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ABSTRACT

FUZZY RULE-BASED MODELING
IN QUEUING SYSTEMS

Farzaneh GHOLAMI ZANJANBAR
M.S, Social Sciences
Supervisor: Asst. Prof. Dinci SENTARLI

September 2012, 60 pages

In this thesis, a new hard clustering method isppsed to provide objective

knowledge for the fuzzy queuing systems. In thighoe, locally linear controllers

are extracted and translated into the first-ordakaBi-Sugeno rule based fuzzy
model. In this extraction process, the region azfusubspaces of available inputs
corresponding to different implications is usedhbdain the clusters of outputs of the
gueuing system. Then, the multiple regression fanst associated with these
separate clusters are used to interpret the pesforenof queuing systems. Some
applications of the proposed method including dattans of performances and cost

analysis with some comparisons are presented anesalts are discussed.

Keywords: queuing system, fuzzy rule base, clustering, lineantroller,
performance.



Oz

KUYRUK SISTEMLERINDE BULANIK KURAL TABANLI MODELLEME

GHOLAMI ZANJANBAR, Farzaneh
Yukseklisans Tezi, Sosyal Bilimler
Tez Yoneticisi: AsBrof. Dr.Inci SENTARLI
Eylul 2012, 60 sayfa

Sistemlerin  kontrol uygulamarinda bulanik mamti kullanildgl  tipdeki
problemlerde buyuk kari ve bgeni kazaniimgtir. Dolayisiyla, gercek yamlarda,
kuyruk sistemlerinin bulanik kavrami ile tasarime kontroli daha gercekci ve
uygulanabilir olacaktir.

Bu tez camasinda, bulanik kuyruk sistemleri icin nesnel ibdgtlamaya yonelik
yeni bir sabit kimeleme yontemi Onerikini. Bu yontemde, yerel dousal
denetleyicileri ayiklanip birinci dereceden bularkkral tabanli Takagi-Sugeno
modeline dongturilmektedir. Bu ayiklamasleminde, kuyruk sisteminin c¢ikti
kimelerini elde etmek icin farkli yansimalara sisk gelen varolan girdilerin
bulanik altuzaylari bélgesi kullanilir. Daha sonba, ayri kimeler ile ikili coklu
regresyon fonksiyonlari kuyruk sistemlerinin penfiansini dgerlendirmek icin
kullaniimistir. Onerilen yontem ile performanslar ve maliyatlizi hesaplamalarini

icine alan bazi uygulamalar sunulgtwr ve sonuclar tagalmistir.

Anahtar Kelimeler: kuyruk sistemi, bulanik kural tabani, kimelemegdr

kontrol6r, performans.
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INTRODUCTION

In this thesis, a new hard clustering method isgmeed to provide objective
knowledge for the fuzzy queuing systems. In manwerdiures, probability
distributions estimate the arrival times and sertimes. On the other hand, in many
real-world applications there are the linguistiorte, such as “Crowded” arrivals,
“Fast” or “Slow” services that describe the arriaald service patterns instead of the
probability distributions. As you know in most afagtical applications, both arrival
times and service times are possibilistic. Theeefdesign and control of the queuing
system with fuzzy concept is more realistic andliapple. Controlling the queues
occupy is an important place in our lives wheretaminapplications in decision
making and management based on fuzzy logic hathledtighest success.

With using the Zadeh’s extension principle (Zad&By8), the possibility
concept, and fuzzy Markov chain (Stanford, 1982¢, problem of fuzzy queues has
been inquired by Li & Lee (1989), Buckley (1990)edil & Le (1992) and so on.
Aydin & Apaydin (2008) the fuzzy queuing control rameters with different
membership functions are considered. Wang & Yand Bn (1999) the fuzzy
gueues are transformed to a group of crisp queyesing ther — cul method and
Zadeh'’s extension principle.

Three key features of control systems are: inpotgputs, and control
parameters or, control actions (Timothy, 2004). kustance, priority dicipline
machine for entering customers to different queueshe banks is a control
mechanism where inputs are arrival and service tates of customers, outputs are
the length of the queues, and the control actioegte altering the queue disipline,
capacity and etc.

Consider to a wide-range of real-world practicgplagations, description of
dynamic systems with available input-output dataaisritical moot point of the
scientific research. Usually the input and outplationship of a process in fuzzy
logic controller is expressed by “if-then ruless; a

If the interarrival is crowdedthen the length of queue is long.



Since many real systems are innately nonlinearctimventional systems can
not identify these systems by linear models (Ljut@g7). Currently, there are many
capable studies to improve the nonlinear systemmtiitteation methods using
available data. The TSK (Takagi, Sugeno, & Kang)thoeé was proposed in
generating fuzzy rules using available input-outdata set (Takagi and Sugeno,
1985; Sugeno and Kang, 1988). In the TSK rule basedy model, a linear
membership function in each implication is formeddescribe the real relation of
input-output in the systenComparisons of clustering algorithms in the idésgtion of
Takagi-Sugeno model (Fazel Zarandi, 2012; Abony0® Johansen, 2000) are
presented by Vernieuwe (2006).

In recent researches, clustering technique is bdtihiged for extracting fuzzy
rule consequences which requires the user to fglesttucture of the knowledge or
the rule base. Clustering is a method of classiboaof patterns or data item or
observations into clusters or groups and is helpfudonstructing fuzzy rules from
data (Timothy, 2004). The clustering algorithm redide user to define the initial
location of the cluster. Every cluster represensetaof typical data points covering
the range of data behavior. There aaeous clustering algorithms using optimization
techniques to identify the antecedents of a systesome literatures such as Gath-Geva
clustering algorithm (1989), modified Gath—Gevazjuzlustering algorithm (Abonyi,
2002), the Gustafson-Kessel clustering algorithrh979), the subtractive clustering
algorithm (Chiu, 1994).

This thesis shows a new hard clustering method dentification and
simulation of fuzzy queuing systems just only usavgilable input data se$d€ntarli
and G. Zanjanbar, 2013). We proposed estimatedugpubdata set and develop a
mathematical approach in generating a rule baseryfmodel using a given input
and the virtual output data sets. A crisp outpta @&t is produced, using arrival and
service rate data sets and the queuing systemrpenfice expression function. The
calculated output data set is separated into fesste@ls due to the region of fuzzy
subspaces of available inputs. Each cluster gesseggiproximate linear membership
function for related implication. In this thesisc@amputer source code is provided for

the new mathematical approach which derives theatimembership functions to



explain the real input and calculated output refatiof the queuing system
performances based on human interpretable infoomati

This thesis consists of 3 chapters. In the nexi@eove have a glance on the
basic knowledge about fuzzy theory and the claksind fuzzy queuing systems
with infinite capacity. Chapter 2 will be devotemldefine the proposed new method
of clustering to develop the first-order Takagi-8ng rule based fuzzy model on
field of multi server queuing systems, using ingata. In chapter 3, the realistic
examples are illustrated the applicability of pregd approach. In this chapter, a cost
analysis of a queuing system via new method anddngparisons of the proposed
method with the conventional method are preserited.comparisons between new
proposed model and the fuzzy N-Policy queuing sysbased upom-cut method
results on predicting performances in a queuingtesysare presented, too.
Conclusions are provided at the end of this study.



CHAPTER |
FUZZY LOGIC ESSENTIALS

1.1. BENEFITS OF FUZZY LOGIC

Fuzzy logic is a technique that systematically erathematically attempts to
analyze human reasoning and decision making. Flaggy provides engineers with
a clear and intuitive way to implement control syss, decision-making and
diagnostic systems in various branches of indu@gbuska, 1997). So that, fuzzy
logic allows exploiting engineers’ empirical knowtge represented in the “if/then”
rules and transfer it to a function. Fuzzy logigaalthms can be used for advanced

applications in industrial automation such as:

* Intelligent control systemsFuzzy control solutions are especially useful for
complex systems where standard control fails. Flagi is an advantage
in conventional analytical-process models which tae@ involved. Fuzzy
logic can be easily combined with conventional oalfgrs and mainly
improved their functionality, that, it is anothehantage of fuzzy logic. For
instance, fuzzy rules interpolate between a seteaailly linear controllers
and plan improvements of a system controller basedhanging operating
conditions. So fuzzy rules do not necessarily havdisplace conventional
control methods, but rather develop their poteititsi

» Process diagnostics, fault detectioif an analytical process model is not
accessible or is too compound to be run in reattiempirical knowledge
can be used to classify process conditions ang datéct faults.

» Decision-making and expert systemd-uzzy rules can analyze an
experienced human operator in real time, e.g. safgaropriate ingredients,
components or machines according to specific stogt in the

manufacturing process.



