
Results in Physics 30 (2021) 104821

A
2
(

Contents lists available at ScienceDirect

Results in Physics

journal homepage: www.elsevier.com/locate/rinp

Structure preserving numerical scheme for spatio-temporal epidemic model
of plant disease dynamics
Shumaila Azam a, Nauman Ahmed a, Ali Akgül b,∗, Muhammad Sajid Iqbal a, Muhammad Rafiq c,
Muhammad Ozair Ahmad a, Dumitru Baleanu d,e,f

a Department of Mathematics, The University of Lahore, Lahore, Pakistan
b Siirt University Art and Science Faculty, Department of Mathematics, TR-56100 Siirt, Turkey
c Department of Mathematics, Faculty of Science, University of Central Punjab, Lahore, Pakistan
d Department of Mathematics, Cankaya University, 06530 Balgat, Ankara, Turkey
e Institute of Space Sciences, R76900 Magurele-Bucharest, Romania
f Department of Medical Research, China Medical University, Taichung 40402, Taiwan

A R T I C L E I N F O

Keywords:
Positivity preserving scheme
Advection reaction system
Epidemic model
M matrix theory

A B S T R A C T

In this article, an implicit numerical design is formulated for finding the numerical solution of spatiotemporal
nonlinear dynamical system with advection. Such type of problems arise in many fields of life sciences,
mathematics, physics and engineering. The epidemic model describes the population densities that have some
special types of features. These features should be maintained by the numerical design. The proposed scheme,
not only solves the nonlinear physical system but also preserves the structure of the state variables. Von-
Neumann criteria, M-matrix theory and Taylor’s expansion are used for proving some standard results. Basic
reproduction number is evaluated and its key role in deciding the stability at the equilibrium points is also
investigated. Graphical solutions are also presented against the test problem.
Introduction

The plants play very important role in this real world, as they are
the basis for the survival of all types of creatures for instance human
beings, animals and micro-organisms. However, it is a fact that many
plant diseases disturb the ratio of the plants to other living creatures.
Like the human viruses, there are many types of viruses which effect
the health and population of the plants, for example cucumber virus,
broad beam with virus, Curly top beat virus and streak virus that
effect the maize [1,2]. The plant diseases are not new, the potato
disease destructed most of the potatoes of the Irish in 1845–1846.
This disease caused a starvation in the country. Actually, the plant
diseases were taken into consideration very late. By the end of 18th
century, many scientists and researchers started investigation about
plant diseases. For instance, Marthien Tillet showed practically that
wheat bunt disease spread occurs due to a black powder, which is a
type of fungus. Adlof Mayer investigated that tobacco mosaic infection
is transmitted by the sap of infected leafs. Similarly, many other
plant diseases have been discovered. Also, it is recognized that many
infectious plant diseases have a close relation with the insect vectors
such as aphids, leaf and plant happens etc. [3,4]. At present moment,
vector-born plant diseases have fascinated the many researchers and
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they have started the research on these grounds. In this regard, Bosc
and Jeger have investigated plant infection transmission features and
population dynamics [5,6]. They also discussed the effect of insect’s
different modes of communication and migration on the diffusion of
virus in plant diseases [7]. Grill described the plant virus’ disease rate in
connection to the effect of the timings of insect moderators feeding [8].
Jager et al. [9] investigated some central approaches and showed that
these approaches impart key roles in pest administration. Cunniffe and
Gilligan [10] addressed the influence of biological management on
soil borne plant microorganisms. They also considered a contestant
in the system for controlling the plant diseases. They got intrusion
principal for host, microorganisms and contestant. The research related
to the plant infections is also tempting to the epidemiologists. They are
required to investigate an appropriate method to secure the susceptible
hosts, permitting coexistence of virus and host plants, which is in
line with the empirical data of infection in the population of plant.
The dynamics of such type of models is furnished by compartmental
epidemic models [11,12].

Ever since the revolutionary work of Kermack and Kendrick in the
1930’s [13–15], the mathematical modeling of transmission dynamics
of plant diseases caused by different agents is an effective approach
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to understand the transmission of disease in plants. On this basis,
to prevent infection in plants some effective measures can be posed.
These models are often of the form of systems of non-linear differential
equations, whose exact solutions are not easily obtainable. Demand-
ing the use of numerical method to get their approximate solutions.
Typically used numerical methods which are easy to apply such as
forward Euler method, upwind finite difference method and explicit
Runge–Kutta methods. But sometimes these methods may show false
behaviors, when certain values of the related discretization and model
parameters are used in the simulations which are not the features of
the continuous approximated models. It is shown in literature that
many standard methods of discretization can lead to negative solutions
or converges to some point outside the system [16,17]. While these
schemes are constructed with the aim that discrete model exhibits the
same behavior as the continuous model. Discrete models must contain
some very important properties like consistency, convergence, stability,
positivity. In this present work, an advective SIRXY dynamical model of
a vector borne disease in plants is developed, which address positivity
as well as all basic traits of continual model.

Mathematical model

In this section the mathematical model of vector-borne plant SIRXY
model is introduced which is firstly discussed by Shi and Zhao in [1]
and then by Rafiq in [3] as follows:

𝑆′ = 𝑑𝐼 + 𝜇(𝑘 − 𝑆) − (
𝛽𝑝𝑌

1 + 𝛼𝑝𝑌
+

𝛽𝑆𝐼
1 + 𝛼𝑆𝐼

)𝑆,

𝐼 ′ = (
𝛽𝑝𝑌

1 + 𝛼𝑝𝑌
+

𝛽𝑆𝐼
1 + 𝛼𝑆𝐼

)𝑆 − (𝑑 + 𝜇 + 𝛾)𝐼,

𝑅′ = 𝛾𝐼 − 𝜇𝑅,

𝑋′ = 𝐴 −
𝛽1𝐼𝑋
1 + 𝛼1𝐼

− 𝑚𝑋,

𝑌 ′ =
𝛽1𝐼𝑋
1 + 𝛼1𝐼

− 𝑚𝑌 . (1)

Where 𝑁 = 𝑋 + 𝑌 . We can reduce model as

𝑆′ = 𝑑𝐼 + 𝜇(𝐾 − 𝑆) − (
𝛽𝑝𝑌

1 + 𝛼𝑝𝑌
+

𝛽𝑆𝐼
1 + 𝛼𝑆𝐼

)𝑆,

𝐼 ′ = (
𝛽𝑝𝑌

1 + 𝛼𝑝𝑌
+

𝛽𝑆𝐼
1 + 𝛼𝑆𝐼

)𝑆 − 𝜔𝐼,

𝑌 ′ =
𝛽1𝐼

1 + 𝛼1𝐼
(𝐴
𝑚

− 𝑌 ) − 𝑚𝑌 . (2)

