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Abstract In this paper, we present a result of stability, data Dependency and errors estimation for

D Iteration Method. We also prove that errors in D iterative process is controllable. Especially sta-

bility, data dependence, controllability, error accumulation of such iterative methods are being

studied.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

In many fields of mathematics and other sciences, a problem

can be translated into an equation for a suitable operator. In
addition, the existence of a solution to this equation can be
reduced to the existence of a fixed point of the mentioned oper-

ator. The theory of a fixed point itself is a perfect combination
of functional analysis, topology and geometry. Reducing the
real-life or theoretical problem into the fixed point problem
is a great step to finding the corresponding solution. That is

the reason why the fixed point theory plays an indispensable
role in almost all quantitative sciences, in particular, eco-
nomics, game theory, theatrical computer science, biology,
chemistry, engineering, and physics, see e.g. [2,3–9,12,13,26–
30].

Although, proving the existence of a fixed point is a crucial

step on finding a solution, the main and probably the final step
is to find the exact value of the desired fixed point. One of the
best method to calculate the desired fixed point is to use an

iterative process. For this reason, a number of interesting iter-
ative processes have been developed. Indeed, the well-known
Banach contraction theorem approximates fixed-point using

Picard’s iterative process. After then, Mann iteration and Ishi-
kawa iteration appeared, for details on these iteration and
some others, see e.g. [1,9–11,14–19,21–25].

Two qualities ‘‘Fastness” and ‘‘stability” play an important
role so that an iteration process is preferred to another itera-
tion process. In [1], the author uses numerical examples to
show that for non-expansive mapping, the convergence rate

of the Picard-S iterative process is faster than that of Picard,
Mann, Ishikawa, Noor, SP, Agarwal, CR, S*, Abbas and
Normal-s. The speed was fast. In [18], the authors demonstrate
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that the convergence of the iterative process M * is better than
the iterative processes Agarwal and Picard-S. Recently, in [19],
another iterative, the iterative process M, was introduced and

its speed of convergence was compared to the iterative pro-
cesses Agarwal and Picard. In [10], another iterative process
called k iterative process was introduced, which proves that

convergence is faster than the existing iterative process. They
also proved that their iterative process ‘‘K” was T-stable. In
[16], a new iterative process called ‘‘K�” was developed, they

prove the speed of convergence and the stability of their itera-
tive process. Based on the above reasons, recently in [10], we
introduced a new iteration method D defined as

n0 2 C

xn ¼ F 1� #nð Þnn þ #nFnnð Þ
gn ¼ F 1� hnð ÞFnn þ hnFxnð Þ

nnþ1 ¼ Fgn

8>>><
>>>:

ð1Þ

In, numerically compare the convergence rate of the new iter-

ative process with the iterative process of Agarwal, Picards, M,
M * and K, and prove the weak and strong convergence theo-
rems of the generalized non-expansive map of Suzuki for ‘‘D”

iteration. This article demonstrates the ‘‘stability‘‘ and ‘‘data

dependence” of the D-iteration method. We also estimate the
error of the ‘‘D” iteration, and prove that the error accumula-
tion in (1) is bounded.

2. Preliminaries

In this section, some basic definitions are recalled.

Definition 1 [14]. A Banach space X is called uniformly con-
vex if for each � 2(0,2] there exists d >0 such that for r,s 2 X

with krk 6 1 and ksk 6 1; kr� sk > � implies k rþs
2
k 6 d.

Definition 2 [16]. Let unf g1n¼0 be an arbitrary sequence in M.

Then an iteration procedure rnþ1 ¼ f F; rnð Þ converging to a

fixed point p is said to be F-stable or stable with respect to F.
If for �n ¼ ktn þ 1� f F : unð Þk; n 2 N, we have limn!1� ¼ 0

if and only if limn!1un ¼ p.

Definition 3 [9]. Let F, F
�
: X ! X be two operators. We say

that F
�
is an approximate operator for F if for some � >0 we

have kFx� F
�
xk 6 � for all x 2 X.