1.2. FUZZY SETS

Prof. Lotfi Zadeh introduced the concept of fuzeyssin 1965. Since then, the
theory has been developed by many researchergalhidation engineers.
In classical set theory, a membership functionndeéi set that assigns each element a
degree of membership (0 or 1) so that, 0 meanslément is not member of the set
and 1 means the element is member of the set. Hwsical (crisp) Fuzzy sets
include the degree of memberships in which arevayes in the real unit interval
[0, 1].

Let's assume that we have defined three classietd $Not Crowded",
“Moderate” and “Crowded" for variable arrival rafgee Figure. 1.1). If we want to
classify (evaluate degree of membership) for exanfigl value 23 to these sets, we
get value 1 for set “Moderate” and O for sets “Mobwded” and “Crowded”. Vague
classification will be more realistic and thus @o$o human reasoning, because no
sharp distinction usually exists between moderatk @owded arrival rates, as one
arrival rate reading can be moderate to some ey deB) and crowded to another one
(0.2), see Figure. 1.2.

degree of membership
(level of classification)

3 Classification

\

\ Result
\, hot crowded moderate crowded
1 ] * 1.0 moderate
0.0 crowded
O * 0.0 not crowded
range .
k 9 | Arrival Rate
5 23 40
crisp value

Figure 1.1Classical sets.



degree of membership

(level of classification)
\
\

Classification
Result

. hot crowded moderate crowded

1 \ L 4
\ + 0.2 crowded
0.0 not crowded

range

0.8 moderate

v

o
v

U'l—r

23 40
crisp value

Figure 1.2 Fuzzy sets.

1.3. MEMBERSHIP FUNCTIONS

A function-theoretic form maps fuzzy set elementa universe of membership
values. In this text, a set symbol with a tilde &batrike, denote a fuzzy set; for
example, A is the fuzzy set A. each element of zzyuset A is assigned to a real

number value on the interval 0 to 1 with a memhpr&imction.
If x is a member of fuzzy set A, then this mappimgxtracted by (x) O [O,l] :

In our particular example, the variablesxthe arrival rate, X is the range [5,
40], A is e.g. “moderate” and for x=23 we ggt (23) = 0.8.

The variable x is called thenguistic variableand corresponding fuzzy sets
defined on the range are calllaguistic termsdescribed by membership function.
For example, the linguistic variable arrival ratashterms “Not Crowded”,
“Moderate” and “Crowded”. The process of classtiii@a of a particular value of the
variable x to corresponding fuzzy sets is caflettification.

The most commonly used membership functions afégare 1.3. Singleton, whose
degree of membership is 1 just for a single valaad O, otherwise, is used just for
output linguistic variables.



Triangular function Trapezoidal function Gaussian function
1 1

\

a m b a b c d m

Figure 1.3Types of membership functions.

1.4. FUZZY SET OPERATIONS

Suppose two fuzzy seté and B on the universe X. FotIx X, the

following union, intersection, and complement fliotoperations are denoted #r

and Bon X:

Union Neausy (¥ =1z(X) L75(X)
Intersection Ning, (X) =1z (X) L175(X)
Complement ”Z(X) =1-7;(X)

1.5. FUZZY SYSTEMS

A fuzzy system is a static or dynamic system whitihzes fuzzy sets or fuzzy
logic. To involve the fuzzy sets in a system, thare some ways (Babuska, 1997),
such as:

* In the explanation of the systermA number of if-then rules or fuzzy relations

with fuzzy means can explain a system. For instarthe relationship
between the arrival rate and the length of queu@ iqueuing system is

described by a fuzzy rule as :
If the arrival rate is crowdedthen the expected length of queue will be long
* In the system’s parameters specificatiorAn algebraic or differential

equation can explain a fuzzy system, where the npetexrs are fuzzy

numbers, not real numbers.



* The fuzzy input sets and system state variab\ésgue information related to
human linguistic terms can extract fuzzy inputghsas fast, slow, etc. Fuzzy
systems can process the information of this typdad&, which is not usable
with conventional (crisp) systems.

Some of the above properties can be included imzayf system. Table 1.1

presents the relationships in fuzzy and crisp systescriptions (Babuska, 1999).

Table 1.1Crisp and fuzzy data in some system descriptions.

System Input data | Conclusion Mathematical
description method

Crisp Crisp Crisp conventional analysis
Crisp Fuzzy Fuzzy Zadeh’s and Mamdani

extension principle

Fuzzy Crisp/Fuzzy| Fuzzy fuzzy analysis

1.5.1. Fuzzy Inference

A fuzzy inference is a mechanism for evaluationtloé fuzzy system, i.e.
computing output values from input values. The Yuanalysis consists of the

following steps:

1. Fuzzification: Inputs are classified to corresponding linguiséons to get
premises membership functions.

2. Fuzzy rules evaluation The membership function term of conclusions are
calculated from premise membership function terntslagical operations.

3. Defuzzification Output linguistic terms are converted to a re@épcvalue

according to their membership functions.

1.5.1.1.Defuzzification

In the most of processes, to analyze the outputitre$ a fuzzy inference, we
need a single scalar amount instead of a fuzzy ket as fuzzification is the
alteration of an exact amount to a fuzzy amourfyzigfication is the alteration of a
fuzzy amount to an exact amount. Recently, in miaayatures,weighted average

methods proposed for defuzzifying fuzzy output membepdhinctions.



* Weighted average method@he output is computed with weighted average of
the each output of the set of rules, based on ledyd of the system. This
type of defuzzification method is defined as:

ZW.yi

Y =-

[y

-

ik

W

where Y is the defuzzified outpuls{i is the membership function of the output

of each rule, andV, is the weight of each rule. This fast and easymdable

method gives adequately precise conclusion. Intttesis, this method has been

first summarized and then illustrated in examples.

« a — cut method The study begin by considering a fuzzy Aetthen define

ana -cut set, A, , where 0< o< 1.The setA, is a crisp set called the)fcut
set of the fuzzy setA where A, = {X‘,U;\(X) 2 0’}. Note that thex -cut

set A does not have a tilde above score; it is a crisgpdegved from its
parent fuzzy setA. Whereas an infinite number of valuesn the interval
[0, 1], every fuzzy setA can be translated into an infinite numberaofcut

sets. Any elemenXJ A, associates té\ with a grade of membership that

is greater than or equal to the vatue

1.5.2. Some Practical Relevancy of Fuzzy Modeling

e Lacking or Ambiguous knowledge about systerifie system behaviors can
be described by conventional system theory justgusrisp mathematical
methods. For instance, mathematical models of ggesystems can be
achieved with algebraic equations. In the most ofstesns, the
comprehensions’ of the fundamental phenomenonis@mmpletely and crisp

conventional methods can not be analyzed or too ptom The

9



biotechnology, finance, chemical, sociology, ecgl@ge examples of such
systems. The knowledge of human expert's is availas a useful part of
information about these systems. Explanation of tAmbiguous and
uncertain knowledge may be too difficult for crispnventional methods. On
the other hand, it seems often possible to defieebehavior of systems in
the form of if-then rules, by terms of natural laage. “Fuzzy rule-based
systems can be used as knowledge-based modelsruobedt by using
knowledge of experts in the given field of interé@edrycz, 1990; Yager
and Filev, 1994). Hence, fuzzy systems are veryhmalike to intelligence
systems researched widely in the “symbolic” arn@#igntelligence (Buchanan
and Shortliffe, 1984; Patterson, 1990).

Imprecise information processing Crisp exact numerical results with
conventional mathematical methods only can be etddawith the correctly
known parameters and input data. A modeling franrmkws required the
processable data and associated uncertainty. [Qewalith uncertainty is a
usual way in stochastic approach. However, thehsistcc framework cannot
deal all types of uncertainty. Fuzzy logic and tedory is one of various
alternative approaches which have been proposedtSa988).

Fuzzy modeling and identification Today's, in scientific researches,
identification of dynamic systems from input date an important matter.
Linear models used in conventional system idetifocy, cannot extract
many nonlinear real systems (Ljung, 1987). Newhge tnonlinear system
methods are developed successfully from availatdéa.dMathematical
approaches in fuzzy systems can approximate offpgioaches or functions
flexibility with a wanted precision. This effect =alled “general function
approximation” (Kosko, 1994; Wang, 1994; Zeng andgB, 1995). In
comparison to other well-known techniques likefaitil neural networks,
fuzzy systems provide a more clear descriptiorhefdystem according to the
possible linguistic reasoning by the structure mplications. The logical
structure of the rules makes the analysis of thelaheasier and close to

human linguistics.
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1.6. RULE-BASED FUZZY MODELS

The relationships between input-output data in-bhased fuzzy models are
described by means of fuzzy if-then rules as form o
If antecedent proposition then  consequent proposition.