Where 𝐾 = 𝑆 + 𝐼 + 𝑅, 𝜔 = 𝑑 + 𝜇 + 𝛾.
During this study, we let L,T are nonnegative constants and Ω =

(0,L) × (0,T) ⊆ ℜ2. The PDE’s including advection terms are as follow,

𝜕𝑠
𝜕𝑡

+ 𝑎1
𝜕𝑠
𝜕𝑥

= 𝑑𝑖 + 𝜇(𝐾 − 𝑠) − (
𝛽𝑝𝑦

1 + 𝛼𝑝𝑦
+

𝛽𝑠𝑖
1 + 𝛼𝑠𝑖

)𝑠, ∀(𝑥, 𝑡) ∈ Ω, (3)

𝜕𝑖
𝜕𝑡

+ 𝑎2
𝜕𝑖
𝜕𝑥

= (
𝛽𝑝𝑦

1 + 𝛼𝑝𝑦
+

𝛽𝑠𝑖
1 + 𝛼𝑠𝑖

)𝑠 − 𝜔𝑖, ∀(𝑥, 𝑡) ∈ Ω, (4)

𝜕𝑦
𝜕𝑡

+ 𝑎3
𝜕𝑦
𝜕𝑥

=
𝛽1𝑖

1 + 𝛼1𝑖
(𝐴
𝑚

− 𝑦) − 𝑚𝑦, ∀(𝑥, 𝑡) ∈ Ω. (5)

Initial and boundary conditions will be:

𝑠 = 𝑠(𝑥, 0) = 𝑔1, ∀𝑥 ∈ (0,L),

𝑖 = 𝑖(𝑥, 0) = 𝑔2, ∀𝑥 ∈ (0,L),

𝑦 = 𝑦(𝑥, 0) = 𝑔3, ∀𝑥 ∈ (0,L),
𝜕𝑠
𝜕𝑥

= 𝜕𝑖
𝜕𝑥

=
𝜕𝑦
𝜕𝑥

= 0, ∀(𝑥, 𝑡) ∈ Ω. (6)

Let us define functions 𝑠 = 𝑠(𝑥, 𝑡), 𝑖 = 𝑖(𝑥, 𝑡), 𝑦 = 𝑦(𝑥, 𝑡) as smooth
real functions on Ω and 𝑔1, 𝑔2, 𝑔3 ∶ (0,L) → ℜ are continuously
differentiable functions. In this work 𝑠 represents suspectable plants at
𝑥 point and time 𝑡, 𝑖 represents the accounting for number of involved
subjects. 𝑦 represents quantity of septic insects at time t. Certainly due
2

to biological reasons, 𝑠, 𝑖 and 𝑦 has to be non-negative function. As a
consequence 𝑔1, 𝑔2, 𝑔3 are also non-negative functions. In addition 𝐾 is
the sum of total plants population, where 𝑁 is total quantity of insects.
𝑋 is quantity of insects influenceable at time t.

The parameters 𝑎1, 𝑎2, 𝑎3 are advective rates for each of 𝑠, 𝑖 and 𝑦
respectively. In SIRXY model 𝛽1 is infectivity ratio of septic host and
susceptible-vector. 𝛽𝑝 is biting ratio from septic vector to influenceable
host plants. 𝛽𝑆 is infectivity relation between septic and susceptible
hosts. 𝛼1, 𝛼𝑝, and 𝛼𝑆 are level of septicity saturates. 𝛾 is the rate of
conversion from septic host to recovered host. 𝜇 is the rate of natural
biological expiry of hosts, 𝐴 is insect-vectors birth or immigration and
𝑚 is natural biological expiry of insect-vectors. 𝑑 is disease caused
mortality of infected hosts. All of the constants mentioned above are
positive. For more details see [18–23].

The DFE of the system (3)–(5) is 𝐸0 = (𝐾, 0, 0). Meanwhile, the EE
of the system is 𝐸𝑛 = (𝑆 ∗, 𝐼 ∗, 𝑌 ∗), where

𝑆∗ = 𝐾 − (1 +
𝛾
𝜇
)𝐼∗,

𝐼∗ = −𝑏 ±
√

𝑏2 − 4𝑎𝑐
2𝑎

,

𝑎 = (𝛾 + 𝜇)(𝛽1𝛽𝑝𝛼𝑆𝐴 + 𝑚𝛽1𝛽𝑆 + 𝑚2𝛼1𝛽𝑆 + 𝛽1𝛽𝑆𝛼𝑝𝐴) + 𝜔𝜇(𝑚𝛽1𝛼𝑆 (7)
+𝑚2𝛼1𝛼𝑆 + 𝛽1𝛼𝑝𝛼𝑆𝐴),

𝑏 = (𝛾 + 𝜇)(𝛽1𝛽𝑝𝐴 + +𝑚2𝛽𝑆 ) − 𝜇𝐾(𝛽1𝛽𝑝𝛼𝑆𝐴 + 𝑚𝛽1𝛽𝑆 + 𝑚2𝛽𝑆𝛼1
+𝛽1𝛽𝑆𝛼𝑝𝐴)

+𝜔𝜇(𝑚𝛽1 + 𝑚2𝛼1 + 𝛽1𝛼𝑝𝐴 + 𝑚2𝛼𝑆 ),

𝑐 = 𝜇𝑚2𝜔(1 − 𝑅0),

∗ = 𝜇
𝛽1𝐼∗𝐴

𝑚𝛽1𝐼∗ + 𝑚2(1 + 𝛼1𝐼∗)
.

And reproductive number is,

𝑅0 =
𝛽𝑆𝐾
𝜔

+
𝛽1𝛽𝑝𝐴𝐾

𝑚2𝜔
.

While 𝑅0 is a reproductive number which firstly introduced by Kermack
and Mckendric [13–15]. It helps in deciding that weather disease will
die out or spread.

Lemma 1 ([1]). If 𝑅0 < 1 then system will have DFE and if 𝑅0 > 1 then
it will experience EE.

It is important to mention that our under study model is modified
version of the model considered in [1]. The global stability analysis
and numerical simulations were provided in that work. In this study
our purpose is to investigate all the problems caused when advection
terms are embedded in SIRXY model. As well as, we make sure that
important physical and the computational features of the discretized
model are not only fulfilled but also converges to continuous system.
Particularly, our goal is to study the effect of advection operands on
the thru act of types contained in given model.

