103 0.000662 35.7 

(3,14) 0.00083 0.000087 89.5 

(4,11) 0.00311 0.002441 21.5 

(4,12) 0.00238 0.001423 40.2 

(4,13) 0.00186 0.001881 1.1 

(4,14) 0.00149 0.001306 12.3 

Figure 3.8 The comparison of the final output results of the proposed fuzzy model and the 
conventional approach for the expected waiting time. 

 
 



 

41

         Referring to Figure 3.8, the results of the expected waiting time in queue in the 

proposed fuzzy model and conventional inferences are close, except points (3,13) 

and (3,14) and points in “High Moderate” region and points (3,11), (3,12), (4,11), 

and (4,12) in “long” region. In these points the expected waiting time in queue in the 

fuzzy inference is estimated shorter. 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.9   The input-output data of the proposed fuzzy model to interpret the expected waiting time 

in queue. 
 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 3.10   Darker squares correspond to bigger values for the expected waiting time in queue in the 
fuzzy system. 
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           According to Figure 3.3 and Figure 3.8,  in spite of the fact that new hard 

clustering method are evaluated with linguistic terms, the inferring results have the 

same rank in both of the conventional and the proposed fuzzy model. 

These observations provide engineers with a clear and intuitive way to implement 

control systems and decision-making in various conditions of queuing system. 

 

3.2. COMPARISON OF THE PROPOSED MODEL AND THE FUZZY  N-
POLICY QUEUING SYSTEM BASED UPON α-CUT MODEL 
In this section, we supposed a different case problem to compare the fuzzy N-

Policy queuing system based upon α-cut model (Wang& Yang and Li. 2010) and our 

new fuzzy rule based model. In section 3.2.1, the sample problem is solved using the 

fuzzy model upon α-cut method. In section 3.2.2, the sample problem is solved using 

the new fuzzy rule based model and in section 3.2.3, the results of the two methods 

are compared. 

3.2.1.Expected Waiting Time in the Queue using the Fuzzy N-Policy Queue 

Model Based upon α-Cut  

In the Example 3.1, the crisp interval arrival rate set is λ= [1, 2, 3, 4] per hour 

and the interval service rate set is µ= [11, 12, 13, 14] per hour as knowledge based 

(Yin Wang, 2010). It is simple to determine 

[ ] [ ] [ ]αααµαµ λλαα −+== −− 4,1)(max),(min, 1
~

1
~

UL xx
 

[ ] [ ] [ ]αααµαµ µµαα −+== −− 14,11)(max),(min, 1
~

1
~

UL yy
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Figure 3.11    The trapezoidal membership function of the expected waiting time in queue using the 

fuzzy N-policy queue model based upon α-cut. 
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Clearly, the minimum value of expected waiting time in the queue is achieved 

when Uxx α=  and Uyy α=  and the maximum value is achieved when 

Lxx α= and Lyy α= . According to Equations (2.13) and (2.14), the lower and upper 

bounds of the α-cut of qW
~

, respectively, are given by 

)14(10
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)(
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The inverse functions of L
qW )(  and U

qW )(  are exists. We have 
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Table 3.5   The membership function of the expected waiting time in queue for the fuzzy N-policy 
queue model based upon α -cut. 

α Lxα  Uxα  Lyα  Uyα  L
qW )(  U

qW )(  

0.00 1 4 11 14 0.279 1.009 

0.10 1.1 3.9 11.1 13.9 0.284 0.919 

0.20 1.2 3.8 11.2 13.8 0.291 0.844 

0.30 1.3 3.7 11.3 13.7 0.279 0.781 

0.40 1.4 3.6 11.4 13.6 0.304 0.727 

0.50 1.5 3.5 11.5 13.5 0.312 0.680 

0.60 1.6 3.4 11.6 13.4 0.319 0.639 

0.70 1.7 3.3 11.7 13.3 0.328 0.603 

0.80 1.8 3.2 11.8 13.2 0.337 0.571 

0.90 1.9 3.1 11.9 13.1 0.346 0.542 

1.00 2 3 12 13 0.356 0.517 
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The expected waiting time in the queue for eleven different α levels are 

presented in Table 3.5. As you see, the results appear between 0.356 and 0.517 when 

α = 1. When α =0, at the maximum value, the fuzzy expected waiting time in the 

queue appears impossibly below 0.279 or exceed 1.009.  

