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This manuscript deals with a class of Katugampola implicit fractional differential equations in b-metric spaces. The results are based
on the α − φ-Geraghty type contraction and the fixed point theory. We express an illustrative example.

1. Introduction and Preliminaries

An interesting extension and unification of fractional deriva-
tives of the type Caputo and the type Caputo-Hadamard is
called Katugampola fractional derivative that has been intro-
duced by Katugampola [1, 2]. Some fundamental properties
of this operator are presented in [3, 4]. Several results of
implicit fractional differential equations have been recently
provided (see [4–14] and the references therein). A new class
of mixed monotone operators with concavity and applica-
tions to fractional differential equations has been considered
in [15]. In [16], the authors presented some existence and
uniqueness results for a class of terminal value problem for
differential equations with Hilfer-Katugampola fractional
derivative.

On the other side, a novel extension of b-metric was sug-
gested by Czerwik [17, 18]. Although the b-metric standard
looks very similar to the metric definition, it has a quite
different structure and properties. For example, in the b
-metric topology framework, an open (closed) set is not open
(closed). Additionally, the b-metric function is not continu-
ous. These weaknesses make this new structure more inter-
esting (see [19–28]).

Throughout the paper, any mentioned set is nonempty.
We consider the following type of terminal value problems
of Katugampola implicit differential equations of noninteger
orders:

ρDr
0+ + ϑð Þ τð Þ = κ τ, ϑ τð Þ, ρDr

0+ + ϑð Þ τð Þð Þ, τ ∈ I ≔ 0, T½ �,
ϑ Tð Þ = ϑT ∈ℝ,

(

ð1Þ

with T > 0 and the function κ : I ×ℝ ×ℝ→ℝ is continuous.
Here, ρDr

0+ is the Katugampola fractional derivative of order
r ∈ ð0, 1�.

Set CðIÞ≔ fh ∣ h real continuous functions on I ≔ ½0, T�g.
Then, CðIÞ forms a Banach space with the norm kϑk∞ =

sup
τ∈I

jϑðτÞj.
Set L1ðIÞ≔ fϑ : I→ℝjϑ ismeasurable function and

Lebesgue integrableg. Then, L1ðIÞ becomes a Banach space
with the norm kϑkL1 =

Ð T
0 jϑðτÞjdt.
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Set Cr,ρðIÞ = fϑ : ð0, T�→ℝjτρð1−rÞϑðτÞ ∈ CðIÞg. Then, it
forms a Banach space kϑkC ≔ sup

τ∈I
kτρð1−rÞϑðτÞk. Here, Cr,ρðIÞ

is called the weighted space of continuous functions.

Definition 1 (Katugampola fractional integral) [1]. The Katu-
gampola fractional integrals of order r > 0 and ρ > 0 of a
function y ∈ Xp

c ðIÞ are defined by

ρTr
0+y τð Þ ρ

1−r

Γ rð Þ
ðt
0

sρ−1y sð Þ
τρ − sρð Þ1−r ds, τ ∈ I: ð2Þ

Definition 2 (Katugampola fractional derivatives) [1, 2]. The
generalized fractional derivatives of order r > 0 and ρ > 0
corresponding to the Katugampola fractional integrals (2)
defined for any τ ∈ I by

ρDr
0+y τð Þ = τ1−ρ

d
dt

� �n
ρTn−r

0+ yð Þ τð Þ = ρr−n+1

Γ n − rð Þ τ1−ρ
d
dt

� �nðt
0

sρ−1y sð Þ
τρ − sρð Þr−n+1 ds,

ð3Þ

where n = ½r� + 1; if the integrals exist.