Numerical modeling

We are introducing a finite difference approximation to get approx-
imate solutions of model (3)–(5) with the initial and boundary data
(11). For comparison purpose upwind-like system will be introduced
here too. For convenience, let 𝐼𝑛 = 1, 2, 3,… .., 𝑛 and 𝐼𝑛 = 0, 1, 2, 3,… .., 𝑛,
∈ N. In this study we suppose 𝑀,𝑁 ∈ N, and describe nonnegative
= L

𝑀 and l = T
𝑁 . By fixing uniform partitions of [0,L], [0,T] with

partition norms equal to h and l, respectively, and let 𝑥𝑞 = 𝑞ℎ and
𝑡𝑝 = 𝑝𝑙, for each 𝑞 ∈ 𝐼𝑀 and 𝑝 ∈ 𝐼𝑁 [24]. Moreover, we will
suppose that 𝑆𝑝

𝑞 , 𝐼
𝑝
𝑞 and 𝑌 𝑝

𝑞 numerical representations of the exact value
𝑠(𝑥𝑞 , 𝑡𝑝), 𝑖(𝑥𝑞 , 𝑡𝑝) and 𝑦(𝑥𝑞 , 𝑡𝑝) for each (𝑞, 𝑝) ∈ 𝐼𝑀 × 𝐼𝑁 . In addition , if 𝑄
represents 𝑆, 𝐼 or 𝑌 , than we will say that

𝑄 = (𝑄𝑝
0, 𝑄

𝑝
1,⋯ , 𝑄𝑝

𝑀 ), ∀𝑝 ∈ 𝐼𝑁 . (8)
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Definition 2. Let us assume the symbol Rh represents the mesh grid
𝑥𝑞 ∈ R ∶ 𝑞 ∈ ̄𝐼𝑀 , and the vector space of real functions on Rh for
𝑞 ∈ 𝐼𝑀 is denoted by Vℎ. If (𝑄𝑝)𝑝∈𝐼𝑁 is any finite sequence in Vℎ,
the discrete linear operators are

𝛿𝑡𝑄
𝑝+1
𝑞 =

𝑄𝑝+1
𝑞 −𝑄𝑝

𝑞

𝑙
, ∀(𝑞, 𝑝) ∈ 𝐼𝑀 × 𝐼𝑁−1, (9)

𝛿𝑥𝑄
𝑝
𝑞 =

𝑄𝑝
𝑞 −𝑄𝑝

𝑞−1

ℎ
, ∀(𝑞, 𝑝) ∈ 𝐼𝑀 × 𝐼𝑁 . (10)

(9) presents the first order approximation of the partial derivative 𝑄
with respect to time at points (𝑥𝑞 , 𝑡𝑝) and (𝑥𝑞 , 𝑡𝑝+1), and (10) provides
approximation of the partial derivative of 𝑄 with respect to space 𝑥.

Applying above assumptions, the model (3)–(5) will be discretized
as follow,

𝛿𝑡𝑆
𝑝+1
𝑞 + 𝑎1𝛿𝑥𝑆

𝑝+1
𝑞 = 𝑑𝐼𝑝𝑞 + 𝜇(𝐾 − 𝑆𝑝+1

𝑞 ) − (
𝛽𝑝𝑌

𝑝
𝑞

1 + 𝛼𝑝𝑌
𝑝
𝑞

+
𝛽𝑆𝐼

𝑝
𝑞

1 + 𝛼𝑆𝐼
𝑝
𝑞
)𝑆𝑝+1

𝑞 , (11)

𝛿𝑡𝐼
𝑝+1
𝑞 + 𝑎2𝛿𝑥𝐼

𝑝+1
𝑞 = (

𝛽𝑝𝑌
𝑝
𝑞

1 + 𝛼𝑝𝑌
𝑝
𝑞

+
𝛽𝑆𝐼

𝑝
𝑞

1 + 𝛼𝑆𝐼
𝑝
𝑞
)𝑆𝑝

𝑞 − 𝜔𝐼𝑝+1𝑞 , (12)

𝛿𝑡𝑌
𝑝+1
𝑞 + 𝑎3𝛿𝑥𝑌

𝑝+1
𝑞 =

𝛽1𝐼
𝑝
𝑞

1 + 𝛼1𝐼
𝑝
𝑞
(𝐴
𝑚

− 𝑌 𝑝+1
𝑞 ) − 𝑚𝑌 𝑝+1

𝑞 , (13)

for each (𝑞, 𝑝) ∈ 𝐼𝑀−1 × 𝐼𝑁−1. Our proposed scheme is an implicit two
step NS finite difference method. After some algebraic calculations, the
discretized model (11)–(13) can be presented as follow,

𝑆𝑝+1
𝑞

(

1 + 𝑟1 + l𝜇 + 𝑙(
𝛽𝑝𝑌

𝑝
𝑞

1 + 𝛼𝑝𝑌
𝑝
𝑞

+
𝛽𝑆𝐼

𝑝
𝑞

1 + 𝛼𝑆𝐼
𝑝
𝑞
)

)

−𝑟1𝑆
𝑝+1
𝑞−1 = 𝑆𝑝

𝑞 +l𝑑𝐼𝑝𝑞 +l𝜇𝐾,

(14)

𝑝+1
𝑞

(

1 + 𝑟2 + l𝜔
)

−𝑟2𝐼
𝑝+1
𝑞−1 = 𝐼𝑝𝑞 (1+l(

𝛽𝑆
1 + 𝛼𝑆𝐼

𝑝
𝑞
)𝑆𝑝

𝑞 )+𝑙(
𝛽𝑝𝑌

𝑝
𝑞

1 + 𝛼𝑝𝑌
𝑝
𝑞
)𝑆𝑝

𝑞 , (15)

𝑌 𝑝+1
𝑞

(

1 + 𝑟3 + l𝑚 + 𝑙
𝛽1𝐼

𝑝
𝑞

1 + 𝛼1𝐼
𝑝
𝑞

)

− 𝑟3𝑌
𝑝+1
𝑞−1 = 𝑌 𝑝

𝑞 + 𝑙
𝛽1𝐼

𝑝
𝑞

1 + 𝛼1𝐼
𝑝
𝑞
(𝐴
𝑚
). (16)

For each (𝑞, 𝑝) ∈ 𝐼𝑀−1 × 𝐼𝑁−1. Here we agree that 𝑟1 = 𝑎1l∕h,
𝑟2 = 𝑎2l∕h, 𝑟3 = 𝑎3l∕h. As initial data we will set

