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This manuscript deals with a class of Katugampola implicit fractional differential equations in b-metric spaces. The results are based
on the o — ¢-Geraghty type contraction and the fixed point theory. We express an illustrative example.

1. Introduction and Preliminaries

An interesting extension and unification of fractional deriva-
tives of the type Caputo and the type Caputo-Hadamard is
called Katugampola fractional derivative that has been intro-
duced by Katugampola [1, 2]. Some fundamental properties
of this operator are presented in [3, 4]. Several results of
implicit fractional differential equations have been recently
provided (see [4-14] and the references therein). A new class
of mixed monotone operators with concavity and applica-
tions to fractional differential equations has been considered
in [15]. In [16], the authors presented some existence and
uniqueness results for a class of terminal value problem for
differential equations with Hilfer-Katugampola fractional
derivative.

On the other side, a novel extension of b-metric was sug-
gested by Czerwik [17, 18]. Although the b-metric standard
looks very similar to the metric definition, it has a quite
different structure and properties. For example, in the b
-metric topology framework, an open (closed) set is not open
(closed). Additionally, the b-metric function is not continu-
ous. These weaknesses make this new structure more inter-
esting (see [19-28]).

Throughout the paper, any mentioned set is nonempty.
We consider the following type of terminal value problems
of Katugampola implicit differential equations of noninteger
orders:

{ (PDgr +9) (1) = (7, 9(1), (°Dy +9)(1)), T€l:=10,T],

9(T)=9; €RR,
(1)

with T > 0 and the function « : I x R x R — R is continuous.
Here, #Dj. is the Katugampola fractional derivative of order
re(0,1].

Set C(I) := {h| hreal continuous functions on I := [0, T]}.
Then, C(I) forms a Banach space with the norm ||9]|, =
sup [9(7)].

Tel
Set LY(I) = {9 : > R|9is measurable function and
Lebesgue integrable}. Then, L!(I) becomes a Banach space

with the norm [|9]|,: = f()T|9(T)|dt.
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Set C, ,(I) ={9: (0, T] » R[r*""™9(z) € C(I)}. Then, it
forms a Banach space ||9)| := sup 771 9()||. Here, C,,(I)
Tel

is called the weighted space of continuous functions.
Definition 1 (Katugampola fractional integral) [1]. The Katu-

gampola fractional integrals of order r>0 and p>0 of a
function y € X?(I) are defined by

PToy(7) ds, Tel (2)

P J L)
F(T) 0 (‘[P - 5P)17r

Definition 2 (Katugampola fractional derivatives) [1, 2]. The
generalized fractional derivatives of order r>0 and p>0
corresponding to the Katugampola fractional integrals (2)
defined for any 7 € I by

v _ 1- AW n—r _ Pr—n+l 1- a\"( Spily(s)
D)= (20 5) TN = s (20 5) [ s
3)
where n = [r] + 1; if the integrals exist.

Remark 1 ([1, 2]). As a basic example, we quote for r, p>0
and 0> —p,

r o PTII(L+(0/p)) o,
PDO+T9—WT9 P. (4)

Giving in particular,
PDy. 7P =0,

foreachi=1,2,---,n. (5)

In fact, for r, p > 0 and 6 > —p, we have

—n+1 n et
PDSJG = o Tl_Pi sp+6_1(1” — 7" s
I'(n-r) at) ),

S rieres T RO B R L

T O0p)

[(1=r+(0/p))

If we put i =r — (6/p), we obtain from (6):

I(r—i+1)

PDI, O(r—i) _ r-1
o? P I'(n—i+1)

(n=i)(n—i-1)-- (l—m)T’Pi.
(7)

So, PDj, 7P = 0, Vr, p > 0.

Theorem 1 ([2]). Let 1, p,c € R, be such that r, p > 0. Then,
for any k, w € XE(I), where 1 < p < co, we have

(1) Inverse property:
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PD,PINk(T) = (1), forallr € (0,1]. (8)

(2) Linearity property: for all r € (0, 1), we have

{ PD). (k + w)(7)= Dy (1) + D) (7). o)

PIg (k + ) (1)=PI5k(T)+ I (7).

Lemma 1 ([2]). Let r, p> 0. If 9 € C(I); then the fractional
differential equation PD)). + 9(t) = 0, has a unique solution

(1) = C,tP ™D 4 CyrP e C P M), (10)
where C; e R withi=1,2,---,n.
Proof. Let r, p> 0. from Remark 1, we have
PDBJP(r—i) =0,

foreachi=1,2,---,n. (11)

Then, the fractional equation D}, 9(7) = 0 has a particu-
lar solution as follows:

9(r) = Cr),  C,eR,foreachi=1,2,,n. (12)

Thus, the general solution of ?D.9(t) =0 is a sum of
particular solutions (12), i.e.