The type % is A” is always a fuzzy antecedent proposition mhe& is a
linguistic variable and A is a linguistic term. THegree ofX in fuzzy set A is a real
number between zero and one. Two main types ofhased fuzzy models are
specified based on the form of the consequent:

e Linguistic fuzzy model the fuzzy propositions are composed of the

antecedent as well as the consequent

» Takagi—Sugeno (TS) fuzzy moderhe only fuzzy proposition is antecedent

and the consequent is in the form of a crisp famcti

Notice to the explanation of these two differenzzZy models in the following

subsections in detailed meaning.

1.6.1. Linguistic Fuzzy Model

Available qualitative knowledge in this model (&&d 1973; Mamdani,
1977), translates into the form of if—then rules:

R:ifxis AthenyYisB i=1,2 .. n
In this expression, x denotes the antecedent ngudable, and& resembles

the antecedent linguistic terms. Alike, y denotes ¢onsequent output variable and

Iiresembles the consequent linguistic terms. The oti®r y are defined in the

regions of their universe base variable set$1 X andY Y . The membership

functions of the antecedent and consequent fuzzg seen(x): X - [0,1],
ny):yY - [O;L]. Fuzzy domains are defined by fuzzy sdis in the antecedent

space, depending on the related consequent spaedinguistic term#\ andl§I are

usually chosen from sets of terms, such as “SléRést”, etc. By meaning of these

sets by AandB, we have AOA andB' O I§, respectively. The rule set
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R:{Ri|i = 1.2,---,n} and the constitute of the se8and B, make available the

basic knowledge consider to the linguistic model.

1.6.2. Takagi—Sugeno (TS) Fuzzy Model

The linguistic model explains a given system betvavby means of linguistic
if-then rules with the fuzzy antecedents and furonsequents using Zadeh's
extension principle. On the contrary, instead ofzfu consequent, the crisp
consequent functions are used in the TS fuzzylbrased model. Therefore, there is a
relation between linguistic and mathematical regjoes equation where the fuzzy
domains are defined by antecedents according tmgphug space in which consequent

equations are valid. The TS rules are produced as:
R:If Xis A'theny = fi(x), i=1,2...,n (1.1)
In most cases, a vector-valued functidhis extracted from a nonlinear function.

The functionsf' have the same structure with the different pararséh each rule.

Simple and practically useful linear parameteraagiin the rules have the form:
R:If xis A then y :aiTx+bi, i=1,2...n (1.2)

i i .
whered is a parameter vector akdl is a scalar offset.

Small Medium Large

X

Figure 1.4 Takagi—Sugeno fuzzy model resembled by piecesehti approximations of a nonlinear
function.
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1.7. QUEUING SYSTEM WITH INFINITE CAPACITY (M/M/S)

In this thesis, a multi servers M/M/s queuing systeith infinite capacity is
considered. In this system, following assumptiamssaipposed:

* There is a single server in each waiting line.

* The frequencies of arrival rate are resembled Bgiason distributionij.

* The service times obey an exponential probabilgyridbution.

* There is first-come, first-served (FCFS) disciplinghe queue.

* There is no balking or reneging.

Various arrival and service time stochastic proggswithin the system are

assumed to be independent of each other. Hereand W, resemble the expected

number of customers in the queue and the expectetingy time in the queue,

respectively. Consider the two system performantgsand W, can easily be

derived by a Markov chain approach. It follows that

L = (A1 10)° (Al su)
T S-Alsw)ip, Y

where Pr.=== 1
" Eynlu/ )“}1/5:()1/ )3 (—H
n=0 . IU Iu SN_A
— Lq
Wo=— a9

For the steady-state conditions, we have Mx< 1 andsu > A.

1.8. FUZZY QUEUING SYSTEM WITH INFINITE CAPACITY FM /FM/S

A fuzzy multi server queuing system with infinitepacity is considered with

following assumptions:

 The frequencies of fuzzy arrival rate are resemblad a Poisson

distribution .

13



* The fuzzy service times obey an exponential prdipakbiistribution..

« Jandji are uncertain.
« Jand U by the convex fuzzy sets are represented.

* n;(A)andy;(u )define the trapezoidal membership functions;ofandﬂ,

respectively.
For this FM/FM/s queue model we have:

7 ={n; ()x0 A}

7 = {0, (0)x 0}
where A and u consists of the crisp sets of the arriaald service rates, respectively

as:

A={0 A A =t 1}

1.9. FUZZY N-POLICY QUEUING SYSTEM BASED UPON a-CUT MODEL

In this part, we consider to present an FM/FM/1diqy fuzzy queuing model
with infinite capacity based upon-cut model. This fuzzy queuing model is
developed by the N-policy M/M/1 queuing systemimitilg the fuzzy set theory. The
fuzzy arrival rate and the fuzzy service rate vslume used to develop the
membership function using a mathematical approatheosystem performance. The
fuzzy queues are translated to a group of crispegsidased on theecut model and
Zadeh'’s extension principle.

LetW, define the expected waiting time in the quee.can be simply derived
by a Markov chain approach. It is:
N-1 A
= +
T2 u(u-A)
where 0 <A /u < 1 since we have the steady-state condition.

(1.5)

Supposd (X, y flefine the system performances. Sinﬁeand/]are fuzzy

numbers, f (/T,/Tl )is also a fuzzy number. With Zadeh’s extension@ple (Zadeh,
1978 and Zimmermann, 2001), the membership functwin the system

performanced (/T,/Tl )Js obtained as:
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My (2) = supmint; (09.7;(Y)| 2= F(x )} (1.6)

where Q ={xD X,yOY[x)0,y)0}

In the N-policy M/M/1 queuing system, when the \atirate x and the

service ratey are crisp values, the crisp expected waiting tim#he queue is such

as:

Wq=N—l+ X (1.7)
2x  y(y—x)

The membership functions Wq as a result, become:

nvv(Z)=supmin{f7;(X),f7,:(y)|N_1+ X_} (L8)
T T | 2x  y(y-x)

For practical use, the membership function in equafl.8) is not explained
in the typical forms and inferring the shapes @f telated membership function with

W, is too difficult. Therefore, thew-cuts of W, can be derived by applying the
Zadeh’s extension principle to solve this probl€&uonsider to above explains, let us

define then-cuts of A and 4 as follows:
Ma)={xOX|p;(0za}  (1.9)
ua@) ={yovlr,(=za} (@10)

A resembles the fuzzy arrival rate apdresembles the fuzzy service rate of the N-
policy FM/FM/1 system. Hence, consider to equatitih8) and (1.10), the crisp

cut sets ofd and 4 can be redefined in such as:

May =[x, %= [rxr%ixn{xD X|n; (%) 2 al, rgmaxlx{xm Xp;0zaf]  (111)

ua@ =lys.v2]= | minly 0¥l () 2 ahma{y v, 2al| @12

“From equations (1.11) and (1.12), it indicatest thand L are lying the range of
[x(';,xfjJ an({y(';,yfjj, respectively, at a possible lewgl (Yin Wang, 2010). As you
see, the N-policy FM/FM/1 queue decreases to apgafucrisp N-policy D/D/1
queue with differenti-level sets{)l (a)|0< a <]} and{/,/(a)|0< a <]}. The upper and
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lower bounds of] and fican be presented as functionsaofis x, = maxq}l(a),

X, =

a

ming;i(a), y; =maxy; (a)and y, =minp;'(a) by the principal property of
convex fuzzy numbers (Zimmermann, 2001). Sineeis the parameter of the
membership functior\/T/q therefore, then-cuts approaches are used to develop the
membership functioNT/q .

The membership function of the expected waitingetimthe queug (2) is

the minimum of 7; (x) andy;(y )that is derived based on the Zadeh’s extension
principle.

By solving the corresponding parametric nonlineesgpam the Iowe(NVq)LL, and
(\Nq)‘; upper limiting values odi-cuts ofVT/q can be found as:

C_ .. ,N-1 X
M = ) -

st x<x<x andy-<y<y’
and
N-1 X
S =ma + 1.14
(W) = max x y(y—x)) (1.14)
st. x-<x<x] and y,<y<y,

The optimal solution changing’s are characterized imathematical
approaches in this model with, x ,y- and y. when value ofi modifies between

0 and 1. This model is a part of parametric NLRI(G979).
According to equations (1.10) and (1.11), we caplaee xOA(a ) and

yOu(a) bny[x};,xf,’JandyD[y;,yg], respectively. It is worthy of mention that

cuts of x and y form an embedded structure baseth up(Zimmermann, 2001).

Considering the two possibility levets anda, , we have

X% [ax ¢ Jand |ys L2 JOye v |
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where 0 <a, < a, < 1. Thus, as: increase fofW,), =W,), , (W,), increases and
for(W,),, < (W), ,(W,), decreases. Therefore, the membership functigr(z)
will be computable. Defining an ascending functign,),:a - W,), and a
descending functioqwq)ﬁ a - (\Nq)ﬁ help us to explain the membership

functionsz; (2), with invertible the botiW,)" and(W,)”, based upon such as:

L(2), (W,)gmo <25 (W),
g, (2= 1 (Vvq)tl;=l szs< (Vvq)l(;ﬂ (1.15)
R(2), (Vvq)gzl sZs (Wq)ﬁi=o

where the left shape functidu(z) is [(\/\/q)L]_l and the right shape functioR(z is)

[(V\/q)“]_l. In section 3.2.1, an example shows the alteraifdhe membership grade

of the system performances at a differetgvel.