𝑆0
𝑞 = 𝑔1(𝑥𝑞), ∀𝑞 ∈ 𝐼𝑀−1,

𝐼0𝑞 = 𝑔2(𝑥𝑞), ∀𝑞 ∈ 𝐼𝑀−1,

𝑌 0
𝑞 = 𝑔3(𝑥𝑞), ∀𝑞 ∈ 𝐼𝑀−1,

𝛿𝑥𝑆
𝑝
1 = 𝛿𝑥𝐼

𝑝
1 = 𝛿𝑥𝑌

𝑝
1 = 0, ∀𝑝 ∈ 𝐼𝑁 ,

𝑥𝑆
𝑝
𝑀 = 𝛿𝑥𝐼

𝑝
𝑀 = 𝛿𝑥𝑌

𝑝
𝑀 = 0, ∀𝑝 ∈ 𝐼𝑁 . (17)

efinition 3. We define the operator ∗∶ Vℎ × Vℎ → Vℎ such as
𝑄 ∗ 𝑃 )𝑄 = 𝑄𝑞𝑃𝑞 , for each 𝑃 ,𝑄 ∈ Vℎ, 𝑞 ∈ 𝐼𝑀 . The identity represents

component-wise multiplication.
The Vector form of the finite difference system (14)–(16) can be

written as,

𝑈𝑆𝑝+1 = 𝑆𝑝 + l𝑑𝐼𝑝 + 𝑙𝜇𝐾, ∀𝑝 ∈ 𝐼𝑁−1 (18)

𝑉 𝐼𝑝+1 = 𝐼𝑝 + 𝑙(
𝛽𝑝𝑌 𝑝

1 + 𝛼𝑞𝑌 𝑝 +
𝛽𝑆𝐼𝑝

1 + 𝛼𝑆𝐼𝑝
)𝑆𝑝, ∀𝑝 ∈ 𝐼𝑁−1 (19)

𝑊 𝑌 𝑝+1 = 𝑌 𝑝 + 𝑙
𝛽1𝐼𝑝 (𝐴 ), ∀𝑝 ∈ 𝐼𝑁−1. (20)
3

1 + 𝛼1𝐼𝑝 𝑚
Here real matrices of size (𝑀 +1)× (𝑀 +1) are 𝑈, 𝑉 ,𝑊 . Let us suppose
he general form of 𝑈, 𝑉 or 𝑊 , can be expressed by 𝐽 , i,e.

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑗2 𝑗1 0 ⋯ ⋯ ⋯ ⋯ 0
𝑗1 𝑗2 0 ⋱ ⋮
0 𝑗1 𝑗2 0 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 𝑗1 𝑗2 0 0
⋮ ⋱ 𝑗1 𝑗2 0
0 ⋯ ⋯ ⋯ ⋯ 0 𝑗1 𝑗2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (21)

where 𝑢1 = −𝑟1, 𝑣1 = −𝑟2, 𝑤1 = −𝑟3, and

𝑢𝑝2 = 1 + 𝑟1 + l𝜇 + 𝑙(
𝛽𝑝𝑌

𝑞
𝑝

1 + 𝛼𝑝𝑌
𝑞
𝑝

+
𝛽𝑆𝐼

𝑞
𝑝

1 + 𝛼𝑆𝐼
𝑞
𝑝
), ∀𝑞 ∈ 𝐼𝑁 , (22)

𝑣𝑝2 = 1 + 𝑟2 + l𝜔, ∀𝑝 ∈ 𝐼𝑁 , (23)

𝑝
2 = 1 + 𝑟3 + l𝑚 + 𝑙

𝛽1𝐼
𝑝
𝑞

1 + 𝛼1𝐼
𝑝
𝑞
, ∀𝑝 ∈ 𝐼𝑁 . (24)

Next for comparison purpose, we will consider upwind-like system.

𝛿𝑡𝑆
𝑝+1
𝑞 + 𝑎1𝛿𝑥𝑆

𝑝+1
𝑞 = 𝑑𝐼𝑝𝑞 + 𝜇(𝐾 − 𝑆𝑝

𝑞 ) − (
𝛽𝑝𝑌

𝑝
𝑞

1 + 𝛼𝑝𝑌
𝑝
𝑞

+
𝛽𝑆𝐼

𝑝
𝑞

1 + 𝛼𝑆𝐼
𝑝
𝑞
)𝑆𝑝

𝑞 , (25)

𝛿𝑡𝐼
𝑝+1
𝑞 + 𝑎2𝛿𝑥𝐼

𝑝+1
𝑞 = (

𝛽𝑝𝑌
𝑝
𝑞

1 + 𝛼𝑝𝑌
𝑝
𝑞

+
𝛽𝑆𝐼

𝑝
𝑞

1 + 𝛼𝑆𝐼
𝑝
𝑞
)𝑆𝑝

𝑞 − 𝜔𝐼𝑝𝑞 , (26)

𝛿𝑡𝑌
𝑝+1
𝑞 + 𝑎3𝛿𝑥𝑌

𝑝+1
𝑞 =

𝛽1𝐼
𝑝
𝑞

1 + 𝛼1𝐼
𝑝
𝑞
(𝐴
𝑚

− 𝑌 𝑝
𝑞 ) − 𝑚𝑌 𝑝

𝑞 , (27)

with (𝑞, 𝑝) ∈ 𝐼𝑀−1 × 𝐼𝑁−1. After some calculations and rearranging
the equations, the discrete system (25)–(27) can be written into linear
identities as

(1+𝑟1)𝑆𝑝+1
𝑞 −𝑟1𝑆

𝑝+1
𝑞−1 = 𝑆𝑝

𝑞

(

1 − l𝜇 − l(
𝛽𝑝𝑌

𝑝
𝑞

1 + 𝛼𝑝𝑌
𝑝
𝑞

+
𝛽𝑆𝐼

𝑝
𝑞

1 + 𝛼𝑆𝐼
𝑝
𝑞
)

)

+l𝑑𝐼𝑝𝑞+l𝜇𝐾,

(28)

1 + 𝑟2)𝐼𝑝+1𝑞 − 𝑟2𝐼
𝑝+1
𝑞−1 = 𝐼𝑝𝑞

(

1 − l𝜔 + l
𝛽𝑆𝑆

𝑝
𝑞

1 + 𝛼𝑆𝐼
𝑝
𝑞

)

+ (
𝛽𝑞𝑌

𝑝
𝑞

1 + 𝛼𝑞𝑌
𝑝
𝑞
)𝑆𝑝

𝑞 , (29)

(1 + 𝑟3)𝑌 𝑝+1
𝑞 − 𝑟3𝑌

𝑝+1
𝑞−1 = 𝑌 𝑝

𝑞

(

1 − l𝑚 − 𝑙
𝛽1𝐼

𝑝
𝑞

1 + 𝛼1𝐼
𝑝
𝑞

)

+ l
𝛽1𝐼

𝑝
𝑞

1 + 𝛼1𝐼
𝑝
𝑞
(𝐴
𝑚
), (30)

for each (𝑞, 𝑝) ∈ 𝐼𝑀−1 × 𝐼𝑁−1.