(1) = C, 7PV 4 CZT”<”2>+~-+C,!TP(””>, CieR;(i=1,2,-,n).

(13)
Lemma 2. Let 1, p > 0. If 9D}, 9 € C(I) and 0 < r < 1, then
PILPDL.9(T) = 9(t) + cr D), (14)

for some constant c € R.

Proof. Let PD}.9 € C(I) be the fractional derivative (3) of
order 0 < r < 1. If we apply the operator ?Dj. to PI3.” Dy. 9(t
) — 9(7) and use the properties (8) and (9), we get

Py [PT," D}y 9(7) = 9(7)|= P D} PI}.P Dy 9(7)~" Dj 9(7)
=P D},.9(7)~FD}.9(r) = 0.
(15)

From the proof of Lemma 1, there exists ¢ € R, such that
PIFPDI(T) - (1) = cr? V), (16)

which implies (14).
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Lemma 3. Let he L'(I,R) and 0<r<1and p>0. A func-
tion 9 € C(I) forms a solution for

("Dy:9)(7) = 2(7),
{ S(T) = ST’

Tel,

(17)

if and only if 9 fulfills

o1) = (0T (1) + £
(18)

Proof. Let r,p>0. and 0<r<1. Suppose that 9 satisfies
(17). Employing the operator I, to the each side of the
equation

("Dy:9)(7) =2(7), (19)
we find
PIGPDY ()= FI}. z(1). (20)

From Lemma 2, we get
(1) + cr? V=PIl 2(7), (21)

for some ¢ € R. If we use the terminal condition 9(T) =9,
in (21), we find

9(T) = 9p="I0.z(T) - TP, (22)
which shows
c=(PIhz(T) = 9p) TP, (23)

Henceforth, we deduce (18).
Contrariwise, if 9 achieves (18), then (°Df.9)(7) = z(1);
for T € I and 9(7) = 9.

Lemma 4. Contemplate the problem (1), and set g € C(I), and
w(t) =u(1, (1), 0(7)).

We presume 9 achieves

(1) = (9T w(T)) (%) i + %j;SPI(TP - ") w(s)ds.

(24)
Then, 9 forms a solution of (1).

Definition 3 [29, 30]. A function d : S x § — [0,00) is called
b-metric if there is ¢ > 1 and d fulfills

(i) (bM1)d(v,9)=0if andonlyif v="9

(il) (bM2)d(v,u)=d(u,v)
(iii) (bM3)d(u,9) <cld(u,v) +d(v,9)]

for all y,v,9€S. We say that the tripled (S,d,c) is b
-metric space (in short, b.m.s.).

Example 1 [29, 30]. Let d:C(I)x C(I) — [0,00) be
described as

d(v,9) = H(v - S)ZHOO =sup||v(t) - 9(1)||>, forallv, 9EC(I).
Tel
(25)
Ergo, (C(I), d, 2) is b-metric space.

Example 2 [29, 30]. Set S=[0,1] and d : Sx S — [0,00) be
designated by

d(v,9)=|v -9, forallv,9¢€S. (26)

Henceforth, (S, d, r) with r > 2 is b-metric space.

We set the following: {¢:[0,00) — [0,00)|¢is
continuous, increasing, $(0) = 0 and ¢(cp) < cd(u) < cuforc
>1}.

For some ¢ > 1, we set F:={A: [0,00) — [0, (1/¢*))|Ais
nondecreasing}.

Definition 4 [29, 30]. A self-operator T, on a b.m.s. (S, d, ¢), is
called a generalized a — ¢ — Geraghty contraction whenever
there exists a : S X § — [0,00), and some L > 0 such that for

D(v, 9) = max {d(v, 9), d(9, T(9)). d(v, T(v)), 2 T(S));d(s’ T(V))},

(27)
N(v,9) =min {d(v,9),d(9, T(9)),d(v, T(v))}, (28)

we have

(i V)@ (Sd(T (1), T(v))) < Me(D(pv)) (9(D(t, v)) + Ly (N (14, v),
(29)

for all p,v,9 €S, where A € F, ¢, y € .

