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A B S T R A C T   

The theme of this paper focuses on the mathematical modeling and transmission mechanism of the new Coro-
navirus shortly noted as (COVID-19), endangering the lives of people and causing a great menace to the world 
recently. We used a new type epidemic model composed on four compartments that is susceptible, exposed, 
infected and recovered (SEIR), which describes the dynamics of COVID-19 under convex incidence rate. We 
simulate the results by using nonstandard finite difference method (NSFDS) which is a powerful numerical tool. 
We describe the new model on some random data and then by the available data of a particular regions of 
Subcontinents.   

Introduction 

Very recently a dangerous outbreak due to coronavirus has been 
attacked the whole globe. This is the seventh generation of coronavirus 
and therefore researchers have named it COVID-19. Nearly 2.5 millions 
people have been infected by the virus all over the world and 0.15 
million have been pushed to death in almost 180 countries of the world. 
Many countries of the world have ordered lockdown the cites and stop 
the air as well as plane traffic so that the infection may be controlled 
from further spreading. WHO announced it a global pandemic [45,46]. 
The economic situation of many countries are going on worse position as 
well as health system of several countries. Historically in the end of 
2019, the mentioned outbreak started from a seafood market of Wuhan 
city and within a month the whole city was attacked by the virus. The 
Chinees government on time lockdowned the whole city and the infec-
ted people were separated which they called the quarantined people and 
at this way the mentioned state after two month was able to control the 
infection in their country. But on the other hand due to immigration and 
transmission of people the infection was spreaded in two months in 
almost all countries of the world. Therefore researchers, physicians and 
policy makers have started work day and night to control this killer 
infection from further spreading. Each country has taken their own 
precautionary measure, for detail see [1–4]. 

The greatest and difficult task for human beings is to control the 

same environment which they have inhabited. For this purpose, how-
ever, some guidelines have been issued or provided and limits have been 
fixed that beyond that nature/environment shouldn’t be disturbed. 
Epidemics is a real danger to human race and their economic conditions. 
Unless there is a proper comprehension of the disease, it can’t be 
controlled or eliminated from the community. The implementation of 
plans to stop the transmission of the disease has been considered a major 
challenge. Therefor as we know that mathematical models are powerful 
tools to understand the transmission dynamics of infectious diseases and 
to make future planing. In this regards large numbers of infectious 
models were developed corresponding to various infectious disease in 
history, we refer few as [5–8]. One of the greatest assignments given to 
humankind is to control the environment within which they live. 
However, some instructions have been given and boundaries have been 
identified such that some law of nature should not be violated. Infectious 
diseases is a massive threat for humanity and can greatly effect the 
economy of a state. Proper understanding of a disease’ dynamics could 
play an important role in elimination of the infection from the com-
munity. Further, implementation of suitable control strategies against 
the disease transmission have been assumed a big challenge. The 
approach of mathematical modeling is one of the key tools for handling 
such and other challenges. A number of general and disease models have 
been investigated in existing literature which enables us to explore and 
control the spread of infectious diseases in a better way [9–11]. Also The 
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aforementioned model have been studied under various incidence rates 
including concave, linear and nonlinear incidence rate. Each rate has its 
own importance see detail [12,13]. But investigation of biological 
models under convex incidence rates are more informative as in such 
investigation a convex function of infected class under double exposure 
is taken. Such involvement of double exposure helps more in the 
spreading of infection and its dynamics is more powerful in forming 
control procedure [14,15]. The area specified to investigate biological 
models for endemic diseases is warm area of research in current time. 
Various mathematical models have been found in the literature studying 
the theory of stability, existence results and optimization of biological 
models, referring to [20–26]. In the same manner of other morbidities 
(see [16–18]), COVID-19 (see [19]) can be medalled, and its future 
behavior can be predicted. It is also feasible to seek the prevention 
planning. Also, one can look for possible prevention strategies as well. 
Therefore motivated from the aforesaid discussion, we construct a new 
type model like SEIR for the current novel disease. Global and local 
dynamics are investigated by using the powerful tools of nonlinear 
analysis [27–44]. For numerical simulation, we apply a famous nu-
merical method called nonstandard finite difference scheme given in 
[47]. 