Structural proporties

In following section, we are interested in establishing main struc-
tural and numerical properties of the proposed system (11)–(13) sub-
jected to (17), including positivity of solutions, consistency, order of
accuracy, stability and the existence of unique constant solutions. first
of all, we will prove that our proposed NSFD scheme contain positivity.
For this purpose , we will use a standard definitions of Z-matrix and
M-matrix, from literature [25–27] in computational techniques.

Definition 4. We say that A is Z-matrix if all the off-diagonal entries
of a real matrix A are non-positive.

Definition 5. A is an M-matrix if the following conditions hold:

1. A is a Z-matrix,
2. all the diagonal constituent parts of A are positive, and
3. A is strictly diagonally dominant.
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M-matrices are invertible and their inverses are positive matrices [25].
Then, we can prove the following theorem by this property. Here, the
fact is being used that 𝑈, 𝑉 ,𝑊 described in Section ‘‘Numerical mod-
eling’’ are m-matrices, therefore they are strictly diagonally dominant
i,e., under suitable postulates on the initial conditions, their inverses
exists and are positive matrices.

Theorem 6 (Positivity). If 𝑔1, 𝑔2, 𝑔3 are non-negative functions on (0,L)
then the system (11)–(13) subjected to (17) is capable of being solved for
all h, l > 0, and corresponding results are also nonnegative.

Proof. To prove this hypothesis we will use mathematical induction. If
we observe the initial data, it grantees that 𝑆0, 𝐼0 and 𝑌 0 are vectors
with position components. Let us suppose it is true for 𝑆𝑝, 𝐼𝑝, 𝑌 𝑝, for
some 𝑝 ∈ 𝐼𝑁−1. By using m-matrix theory, we can say that 𝑈, 𝑉 ,𝑊
are non-singular, their inverse matrices exist and they contain positive
values. Also by hypothesis, note that the right hand side vectors of the
identities (18)–(20) contain all positive values . Under this influence,
we can illustrate

𝑆𝑞+1 = 𝑈−1(𝑆𝑞 + l𝑑𝐼𝑞 + 𝑙𝜇𝐾), (31)

𝐼𝑞+1 = 𝑉 −1(𝐼𝑞 + l(
𝛽𝑝𝑌 𝑞

1 + 𝛼𝑝𝑌 𝑞 +
𝛽𝑆𝐼𝑞

1 + 𝛼𝑆𝐼𝑞
)𝑆𝑞), (32)

𝑌 𝑞+1 = 𝑊 −1(𝑌 𝑞 + l
𝛽1𝐼𝑞

1 + 𝛼1𝐼𝑞
(𝐴
𝑚
)). (33)

are the positive vectors, whence we conclude that approximate solu-
tions are positive and solvable of the system (11)–(13) subjected to
(17).

Theorem 7 (Positive Constant Solutions). The points 𝐸0 = (𝐾, 0, 0) and 𝐸𝑛
re constant Positive solutions of the system (11)–(13).

roof. Assume that 𝑆𝑝
𝑞 = 𝐾, 𝐼𝑝𝑞 = 𝑌 𝑝

𝑞 = 0, for 𝑝 = 0 and ∀𝑞 ∈ 𝐼𝑀 . By
sing mathematical induction, suppose that those identities are hold for
he 𝑞 ∈ 𝐼𝑀−1. We obtain 𝑉 𝐼𝑞+1 = 𝑊 𝑌 𝑞+1 = 0 by utilizing (20) and (21)

by non-singularity of 𝑉 and 𝑊 . Therefore, we reach 𝐼𝑝+1 = 𝑌 𝑝+1 = 0.
We get

𝑆𝑝+1
0 − 𝑆𝑝+1

1 = 0,

𝑟1𝑆
𝑝+1
0 + 𝑆𝑝+1

1
(

1 + 𝑟1 + l𝜇
)

= 𝐾(1 + l𝜇). (34)

by utilizing the boundary condition at 𝑞 = 0 and (14). Where 𝑆𝑝+1
0 =

𝑆𝑝+1
1 = 𝐾 is the solution of our proposed system. Assuming now that

𝑆𝑝+1
𝑞−1 = 𝐾 and using (14) we have 𝑆𝑝+1

𝑞 = 𝐾. Now induction grantees
that the (𝐾, 0, 0) is a constant solution of discretized system (11)–(13).
Similarly, after tedious calculations we can proof that 𝐸𝑛 is also a
constant solution of under study system.

Definition 8. We describe the Euclidean norm and infinity norm on Vℎ
by the ‖ ⋅ ‖, ‖ ⋅ ‖∞ ∶ Vℎ → R,

‖𝑄‖ =

√

√

√

√

√

𝑀
∑

𝑞=0
|𝑄𝑞|

2, ∀𝑄 ∈ Vℎ, (35)

‖𝑄‖∞ = max |𝑄𝑞| ∶ 𝑞 ∈ 𝐼𝑀 , ∀𝑄 ∈ Vℎ. (36)

Moreover. if 𝑄 = (𝑄𝑝)𝑝∈𝐼𝑁 in Vℎ represents a sequence, then defining

| ∥ 𝑄|∞ = max {‖𝑄𝑝
‖∞ ∶ 𝑝 ∈ 𝐼𝑁}. (37)

Next we deal with the consistency of the proposed method (11)–
(13). For this purpose, we introduce the differential operators

 = 𝜕𝑠
𝜕𝑡

+ 𝑎1
𝜕𝑠
𝜕𝑥

− 𝑑𝑖 − 𝜇(𝐾 − 𝑠) + (
𝛽𝑝𝑦

1 + 𝛼𝑝𝑦
+

𝛽𝑠𝑖
1 + 𝛼𝑠𝑖

)𝑠,

∀(𝑥, 𝑡) ∈ Ω, (38)
4

= 𝜕𝑖
𝜕𝑡

+ 𝑎2
𝜕𝑖
𝜕𝑥

− (
𝛽𝑝𝑦

1 + 𝛼𝑝𝑦
+

𝛽𝑠𝑖
1 + 𝛼𝑠𝑖

)𝑠 + 𝜔𝑖, ∀(𝑥, 𝑡) ∈ Ω, (39)