Lemma 1 [22]. Let rnf g1n¼0 and tnf g1n¼0 be nonnegative real

sequences satisfying the relation.

rnþ1 6 1� tnð Þrn þ tn, where tn 2 0; 1ð Þ for all
n 2 N;R1

n¼0tn ¼ 1 and rn
tn
!0 as n ! 1. Then limn!1rn ¼ 0.

Lemma 2 [23]. Let rnf g1n¼0 be nonnegative real sequences for

which one assumes there exists n0 2 N such that for all n P no
satisfying the relation.

rnþ1 6 1� tnð Þrn þ tntn, where tn 2 0; 1ð Þ for all
n 2 N;R1

n¼0tn ¼ 1 and tn P 0, for all n 2 N, then

0 6 lim
n!1

sup rn 6 lim
n!1

sup tn:
3. Stability for D iteration process

In this section we first prove that D iteration Process is
strongly convergent. Then we prove that D iteration Process
is T-stable. Furthermore we also discuss about Data

dependency.
Theorem 2.1. Let C be a nonempty closed convex subset of
a Banach space X and F: C! C be a contraction mapping. Let

nnf g1n¼0 be an iterative sequence generated by D iteration pro-

cess with real sequences hnf g1n¼0 and #nf g1n¼0 2[0 1] satisfying

R1
n¼0hn ¼ 1 or R1

n¼0#n ¼ 1. Then nnf g1n¼0 converge strongly

to a unique fixed point of F.
Proof. Since F is a contraction mapping in a Banach space,

F has a unique fixed point in C. Let us suppose that p is a fixed

point of F. From D iteration process, we get

kxn � pk ¼ kF 1� #nð Þnn þ #nFnnð Þ � Fpk
6 kk 1� #nð Þnn þ #nFnn � pk
6 kk 1� #nð Þ nn � pð Þ þ bn Fnn � pð Þk
6 k 1� #nð Þknn � pk þ #nkFnn � pk
6 k 1� #nð Þknn � pk þ k#nknn � pkf g
6 k 1� #n 1� kð Þf gknn � pk:

Now,

kgn � pk ¼ kF 1� hnð ÞFnn þ hnFxnð Þ � Fpk
6 k 1� hnð ÞkFnn � pk þ hnkFxn � pk½ �
6 k 1� hnð Þkknn � pk þ hnkkxn � pk½ �
6 k2 1� hnð Þk nn � pð Þk þ hnkxn � pk½ �
6 k2 1� hnð Þk nn � pð Þk þ hn k 1� #n 1� kð Þf gknn � pkð Þ½ �
6 k2 1� hn þ khn#nð Þ 1� kð Þ½ �k nn � pð Þk:

Then,

knnþ1 � pk ¼ kFgn � Fpk
6 kkgn � pk
6 k3 1� hn þ khn#nð Þ 1� kð Þ½ �k nn � pð Þk:

By repeating the above process, we get

knn � pk 6 k3 1� hn�1 þ khn�1#n�1ð Þ 1� kð Þ½ �k nn�1 � pð Þk

knn�1 � pk 6 k3 1� hn�2 þ khn�2#n�2ð Þ 1� kð Þ½ �k nn�2 � pð Þk

knn�2 � pk 6 k3 1� hn�3 þ khn�3#n�3ð Þ 1� kð Þ½ �k nn�3 � pð Þk

..

.

kn1 � pk 6 k3 1� h0 þ kh0#0ð Þ 1� kð Þ½ �k n0 � pð Þk:
Therefore, we obtain knnþ1 � pk 6 k3 nþ1ð Þk n0 � pð ÞkQn

i¼0 1� hi þ khi#ið Þ 1� kð Þ½ �. Now, k <1 so (1-k)>0 and

hn; #n 6 1 for all n 2 N. Therefore, we get
1� hi þ khi#ið Þ 1� kð Þ½ � < 1 for all n 2 N. After that, we know
that 1-x 6 e�x, for all n 2[0 1]. So we have.

knnþ1 � pk 6 k3 nþ1ð Þk n0 � pð Þke� 1�kð ÞPn
i¼0 hi þ khi#if g:

Taking the limits n ! 1 both sides we get limn!1knn � pk
=0.