Model formulation 

Here, we present a mathematical model to describe the problem. We 
divide the whole population into four classes susceptible class S(t), 
exposed class E(t), infected class I(t) and recovered class R(t). The model 
is analyze by the following differential equations[9–11]. 

dS(t)
dt

= a − KI(t)S(t)(1 + αI(t)) − d0S(t)

dE(t)
dt

= KI(t)S(t)(1 + αI(t)) − (d0 + γ)E(t)

dI(t)
dt

= b + γE(t) − (d0 + μ + β)I(t)

dR(t)
dt

= βI(t) − d0R(t),

(1)  

where D = a − b. For any values of the parameters, we consider the 
existence of equilibrium of model (1) has H0 = (a+b

d ,0, 0, 0) disease-free 
equilibrium. To find out the non-negative equilibria, set 

The description of the parameters and compartments is given in next 
Table 1 as 

a − KI(t)S(t)(1 + αI(t)) − d0S(t) = 0
KI(t)S(t)(1 + αI(t)) − (d0 + γ)E(t) = 0
b + γE(t) − (d0 + μ + β)I(t) = 0
βI(t) − d0R(t) = 0.

To find the Basic Reproduction Number R0, let x = (E(t),I(t)), in system 
(1). Then 

dx
dt

= F − V  

F =

⎛

⎝
KI(t)S(t)(1 + αI(t))

0

⎞

⎠

and 

V =

⎛

⎝
(γ + d0)E(t)

− γE(t) + (d0 + μ + β)I(t)

⎞

⎠.

The Jacobian of F for the disease-free equilibrium is 

F =

⎛

⎝
0 KS0

0 0

⎞

⎠.

And also the Jacobian of V for the disease-free equilibrium is 

V =

⎛

⎝
γ + d0 0
− γ μ + d0 + β

⎞

⎠.

Hence, for the model(1), by simple calculation, we have 

FV − 1 =

⎛

⎜
⎜
⎜
⎜
⎝

γKS0

(γ + d0)(μ + d0 + β)
KS0

μ + d0 + β
0 0

⎞

⎟
⎟
⎟
⎟
⎠
.

Which implies that the basic reproduction number R0 is, 

R0 =
K(a + b)

d0(μ + d0 + β)
. (2)  

Theorem 1. From the model (1) it follows that  

(i) There is no positive equilibrium of system, if R0 ≤ 1;  
(ii) There is a unique positive equilibrium H* = (S*(t),E*(t)I*(t),R*(t))

of the model (1), called the endemic equilibrium, if R0 > 1. Given by 

S*(t) =
a

K(1 + αI*(t))I*(t) − d0

E*(t) =
aK(1 + αI*(t))I*(t)

(K(1 + αI*(t))I*(t) − d0)(γ + d0)

I*(t) =
− (d0 + μ + β + b(γ + d0) + γaK) +

̅̅̅̅
Ω

√

2α(γ + d0)(b + 1)

R*(t) =
β
d0

I*(t).

where Ω is 

Ω=(d0+μ+b(γ+d0)+γaK)
2
− 4α(γ+d0)(b+1)(d0+μ+β− d0 − b(γ+d0)d0).

Dynamical behavior of the model 

In this section of our work, we will study endemic and epidemic 
equilibria points. Also the qualitative aspect of the proposed system will 
be discussed. In order to study the dynamic of model (1) we present the 
following lemma. 

Table 1 
The physical interpretation of the parameter.  

Parameters The physical interpretation 

S(t) Susceptible class 
E(t) Exposed class 
I(t) Infected class 
R(t) Recovered class 
a The population who test is negative 
d0  Natural death 
μ  Death due to corona 
b The population who test is positive 
α  Individuals lose immunity 
K Proportionality constant 
γ  Infection rate 
β  Recovered rete 
D Whole population  
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Lemma 1. The model (1) has invariant manifold of plane S(t) + E(t) +
I(t) + R(t) =

μ− a− b
d0

, which is attracting in the first octant. 