Remark 1 ([1, 2]). As a basic example, we quote for r, ρ > 0
and θ > −ρ,

ρDr
0+τ

θ =
ρr−1Γ 1 + θ/ρð Þð Þ
Γ 1 − r + θ/ρð Þð Þ τ

θ−rρ: ð4Þ

Giving in particular,

ρDr
0+τ

ρ r−ið Þ = 0, for each i = 1, 2,⋯, n: ð5Þ

In fact, for r, ρ > 0 and θ > −ρ, we have

ρDr
0+τ

θ =
ρr−n+1

Γ n − rð Þ τ1−ρ
d
dt

� �nðt
0
sρ+θ−1 τρ − sρð Þn−r−1ds

=
ρr−1Γ 1 + θ/ρð Þð Þ

Γ 1 + n − r + θ/ρð Þð Þ n − r +
θ

ρ

� �
⋯ 1 − r +

θ

ρ

� �
τθ−rρ

=
ρr−1Γ 1 + θ/ρð Þð Þ
Γ 1 − r + θ/ρð Þð Þ τ

θ−rρ:

ð6Þ

If we put i = r − ðθ/ρÞ, we obtain from (6):

ρDr
0+τ

θ r−ið Þ = ρr−1
Γ r − i + 1ð Þ
Γ n − i + 1ð Þ n − ið Þ n − i − 1ð Þ⋯ 1 −mð Þτ−ρi:

ð7Þ

So, ρDr
0+τ

ρðr−iÞ = 0, ∀r, ρ > 0.

Theorem 1 ([2]). Let r, ρ, c ∈ℝ, be such that r, ρ > 0. Then,
for any κ, ω ∈ Xp

c ðIÞ, where 1 ≤ p ≤∞, we have

(1) Inverse property:

ρDr
0+

ρIr0+κ τð Þ = κ τð Þ, for all r ∈ 0, 1ð �: ð8Þ

(2) Linearity property: for all r ∈ ð0, 1Þ, we have

ρDr
0+ κ + ωð Þ τð Þ= ρDr

0+κ τð Þ+ρDr
0+ω τð Þ:

ρIr0+ κ + ωð Þ τð Þ= ρIr0+κ τð Þ+ρIr0+ω τð Þ:

(
ð9Þ

Lemma 1 ([2]). Let r, ρ > 0. If ϑ ∈ CðIÞ; then the fractional
differential equation ρDr

0+ + ϑðτÞ = 0, has a unique solution

ϑ τð Þ = C1τ
ρ r−1ð Þ + C2τ

ρ r−2ð Þ+⋯+Cnτ
ρ r−nð Þ, ð10Þ

where Ci ∈ℝ with i = 1, 2,⋯, n.

Proof. Let r, ρ > 0. from Remark 1, we have

ρDr
0+τ

ρ r−ið Þ = 0, for each i = 1, 2,⋯, n: ð11Þ

Then, the fractional equation ρDr
0+ϑðτÞ = 0 has a particu-

lar solution as follows:

ϑ τð Þ = Ciτ
ρ r−ið Þ, Ci ∈ℝ, for each i = 1, 2,⋯, n: ð12Þ

Thus, the general solution of ρDr
0+ϑðτÞ = 0 is a sum of

particular solutions (12), i.e.

ϑ τð Þ = C1τ
ρ r−1ð Þ + C2τ

ρ r−2ð Þ+⋯+Cnτ
ρ r−nð Þ, Ci ∈ℝ ; i = 1, 2,⋯, nð Þ:

ð13Þ

Lemma 2. Let r, ρ > 0. If ϑ,ρDr
0+ϑ ∈ CðIÞ and 0 < r ≤ 1, then

ρIr0+
ρDr

0+ϑ τð Þ = ϑ τð Þ + cτρ r−1ð Þ, ð14Þ

for some constant c ∈ℝ.

Proof. Let ρDr
0+ϑ ∈ CðIÞ be the fractional derivative (3) of

order 0 < r ≤ 1. If we apply the operator ρDr
0+ to

ρIr0+
ρDr

0+ϑðτ
Þ − ϑðτÞ and use the properties (8) and (9), we get

ρDr
0+

ρIr0+
ρDr

0+ϑ τð Þ − ϑ τð Þ½ �= ρDr
0+

ρIr0+
ρDr

0+ϑ τð Þ−ρDr
0+ϑ τð Þ

= ρDr
0+ϑ τð Þ−ρDr

0+ϑ τð Þ = 0:
ð15Þ

From the proof of Lemma 1, there exists c ∈ℝ, such that

ρIr0+
ρDr

0+ϑ τð Þ − ϑ τð Þ = cτρ r−1ð Þ, ð16Þ

which implies (14).
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Lemma 3. Let h ∈ L1ðI,ℝÞ and 0 < r ≤ 1 and ρ > 0 . A func-
tion ϑ ∈ CðIÞ forms a solution for