17



CHAPTER Il

PROPOSED RULE BASED FUZZY MODEL IN QUEUING SYSTEMS

In this chapter, the new rule based fuzzy modéhénfield of queuing system is
investigated making use of the Takagi-Sugeno-KargK( first-order rule based

fuzzy model.

2.1 KNOWLEDGE-BASED DESIGN FOR BUILDING PROPOSED FUZZY
MODEL

Generally, a fuzzy model according to availableegkgnowledge is designed as
the following steps:

1) Choose variables resembling the input and outhetform of the rules, and
the deduction, and methods to defuzzify the sahstio

2) Determine the required amount of linguisticntsr for each rule and
determine the related functions resembling the neszsiiip.

3) Translate the knowledge possessed using tlag fisthen rules.

4) Approve the model. If the expected performargaat visible, repeat the
above steps.

2.2 FIRST-ORDER TSK RULE BASED FUZZY MODEL

The TSK first-order rule based fuzzy model a giwsstem is described by
means of linguistic if-then rules with two inputsdaan output. A fuzzy system is

represented by first-order TSK model as form offtil®wing implications:

R: If x is ,-5\‘11 and x, is ,-5&2 then y*

R": If x is ;\2 and x, is &”2 theny” (2.1)

where
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y Output linear membership functions ie tonsequences.

X5 %o Crisp variables in the premises.

A.,A, Membership functions of the fuzzy sets in thenises.

P,P,P, Parameters of linear membership functions ircthresequences.

n The number of implications (rules).

The crisp final output of the system is obtaineda \a weighted average

defuzzification, as shown in Figure 2.1.

D wy

Final outputY ==L (2.2)

n

2w

i=1

wherew = Min(A,A, ) (2.3)

7 =py+ Bix + phx,

w,  z,=py+p%t X,

i +
weighted average B ANy
Wl + W2

Figure 2.1 The first order Takagi-Sugeno-Kang fuzzy rule basedel.

After above explanations, the proposed fuzzy masldenoted by a queuing

system in detail in the next sections.
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2.2.1 The Linguistic Terms in Premises:

A fuzzy queuing system process involving two funzgut sets is analyzed;
arrival ratel and service ratgu to predict crisp performances as expected length of
queue,L,, and expected waiting time in quel,.

In the form of TSK fuzzy rule based model in a qugusystem, in order to model
(2.1), we have:

R:If AisAanduisf theny’, i=1,2....n (2.4)

Where A'and [i' are the premise linguistic terms. The Iinguistilartxie)Ti and [ are
selected from sets of human linguistic terms, sashrowded, slow, fast and etc.
The fuzzy setd' and [i'are defined in their regions over their respectivisp
interval variablesAand u. Fuzzy sets A and [i' define fuzzy regions in the
antecedent space, according to the respective goestpropositions. By denoting

these sets byT and /i respectively, we hava O andg' O [1.

Example 3.1 Suppose that the crisp interval arrival rateiset [1, 2, 3, 4]
per hour and the interval service rate set is 5 [P, 13, 14] per hour as premise
values.

The linguistic terms “Crowded” and “Not Crowded’zfzy subsets of arrival rate and

“Fast” and “Slow” fuzzy subsets of service rates®iw in Table 2.1 and Table 2.2.

Table 2.1Linguistic terms, interval arrival rates set argfitzzy subsets.

Domain element

linguistic term | 1 2 3 4
Crowded 0 0 0.67 1
NotCrowded 1 1 0 0

Table 2.2Linguistic terms, interval service time rates sed &s fuzzy subsets.

Domain element

linguistic term | 11 12 13 14
Fast 0 0 0.67 1
Slow 1 0.67 0 0
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Trapezoidal membership functions define the meanirthe linguistic terms, as you

see in Figure 2.2 and Figure 2.3.

| NotCrowded

Crowded

Figure 2.2“Crowded” and “NotCrowded” arrival rates per .
=

LL 2

0.8

0.E

0.4 Slow Fast

0.z

LL

i | 12 13 14 1=

Figure 2.3"Fast” and "Slow” service time rates per hour.

Remember that there is not universal way to defime linguistic terms. The

numerical variables are selected arbitrarily.

As you see in Figure 2.4 when we use a “Crowdéd arrival rate and
“slow z“ service rate, we get out of the process lardaesof performances in
queue; when we input “Not Crowdeﬁl“and “ Fast,“ into the system, the
performances reach to small values; when we inpNdt “Crowded )Tl and “

Slowg “ or “Crowded/E“ and “ Fas{,“ into the system, the performances reach

to moderate values.
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NotCrowded Crow

%

e

ded

Figure 2.4  The little inputs produce small values and big isgaroduce large values on the fuzzy
queuing system performances.

2.2.2 Implication Numbers Identification:

In the rule based fuzzy method, the behavior ofesgstranslates to some
implications. The fuzzy sefand ' are defined in their regions over their
respective crisp interval variablesand u .If the number of fuzzy subspaceTéis

“A” and the number of fuzzy subspacgg is “B”, (Sugeno, 1985) each model

consists of (Ax B)implications. Hence, a queuing system representedsdme

implications as:

R': if A is A*and g, is ;i* theny'

S : (2.5)
RA®: if A is A®® andy, is g*® then y*®
The rule setR:{R‘|i =12,...,(Ax B)} and the knowledge base of the linguistic
model is constituted with the selsand .

Example 3.2:

As you see in Example 3.4,is divided into two fuzzy subspaces “Crowded”

and “Not Crowded”, anduis divided into two fuzzy subspaces, “Fast” ando{$!.
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Therefore, this model consists (#x 2) implications. If they' is the expected length

of queue, implications having the form such as:

R: if A is NotCrowded)Tl) and u is fast@w,) thenL is short

R?: if Ais NotCrowdecﬁ)Tl) and u is slow(z) thenL is low moderate
R®: it A s crowdedﬁz) and u is fast@w,) thenL, is highmoderate
R*: if A is crowded(Tz) and y is slow(z) thenL is long

2.2.3 Consequence Parameters Identification:
Supposd (x,y flefine the system performance and let redefine Mf-M/s

queue system in order to model (2.4) by followiakps as:

R:If AdisAandu is @' theny = f'(A,u), i=1,2...,n (2.6)

where the functions off' (A, )s a clarified piece by piece linearization of a
nonlinear function with different parameters in leaale consequence. Commonly,
the fuzzy clustering techniques can estimate thmsameters from the available
data.

In this thesis, for the purpose of to be able te tlee linguistic terms to

estimate vector-valued functidi(A, # , an output data is produced with available
input and expression performance system functisgindgJthe newhard clustering
methogd we divide the computed output to some clustecs derive thef'(A, x4 pf

the queuing system performance for every implicatiat related to each cluster.

Hard Clustering Algorithm
System
A ! Y
(2.p) Performance
, > Rule Base

Numerical Numerical

Input Data Ouput Dﬂax
Y ¢

Fuzzifier » | Fuzzy Inference Engine t | Defuzzifier
Fuzzy sets‘
sets

Figure 2.5A fuzzy system includes the hard clustering method.
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In the rule based model (2.6)f'(A,u is) a vector-valued function with
parameterization as formi' (A, 1) = pl' A+ py i+ pj
where p}, p, are parameters of vector amplis a scalar offset.

The inference formula of the TSK model is a strémfwvard extension of the (2.2):

The proposed rule based fuzzy model ineuong system can be observed as a
clarified piece-wise approximation of the interyarformance function, depicted in
Figure 2.6.

r
Y ¢ virtual output Y » N
linear function q ‘% ﬁ’
hy =V
. . %Q
L ] Q""‘r
& r
v
(2,10)

Figure 2.6 The proposed fuzzy model as a clarified piece-leg@iinearization of a nonlinear
performance function.

The line y'displays the linear function in the consequencengficationR'.
The equation in a consequence is extracted to elefilaw based on the fuzzy
subspace definition in premise and its calculatggut in a consequence.
The utilization of hard clustering method to extrdlce linear consequences is

presented in the next subsection completely.

2.3 HARD CLUSTERING METHOD

Suppose a data univerde with n data members. Clustering identifies the
number of ¢ clusters i where 2 < ¢ < n). For algebraic data, the member values of

each cluster are more mathematically similar tdhestber than to members of other
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clusters. To clustering identification we must det@e the similarity between
observations and classify the partitions.