Proof. Assume M(t) = S(t) + E(t) + I(t) + R(t). Add all of the equa-
tions of model (1), we get 

dS(t)
dt

+
dE(t)

dt
+

dI(t)
dt

+
dR(t)

dt
= a + b − d0S(t) − d0E(t) − d0I(t) − d0R(t) − μ

d
dt
(S(t) + E(t) + I(t) + R(t)) = a + b − μ − d0(S(t) + E(t) + I(t) + R(t))

implies that 

dM(t)
dt

= a+ b − μ − d0M(t). (3)  

M(t) =
μ − a − b

d0  

General solution of (3) is 

M(t) =
1
d0

[
a + b − (a + b − dN(t0))e− d0(t− t0)

]
.

Which complete our proof. □ It is clear that the limit set of model 
(1) is on the plane S(t) + E(t) + I(t) + R(t) =

μ− a− b
d0

. Therefore, we are 
going to reduced the system. 

dE(t)
dt

=
aKI(t)(1 + αI(t))

KI(t)(1 + αI(t) − d0)
− (γ + d0)E(t)=

Δ ω(E(t), I(t),R(t)),

dI(t)
dt

= b + γE(t) − (d0 + μ + β)I(t) =Δ ϒ(E(t), I(t),R(t)),

dR(t)
dt

= βI(t) − d0R(t)=Δ ξ(E(t), I(t),R(t)).

(4)  

We have the following theorem with regards to the non-existence of 
cyclical shells in system (4), which show the non-existence of cyclical 
shells of system (1) by above lemma. 

Theorem 2. System (4) does not have nontrivial periodic orbits if 
αI(t) < − 1. 

Proof. We consider system(4) forE(t) > 0, I(t) > 0 and R(t) > 0. Let 
the Dulac function is 

D(E(t), I(t),R(t)) =
1 + αI(t)

KI(t)
. (5)  

Then,we have 

Dω =
aK

1 + α − d0
−
(γ + d0)(1 + αI(t))

KI(t)
E(t)

Dϒ =
b(1 + αI(t))

KI(t)
+
(γ(1 + αI(t))

KI(t)
E(t) −

(μ + β + d0)(1 + αI(t))
KI(t)

I(t)

Dξ =
β(1 + αI(t))

K
d0(1 + αI(t))R(t)

KI(t)
.

(6)  

Take partial derivative of (6) and then adding, we get 

∂(Dω)

∂E(t)
+

∂(Dϒ)

∂I(t)
+

∂(Dξ)
∂R(t)

= −
γ(1 + αI(t))

KI(t)
−

d0(1 + αI(t))
KI(t)

−
aKα

[1 + αI(t) − d0]
2

< 0.
(7)  

If 

αI(t) < − 1  

This complete our conclusion. □ In order to investigate the prop-
erties of the disease-free equilibrium H0 = (S0,0, 0, 0) and the endemic 
equilibrium H*, we rescale (4) with 

x =
K
d0

E(t)

y =
K
d0

I(t)

z =
K
d0

R(t)

τ = d0t.

Then we obtain the following 

dx
dτ =

qx
px + ry

(B − x − y) − Nx,

dy
dτ = b + hx − wy

dz
dτ = Cy − gz.

(8)  

where 

q =
aKα
d0

,

p =
K(K + αd0)

d0  

r =
K + αd0

d0  

N =
d0(d0 + α)

K  

B =
aK

d0(d0 + α)

h =
γd0

K  

w =
d0 + μ + β

K  

C =
βd0

K  

g =
d2

0

K  

Note: that the trivial equilibrium (0,0, 0) of system (8) is the disease-free 
equilibrium H0 = (S0,0, 0, 0) of system (1) and the unique positive 
equilibrium (x*, y*) of system (8) is the endemic equilibrium S* of system 
(1) if and only if q + Nr < 0, where 

x* =
wpB − (q + Nr)b

w(q + wp) + h(q + Nr)

y* =
b + hx*

w  

z* =
C(b + hx*)

gw  

We first determine the stability and topological type of (0, 0, 0). The 
Jacobian matrix of system (8) is 
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M0 =

⎛

⎜
⎜
⎝

Bq − N 0 0
h w 0
0 C g

⎞

⎟
⎟
⎠.