3.2.2.Expected Waiting Time in Queue using the Proposed Model 

Since our method is flexible to accept any function, interval values and fuzzy 

terms, according to matrix (2.7), the expected waiting time in queue function (1.5) is 

replaced as binary function which takes two interval inputs λ=[1, 2, 3, 4] and µ= [11, 

12, 13, 14] as inter-arrival and service times, respectively. We have 



















=

278571.0284188.0291667.0301948.0

352814.035641.0361111.0367424.0

511905.0513986.0516667.0520202.0

00549.100641.100758.100909.1

qW
 

 

Two fuzzy terms “slow” and “fast” for service time rates and “Crowded” and 

“Not Crowded” for arrival rates are considered. In result, the calculated output will 

divided to four partitions. If implications over the system have the form as 

implication of example 3.2, regarding to fifth step of clustering algorithm, equivalent 

linear functions related to each cluster or implication in the fuzzy queuing system for 

expected waiting time in queue, are: 
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If use of adjusting techniques for designing fuzzy models is considered, the 

proposed rule based fuzzy model using new clustering method is a more condensed 

and calculable than α-cut method. These adjusting techniques are used to extract the 

membership functions from available data to construct best fuzzy model systems. 
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),( ii µλ  qW
 qWY  % Deviation 

(1,11) 1.009090 1.00825 0.1 

(1,12) 1.007580 0.671555 33.3 

(1,13) 1.006410 0.670713 33.4 

(1,14) 1.005490 1.00456 0.1 

(2,11) 0.520202 0.514668 1.1 

(2,12) 0.516667 0.342498 33.7 

(2,13) 0.513986 0.343437 33.2 

(2,14) 0.511905 0.513645 0.3 

(3,11) 0.367424 0.24155 34.3 

(3,12) 0.361111 0.239437 33.7 

(3,13) 0.356410 0.354797 0.5 

(3,14) 0.352814 0.348483 1.2 

(4,11) 0.301948 0.289465 4.1 

(4,12) 0.291667 0.190863 34.6 

(4,13) 0.284188 0.285353 0.4 

(4,14) 0.278571 0.279039 0.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.12  Prediction of the expected waiting time in a queuing system using the proposed 

model. 
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3.2.3.Comparison of New Proposed Model and Fuzzy Model Based upon α-cut 

Method  

Some final results about the two different methods are concluded as: 

 

1. The two different methods are computationally efficient. 

2. Both of the approach works well with optimization and flexible techniques. 

3. The two different methods are well matched to mathematical analysis. 

4. They are flexible to use human input. 

5. The proposed model is intuitive and has widespread acceptance to give any 

function to extract the liner membership functions, but there is not any 

guaranty to produce an invertible membership function with the fuzzy model 

based upon α-cut method.  

6. The new proposed model works with linear techniques smoothly, but the 

other method does not. 

7. In the new method, the acceptable and possible results are produced but there 

are always some impossible results in the other one method. 

3.3. APPLICATION IN  FUZZY COST ANALYSIS IN QUEUING SYSTEMS 

The feature of cash-flow modeling is often uncertainty and is involved with re-

processing of used products in cost analysis of data. Since the data in quality, supply, 

and disassembly times is uncertainty, therefore the data is not objective. 

Hence, decision-makers have to rely on fuzzy data for analysis to make the 

more really results. Notice that, the data of both new products and used products are 

taken into account with cost analysis. In this section, an economic fuzzy cost analysis 

in a queuing system is presented using the new proposed rule based fuzzy model and 

then is compared with conventional method. 