2.3.1 Application of Interval Function to Evaluation of Consequence Parameters

Fuzzy systems are inferred from descriptions o$pcinterval-valued systems,
which are crisp systems in general. Figure 2.%titated this with an example of
a function and its interval and fuzzy forms. Instligure, the evaluation of the

function for crisp, interval and fuzzy data is d#pd too. Remember that a

function f : X - Yis a relation that can be observed as a subsbed@artesian

productX XY . As you see in the Figure 2.7, the vertical dddimes show the

extension of the given input into the product spdceY . After finding the

intersection of this extension with the relatidmstintersection is projected onto

Y that is shown with horizontal dashed lines.

Since the function and the data (crisp, intervakzf{) are independent, this
function evaluation makes clear up the use of fuztgtions for inference in fuzzy
modeling.

crisp argument interval or fuzzy argument

crisp function
X
) interval function
R >
X X
------- fuzzy function
=I .
: /\ X

Figure 2.7 Crisp, interval and fuzzy arguments for evaluatiba crisp, interval and fuzzy function.
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Fuzzy systems can supply various aims, such as afabysis, modeling,
forecasting or decision making. In this researcimew fuzzy rule-based system is
studied, for simplicity, attentive to its realizegtentual purpose in field of queuing
systems.

To introduce the evaluation interval function, wefide a sample set of

(mxn) data that we wish to classify:

Yiz 0 Y
Y= ¢ : (2.7)
Yim " Y
defined by f :Axu - Y where fis a binary function which takes two inpus

with m factors and U with n factors,

where/ :[)Il A, )lm]T ,/,1:[/,1l J7EE /Jn]and Yis the calculated output
set.
It is noted thatd, <A, <---<A and y4 < pf, <---< 4.

The evaluated membership functidigl, z foy a given input (arrival and

service rates) of each implication are depicteigure 2.8.

Interval function »
r 'n

Yoo
® i
¥ :
T
1 2 ., T w i E i
) - Yo y 3 ! b !
¢ 2 Do P :
-5 = P % e b i | |

(21)
Interval arguments

Figure 2.8 Evaluation of interval performance function wittidrval arrival and service time rates in
the M/M/s queuing system.

To evaluate the interval performance function ioheinplication, we have to

determine the related region (partition) in thecakdted outpuy .
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When a hard clustering approach is used, it isiredquo divide the data into
different and unique clusters, where each dataesémxists exactly in one cluster.
Based on the similarity between members withinuatelr, we consider the similarity
in value components of every member of each clu$tés means, every member in

each cluster is calculated with same pain;) of same sub interval values of

Aandy . Hence, interval inputsandu are divided tA subsetsd and B subsets

U
haved' 0 Aandy' O u.

in order to A'and ' fuzzy subset numbers (2.2.2 section definition)e W

In general, there seems no theoretical approactabileafor the number of
divisions.
LetL and K are vectors of order6A—-1) and (B — 1) respectively:
L={l,1,,. ) ] andK =[k;, Ky, ks ] (2.8)

wherel, andk, represent the division space poing () in matrix Y.

Therefore, theY ™" matrix is divided into(Ax B ¥lusters so that the crisp data of

every cluster are related to an implication ass@elin Figure 2.9.

K, K, Ks_,
| |
| |
_ . _
Yii o Y2 Y| Yy Yak+z)  Yaky) | Yakgneeo lVl(kB_l) Iyl(kB_1+l) Yin
Y1 I : I
| | :
| | _
Yon I . I :
t ; ; P
| | :
| | :
o
Y= | | :
Ya,n B | :
I, i i >
| |
o
B O —lr_--_-__}__- _____ >
e i I S — >
| |
| |
| Y L Yonn
\ 4 \ 4 \ 4 \ 4

Figure 2.9 Division of matrix Y ™" into (AX B) clusters.
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Define a family of clusters@*, a=1,2,...,A-1 ,b=1,2,...B-} as a
hard c-partition of Y, wherec = (Ax B) is the number of clusters@c < (mxn)).

The following set-theoretic forms apply to theseigans:

A B

yyc' =y for all,, k, (2.9)
a=1b=1
ceC™ =g foral(l,,k)#(,.k ) (2.10)
pOCH 0OYvY for alll_,k, (2.11)

Equation (2.9) expresses the fact that the sell afusters exhausts the universe of
data sample. Equation (2.10) indicates that nonbetlusters overlap in the sense
that a data sample can belong to more than onéeclusquation (2.11) expresses
that a class cannot be empty and it cannot coathihe data samples.

Consequently, we definehard clusterfor Y as the following matrix set:

({/]1’/]2 ----- /]Il}T)x({:ulhuz ----- 'ukl}' i=1 j=1 r=1
Crij = ({A(Ii_lﬂ) 'A(Ii_1+2) """ Ali }T ) X ({:u(kj_1+l) Hu(kj_l+2) 1111 :uk] )v 1<i< Av 1< J < B1 2sr<c-1
({/]lA—1+l’/]|A—1+2 """ Am}T) x ({:ukB_lﬂwukB-lﬂ """ :un})’ i = A J =B, r=c
(2.12)

Xouo (¥;) is defined as the hard membership function-theotpression which

resembles the regression of all dgtan C'** cluster.

For simplicity in notation, our membership assignief the (i x | )th data point in
the rthC'"™® cluster of data universe Y, is defined to be
Xewo (%) = Xe, (%) = 06+ PLA + 1,4 (2.13)

where P,, B, P, are the linear function constant parameters.

In this sense, our system is inferred from desomgtof crisp interval-valued

systems.
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Figure 2.10 (a) The hard clustering model, (b) the functiorueal data points and their interpolation
linear functions.

As you see in Figure 2.10, our model can be obsgeagea relation among the input
data in premise and the parameters of a lineagrsyat a consequence.
Therefore, using (2.5) and (2.13), the implicatiohgueuing system have the form:

R if A is Aandy isZ the fAu)=PR+BA+Pu
R&®:if A is A™® andy, is 7~  the  f& (4, ) = R&® + B )+ P
The step-by-step procedures in this hard clustemethod are summarized into six

steps:
1. Calculate matrix Y with crisp interval input datetsA andy .

2. Divide Aandu crisp sets into desired parts and initialize A @& dalues:
c=(AxB)

Then, dor =1, 2...

3. Initialize L =l,,1,,....,_,]andK =[k,k,,....ks_,]

4. Determin€, ™ (y, )
5. Obtainx, (y;)=p5+ pl.A + P, .4,

6. Ifr=c,
Stop; otherwise set=r + 1 and return to step 4.

A good illustration of our clustering method isisie in the next chapter.
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CHAPTER IlI
APPLICATION OF THE PROPOSED MODEL
IN FUZZY CONTROL AND DISCUSSION OF THE RESULTS

In order to demonstrate applying the proposed fumbky based model to the fuzzy

gueuing system, we considered some case studieis ichapter.

3.1 APPLICATION IN PERFORMANCE CALCULATIONS USING T HE
PROPOSED FUZZY MODEL

In this section, let us consider a case study oasoming performances in a

fuzzy queuing system.

3.1.1.Computations of the Expected Length of Queue the FM/FM/s Queuing
System

To illustrate above examples, we hawe[l1, 2, 3, 4] and p=[11, 12, 13, 14]
per hour, and each set is divided into two parts=2(& ={12}, 2> ={34}
B=2,1* ={1112, 12 ={1314 L =[2]andK =[2] ). The number of partitions is
c=(AxB) =4 . If the number of server s=2, and the expectadtteof queuel,,

Is a binary function, using (1.3) and (2.7) we have

0.00019 0.00014 0.00011 0.00009
~10.00152 0.00117 0.00092 0.00073
“7] 00052 000397 0.00311 0.00249
0.01243 0.00952 0.00746 0.00595

30



According to fifth step of clustering algorithm,@galent linear functions related to
each cluster or implication in the fuzzy queuingteyn for expected length of queue,

are:

R : short 0.001+ 0.00074 — 0.0001

L,(A,4) ={R?:lowModerag  0.0032+ 0.00 + 0.0003u
R®: highModerde - 0.0004+ 0.00391 — 0.0006u

R*:long 0.009+ 0.00641 - 0.0021

Clusters of the function valued crisp data pointsl dheir interpolated linear

functions data of the expected length of queualapicted in Figure 3.1.
C1 C2

0.00019 0.00014| 0.00011 0.00009
~10.00152 0.00117] 0.00092 0.000>73
4 | 0.0052 0.0039710.00311 0.00249

0.01243 0.00952y0.00746 0.00595
C3 C4

0.012

0.01

0.008

0.00e »

0.004

0.002

(A1)
N A J \ J\ J
c, R c, e C4YZ R® c;:(R4

Figure 3.1 Clusters of the function-valued results and theespondinginear interpolation for the
expected length of queue as crisp data pointseitvitM/s queuing system.
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Figure 3.2 Input-output data of the length of queue in thei/M/s queuing system.