ρDr
0+ϑð Þ τð Þ = z τð Þ, τ ∈ I,

ϑ Tð Þ = ϑT ,

(
ð17Þ

if and only if ϑ fulfills

ϑ τð Þ = ϑT−
ρIr0+z Tð Þð Þ τ

T

� �ρ r−1ð Þ
+

ρr−1

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1z sð Þds:

ð18Þ

Proof. Let r, ρ > 0. and 0 < r ≤ 1. Suppose that ϑ satisfies
(17). Employing the operator ρIr0+ to the each side of the
equation

ρDr
0+ϑð Þ τð Þ = z τð Þ, ð19Þ

we find

ρIr0+
ρDr

0+ϑ τð Þ= ρIr0+z τð Þ: ð20Þ

From Lemma 2, we get

ϑ τð Þ + cτρ r−1ð Þ= ρIr0+z τð Þ, ð21Þ

for some c ∈ℝ. If we use the terminal condition ϑðTÞ = ϑT
in (21), we find

ϑ Tð Þ = ϑT= ρIr0+z Tð Þ − cTρ r−1ð Þ, ð22Þ

which shows

c = ρIr0+z Tð Þ − ϑTð ÞTρ 1−rð Þ: ð23Þ

Henceforth, we deduce (18).
Contrariwise, if ϑ achieves (18), then ðρDr

0+ϑÞðτÞ = zðτÞ;
for τ ∈ I and ϑðτÞ = ϑT .

Lemma 4. Contemplate the problem (1), and set g ∈ CðIÞ, and
ωðτÞ = ϰðτ, ϑðτÞ, ωðτÞÞ.

We presume ϑ achieves

ϑ τð Þ = ϑT−
ρIr0+ω Tð Þð Þ τ

T

� �ρ r−1ð Þ
+

ρ1−r

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1ω sð Þds:

ð24Þ

Then, ϑ forms a solution of (1).

Definition 3 [29, 30]. A function d : S × S⟶ ½0,∞Þ is called
b-metric if there is c ≥ 1 and d fulfills

(i) ðbM1Þ dðν, ϑÞ = 0 if and only if ν = ϑ

(ii) ðbM2Þ dðν, μÞ = dðμ, νÞ
(iii) ðbM3Þ dðμ, ϑÞ ≤ c½dðμ, νÞ + dðν, ϑÞ�

for all μ, ν, ϑ ∈ S. We say that the tripled (S, d, c) is b
-metric space (in short, b.m.s.).

Example 1 [29, 30]. Let d : CðIÞ × CðIÞ⟶ ½0,∞Þ be
described as

d ν, ϑð Þ = ν − ϑð Þ2�� ��
∞ ≔ sup

τ∈I
ν τð Þ − ϑ τð Þk k2, for all ν, ϑEC Ið Þ:

ð25Þ

Ergo, ðCðIÞ, d, 2Þ is b-metric space.

Example 2 [29, 30]. Set S = ½0, 1� and d : S × S⟶ ½0,∞Þ be
designated by

d ν, ϑð Þ = νr − ϑrj j, for all ν, ϑ ∈ S: ð26Þ

Henceforth, (S, d, r) with r ≥ 2 is b-metric space.

We set the following: fϕ : ½0,∞Þ→ ½0,∞Þjϕ is
continuous, increasing, ϕð0Þ = 0 and ϕðcμÞ ≤ cϕðμÞ ≤ cμ for c
> 1g.

For some c ≥ 1, we set F ≔ fλ : ½0,∞Þ→ ½0, ð1/c2ÞÞjλ is
nondecreasingg.