3.3.1. The Cost Relationships in Queuing Systems Analysis 

As you see in the cost curves in Figure 3.13, there is generally a converse 

relationship between service cost and the cost of waiting in queue. According to the 

level of service, by rises the number of servers, the cost of service increases, and 

waiting cost decreases. Commonly in system analysis, the minimum point on the 

total cost curve should be aligned with the level of service. The cost of providing the 
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service is usually related to cost of the servers, such as the cost of the staffs at the 

bank. When the number of servers increases to reduce the waiting time, service cost 

will increase. We can specify easily the service cost to compute.  Contrary, the 

waiting cost is not clear to determine. The loss of business is occurred when 

customers get satisfied of waiting for long time and leave the system. This business 

loss may be occurred once or more time. As cost of waiting, the cost of business 

losses is especially difficult to determine, although such data, is provided by some 

organizations for businesses and industries seldom. The loss of salary for staffs and 

production time, load or unload transportations, waiting to use equipment, can be 

mentioned for some types of waiting costs. 

 

 

 

 

 

 

Figure 3.13  The cost relationship in queuing system analysis. 

3.3.1.1.Queuing System Costs and Quality Service 

The modern approach to quality management is to believe that the relationship 

between quality and cost is a short-run view that underestimates the potential long-

term loss of business from poor quality. In the long-run, a higher level of quality will 

gain market share and increase business and thus is more cost-effective. Further, as 

the company focuses on improving quality service, the cost of accomplish good 

quality will be less because of the novelties in processes and work design that will 

result. This level of better-quality, that is, quicker, service will, in the long-run, 

growth business and be more cost-effective than the traditional view implies. 
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3.3.2.Conventional Economic Analysis in Queuing Systems 

 

As this text has shown, we can use fuzzy queuing models to estimate 

performance measures of a queuing system. To analyze a queuing system 

economically, the information afforded by the linguistic terms is surveyed to extract 

a cost model for the waiting line system. So, this model can help us to balance the 

cost of waiting customers and the cost of providing the service. This balancing 

procedure is an important issue in the area of operations management. 

 

In developing a cost model for the input problem in both conventional and fuzzy 

models, we will consider only the waiting time and servicing time variables, and the 

cost of the queuing system. Here,WC  the hourly waiting cost of each customer 

and SC  , the cost of each server per hour. Since, the cost of waiting customer per unit 

time cannot be correctly estimated; managers have to predict an acceptable value to 

reflect the loss probability of future revenue if an unsatisfied customer passes to 

another competitor company. In conventional method, suppose WC  is estimated to be 

$50 per hour. The cost of operating each service facility as the wages of any server or 

the cost of equipment, including maintenance is more easily determined. 

Let us assume that SC =$100 per hour. Therefore, the total cost per minute 

is SCLCT SqWt +=cos  , where qL , is the average number of customers in the queuing 

system and S is number of servers. Table 3.6 summarizes the computed results as the 

cost for the two-three- and four server scenarios. We can obvious clearly that the 

economic advantages of a three-server system in conventional calculation. 

 

Table 3.6 Results of the economic cost analysis of a queuing system design using the conventional 
method. 

System S System Cost 
qL  Customer Cost Total cost 

Two -server 2 200 5 250.00 450.00 
Three-server 3 300 0.36 18.00 318.00 
Four-server 4 400 0.21 10.50 410.50 
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3.3.3.Fuzzy Economic Cost Analysis of Queuing Systems Using the Proposed 
Model 

To control the truth of the result for the case given above, an interval data is 

supposed for expected length of queue with 2 servers as: 

[ ]10,7,3,02.02 =qL    

Where 2qL , the average of this interval data is 5, approximately. 

This range is divided to two subsets according to the linguistic terms “short” and 

“long”. 

In this case study, an interval data is supposed for the waiting cost per hour per 

customer as: 

[ ]100,70,35,0=WC  

The linguistic terms “low cost”, ( 1~
WC ) and “high cost”, ( 2~

WC ) fuzzy subsets of 

waiting cost per customer are supposed as given in Table 3.7.  

 

Table 3.7  Linguistic terms and interval cost of waiting time set and its fuzzy subsets. 