Theorem 2.2. Let C be a nonempty closed convex subset of

a Banach space X and F: C! C be a contraction mapping. Let

tnf g1n¼0 be an iterative sequence generated by D iteration pro-

cess, with real sequences hnf g1n¼0 and #nf g1n¼0 2 [0 1] satisfyingPn
i¼0 hi þ khi#if g ¼ 1 and for all n 2 N. Then the D iterative

process is T-stable.

Proof. Let tnf g1n¼0 �Xbe an arbitratry sequence in C. Also,

let the sequence generated by D iterative process be t nþ1ð Þ =
f T; tnð Þ converging to unique fixed point p (follows from The-

orem 2.1) and �n ¼ kt nþ1ð Þ�f T;tnð Þk. We will prove that



Table 1 equence generated by D, Picard-S, S iteration process

with initial guess x0 ¼ 3:5 for mapping F of Example 2.4.

S Picard-S D

n0 3.5 3.5 3.5

n1 3.2 2.96 2.768

n2 2.9024 2.57754 2.33502

n3 2.66692 2.34146 2.14147

n4 2.48921 2.20038 2.05893

n5 2.35737 2.1171 2.02436

n6 2.26037 2.06825 2.01002

n7 2.18935 2.03971 2.00028

n8 2.13752 2.02307 2.00168

n9 2.09977 2.01339 2.00005

n10 2.07233 2.00777 2.00028

n11 2.05248 2.00456 2.00011

n12 2.03794 2.00261 2.00005

n13 2.02746 2.00151 2.00002

n14 2.01987 2.00087 2.00001

n15 2.01437 2.00051 2

n16 2.01039 2.00029 2

n17 2.00751 2.00017 2

n18 2.00543 2.0001 2

n19 2.00392 2.00006 2

n20 2.00283 2.00003 2

Figures. Convergence of D, Picard-S, S iteration processes to the

fixed point 2 by using different initial guess for mapping F of

Example.
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limn!1�n ¼ 0 if and only if limn!1tn ¼ p. Let limn!1�n ¼ 0 .
Then, we have.

ktnþ1 � pk 6 ktnþ1 � f T; tnð Þk þ kf T; tnð Þ � pk ¼
�n þ kt nþ1ð Þ�pk.

From Theorem 2.1 we get 6 �n þ k3 1� hn þ khn#nð Þ½
1� kð Þ�k tn � pð Þk. Since 0 < k < 1 and 0 6 hn 6 1; 0 6 #n

6 1 for all n 2 N and limn!1�n ¼ 0 and using Lemma 1, we
get limn!1ktn � pk ¼ 0. Hence limn!1tn ¼ p. Conversly, let
limn!1tn ¼ p. Then we have

�n ¼ kt nþ1ð Þ�f T;tnð Þk6ktnþ1�pkþkf T;tnð Þ�pk:6ktnþ1�pkþk3 1� hnþkhn#nð Þ 1�kð Þ½ �k nn�pð Þk:

Therefore, we have limn!1�n ¼ 0. Hence the D iteration
process is T-stable.

Theorem 2.3. Let F
�
be an approximate operator of a con-

traction mapping F. Let nnf g1n¼0 be an iterative sequence gen-

erated by D iteration Process for F and define an iterative

sequence ~nnf g1n¼0 as follows

~n0f g 2 C;

~xn ¼ F
�

1� #nð Þ ~nn þ #n F
�
~nn

� �
;

~gn ¼ F
�

1� hnð ÞF
�
~nn þ hn F

�
~xn

� �
;

~nnþ1 ¼ F
�
~gn:

8>>>>>>><
>>>>>>>:

ð2Þ

with real sequences hnf g1n¼0 and #nf g1n¼0 2 [0 1] satisfying

(i).1
2
6 hn þ khn#n for all n 2 N, and (ii).R1

n¼0hn þ khn#n ¼ 1.