The expected length of queue for all péisy,
in a particular cluster and implication are caltedh in related membership
functiony' as Table 3.1:

Table 3.1 The expected lengths of queue for all pé,i’ris,ui), according to the related linear

membership function. (Shown in bold)

reparding to their position

)

(A1) |y y’ y’ y'

(1,11) | 0.00039]0.00048 |-0.00341 | -0.0072
(1,12) | 0.00028]0.00014 |-0.00404 | -0.0093
(1,13) |0.00016 |-0.00019 | -0.00466 -0.011]
(1,14) [0.00004 |-0.00053 | -0.00529] -0.013
(2,11) | 0.00112]0.00151 |0.00047 | -0.0008
(2,12) | 0.00099]0.00117 |-0.00015 | -0.0029
(2,13) |0.00088 |0.00083 | -0.00077| -0.004¢
(2,14) |0.00077 |0.00049 | -0.00140] -0.007(
(3,11) | 0.00184| 0.00254| 0.004360.0060
(3,12) |0.00172| 0.00220| 0.003740.0035
(3,13) | 0.00160| 0.00186/0.00311 |0.0015
(3,14) |0.00149| 0.00152|0.00249 |-0.0006
(4,11) |0.00256| 0.00356| 0.008250.0120
(4,12) | 0.00244| 0.00322| 0.007630.0099
(4,13) |0.00232| 0.00289/0.00700 |0.0079
(4,14) |0.00221| 0.00255/0.00638 |0.0058
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Table 3.2Calculation ofthe expected waiting time in a fuzzy/FM/s queuipstem.

2 2
(A, 1) W, W, W, W, " = ;V\I"yl /;W'
(1,112) 0 0 0 1 0.000394
(1,12) 0 0 0 0.67 | 0.000185
(1,13) 0 0 0.67 0 -0.000129
(1,14) 0 0 1 0 -0.0005314
(2,11) 0 0 0 1 0.001115
(2,12) 0 0 0 0.67 0.000666
(2,13) 0 0 0.67 0 0.000555
(2,14) 0 0 1 0 0.0004947
(3,11) 0 0.67 0 0 0.0029097
(3,12) 0 0.67 0 0 0.00249

(3,13) 0.67 0 0 0 0.00149

(3,14) 0.67 0 0 0 -0.000566
(4,11) 0 0.67 0 0 0.00825

(4,12) 0 1 0 0 0.00508

(4,13) 0.67 0 0 0 0.007897
(4,14) 0.67 0 0 0 0.00584

Table 3.2 presents the,w,,w,andw, for every implication and the
final weighted defuzzification crisp output of tegpected length of queue.
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(A, 1) L, Y, %deviation
(1,11) 0.00019 | 0.000394 107.4
(1,12) 0.00014 | 0.000185 32.1
(1,13) 0.00011 -0.000129 217.3
(1,14) 0.00009 -0.000531 690.4
(2,11) 0.00152 | 0.001115 26.6
(2,12) 0.00117 0.000666 43.1
(2,13) 0.00092 0.000555 39.7
(2,14) 0.00073 0.000495 32.2
(3,11) 0.0052 0.002910 44.0
(3,12) 0.00397 0.00249 37.3
(3,13) 0.00311 0.00149 52.1
(3,14) 0.00249 -0.000566 122.7
(4.11) 0.01243 | 0.00825 33.6
(4,12) 0.00952 0.00508 46.6
(4,13) 0.00746 0.0079 5.9
(4,14) 0.00595 | 0.00584 1.8

0014 “q 4

0.012 n

0.010 12 / 11\}_ 12

0.008 s /*"4 4
0.006 W/X\ -
0.004 14// 1 / \’ 4
0.002 14 14 12 12 /'1?\9/// 12

3

3

Expected Lenght of Queue

0000 7= 13 11 T “1;
-0.002 2 1 2
h v & v - ' I J('&’fu )
short LowModerate HighModerate long

|—¢— lenght of queue in fuzzy system —=— lenght of queue in crisp system|

Figure 3.3 The comparison of the final output results of the pregmb fuzzy model and the
conventional approach for the expected length efigu

Referring to Figure 3.3, the results of theexted length of queue in the

proposed fuzzy model and crisp inferences are chygaroximately, expect of

(3,13)and(3,14) points in “High Moderate” regionda(8,11), (3,12), (4,11), and
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(4,12) points in “long” region. In these pointsetbxpected length of queue in fuzzy

inference is estimated shorter.

Figure 3.4 The input-output relation found using the propos$erzy model to interpret the
expected length of queue.
7
11 12 13 14
A 1 1
a a2
4 4

11 12 13 14

Figure3.5 Darker squares correspond to bigger valueshidiekpected length of queue in the fuzzy
system.
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3.1.2.Computations of the Expected Waiting Time irQueue in the FM/FM/s
Queuing System
According to the expected waiting time equatior8Jand matrix (2.7) for

Wq as matrix Y we have:

0.00019 0.00014 0.00011 0.00009
0.00076 0.00058 0.00046 0.00037

4 1000172 0.00132 0.00104 0.00083
0.00311 0.00238 0.00186 0.00148

Figure 3.6  Input-output data of the expected waiting time irege in the crisp M/M/s queuing
system.

According to fifth step of clustering algorithm,egalent linear functions related to

each cluster or implication in the fuzzy queueaysfor expected time in queue are:

R': fast 0.0006+ 0.000281 — 0.00006u

W, (A, 1) = R?:lowModerae  0.000096+ 0.000571 — 0.0004u/
R’ :highModerae  0.00287+ 0.000741 — 0.000306u

R*: slow 0.00448+ 0.00122 - 0.00057u

Clusters of the function-valued crisp data pointgl gheir interpolation linear

functions of expected waiting time in queue areicted in Figure 3.7.
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C1 Cc2

0.00019 0.00014| 0.00011 0.00009
_10.00076 0.00058 0.00046 0.00%37
“71 000172 0.00131 0.00104 0.00083

0.00311 0.0023& 0.00186 0.00148
C3 C4

o.ooz [\A H

0.0025
0.002
0.0015
0.001

0.0005

("'"*:!J‘-L]
H(_J H{_/ H{ ) HA( J
c,:R c,:R c,:R c;:R
Figure 3.7 Clusters of the function-valued and their interpiola linear functions crisp data

points of expected waiting time in tl/M/s queuing system.

The expected waiting times in queue for all pgdrsi,  regarding to their position in
a particular cluster and implication are calculatedelated membership functigh

as Table 3.3:

37



Table 3.3

The expected waiting time in queue for all péﬂﬁ,ui), regarding to the related

linear membership functions. (Shown in bold)

(A.) |y y’ y’ y

(1,11) | 0.00026|0.00019 |0.00022 | -0.00063
(1,12) | 0.00021]0.00015 |-0.00086 | -0.00120
(1,13) |0.00015 |0.00010 | -0.00039 -0.00178
(1,14) |0.00009 |0.00006 | -0.00070, -0.00235
(2,11) | 0.00054]0.00076 |0.00096 | 0.00059
(2,12) | 0.00048|0.00072 [0.00065 | 0.00002
(2,13) |0.00042 |0.00067 | 0.00035| -0.00056
(2,14) |0.00037 |0.00063 | 0.00004 | -0.00113
(3,11) | 0.00081] 0.00133 0.0017(00.00181
(3,12) | 0.00076] 0.00128 0.001390.00124
(3,13) | 0.00070| 0.001240.00109 |0.00066
(3,14) | 0.00064| 0.001200.00078 |0.00009
(4,11) |0.00109| 0.00190 0.002440.00303
(4,12) | 0.00103| 0.00185 0.002130.00246
(4,13) | 0.00097| 0.001810.00183 |0.00188
(4,14) | 0.00092| 0.001770.00152 |0.00131
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Table 3.4 Calculations ofthe expected waiting time in queue in a fuzzy FM/ENMueuing

system.
—
Ao Lo ) ) |y | T2
111 |o 0 0 1 0.000263
(1,12) 0 0 0 0.67 0.000137
(1,13) 0 0 0.67 0 0.000068
1,14) |0 0 1 0 0.000059
(2,11) 0 0 0 1 0.000539
212) |o 0 0 0.67 | 0.000320
213) |0 0 067 | O 0.000448
(2,14) 0 0 1 0 0.000629
(3,11) 0 067 | 0 0 0.001134
(3,12) 0 0.67 0 0 0.000930
(3,13) 0.67 0 0 0 0.000662
(3,14) 0.67 0 0 0 0.000087
(4,11) 0 067 | 0 0 0.002441
(4,12) 0 1 0 0 0.001423
(4,13) 067 | 0 0 0 0.001881
(4,14) 067 | 0 0 0 0.001306