 =
𝜕𝑦
𝜕𝑡

+ 𝑎3
𝜕𝑦
𝜕𝑥

−
𝛽1𝑖

1 + 𝛼1𝑖
(𝐴
𝑚

− 𝑦) + 𝑚𝑦, ∀(𝑥, 𝑡) ∈ Ω (40)

If  is any of the operators , or , then we will agree that  =
 (𝑥𝑞 , 𝑡𝑝), for each (𝑞, 𝑝) ∈ 𝐼𝑀 × 𝐼𝑁 . For each 𝑝 ∈ 𝐼𝑁 , let us define
𝑝 = (𝑝)0,

𝑝
1 ,⋯ ,𝑝

𝑀 ). Obviously, 𝑝 ∈ Vℎ. Finally,  = (𝑝)𝑝∈𝐼𝑁 .
On the other hand, by considering 𝑠𝑝𝑞 = 𝑠(𝑥𝑞 , 𝑡𝑝), 𝑖

𝑝
𝑞 = 𝑖(𝑥𝑞 , 𝑡𝑝) and

𝑝
𝑞 = 𝑦(𝑥𝑞 , 𝑡𝑝). For each (𝑞, 𝑝) ∈ 𝐼𝑀 × 𝐼𝑁 . Let us assume difference
perators as

𝐺𝑝+1 = 𝛿𝑡𝑠
𝑝+1
𝑞 + 𝑎1𝛿𝑥𝑠

𝑝+1
𝑞 − 𝑑𝑖𝑝𝑞 − 𝜇(𝐾 − 𝑠𝑝+1𝑞 )

+(
𝛽𝑝𝑦

𝑝
𝑞

1 + 𝛼𝑝𝑦
𝑝
𝑞
+

𝛽𝑠𝑖
𝑝
𝑞

1 + 𝛼𝑠𝑖
𝑝
𝑞
)𝑠𝑝+1𝑞 , (41)

𝑝+1 = 𝛿𝑡𝑖
𝑝+1
𝑞 − 𝑖𝑝𝑞 + 𝑎2𝛿𝑥𝑖

𝑝+1
𝑞 − (

𝛽𝑝𝑦
𝑝
𝑞

1 + 𝛼𝑞𝑦
𝑝
𝑞
+

𝛽𝑠𝑖
𝑝
𝑞

1 + 𝛼𝑠𝑖
𝑝
𝑞
)𝑠𝑝𝑞 + 𝜔𝑖𝑝+1𝑞 , (42)

𝐿𝑝+1 = 𝛿𝑡𝑦
𝑝+1
𝑞 + 𝑎3𝛿𝑥𝑦

𝑝+1
𝑞 −

𝛽1𝑖
𝑝
𝑞

1 + 𝛼1𝑖
𝑝
𝑞
(𝐴
𝑚

− 𝑖𝑝+1𝑞 ) + 𝑚𝑦𝑝+1𝑞 . (43)

Next we define general form for continuous operators i.e, if 𝑀 repre-
sents any of 𝐺,𝐾,𝐿, by assuming 𝐹 𝑝 = (𝐹 𝑝

0 , 𝐹
𝑝
1 ,⋯ , 𝐹 𝑝

𝑀 ) ∈ Vℎ, for each
𝑝 ∈ 𝐼𝑁−1.

Theorem 9. If 𝑠, 𝑖, 𝑦 ∈ 𝐶2,2
𝑥,𝑡 (𝛺̄) then we will have a positive constant 𝑍 ≥ 0,

independent of h, l, such that

max{| ∥  − 𝐺|∞, |‖ −𝐾|∞, |‖ − 𝐿|∞} ≤ 𝑍(h + l). (44)

roof. Since 𝑠 ∈ 𝐶2,2
𝑥,𝑡 (𝛺̄) implies function 𝑠 is a smooth function.

hen we have to show there exists a non-negative constant 𝑍 ≥ 0,
ndependent of h, l. For this let us take −𝐺 and apply Taylor’s theorem.
here exist non-negative constants 𝑍𝑠

1 , 𝑍
𝑠
2 , 𝑍

𝑠
3 , 𝑍𝑠

4 and 𝑍𝑠
5 , such that for

ach (𝑞, 𝑝) ∈ 𝐼𝑀−1 × 𝐼𝑁−1:
|

|

|

|

|

𝜕𝑠(𝑥𝑞 , 𝑡𝑝+1)
𝜕𝑡

− 𝛿𝑡𝑠
𝑝+1
𝑞

|

|

|

|

|

≤ 𝑍𝑠
1 l, (45)

|

|

|

|

|

𝜕𝑠(𝑥𝑞 , 𝑡𝑝+1)
𝜕𝑥

− 𝛿𝑥𝑠
𝑝+1
𝑞

|

|

|

|

|

≤ 𝑍𝑠
2h, (46)

|

|

|

𝑠(𝑥𝑞 , 𝑡𝑝) − 𝑠𝑝+1𝑞
|

|

|

≤ 𝑍𝑠
3 l, (47)

|

|

|

|

|

𝛽𝑝𝑦(𝑥𝑞 , 𝑡𝑝)
1 + 𝛼𝑝𝑦(𝑥𝑞 , 𝑡𝑝)

𝑠(𝑥𝑞 , 𝑡𝑝) −
𝛽𝑝𝑦

𝑝
𝑞

1 + 𝛼𝑝𝑦
𝑝
𝑞
𝑠𝑝+1𝑞

|

|

|

|

|

≤ 𝑍𝑠
4 l, (48)

|

|

|

|

|

𝛽𝑠𝑖(𝑥𝑞 , 𝑡𝑝)
1 + 𝛼𝑠𝑖(𝑥𝑞 , 𝑡𝑝)

𝑠(𝑥𝑞 , 𝑡𝑝) −
𝛽𝑠𝑖

𝑝
𝑞

1 + 𝛼𝑠𝑖
𝑝
𝑞
𝑠𝑝+1𝑞

|

|

|

|

|

≤ 𝑍𝑠
5 l. (49)

As a consequence, | ∥  − 𝐺|∞ ≤ 𝑍𝑠(h + l) holds if we define the
onstant 𝑍𝑠 = 𝑍𝑠

1 + 𝑎1𝑍𝑠
2 + 𝜇𝑍𝑠

3 + (
𝛽𝑝𝑦

𝑝
𝑞

1+𝛼𝑞𝑦
𝑝
𝑞
)𝑍𝑠

4 +
𝛽𝑠𝑖

𝑝
𝑞

1+𝛼𝑠𝑖
𝑝
𝑞
𝑍𝑠

5 .
Similarly, we have here non-negative constants 𝑍 𝑖 and 𝑍𝑦. These

are independent of h and l. Thus, we have | ∥  −𝐾|∞ ≤ 𝑍 𝑖(h + l) and
| ∥  − 𝐿|∞ ≤ 𝑍𝑦(h + l). The conclusion follows straight away, when we
efine the non-negative constants