If F (p) = p and F
�
~p ¼ ~p such that limn!1 ~nn ¼ ~p, then we have

kp� ~pk 6 7�

1� k
;

where � > 0 is a fixed number.

Proof. It follows from (1) and (2),

kxn � ~xnk ¼ kF 1� #nð Þnn þ #nFnnð Þ � F
�

1� #nð Þ ~nn þ #n F
�
~nn

� �
k

6 kF 1� #nð Þnn þ #nFnnð Þ � F 1� #nð Þ ~nn þ #n F
�
~nnÞk

þkF 1� #nð Þ ~nn þ #n F
�
~nnÞ � F

�
1� #nð Þ ~nn þ #n F

�
~nnÞ

6 k 1� #nð Þknn � ~nnk þ #nkFnn � F
�
~nnk

h i
þ �

6 k 1� #nð Þknn � ~nnk þ #n kFnn � F ~nnk þ kF ~nn � F
�
~nnk

h ih i
þ �

6 k 1� #nð Þknn � ~nnk þ #n kknn � ~nnk þ �
h ih i

þ �

6 k 1� #n 1� kð Þf gknn � ~nnk þ k#n�þ �:

Now,

kgn � ~gnk ¼kF 1�hnð ÞFnn þhnFxnð Þ�F
�

1�hnð ÞF
�
~nn þhn F

�
~wn

� �
k

6 kF 1�hnð ÞFnn þhnFxnð Þ�F 1�hnð ÞF
�
~nn þhn F

�
~xn

� �
k

þkF 1�hnð ÞF
�
~nn þhn F

�
~xn

� �
�F

�
1�hnð ÞF

�
~nn þhn F

�
~xn

� �
k

6 k 1�hnð ÞkFnn � ~F ~nnkþankFxn �F
�
~xnk

h i
þ �

6 k 1�hnð Þ kknn � ~nnkþ �
� �

þhn kkxn � ~xnkþ �ð Þ
h i

þ �

6 k 1�hnð Þkknn � ~nnkþankkxn � ~xnk
h i

þk�þ �

6 k 1�hnð Þkknn � ~nnkþhnk k 1�#n 1�kð Þf gknn � ~nnkþk#n�þ �
� �h i

þk�þ �

6 k2 1� hn þkhn#nð Þ 1�kð Þ½ �k nn � ~nn
� �

k
þk� hn þkhn#n þ1ð Þþ �:

Then,
knnþ1 � ~nnþ1k ¼ kFgn � F
�
~gnk

6 kkgn � ~gnk
6 kgn � ~gnk þ �

6 k3 1� hn þ khn#nð Þ 1� kð Þ½ �k nn � ~nn
� �

k
þk2� hn þ khn#n þ 1ð Þ þ k�þ �

6 1� gn þ kgn#nð Þ 1� kð Þ½ �k nn � ~nn
� �

k
þ� hn þ khn#nð Þ þ 3�

6 1� hn þ khn#nð Þ 1� kð Þ½ �k nn � ~nn
� �

k
þ� hn þ khn#nð Þ þ 3 1� hn þ khn#nð Þ þ hn þ khn#nð Þ�:

By using assumption (i) 1
2
6 hn þ khn#n. Then,

knnþ1 � ~nnþ1k 6 1� hn þ khn#nð Þ 1� kð Þ½ �k nn � ~nn
� �

k þ 7 hn þ khn#nð Þ�

¼ 1� hn þ khn#nð Þ 1� kð Þ½ �k nn � ~nn
� �

k

þ hn þ khn#n 1� kð Þ 7�
1�kð Þ

�

Let rn ¼ k nn � ~nn
� �

k; tn ¼ hn þ khn#n 1� kð Þ; tn ¼ 7�
1�kð Þ

�
,

then by using Lemma 2, we get

0 6 lim
n!1

sup knn � ~nnk 6 lim
n!1

sup
7�

1� kð Þ :

By using Theorem 2.1 and by using assumption

limn!1 ~nn ¼ ~p, we have

kp� ~pk 6 7�

1� kð Þ ;

as required.
Now, by an example we show that initial guess doesn’t

effect the efficiency of D iteration process.
Example 2.4. Let us define a function F : R ! R by

F nð Þ ¼ 4nþ 2ð Þ=5. Then clearly F is a contraction mapping.