Definition 4 [29, 30]. A self-operator T, on a b.m.s. (S, d, c), is
called a generalized α − ϕ − Geraghty contraction whenever
there exists α : S × S⟶ ½0,∞Þ, and some L ≥ 0 such that for

D ν, ϑð Þ =max d ν, ϑð Þ, d ϑ, T ϑð Þð Þ, d ν, T νð Þð Þ, d ν, T ϑð Þð Þ + d ϑ, T νð Þð Þ
2s

	 

,

ð27Þ

N ν, ϑð Þ =min d ν, ϑð Þ, d ϑ, T ϑð Þð Þ, d ν, T νð Þð Þf g, ð28Þ
we have

α μ, νð Þφ c3d T μð Þ, T νð Þð Þ� �
≤ λ φ D μ, νð Þðð Þ φ D μ, νð Þðð Þ + Lψ N μ, νð Þð ,

ð29Þ

for all μ, ν, ϑ ∈ S, where λ ∈F , φ, ψ ∈Φ.

Remark 2. In the case when L = 0 in Definition 4 and the fact
that

d μ, νð Þ ≤D μ, νð Þ, for all μ, ν ∈ S, ð30Þ

the inequality (29) becomes

α μ, νð Þφ c3d T μð Þ, T νð Þð� �
≤ λ φ d μ, νð Þð Þφ d μ, νð Þð Þð Þ: ð31Þ

Definition 5 [29, 30]. Set α : S × S⟶ ½0,∞Þ. An operator T
: S⟶ S, is α − admissible if

α μ, νð Þ ≥ 1⇒ α T μð Þ, T νð Þð Þ ≥ 1, ð32Þ

for all μ, ν ∈ S.
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Definition 6 [29, 30]. Let (S, d, c) with c ≥ 1 be a b.m.s and α
: S × Sℝ∗

+.
We say that S is α − regular if for any sequence fνngn∈ℕ

in S such that xn ⟶ x as n⟶∞ and αðνn, νn+1Þ ≥ 1 for
each n; there exists a subsequence fνnðκÞgκ∈ℕ of fνngn with
αðνnðκÞ, xÞ ≥ 1 for all k.

Theorem 2 [29, 30].We presume that a self-operator T over a
complete b.m.s.

(S, d, c) with c ≥ 1 forms a generalized α − φ − Geraghty
contraction. Furthermore,

(i) T is α − admissible with initial value αðμ0, Tðμ0ÞÞ
≥ 1 for some μ0 ∈M

(ii) either T is continuous or M is α − regular

Then T possesses a fixed point. Furthermore, if

(iii) for all fixed points μ, ν of T , either αðμ, νÞ ≥ 1 or αð
ν, μÞ ≥ 1, then the found fixed point is unique

This manuscript launches the study of Katugampola
implicit fractional differential equations on b.m.s.

2. Main Results

Observe that ðCr,ρðIÞ, d, 2Þ is a complete b.m.s. with d : Cr,ρ
ðIÞ × Cr,ρðIÞ⟶ ½0,∞Þ described as

d ν, ϑð Þ = ν − ϑð Þ2�� ��C≔ sup
τ∈I

τρ 1−rð Þ ν τð Þ − ϑ τð Þj j2: ð33Þ

A function ϑ ∈ Cr,ρðIÞ is called a solution of (1) if it
archives

ϑ τð Þ = ϑT−
ρIr0+ω Tð Þð Þ τ

T

� �ρ r−1ð Þ
+

ρ1−r

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1ω sð Þds,

ð34Þ

with ωðτÞ = κðτ, ϑðτÞ, ωðτÞÞ ∈ CðIÞ.
In the sequel, we shall need the following hypotheses:
(H1) There exist φ ∈Φ, p : CðIÞ × CðIÞ⟶ ð0,∞Þ and q