= 𝑍𝑠 ∨𝑍 𝑖 ∨𝑍𝑦. (50)

At the present stage,linear stability of the numerical scheme (11)–
13) will be established by using von-Neumann criteria. For this pur-
ose, the constants are defined as

𝐴𝑝
𝑞 =

(

l𝜇 + l(
𝛽𝑝𝑌

𝑝
𝑞

1 + 𝛼𝑝𝑌
𝑝
𝑞

+
𝛽𝑆𝐼

𝑝
𝑞

1 + 𝛼𝑆𝐼
𝑝
𝑞
)

)

, (51)

𝐵 = l𝜔, (52)

𝐷𝑝
𝑞 = (1 + l(

𝛽𝑆
1 + 𝛼𝑆𝐼

𝑝
𝑞
)𝑆𝑝

𝑞 ), (53)

𝐸𝑝
𝑞 =

(

l𝑚 + l
𝛽1𝐼

𝑝
𝑞

𝑝

)

, (54)

1 + 𝛼1𝐼𝑞
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Fig. 1. Graphical representation of the numerical simulation of model (1)–(3) by using upwind like scheme (25)–(27). The parameters employed are 𝛽1 = 0.0025, 𝛽𝑝 = 0.0025,
𝛽𝑆 = 0.0001, 𝛼1 = 0.1, 𝛼𝑝 = 0.2, 𝛼𝑆 = 0.2, 𝛾 = 0.4, 𝜇 = 0.1, 𝑚 = 0.3, 𝑑 = 0.1, 𝐾 = 1000, 𝐴 = 5, 𝑎1 = 𝑎2 = 𝑎3 = 0.001, 𝑟1 = 𝑟2 = 𝑟3 = 0.2, 𝑅0 = 0.89444 < 1. 𝐸0 = (𝐾, 0, 0) = (1000, 0, 0),
h = 0.1 and 𝑟1 = 𝑟2 = 𝑟3 = 0.2. For plot graphs, we take 𝑥 = 0.4.
for each (𝑝, 𝑞) ∈ 𝐼𝑀−1 × 𝐼𝑁−1. Here dependence of 𝐴,𝐷,𝐸 on 𝑞 and
𝑝 is prevented for simplification purposes. All of these constants, by
considering the presumption of Theorem 6 are positive. Implicitly this
fact is being used to proof following theorem.

Theorem 10 (von-Neumann Stability). If 𝑔1, 𝑔2 and 𝑔3 are positive func-
tions then NSFD scheme (11)–(13) is von Neumann stable.

Proof. By using the von-Neumann approach [24,28,29], assume 𝜙, 𝜃, 𝜑
are non-negative numbers and let 𝜒𝑝

𝑆 , 𝜒
𝑝
𝐼 and 𝜒𝑝

𝑌 be real values func-
tions. Let us assume

𝑆𝑝
𝑞 = 𝜒𝑝

𝑆𝑒
𝑖𝜃𝑞h, ∀(𝑞, 𝑝) ∈ 𝐼𝑀−1 × 𝐼𝑁−1, (55)

𝐼𝑝𝑞 = 𝜒𝑝
𝐼 𝑒

𝑖𝜙𝑞h, ∀(𝑞, 𝑝) ∈ 𝐼𝑀−1 × 𝐼𝑁−1, (56)

𝑌 𝑝
𝑞 = 𝜒𝑝

𝑌 𝑒
𝑖𝜑𝑞h, ∀(𝑞, 𝑝) ∈ 𝐼𝑀−1 × 𝐼𝑁−1. (57)

Substituting (55), (56), (57) respectively into discretized model (11)–
(13). After linearizing and simplifications, we reach the system

𝜒𝑆 (1 + 𝑟1 + 𝐴𝑝
𝑞 − 𝑟1𝑒

−𝑖𝜃h) = 1, (58)

𝜒𝐼 (1 + 𝑟2 + 𝐵 − 𝑟2𝑒
−𝑖𝜙h) = 1 +𝐷𝑝

𝑞 , (59)

𝜒𝑌 (1 + 𝑟3 + 𝐸𝑝
𝑞 − 𝑟3𝑒

−𝑖𝜑h) = 1. (60)

Taking complex norm on both sides of (58)–(60) and bounding them
from above, straight away we have

|𝜒𝑆 | = 1
(1 + 2𝑟1 + 𝐴𝑝

𝑞)
< 1, (61)

|𝜒𝐼 | =
1 +𝐷𝑝

𝑞

(1 + 2𝑟2 + 𝐵)
< 1, (62)

|𝜒𝑌 | = 1
(1 + 2𝑟3 + 𝐸𝑝

𝑞 )
< 1, (63)

Hence proposed NSFD is stable in von Neumann sense.

Computational results

Two examples are presented in this section to check our proposed
NSFD method (11)–(13) developed in Section ‘‘Numerical modeling’’,
is stable, reliable and efficient or not. The following data is used:

L = 1, T = 200. The level of septicity saturates are 𝛼1 = 0.1, 𝛼𝑝 = 0.2,
𝛼𝑆 = 0.2. 𝛾 = 0.4, 𝜇 = 0.1, 𝑚 = 0.3, 𝑑 = 0.1. The sum of total plants
population 𝐾 = 1000. 𝐴 = 5. 𝑎 = 𝑎 = 𝑎 = 0.001, 𝑟 = 𝑟 = 𝑟 = 0.2,
5

1 2 3 1 2 3
h = 0.1 and l = 2. 𝑔1, 𝑔2, 𝑔3 ∶ (0,L) → ℜ be continuously differentiable
functions.

𝑔1(𝑥) =

{

70𝑥, if 𝑥 ∈ (0, 0.5),
70(1 − 𝑥), if 𝑥 ∈ [0.5, 1),

(64)

𝑔2(𝑥) =

{

10𝑥, if 𝑥 ∈ (0, 0.5),
10(1 − 𝑥), if 𝑥 ∈ [0.5, 1),

(65)

𝑔3(𝑥) =

{

10𝑥, if 𝑥 ∈ (0, 0.5),
10(1 − 𝑥), if 𝑥 ∈ [0.5, 1).