Let hn ¼ 2n= 3nþ 1ð Þ and #n ¼ 3n= 4nþ 1ð Þ. The iterative val-
ues for n0 ¼ 3:5 are given in Table 1. Fig. 1 shows the conver-



Fig. 1 Convergence of D iteration process when initial guess is 3.5.
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gence graph. The efficiency of D iteration process is clear. (see
also Figs. 2–4, for different initial values.).

4. Error estimation for D iteration process

Throughout this section, we assume that X; j: jð Þ is an arbi-

trary real Banach space, C is a closed and convex non-empty
space a subset of X, F: C ! C is a non-expansive mapping,

and anf g1n¼0 and bnf g1n¼0 2 [0 1] are sequences of parameters

satisfying certain control conditions.
We basically want to evaluate the error estimation of the D

iterative method in real Banach space, which is defined as

x0 2 C;

zn ¼ F 1� bnð Þxn þ bnFxnð Þ;
yn ¼ F 1� anð ÞFxn þ anFznð Þ;

xnþ1 ¼ Fyn:

8>>><
>>>:

ð3Þ

Many researchers have achieved this goal indirectly. As
regards, their direct calculations (estimation, recently some
papers have appeared in the literature (see, e.g., [14,15]. In this
article, we have developed new ideas for direct estimation of
the error of D iteration with regard to accumulation. It is point
out that the direct error calculations for this method are much
more complicated than those of the case of the iteration meth-

ods of Mann and Ishikawa (cf. [24,25]).
Define the errors of Fxn;Fyn and Fzn by

pn ¼ Fxn � Fxn; qn ¼ Fyn � Fyn; rn ¼ Fzn � Fzn

for all n 2 N, where Fxn;Fyn and Fzn are the exact values of
Fxn;Fyn and Fzn, respectively, that is, Fxn;Fyn and Fzn are

approximate values of Fxn;Fyn and Fzn, respectively. The the-

ory of errors implies that pnf g1n¼0; qnf g1n¼0 and rnf g1n¼0 are

bounded. Set

M ¼ max Mp;Mq;Mr

� �

where Mp ¼ supn2Nkpnk;Mq ¼ supn2Nkqnk and

Mr ¼ supn2Nkrnk are the bounds on the absolute errors of

Fxnf g1n¼0; Fynf g1n¼0 and Fznf g1n¼0 respectively.

The accumulated errors in (3) comes from pn; qn and rn,

hence we can set



Fig. 2 Convergence of D iteration process when initial guess is 20.
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x0 2 C;

zn ¼ F 1� bnð Þxn þ bnFxn

� �
;

yn ¼ F 1� anð ÞFxn þ anFzn
� �

;

xnþ1 ¼ Fyn:

8>>><
>>>:

ð4Þ

where xn; yn and zn are exact values of xn; yn and zn, respec-
tively. Obviously, error of an iteration will affect the next

(n + 1) steps. So, we have

kx0k ¼ kx0k;

kx1 � x1k ¼ 1� a0ð Þkp0k þ a0kr0k þ 2��;

kx1 � x1k ¼ 1� a0ð Þkp0k þ a0kr0k þ �;

similarly

kx2 � x2k ¼ 1� a1ð Þkp1k þ a1kr1k þ �;

kx3 � x3k ¼ 1� a2ð Þkp2k þ a2kr2k þ �;
repeating on above process, we have

kxnþ1 � xn þ 1k ¼ 1� anð Þkpnk þ ankrnk þ �

.