: I ⟶ ð0, 1Þ so that for each ϑ, v, ϑ1, v1 ∈ Cr,ρðIÞ, and τ ∈ I

κ τ, ϑ, υð Þ − κ τ, ϑ1, υ1ð Þj j ≤ τρ/2 1−rð Þp ϑ, υð Þ ϑ − ϑ1j j + q τð Þ υ − υ1j j,
ð35Þ

with

ρ1−r

Γ rð Þ
ðT
0
sρ−1 Tρ − sρð Þr−1 p ϑ, υð Þ

1 − q ∗
ds

����
����
2

C

+
ρ1−r

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1 p ϑ, υð Þ

1 − q ∗
ds

����
����
2

C

≤ φ ϑ − υð Þ2�� ��C� �
ð36Þ

(H2) There are μ0 ∈ Cr,ρ(I) and θ : Cr,ρðIÞ × Cr,ρðIÞ⟶ℝ

, so that

θ μ0 τð Þ, ϑT−
ρIr0+ω Tð Þð Þ τ

T

� �ρ r−1ð Þ
+

ρ1−r

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1ω sð Þds

� �
≥ 0,

ð37Þ

with g ∈ CðIÞ and ωðτÞ = κðτ, μ0ðτÞ, ωðτÞÞ
(H3) For any τ ∈ I, and ϑ, v ∈ Cr,ρðIÞ, θðϑðτÞ, vðτÞÞ ≥ 0

implies

θ
ρ1−r

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1ω sð Þds, ρ

1−r

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1z sð Þds

� �
≥ 0,

ð38Þ

with ω, z ∈ CðIÞ so that

z τð Þ = κ τ, υ τð Þ, z τð Þð Þ,
ω τð Þ = κ τ, ϑ τð Þ, ω τð Þð Þ:

(
ð39Þ

(H4) If ϑnn∈N ⊂ CðIÞwith ϑn ⟶ ϑ and θðϑn, ϑn+1Þ ≥ , then

θ ϑn, ϑð Þ ≥ 1: ð40Þ

Theorem 3. We presume (H1)–(H4). Then, the problem (1)
possesses at least a solution on I.

Proof. Take the operator N : Cr , ρðIÞ⟶ Cr , ρðIÞ into
account that is described as

Nϑð Þ τð Þ = ϑT−ρIr0+ω Tð Þð Þ τ

T

� �ρ r−1ð Þ
+

ρ1−r

Γ rð Þ
ðτ
0
sρ−1 τρsρð Þr−1ω sð Þds,

ð41Þ

where ω ∈ CðIÞ, with ωðτÞ = κðτ, ϑðτÞ, ωðτÞÞ.

On account of Lemma 4, we deduce that solutions of (1)
are the fixed points of N .

Let Cr,ρðIÞ × Cr,ρðIÞ⟶ ð0,∞Þ be the function defined
by

α ϑ, υð Þ = 1, if θ ϑ τð Þυ τð Þð Þ ≥ 0, τ ∈ I,

α ϑ, υð Þ = 0, otherwise:

(
ð42Þ

First, we demonstrate that N form a generalized α − φ
-Geraghty operator. For any τ ∈ I and each ϑ, v ∈ CðIÞ, we
derive that

τρ 1−rð Þ Nϑð Þ τð Þ − τρ 1−rð Þ Nυð Þ τð Þ



 




≤ τρ 1−rð Þ ρIr0+ g − hð Þ Tð Þj j τ

T

� �ρ r−1ð Þ

+
ρ1−rτρ 1−rð Þ

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1 ω sð Þ − z sð Þj jds,

ð43Þ
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where ω, z∈CðIÞ, with

ω τð Þ = κ τ, ϑ τð Þ, ω τð Þð Þ, ð44Þ

z τð Þ = κ τ, v τð Þ, z τð Þð Þ: ð45Þ

From (H1), we have

ω τð Þ − z τð Þj j = κ τ, ϑ τð Þ, ω τð Þð Þ − κ τ, υ τð Þ, z τð Þð Þj j
≤ p ϑ, υð Þτρ/2 1−rð Þ ϑ τð Þ − υ τð Þj j + q τð Þ ω τð Þ − z τð Þj j
≤ p ϑ, υð Þ τρ 1−rð Þ ϑ τð Þ − υ τð Þj j2

� �1/2
+ q τð Þ ω τð Þ − z τð Þj j:

ð46Þ

Thus,

ω τð Þ − z τð Þj j p ϑ, υð Þ
1 − q ∗

ϑ − υð Þ2�� ��1/2
C
, ð47Þ

where q ∗ = supτ∈I jqðτÞj.
Next, we have

τρ 1−rð Þ Nϑð Þ τð Þ − τρ 1−rð Þ Nυð Þ τð Þ



 