If q + Nr = 0, then there exists a small neighborhood N0 of (0, 0, 0) such 
that the dynamics of system (8) is equivalent to 

dx
dτ = − qxy − x2 + O((x, y, z)3

)

dy
dτ = b + hx − wy

dz
dτ = Cy − gz.

(9)  

We know that (0, 0,0) is a saddle-node. Hence, we obtain the following 
result. 

Theorem 3. The trivial equilibrium point of the system (1) possess the 
following properties.  

(i) As a result the system is hyperbolic saddle, If q + Nr < 0.  
(ii) As a result the system is saddle node, If q + Nr = 0.  
(iii) As a result the system is stable hyperbolic node, If q + Nr > 0. 

Proof. When q + Nr < 0, we discuss the stability and topological type 
of the endemic equilibrium (x*,y*, z*). 

The Jacobian matrix of (8) at (x*, y*, z*) is 

M1 =

⎛

⎜
⎜
⎜
⎜
⎝

(px* + ry)+(B − x* − y*) − N(px* + ry*)
2

(px* + ry*)
2

rq(B − x* − y*)x*

(px* + ry*)
2 0

h − w 0

o c − g

⎞

⎟
⎟
⎟
⎟
⎠
,

(10)  

where 

det(M1)=
g(− w((px*+ry)(B − x* − y*)− N(px*+ry*)

2
))

(px*+ry*)
2 −

hrq(B − x* − y*)x*

(px*+ry*)
2

=
− gw(px*+ry)(B − x* − y*)− gN(px*+ry*)

2
− hrq(B − x* − y*)x*

(px*+ry*)
2 .

The sign of det(M1) is arbitrate by 

S1 =
Δ
− gw(px* + ry)(B − x* − y*) − gN(px* + ry*)

2
− hrq(B − x* − y*)x*.

(11)  

Sice q+Nr > 0 it show that S1 < 0. Which implies, det(M1) < 0 and (x*,

y*, z*) is a node or a focus or a center. Also, for the stability of (x*, y*, z*)

we have the following result. □ 

Theorem 4. There is a unique local stability of (x*, y*, z*) of system (8), 
which is a stable node, when q + Nr < 0. 

Proof. From tr(M1) we determined the stability of (x*, y*, z*) is 

tr(M1) =
(px* + ry*)(B − x* − y*) − (px* + ry*)

2
(N + w + g)

(px* + ry*)
2  

To determined the sign of tr(M1), we take 

S2 = − (px* + ry*)(x* + y* − B).

Let assume that S2 = 0. then q + Nr < 0. Therefore S2 ∕= 0, which 
follow that tr(M1) ∕= 0. Therefore for any positive values of parameters 
and q+Nr < 0 does not change the stability of (x*,y*,z*). Which implies 
that tr(M1) < 0 for q + Nr < 0. This completes our conclusion. □The 
following theorem concluding the results for the mathematical analysis 
of the original system (1) can be established. 

Theorem 5. From (2) we define R0.  

(i) If R 0 < 1, the model (1) have H0 = (a+b
d , 0, 0, 0), has a unique 

disease-free equilibrium, which is a global attractor in the first 
octant.  

(ii) If R 0 = 1, then model (1) has a unique disease-free equilibrium 
H0 = (a+b

d ,0, 0,0) which is a attracts of all orbits in the interior of 
the first octant.  

(iii) If R 0 > 1, then model (1) has two equilibria, a disease-free 
equilibrium H0 = (a+b

d , 0,0, 0) and an endemic equilibrium H*(t)
= (S*(t), E*(t), I*(t), R*(t)). The endemic equilibrium H*(t) is a 
global attractor in the interior of the first octant. 