Now,

ky0 � y0k ¼ 1� a0ð Þkp0k þ a0kr0k þ �;

ky1 � y1k ¼ 1� a1ð Þkp1k þ a1kr1k þ �;

ky2 � y2k ¼ 1� a2ð Þkp2k þ a2kr2k þ �;

ky3 � y3k ¼ 1� a3ð Þkp3k þ a3kr3k þ �;

repeating on above process, we have

kyn � ynk ¼ 1� anð Þkpnk þ ankrnk þ �:

Now,

kz0 � z0k ¼ b0kp0k þ �;



Fig. 3 Convergence of D iteration process when initial guess is 0.5.
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kz1 � z1k ¼ 1� b1ð Þ 1� a0ð Þkp0k þ a0kr0k þ �½ � þ b1kp1k þ �;

kz2 � z2k ¼ 1� b2ð Þ 1� a1ð Þkp1k þ a1kr1k þ �½ � þ b2kp2k þ �;

kz3 � z3k ¼ 1� b3ð Þ 1� a2ð Þkp2k þ a2kr2k þ �½ � þ b3kp3k þ �;

repeating on above process, we have

kzn � znk ¼ 1� bnð Þkxn � xnk þ bnkpnk þ �:

Define

E 1ð Þ
n :¼ kxnþ1 � xn þ 1k ¼ 1� anð Þkpnk þ ankrnk þ �;

E 1ð Þ
n :¼ kyn � ynk ¼ 1� anð Þkpnk þ ankrnk þ �;

and

E 3ð Þ
n :¼ kzn � znk ¼ 1� bnð Þkxn � xnk þ bnkpnk þ � for all

n 2 N.

We noticed that after (n + 1) iterations, the error of the

iterative method accumulated to E 1ð Þ
n ;E 2ð Þ

n and E 3ð Þ
n .

Now, we can give the following results.
Theorem 3.1. Let C, F, M, E 1ð Þ
n ;E 2ð Þ

n and E 3ð Þ
n be as above,

and � be a fixed value.

If
P1

i¼0ai ¼ þ1(or
P1

i¼0bi ¼ þ1Þ then the accumulation

of errors in (3) is bounded and does not exceed the number N.
Proof. It follows from above definitions and conditions

kE 1ð Þ
n k ¼ k 1� anð Þkpnk þ ankrnk þ 2�k;

6 1� anð Þkpnk þ ankrnk þ 2�;

6 1� anð ÞMþ anMþ 2�;

6 Mþ � 6 N0:

Also,

kE 2ð Þ
n k ¼ k 1� anð Þkpnk þ ankrnk þ 2�k;

6 1� anð Þkpnk þ ankrnk þ 2�;

6 1� anð ÞMþ anMþ 2�;

6 Mþ �

6 N0

and

kE 3ð Þ
n k ¼ k 1� bnð Þkxn � xnk þ bnkpnk þ �k



Fig. 4 Convergence of D iteration process when initial guess is �2.
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kE 3ð Þ
n k 6 1� bnð ÞkkE 1ð Þ

n�1k þ bnkpnk þ �

kE 3ð Þ
n k 6 1� bnð ÞN0 þ bnMþ �

kE 3ð Þ
n k 6 N0 þ bn N0 þMð Þ þ �

kE 3ð Þ
n k 6 N Hence, we have maxn2N kE 1ð Þ

n k; kE 2ð Þ
n k; kE 3ð Þ

n k� 	
6 N:

5. Conclusion

For the iteration method define in [14–19,21–25], imposing

specific conditions on parametric sequences is a common prac-

tice gnf g1n¼0; hnf g1n¼0 and #nf g1n¼0, likeP1
i¼0 gnf g1n¼0 ¼ 1;

P1
i¼0 hnf g1n¼0 ¼ 1 and

P1
i¼0 #nf g1n¼0 ¼ 1

for all n 2 N to obtain convergence, stability, data dependency
results and direct error estimation for general iteration meth-
ods. None of these conditions has been used in our corre-

sponding results. Therefore, Our result is effective or efficient
result in terms of all the above references. Furthermore, we
also proved that any choice of initial guess does not effect
the efficiency of D iteration process.
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