Table 3.4 presents th&v,W,,Ww,and W, for every implication and the final

weighted defuzzification crisp output of the exjgectvaiting time,Y,, .
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(A, 1) W, Yo % Deviation
(1,12) 0.00019 0.000263 38.4
(1,12) 0.00014 0.000137 2.1
(1,13) 0.00011 0.000068 38.2
(1,14) 0.00009 0.000059 34.4
(2,11) 0.00075 0.000539 28.1
(2,12) 0.00058 0.000320 44.8
(2,13) 0.00046 0.000448 2.6
(2,14) 0.00037 0.000629 70.0
(3,11) 0.00172 0.001134 34.1
(3,12) 0.00132 0.000930 29.5
(3,13) 0.00103 0.000662 35.7
(3,14) 0.00083 0.000087 89.5
(4,11) 0.00311 0.002441 21.5
(4,12) 0.00238 0.001423 40.2
(4,13) 0.00186 0.001881 11
(4,14) 0.00149 0.001306 12.3
0.0035 “{q
o 11
=
2 0.003 —
S [
£ 0.0025 /N 42
£ 0002 L
o
£ 00015 M 1# \a”
] 3 \ﬁ 4
= 14 2
g 0o 1 T,
E.t}.out}ﬁ s 2oy K
1] 1 2 ;
0
" o A — A — \ — J(,&,‘u)
short LowModerate HighModerate long

|—¢—waiting time in gqueue in fuzzy system —s— waiting time in queue in crisp system ‘

Figure 3.8 The comparison of the final output results of the pregmb fuzzy model and the
conventional approach for the expected waiting time
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Referring to Figure 3.8, the results & #@xpected waiting time in queue in the
proposed fuzzy model and conventional inferencesclose, except points (3,13)
and (3,14) and points in “High Moderate” region gmnts (3,11), (3,12), (4,11),
and (4,12) in “long” region. In these points th@ested waiting time in queue in the

fuzzy inference is estimated shorter.

Figure 3.9 The input-output data of the proposed fuzzy modehterpret the expected waiting time
in queue.

11 12 13 14

Figure 3.10 Darker squares correspond to bigger values foexpected waiting time in queue in the
fuzzy system.
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According to Figure 3.3 and Figure 3.8, spite of the fact that new hard
clustering method are evaluated with linguistiarter the inferring results have the
same rank in both of the conventional and the ppegduzzy model.

These observations provide engineers with a cledrimatuitive way to implement

control systems and decision-making in various @i of queuing system.

3.2. COMPARISON OF THE PROPOSED MODEL AND THE FUZZY N-

POLICY QUEUING SYSTEM BASED UPON a-CUT MODEL
In this section, we supposed a different case prolib compare the fuzzy N-

Policy queuing system based upeout model (Wang& Yang and Li. 2010) and our
new fuzzy rule based model. In section 3.2.1, e problem is solved using the
fuzzy model upor-cut method. In section 3.2.2, the sample probkesoived using

the new fuzzy rule based model and in section 3tAeresults of the two methods

are compared.

3.2.1.Expected Waiting Time in the Queue using th&uzzy N-Policy Queue
Model Based upona-Cut
In the Example 3.1, the crisp interval arrival reg¢t ish= [1, 2, 3, 4] per hour
and the interval service rate set is u=[11, 12,143 per hour as knowledge based

(Yin Wang, 2010). It is simple to determine

[x}; X J = [minu}l(a), maxu}l(a)] =[i+a4-a]

[y; Ys ] = [min Mz (@), max,u;,l(a)J =[11+a 14-a]

hvd
1

0.8
0.6
0.4

0.2

a

0.4 0.6 0.8
Figure 3.11 The trapezoidal membership function of the eig waiting time in queue using the
fuzzy N-policy queue model based upoeout.
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Clearly, the minimum value of expected waiting tinmethe queue is achieved

whenx=x] andy=y’ and the maximum value is achieved when
x=x-andy =y . According to Equations (2.13) and (2.14), the dovand upper
bounds of thei-cut ofVT/q, respectively, are given by

. _N-1 (4-a)
(Wa)o = 4-q +10(14—a)

N-1 ,  (+a)
20+a) 1041+a)

W,)o =

The inverse functions c(i/\/q)L and (V\/q)U are exists. We have

9-90a +5/-3+200 +100m> 39 <, 139

1-10a " 140" T 390

N~ (2) = 1 @s zs3—1
W, 390 60
6-600 +5y-3+200+100°  31__ 111

—1+10a 60 110

Table 3.5 The membership function of the expected waitimg in queue for the fuzzy N-policy
gueue model based upan-cut.

o R I IV I N\ L (A

0.00 | 1 4 11 14 0.279] 1.009
010 | 11| 39| 111 139 0.284 0.919
020 | 1.2 | 3.8| 11.2| 13.8 0.29]] 0.844
030 | 13| 3.7| 11.3] 13.7 0.279 0.781
040 | 14| 36| 114 13. 0.304 0.727
050 | 15| 35| 115 135 0.312 0.680
060 | 16| 34| 11.6] 134 0.319 0.639
0.0 | 1.7 | 33| 11.7) 13.3 0.328§ 0.603
080 | 18| 32| 11.8) 13.2 0.337 0.571
090 | 19| 31| 11.9] 13.1] 0.346 0.542
1.00 | 2 3 12 13 0.356| 0.517
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The expected waiting time in the queue for elevdfer@nt o levels are
presented in Table 3.5. As you see, the resultsaagdpetween 0.356 and 0.517 when
a = 1. Whenao =0, at the maximum value, the fuzzy expected wgitime in the

queue appears impossibly below 0.279 or excee®1.00

3.2.2.Expected Waiting Time in Queue using the Prased Model

Since our method is flexible to accept any functiaterval values and fuzzy
terms, according to matrix (2.7), the expected ingitime in queue function (1.5) is
replaced as binary function which takes two intemputsi=[1, 2, 3, 4] andi=[11,

12, 13, 14] as inter-arrival and service timespeesively. We have

1.00909 100758 1.00641 1.00549
0.520202 0.516667 0.513986 0.511905
“710367424 0361111 035641 0352814
0.301948 0.291667 0.284188 0.27857

Two fuzzy terms “slow” and “fast” for service tinmates and “Crowded” and
“Not Crowded” for arrival rates are considered.résult, the calculated output will
divided to four partitions. If implications over ghsystem have the form as
implication of example 3.2, regarding to fifth stefpclustering algorithm, equivalent
linear functions related to each cluster or impgilarain the fuzzy queuing system for

expected waiting time in queue, are:

R': fast 151- 0494 - 0.0009u

W, (A, 1) =< R? :lowModerae 152- 0494 + 0.0015u
R’ :highModerde 0.615-0.0731 - 0.003u

R*: slow 065-0.069 - 0.0063u

If use of adjusting techniques for designing fumgdels is considered, the
proposed rule based fuzzy model using new clugferiethod is a more condensed
and calculable tham-cut method. These adjusting techniques are usedttact the

membership functions from available data to coms$toest fuzzy model systems.
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3.2.3.Comparison of New Proposed Model and Fuzzy Mel Based upona-cut
Method

Some final results about the two different methadsconcluded as:

The two different methods are computationalficesnt.
Both of the approach works well with optimizatiand flexible techniques.
The two different methodse well matched to mathematical analysis.

They are flexible to use human input.

o kr 0N PE

The proposed model is intuitive and has widespr@cceptance to give any
function to extract the liner membership functiobsit there is not any

guaranty to produce an invertible membership famctvith the fuzzy model

based upor-cut method.

6. The new proposed model works with linear techesgsmoothly, but the

other method does not.

7. In the new method, the acceptable and possbkidts are produced but there

are always some impossible results in the othemoet@od.

3.3. APPLICATION IN FUZZY COST ANALYSIS IN QUEUING SYSTEMS

The feature of cash-flow modeling is often uncetiaand is involved with re-
processing of used productsdost analysiof data. Since the data in quality, supply,
and disassembly times is uncertainty, thereforal#ia is not objective.

Hence, decision-makers have to rely on fuzzy dataahalysis to make the
more really results. Notice that, the data of bhwo#lwv products and used products are
taken into account with cost analysis. In this isegtan economic fuzzy cost analysis
in a queuing system is presented using the newopsaprule based fuzzy model and

then is compared with conventional method.