 Domain element 

linguistic term 0 35 70 100 

low cost 0 0.9 0.2 0 

high cost 0.0011 0.41 0.97 0.11 

 

i
qL

~
and i

WC
~

are fuzzy sets explained in the domains of their corresponding base crisp 

interval variables qL and WC . Fuzzy sets i
qL

~
and i

WC
~

define fuzzy domains in the 

antecedent space, according to the respective consequent propositions. By denoting 

these sets by i
qL

~
and i

WC
~

respectively, we have q

i

q LL ⊂~
and W

i

W CC
~~ ⊂ . 

The meaning of the linguistic terms is defined by “Pimf” membership functions, 

illustrated in Figure 3.14.  
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Figure 3.14 ‘‘low cost’’ and ‘’high cost’’ waiting cost per customer. 

 

Since the sets of expected length of queue and waiting cost are divided to two sub 

fuzzy sets, the four implications of the fuzzy cost model have the form of: 







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
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                big   is T     igh   then     is         and     ong    is   L    if         :R

moderatehigh     is  T       then  ow     is        and     ong    is   L    if            :R

   moderate low  is Tn    igh    the    is         andhort        is   L    if          :R

     small   is  T         then ow    is        andhort         is   L   if :R

costWq
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As we have SCLCT SqWt +=cos , therefore the matrix value of total cost is: 
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{ } { }15,1135,02 ×=C{ } { }5.4,4.035,01 ×=C

{ } { }5.4,4.0100,703 ×=C { } { }15,11100,704 ×=C
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Queuing System with 2 servers
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According to fifth step of clustering algorithm, equivalent linear functions related to 

each cluster or implication in the fuzzy queuing system for expected length of queue, 

are: 

 




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
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),(
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2

1

cos
 

 

 

All pairs ),( Wq CL  according to their position in which clusters and implications are 

calculated in related membership functioniy . The final weighted defuzzification 

crisp output total cost is presented in tTcos column in Table 3.8 and depicted in 

Figure3.15: 

 

 

 

 

 

 

 

Figure 3.15 Total cost with 2 servers computed using the new model. 
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Queuing System with 4 servers

0

200

400

600

800

1000

To
ta

l C
os

t

3- server

3- server 0 19 136 445 0 850 692 369 0 891 779 405 69 181 207 250

0 35 70 100

Queuing System with 3 servers
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In continuous, two interval data for expected length of queue with 3 and 4 servers 

as, [ ]7.0,43.0,27.0,03.03 =qL and [ ]46.0,22.0,14.0,01.04 =qL , are supposed 

respectively, where the average of the interval data 3qL  is 0.36 and 4qL is 0.21, 

approximately. 

The results of calculations are presented in Table 3.9 and Table 3.10. 

 

Figure 3.16 Total cost with 3 servers computed using the new model. 
 
 
 
 
 

Figure 3.17 Total cost with 4 servers computed using the new model. 
 

These results can be graphed to look for patterns and trends.  
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       Figure 3.18   Total cost results in the queuing system with 2, 3 and 4 servers computed                               

using the new model.  
 

You can see in Figure 3.18, the economic advantages of a two servers system for 

range of [ ]10070−=WC $, and a three servers for range of [ ]700 −=WC $, in fuzzy 

analysis using the proposed model. 
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CONCLUSIONS 

In this thesis a new hard interval clustering method is presented to describe 

consequences in developed TSK first order rule based fuzzy model in field of 

queuing system. This method is proposed based on interval input data sets(λ andµ ) 

and linguistic fuzzy terms such as “Crowded”,” Slow”,” Fast” and so on. An output 

data set is calculated by a binary system performance function, on pairs of available 

data ),( ii µλ . The output data is divided to some clusters so that each cluster is 

distinguished by input subsets based on fuzzy term approximations.  The interpolated 

linear membership function of every cluster describes the relation between premise 

and consequence of the related implication on system.  

The new hard clustering method has been applied to a conventional queuing 

system. In the example problems, the coupling affects of λ~andµ~ on fuzzy system 

performances qL
~

and qW
~

has been revealed. These observations may provide 

managers with a clear and intuitive way to implement control systems in various 

conditions of queuing system.  

This thesis provides distinctive practical results for designing queuing 

systems with fuzzy control and examines its benefits compared to other control 

methods. Using this method, the queuing system can be controlled more smooth and 

flexible in fuzzy mode in the real life.
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