Numerical results and conclusion 

We present in this section numerical simulation for system (4). First 
we use nonstandard finite difference (NSFD) scheme [47] to write the 
model in difference form as: consider first equation of model (4) 

dS(t)
dt

= a − KI(t)S(t)(1+αI(t)) − d0S(t) (12)  

which is decomposed in NSFD scheme as 

Sj+1 − Sj

h
= a − KIj(t)Sj(t)(1+ αIj(t)) − d0Sj(t) (13)  

Like (13), we can decomposed the model (4) in NSFD scheme and write 
the whole system as 

Fig. 1. Plots of susceptible compartment for the given initial values of the considered model (4).  
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Fig. 2. Plots of exposed compartment for the given initial values of the considered model (4).  

Fig. 3. Plots of infected compartment for the given initial values of the considered model (4).  

Fig. 4. Plots of recovered compartment for the given initial values of the considered model (4).  

Table 2 
The physical interpretation of the parameters and numerical values.  

Parameters The physical interpretation Numerical value 

a The population who test is negative 0.73 Millions 
d0  Natural death 0.02 
μ  Death due to corona 0.0009 
b The population who test is positive 0.06003 
α  Individuals lose immunity 0.00009 
K Proportionality constant 0.098601 
γ  Infection rate 0.00007 
β  Recovered rete 0.01  

Table 3 
The physical interpretation of the parameters and numerical values.  

Parameters The physical 
interpretation 

Numerical value 

S0(t) Initial susceptible class 1353, 220, 170, 21.6 Millions 
E0(t) Initial exposed class 800, 100, 70, 10 Millions 
I0(t) Initial infected class 0.027977, 0.013328, 0.005149,0.000523 

Millions 
R0(t) Initial recovered class 0.007407, 0.003310, 0.000267, 0.000127 

Millions  
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Fig. 5. Plots of susceptible compartment for the given initial values of the considered model (4).  

Fig. 6. Plots of exposed compartment for the given initial values of the considered model (4).  

Fig. 7. Plots of infected compartment for the given initial values of the considered model (4).  
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Fig. 8. Plots of recovered compartment for the given initial values of the considered model (4).  
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Sj+1 = Sj + h
(
a − KIj(t)Sj(t)(1 + αIj(t)) − d0Sj(t)

)

Ej+1 = Ej + h
(
KIj(t)Sj(t)(1 + αIj(t)) − (d0 + γ)Ej(t)

)

Ij+1 = Ij + h
(
b + γEj(t) − (d0 + μ + β)Ij(t)

)

Rj+1 = Rj + h
(
βIj(t) − d0Rj(t)

)
.

(14) 

Using the scheme developed in (14) and we plot the model corre-
sponding to the given values as. 

From Figs. 1–4, we have plotted the different compartment of the 
model corresponding to different initial values. As susceptibility is 
decreasing which caused the increase in exposure and hence the infec-
tion also increasing. Due to more death cases together with cure the 
recovery class also increasing. see Table 2. 

Now with the values we use are given in Table 3 are taken from WHO 
[46] about the four countries India, Pakistan, Bangla Desh and Sari 
Lanka respectively as: as 

In Figs. 5–8 we simulate the results for the last thirty days in the four 
different countries of the world. We see that due to large papulation the 
precipitability ratio in India is fastest than the other three countries as in 
Fig. 5 and then the second number is of Pakistan and so on. As the 
susceptible compartment deceasing the papulation of more people is 
going to exposed and hence the infection rate is also increasing with 
rapid increase in India due to large papulation. In Pakistan, Bangla Desh 
the infection flow is more faster than Sari Lanka as shown in Figs. 6 and 
7 respectively. Further the recovered class is also increasing which is 
either due to death or getting ride from infection. Here again the death 
ratio in India is faster than the other three countries as in Fig. 8. 

Conclusion 

We have established a four compartments model for the description 
of the current COVID-19. We have established global and local dynamics 
for the constructed model. Further we have simulated the results by 
using nonstandard finite difference scheme. In last, we have testified the 
results by a real data of four different countries. We concluded that the 
infection spread in these four countries with different rate. In India and 
Pakistan the ratio is fast as compared to the other two countries because 
huge papulation produce greater chance to more people infected. 
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