3.3.1. The Cost Relationships in Queuing Systems Alysis

As you see in the cost curves in Figure 3.13, thergenerally a converse
relationship between service cost and the costaitirvg in queue. According to the
level of service, by rises the number of servers, ¢ost of service increases, and
waiting cost decreases. Commonly in system analylses minimum point on the

total cost curve should be aligned with the leviedarvice. The cost of providing the
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service is usually related to cost of the serveush as the cost of the staffs at the
bank. When the number of servers increases to eett@cwaiting time, service cost
will increase. We can specify easily the servicetdm compute. Contrary, the
waiting cost is not clear to determine. The lossbokiness is occurred when
customers get satisfied of waiting for long timel &@ave the system. This business
loss may be occurred once or more time. As cosvafing, the cost of business
losses is especially difficult to determine, altbbusuch data, is provided by some
organizations for businesses and industries seldtm.loss of salary for staffs and
production time, load or unload transportationsijting to use equipment, can be

mentioned for some types of waiting costs.

Total Cost

Service

Expected costs

_/

Waiting Cost

Level of service

Figure 3.13 The cost relationship in queuing system analysis.

3.3.1.1.Queuing System Costs and Quality Service

The modern approach to quality management is te\uwethat the relationship
between quality and cost is a short-run view thatemestimates the potential long-
term loss of business from poor quality. In thegiwan, a higher level of quality will
gain market share and increase business and thmeres cost-effective. Further, as
the company focuses on improving quality servites tost of accomplish good
quality will be less because of the novelties ingesses and work design that will
result. This level of better-quality, that is, dkec, service will, in the long-run,

growth business and be more cost-effective thatr#igitional view implies.
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3.3.2.Conventional Economic Analysis in Queuing Stsnms

As this text has shown, we can use fuzzy queuinglelsoto estimate
performance measures of a queuing system. To anatyzqueuing system
economically, the information afforded by the lingjic terms is surveyed to extract
a cost model for the waiting line system. So, thizdel can help us to balance the
cost of waiting customers and the cost of providihg service. This balancing

procedure is an important issue in the area ofatjpers management.

In developing a cost model for the input problemboth conventional and fuzzy
models, we will consider only the waiting time as&tvicing time variables, and the

cost of the queuing system. Hetg, the hourly waiting cost of each customer
andC, , the cost of each server per hour. Since, theafogaiting customer per unit

time cannot be correctly estimated; managers hayeedict an acceptable value to
reflect the loss probability of future revenue if ansatisfied customer passes to
another competitor company. In conventional metisagposeC,, is estimated to be
$50 per hour. The cost of operating each serviciétfeas the wages of any server or
the cost of equipment, including maintenance iseveasily determined.

Let us assume thaC,=$100 per hour. Therefore, the total cost per nainut
IsT,.q =CyL, +CsS , whereL, is the average number of customers in the queuing

system and S is number of servers. Table 3.6 summ@sahe computed results as the
cost for the two-three- and four server scenaNis. can obvious clearly that the

economic advantages of a three-server system weotional calculation.

Table 3.6 Results of the economic cost analysis of a quesysgem design using the conventional

method.
System S System Costl_q Customer Cost| Total cost
Two -server 2 200 5 250.00 450.00
Three-server| 3 300 0.36 18.00 318.00
Four-server 4 400 0.21 10.50 410.50
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3.3.3.Fuzzy Economic Cost Analysis of Queuing Syste Using the Proposed
Model

To control the truth of the result for the caseegivabove, an interval data is
supposed for expected length of queue with 2 seasr
L., =[002 3710]

Wherel,, the average of this interval data is 5, approxatya

42
This range is divided to two subsets accordingh® linguistic terms “short” and
“long”.

In this case study, an interval data is supposedh® waiting cost per hour per

customer as:
C,, =[035,70100
The linguistic terms “low cost”, éwl) and “high cost”, CWZ) fuzzy subsets of

waiting cost per customer are supposed as givéalie 3.7.

Table 3.7 Linguistic terms and interval cost of waiting tireet and its fuzzy subsets.
Domain element
linguisticterm | 0 35 70 100
low cost 0 0.9 0.2 0
high cost 0.0011 0.41 0.97 0.11

Lq' and C,, are fuzzy sets explained in the domains of theiresponding base crisp
interval variablesL,and C,, . Fuzzy setsL, and C,, define fuzzy domains in the
antecedent space, according to the respective goestpropositions. By denoting
these sets by, and G, respectively, we havlzqi 0L, and(~ZWi O éw.

The meaning of the linguistic terms is defined BiMf” membership functions,

illustrated in Figure 3.14.

49



3¢

W

low cost high cost

z0 40 €0 80 100 C

Figure 3.14"low cost” and “high cost” waiting cost per cismer.

Since the sets of expected length of queue andngaibst are divided to two sub

fuzzy sets, the four implications of the fuzzy cosidel have the form of:

R': if L, is short and C, is low then T, is small

R?: if L, is short and C, is high then T_is low moderate
R®: if L, is long and C, is low then T, is highmoderate
R*: if L, is long and C, is high then T_.is big

As we havd, =C, L, +CsS, therefore the matrix value of total cost is:

C, ={035 x{ 0445} C, ={035x{1115

800 814 | 828 840
800 9575 |1115 1250

>
Tes =800 1185 |1570 1900
800 1325 11850 2300
C, ={701003 x{ 04,45} c, ={70100 x{1115
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According to fifth step of clustering algorithm,@galent linear functions related to
each cluster or implication in the fuzzy queuingteyn for expected length of queue,

are:
R':small 22600187, —24.8826C,, +8232925
T..«(C,.L,) =< R* :lowModerae 8.109LC, +40.8241 +377.5043
R® : highModerae 8.109LC, +40.8241 +3775043
R* : big 201061C, —1944854_,

All pairs(L,,C,) according to their position in which clusters anglications are

calculated in related membership functjon The final weighted defuzzification

crisp output total cost is presented Tp, column in Table 3.8 and depicted in

Figure3.15:
Queuing System with 2 servers
1200
1000 A
g 800 // \\
% 600 R / \
400

ool N N/ \
. \/ \/ N

0 35 70 100

2-server| 0 |166(/229/390| 0 |586/571|316| 10 |795|109/420/0.5|151|204/118

Figure 3.15Total cost with 2 servers computed using the neweho
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In continuousjwo interval data for expected length of queue v@tand 4 servers
as,L,, =[003,027,043,0.7]and

L., =[001,014,022,046],

are supposed

respectively, where the average of the intervahldgt is 0.36 andL,is 0.21,

approximately.

The results of calculations are presented in Talfleand Table 3.10.

800

Queuing System with 3 servers

700 A
600

500 4
400

Total Cost

300 4
200 ~

100 —

35

70

100

3-server| O

279

227|300| O

409

334

198

0

575

433

208

2.3

685

584

224

3-server

Figure 3.16Total cost with 3 servers computed using the neweho

1000

Queuing System with 4 servers

AN

800

600

400

Total Cost

200

0

35

70

100

‘— 3- server

0

19

136|445/ 0

850

692

369

0

891

779

405

69

181

207

250

— 3- server

Figure 3.17Total cost with 4 servers computed using the neweho

These results can be graphed to look for pattardgrands.
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1200

1000

800

g —&—2-server
o 600 = 3server
3 R

2 4-server

400

200

0

Py
0 35 70 100
—&— 2-server | 165.58 |229.24|389.72| 0 |586.41|570.51|316.04|10.221|795.08|1097.1|419.82|0.4878| 150.63| 203.54 | 118.23
0
0

B 3-server | 278.8 | 227.42|300.28
— —4-server | 19.482|135.99| 445.5

409.45| 334.3 | 198.33 0 |574.65|433.31|208.03|2.3142|684.98 | 584.07 | 224.41
849.7 | 692.17|368.81 0 |890.78|779.46| 405.4 |68.739|180.76 | 207.46 | 249.75

Figure 3.18 Total cost results in the queuing system with @n8 4 servers computed
using the new model.

You can see in Figure 3.18, the economic advantafjestwo servers system for
range ofC,, =[70-100]$, and a three servers for range@f =[0-70]$, in fuzzy

analysis using the proposed model.
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CONCLUSIONS
In this thesisa new hard interval clustering method is presetdedescribe
consequences in developed TSK first order rule ddsezy model in field of
gueuing system. This method is proposed basedtervah input data setd(andu )
and linguistic fuzzy terms such as “Crowded”,” StgWrast” and so on. An output
data set is calculated by a binary system perfocedunction, on pairs of available

data(A, ). The output data is divided to some clusters sd #ach cluster is

distinguished by input subsets based on fuzzy sgypmoximations. The interpolated
linear membership function of every cluster dessithe relation between premise
and consequence of the related implication on Byste

The new hard clustering method has been applieddonventional queuing

system. In the example problems, the coupling &ffet )Tandﬂ on fuzzy system
performances [q and VTIqhas been revealed. These observations may provide

managers with a clear and intuitive way to impletneontrol systems in various
conditions of queuing system.

This thesis provides distinctive practical resufts designing queuing
systems with fuzzy control and examines its besefitmpared to other control
methodsUsing this method, the queuing system can be clbedranore smooth and

flexible in fuzzy mode in the real life.
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