Remark 2. In the case when L = 0 in Definition 4 and the fact
that

d(p,v)<D(u,v), forallu,ves, (30)
the inequality (29) becomes
(i V)P(Sd(T(w), T(v)) < Mep(d(pv))p(d(p v))). (31)

Definition 5 [29, 30]. Set a : § x S —> [0,00). An operator T
:§— S, is « — admissible if

a(w,v)21=2a(T(u), T(v)) =1, (32)

forall y,ves.



Definition 6 [29, 30]. Let (S, d, c) with ¢>1 be a b.m.s and «
1 Sx SR},

We say that S is « — regular if for any sequence {v,},
in S such that x, — x as n — oo and a(v,,v,,,) > 1 for
each n; there exists a subsequence {v,(x)},. of {v,}n with
(V> x) 2 1 for all k.

Theorem 2 [29, 30]. We presume that a self-operator T over a
complete b.m.s.

(S, d, c) with ¢ > 1 forms a generalized o — @ — Geraghty
contraction. Furthermore,

(i) T is a— admissible with initial value a(p0, T(p0))
> 1 for some u0 € M

(ii) either T is continuous or M is « — regular

Then T possesses a fixed point. Furthermore, if

(iii) for all fixed points u,v of T, either a(u,v) =1 or o
v, 4) = 1, then the found fixed point is unique

This manuscript launches the study of Katugampola
implicit fractional differential equations on b.m.s.

2. Main Results

Observe that (C, ,(I),d, 2) is a complete b.m.s. with d : C, ,
(I) x C, ,(I) — [0,00) described as

d(v,9) =||(v - 9)||C=supr?" T |v() - 9(7) . (33)

A function 9€C, ,(I) is called a solution of (1) if it
archives

(1) = (915 w(T)) (;) Py + IF:(_;;JTSFH(TP — ) w(s)ds,

with w(7) = x(7, (1), w(7)) € C(I).
In the sequel, we shall need the following hypotheses:
(H,) There exist p €@, p : C(I) x C(I) — (0,00) and g
:1—(0,1) so that for each 9,v,9,,v, € C, ,(I),and T €I

k(7,9 0) = 5(7, 93, 0,) | < P20p(8,0)]9 - 9y + () o - vy,
(35)

2

P o 1P 0)
i,
<o([[9-v7[[c)

2 l1-r ¢1
+ ‘D—J s (zP —SP)HLS’ v) ds
c () Jo l-qx

(36)

(H,) Therearey, € C, () and 6 : C, ,(I) x C, ,(I) — R
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, so that

Pl—r T
J s (xP —s”)Hw(s)ds> >0,

9(,40(1), (915, 0(T)) (%)MH) * ),

(37)
with g € C(I) and w(7) = (7, u0(7), w(7))

(H,) For any 7€l, and 9,veC,,(I), (9(z),v(r)) 20
implies

plfr T plfr T
9( J (P = 57) w(s)ds, J s (2P - sp)’_lg(s)ds) >0,
0

I(r) Jo I(r)
(38)
with w, 3 € C(I) so that
{ 3(7) = &(1. (1), (7)), (39)
(1) = (7, (1), w(7)).
(Hy If 9,y € C(I) with 9, —> 9and 6(9,, 9,,,,) >, then
6(9,,9) > 1. (40)

Theorem 3. We presume (H,;)-(H,). Then, the problem (1)
possesses at least a solution on I.

Proof. Take the operator N:C,, p(I) — C,, p(I) into
account that is described as

v9) ()= 71 (r) (3)" 4 B[ ) s

(41)
where w € C(I), with w(7) = k(7, 9(1), w(7)).

On account of Lemma 4, we deduce that solutions of (1)
are the fixed points of N.
Let C,,(I) x C, ,(I) — (0,00) be the function defined

by

if 0(9(t)v(1)) =0, 7€,
it 0(9(7)v(7)) (42)
otherwise.

{cx(S, v)=1,

a(9,v)=0,

First, we demonstrate that N form a generalized a — ¢
-Geraghty operator. For any 7 €I and each 9,v e C(I), we
derive that

[0 (N9) (7) - 7 (Nv) (1)

T)P(”U (43)

<UL (g - h)(T) (7
pl—r_[p(l—r) JT

) ) e s

0
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where w, 36C(I), with

(1) = (7, 9(1), 0(1)), (44)

3(1) = (1, v(1), 3(1)). (45)