(66)

Example 1

Disease free equilibrium
For the simulations we let 𝛽1 = 0.0025, 𝛽𝑝 = 0.0025, 𝛽𝑆 = 0.0001,

𝛼1 = 0.1, 𝛼𝑝 = 0.2, 𝛼𝑆 = 0.2, 𝛾 = 0.4, 𝜇 = 0.1, 𝑚 = 0.3, 𝑑 = 0.1,
𝐾 = 1000, 𝐴 = 5, 𝑎1 = 𝑎2 = 𝑎3 = 0.001, 𝑟1 = 𝑟2 = 𝑟3 = 0.2. By doing
simple calculations we have 𝑅0 = 0.89444 < 1. By using Lemma 1, we
established that 𝐸0 = (𝐾, 0, 0) = (1000, 0, 0) is DFE point of the system
(1)–(3).

We used upwind implicit scheme(25))–(27) to plot graphs of Fig. 1,
and proposed non-standard finite difference scheme (11)–(13) to plot
the graphs of (Fig. 2). Each of three column in these graphs provide
approximate solutions of 𝑠, 𝑖, 𝑦 respectively. Graphs show that upwind
like scheme is not converging to disease free equilibrium. It also failed
to preserve positivity. While as compare to this scheme, our proposed
scheme not only converges to disease free equilibrium, it also preserve
positivity. In this sense, our proposed scheme is more efficient and
reliable to this problem.

Example 2

Endemic-equilibrium
If we fix all the parameters values as 𝛽1 = 0.01, 𝛽𝑝 = 0.02, 𝛽𝑆 = 0.01,

𝛼1 = 0.1, 𝛼𝑝 = 0.2, 𝛼𝑆 = 0.2, 𝛾 = 0.4, 𝜇 = 0.1, 𝑚 = 0.3, 𝑑 = 0.1, 𝐾 = 1000,
𝐴 = 5, 𝑎1 = 𝑎2 = 𝑎3 = 0.001, 𝑟1 = 𝑟2 = 𝑟3 = 0.2. Then 𝑅0 = 26.2222 > 1.
Figs. 3–4 show the approximate solution of (2.1–2.3).

More precisely we used upwind implicit scheme (25))–(27) to plot
graphs of Fig. 3 and nonstandard finite difference scheme (11)–(13) to
plot graphs of (Fig. 4). Each of three column in these graphs provide
approximate solutions of 𝑠, 𝑖, 𝑦 respectively. These graphs show that
upwind like scheme is incapable of converging to endemic equilibrium
point. It is also incapable of proving solutions which preserve positivity.
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Fig. 2. Graphical representation of the numerical simulation of the approximate solutions of (1)–(3) by using nonstandard finite difference scheme (11)–(13). The parameters
employed are 𝛽1 = 0.0025, 𝛽𝑝 = 0.0025, 𝛽𝑆 = 0.0001, 𝛼1 = 0.1, 𝛼𝑝 = 0.2, 𝛼𝑆 = 0.2, 𝛾 = 0.4, 𝜇 = 0.1, 𝑚 = 0.3, 𝑑 = 0.1, 𝐾 = 1000, 𝐴 = 5, 𝑎1 = 𝑎2 = 𝑎3 = 0.001, 𝑟1 = 𝑟2 = 𝑟3 = 0.2,
𝑅0 = 0.89444 < 1. 𝐸0 = (𝐾, 0, 0) = (1000, 0, 0), h = 0.1 and 𝑟1 = 𝑟2 = 𝑟3 = 0.2. For plot graphs, we take 𝑥 = 0.4.
Fig. 3. Numerical simulation of the approximate solutions of (1)–(3) by using upwind like scheme (25)–(27). The parameters employed are 𝛽1 = 0.01, 𝛽𝑝 = 0.02, 𝛽𝑆 = 0.01, 𝛼1 = 0.1,
𝛼𝑝 = 0.2, 𝛼𝑆 = 0.2, 𝛾 = 0.4, 𝜇 = 0.1, 𝑚 = 0.3, 𝑑 = 0.1, 𝐾 = 1000, 𝐴 = 5, 𝑎1 = 𝑎2 = 𝑎3 = 0.001, 𝑟1 = 𝑟2 = 𝑟3 = 0.2. 𝑅0 = 26.2222 > 1, h = 0.1 and 𝑟1 = 𝑟2 = 𝑟3 = 0.2. For plot graphs, we
take 𝑥 = 0.4.
Fig. 4. Numerical simulations of the approximate solutions of (1)–(3) by NSFD (11)–(13). The parameters employed are 𝛽1 = 0.01, 𝛽𝑝 = 0.02, 𝛽𝑆 = 0.01, 𝛼1 = 0.1, 𝛼𝑝 = 0.2, 𝛼𝑆 = 0.2,
𝛾 = 0.4, 𝜇 = 0.1, 𝑚 = 0.3, 𝑑 = 0.1, 𝐾 = 1000, 𝐴 = 5, 𝑎1 = 𝑎2 = 𝑎3 = 0.001, 𝑟1 = 𝑟2 = 𝑟3 = 0.2. 𝑅0 = 26.2222 > 1, h = 0.1 and 𝑟1 = 𝑟2 = 𝑟3 = 0.2. For plot graphs, we take 𝑥 = 0.4.
As opposed to upwind like method, our proposed scheme is in Fig. 4
is stable, converging to equilibria and also contain positivity. It yields
our proposed scheme is more reliable and accurate discrete model for
under investigated problem.

Conclusion

In this paper, we proposed an advective SIRXY plant disease model.
This describes how the diseases caused by vectors transmit in plants.
6

The main object of this work was to investigate the effect of advection
term in the dynamics of the plant diseases caused by vectors. We devel-
oped a non-standard FD scheme to solve system (2.1–2.3). We showed
that the system have two steady-state points, which are also happened
to be constant solutions of the system by using mathematical induction.
We also proved in our computational simulations that the proposed
nonstandard finite difference scheme converges to both endemic and
the DF equilibria. We used m-matrix theory to check positivity of our
proposed scheme. We used Taylor’s theorem to check our proposed
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NSFD scheme is consistent and first order accurate in space as well
as in time. To check stability, von Neumann stability analysis applied
to our proposed NSFD scheme which run successfully. For comparison
purposes, upwind like scheme was proposed. Our graphs show that
the up-wind like scheme failed to converge at all step-sizes, as well
as, it also failed in preserving positivity of the solutions. Numerical
simulation also exhibits the fact that our proposed discrete model is von
Neumann stable. It also preserves important structural properties of the
continuous system. We also noticed that 𝑅0 plays an important role in
all these simulations. Whence our proposed scheme is more accurate
and effective and reliable for under study problem.
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