From (H,), we have

|w(7) = 3(7)] = [x(7, 9(7), (7)) — K(7, v(7), 3(7))|
<p(9v)T” 1 |9(7) - U(T)Iﬂz( )|w(7) = 3(7)]
<p(8.0) (4 j9(r) —u(r)) " + ~3(1)l
(46)
Thus,
9,
) =5 222 o-oP | @)
where g =sup,/|q(7)].
Next, we have
U (NS)(2) - 0 (Vo) (1) | < P (g - (D)) (5)
PP [ 1 p(9,0) .
My L g e
lfer(lfr) T ) . 9,U 12
<P G Josf’_ (TP - sP) %H(S v) Hc/
+ Plilr_‘?:()lir) J;SP—I (TP _SP)V—l 11)(_‘9—’(;2 H( ||1C/2
(48)
Thus,
«(9,v) ’TPU-') (N9) (1) - 207 (Nv) () ‘2
P, ~1P(9)
<[|(9-v)*|Ca(9, v) F(r)jospl(TP ) _q*ds S

+[|(9-v)?[|Ca(9, v oyt 20 o

1-r T
o | e

1-g= c
<[lO-v7[ICe([|(d-v)*[C)-
(49)
Hence,
a(9,v)p(2°d(N(9), N(v)) < A(g(d(9,v))p(d(9, v), (50)

where A € F, ¢ € @, with A(7) = 1/8¢, and ¢(7) =
So, N is generalized & — ¢ — Geraghty operator.
Let 9,v € C,,,(I) such that

a(9,v)=1. (51)

5
Accordingly, for any ¢ € I, we find
0(9(t), v(1)) 2 0. (52)
This implies from (H,) that
O(Nu(t), Nv(1)) =0, (53)
which gives a(N(9), N(v)) > 1.
Ergo, N is a a-admissible.
Now, from (H,), there exists y, € C,,,(I) such that
a(ttor N(t)) > 1. (54)

Finally, from (H,), if u,, N ¢ M with g, — p and «(
U, 4, +1) =1, then,

a(phy> ) 2 1. (55)

Theorem 2 implies that fixed point 9 of N forms a solu-
tion for (1).

3. An Example

The tripled (C ,,p([O, 1]),d,2) is a complete b.m.s. with d
: Cpop([0,1]) x C, ([0, 1]) — [0,00) such that

(e 9) = || (=97 . (56)

We take the following fractional differential problem into
consideration

{ ("D, ) (%) = x(7, (%), (PDg, ) (7)) 7€ [0, 1],

u(1)=2,

(57)

with
(ro () 8(1)) = S UED) | ey
' 41+ |u(7)]) 20+ 9(0))) " 7T
(58)
Let 7€(0,1], and u,9€ C, ([0, 1]). If |u(7) [ <[ 9(7) |,

then



(T, (), (1)) = K(2: 9(2), 9 (1)
_ i [1# 50 (@) _ L+sin (90|

A0 @) A ) |

e e
R+ @D 20+ @)
/2(1-r) /2(1-r)

< T Il 9@ + T fsim () - sim (9(2))
/2(1-r)

+ T u@)lsin (1962)) - 9(2)] sin (o))
— /2(1-1)

+ (@ -8 @) < T ) - 9(o)
/2(1-1)

+ T pin () - sin (9())|
£p2(1-7)

+ T j9mlsin (9(0)]) - |9(0) s (@) |
. /2(1-1)

+ Sl -8 = T ) - )
12(1-r)

+ T (e enlsin () - sin (9()
-7 /2(1-r)

+ ()~ (1)) < T ) - ()|
/2(1-r) _

oty i (Y (1 900
e T Tp/Z(l—r)

+ 5l (@) = 9i(7)] <
(59)
In the case when [9(7) | < | u(7) |, we get

Tplz(lfr)

|x(7. u(7)) = k(7. (7)) < (2 +1u(7)||u(7) = ()| + % |ty (7) = 9 (7))

(60)
Hence,
[re(7, (7)) = (7, (7))
Tp/Z(l—r)
min{2 + |u(7)}, 2 + [9(7)[}p(7) - (7))

+ (@ -8 (0]

<

(61)

Thus, hypothesis (H,) is achieved with

/2(1-1)
P 9) = T ming2+ [u(r), 2+ ) (62)
a()= 5 (63)

Define the functions A(7) = (1/8)t,¢(7) =7, : C, ([0,
1]) x C, ([0, 1]) — R} with

{ a(w,9) =1, ifd(u(r),9(1))=0,7€l, (64)
alu,9)=0, else

and §: C,,([0,1]) x C, ,([0,1]) — R with &y, 9) =ku -9
ke.

@+ p@)Dlp(r) =) + % | (7) = 91 (7))
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Hypothesis (H,) is satisfied with p(7) = y,. Also, (H;)
holds the definition of the function §. So, Theorem 3 yields
that problem (57) admits a solution.
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