 ≤ τρ 1−rð Þ ρIr0+ g − hð Þ Tð Þj j τ

T

� �ρ r−1ð Þ

+
ρ1−rτρ 1−rð Þ

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1 p ϑ, υð Þ

1 − q ∗
ϑ − υð Þ2�� ��1/2

C
ds

≤
ρ1−rτρ 1−rð Þ

Γ rð Þ
ðΤ
0
sρ−1 Τρ − sρð Þr−1 p ϑ, υð Þ

1 − q ∗
ϑ − υð Þ2�� ��1/2

C
ds

+
ρ1−rτρ 1−rð Þ

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1 p ϑ, υð Þ

1 − q ∗
ϑ − υð Þ2�� ��1/2

C
ds:

ð48Þ

Thus,

α ϑ, υð Þ τρ 1−rð Þ Nϑð Þ τð Þ − τρ 1−rð Þ Nυð Þ τð Þ



 


2

≤ ϑ − υð Þ2�� ��Cα ϑ, υð Þ ρ1−r

Γ rð Þ
ðT
0
sρ−1 Tρ − sρð Þr−1 p ϑ, υð Þ

1 − q ∗
ds

����
����
2

C

+ ϑ − υð Þ2�� ��Cα ϑ, υð Þ ρ1−r

Γ rð Þ
ðT
0
sρ−1 τρ − sρð Þr−1 p ϑ, υð Þ

1 − q ∗
ds

����
����
2

C

≤ ϑ − υð Þ2�� ��Cϕ ϑ − υð Þ2�� ��C� �
:

ð49Þ

Hence,

α ϑ, vð Þφ 23d N ϑð Þ,N vð Þð� �
≤ λ φ d ϑ, vð Þðð Þφ d ϑ, vð Þð , ð50Þ

where λ ∈ ϝ, φ ∈Φ, with λðτÞ = 1/8t, and φðτÞ = τ.
So, N is generalized α − φ − Geraghty operator.
Let ϑ, v ∈ Cr ,ρðIÞ such that

α ϑ, vð Þ ≥ 1: ð51Þ

Accordingly, for any t ∈ I, we find

θ ϑ τð Þ, v τð Þð Þ ≥ 0: ð52Þ

This implies from (H3) that

θ Nu τð Þ,Nv τð Þð Þ ≥ 0, ð53Þ

which gives αðNðϑÞ,NðvÞÞ ≥ 1.
Ergo, N is a α-admissible.
Now, from (H2), there exists μ0 ∈ Cr ,ρðIÞ such that

α μ0,N μ0ð Þð Þ ≥ 1: ð54Þ

Finally, from (H4), if μnn∈N ⊂M with μn ⟶ μ and αð
μn, μn + 1Þ ≥ 1, then,

α μn, μð Þ ≥ 1: ð55Þ

Theorem 2 implies that fixed point ϑ of N forms a solu-
tion for (1).

3. An Example

The tripled ðCr ,ρð½0, 1�Þ, d, 2Þ is a complete b.m.s. with d
: Cr ,ρð½0, 1�Þ × Cr,ρð½0, 1�Þ⟶ ½0,∞Þ such that

d μ, ϑð Þ = μ − ϑð Þ2�� ��C: ð56Þ

We take the following fractional differential problem into
consideration

ρDr
0+μð Þ τð Þ = κ τ, μ τð Þ, ρDr

0+μð Þ τð Þð Þ, τ ∈ 0, 1½ �,
μ 1ð Þ = 2,

(

ð57Þ

with

κ τ, μ τð Þ, ϑ τð Þð Þ =
τρ/2 1−rð Þ 1 + sin μ τð Þj jð Þð Þ

4 1 + μ τð Þj jð Þ +
e−τ

2 1 + ϑ τð Þj jð Þ ; τ ∈ 0, 1½ �:

ð58Þ

Let τ ∈ ð0, 1�, and μ, ϑ ∈ Cr,ρð½0, 1�Þ. If |μðτÞ ∣ ≤ ∣ ϑðτÞ ∣ ,
then
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κ τ, μ τð Þ, μ1 τð Þð Þ − κ τ, ϑ τð Þ, ϑ1 τð Þð Þj j
= τρ/2 1−rð Þ 1 + sin μ τð Þj jð Þ

4 1 + μ τð Þj jð Þ −
1 + sin ϑ τð Þj jð Þ
4 1 + ϑ τð Þj jð Þ












+
e−τ

2 1 + μ1 τð Þj jð Þ −
e−τ

2 1 + ϑ1 τð Þj jð Þ











≤
τρ/2 1−rð Þ

4
μ τð Þ −j jϑ τð Þk k + τρ/2 1−rð Þ

4
sin μ τð Þj jð Þ − sin ϑ τð Þj jð Þj j

+
τρ/2 1−rð Þ

4
μ τð Þ sin ϑ τð Þj jð Þjk − ϑ τð Þj j sin μ τð Þj jð Þ∣

+
e−τ

2
μ1 τð Þ − ϑ1 τð ÞÞj j ≤ τρ/2 1−rð Þ

4
μ τð Þ − ϑ τð Þj j

+
τρ/2 1−rð Þ

4
sin μ τð Þj jð Þ − sin ϑ τð Þj jð Þj j

+
τρ/2 1−rð Þ

4
ϑ τð Þ sin ϑ τð Þj jð Þ − ϑ τð Þj j sin μ τð Þj jð Þ ∣jk

+
e−τ

2
μ1 τð Þ − ϑ1 τð ÞÞj j = τρ/2 1−rð Þ

4
μ τð Þ − ϑ τð Þj j

+
τρ/2 1−rð Þ

4
1 + υ τð Þj jð Þ sin μ τð Þj jð Þ −j sin ϑ τð Þj jð Þj

+
e−τ

2
u1 τð Þ − ϑ1 τð ÞÞj j ≤ τρ/2 1−rð Þ

4
μ τð Þ − ϑ τð Þj j

+
τρ/2 1−rð Þ

2
1 + ϑ τð Þj jð Þ × sin

μ τð Þ −j jϑ τð Þjk
2

� �








 cos μ τð Þj j + ϑ τð Þj j

2

� �










+
e−τ

2
μ1 τð Þ − ϑ1 τð Þj j ≤ τρ/2 1−rð Þ

4
2 + υ τð Þj jð Þ μ τð Þ − ϑ τð Þj j + e−τ

2
μ1 τð Þ − ϑ1 τð Þj j:

ð59Þ

In the case when ∣ϑðτÞ ∣ ≤ ∣ μðτÞ ∣ , we get

κ τ, μ τð Þð Þ − κ τ, ϑ τð Þð Þj j ≤ τp/2 1−rð Þ

4
2 + μ τð Þj j μ τð Þ − ϑ τð Þj j + e−τ

2
μ1 τð Þ − ϑ1 τð Þj j

�
:

ð60Þ

Hence,

κ τ, μ τð Þð Þ − κ τ, ϑ τð Þð Þj j

≤
Τp/2 1−rð Þ

4
min
τ∈I

2 + μ τð Þj j, 2 + ϑ τð Þj jf g μ τð Þ − ϑ τð Þj j

+
e−τ

2
μ1 τð Þ − ϑ1 τð Þj j:

ð61Þ

Thus, hypothesis (H1) is achieved with

p μ, ϑð Þ = Tρ/2 1−rð Þ

4
min
r∈I

2 + μ τð Þj j, 2 + ϑ τð Þj jf g, ð62Þ

q τð Þ = 1
2
e−τ: ð63Þ

Define the functions λðτÞ = ð1/8Þt, ϕðτÞ = τ, α : Cr,ρð½0,
1�Þ × Cr,ρð½0, 1�Þ→ℝ∗

+ with

α μ, ϑð Þ = 1, if δ μ τð Þ, ϑ τð Þð Þ ≥ 0, τ ∈ I,

α μ, ϑð Þ = 0, else

(
ð64Þ

and δ : Cr,ρð½0, 1�Þ × Cr,ρð½0, 1�Þ⟶ R with δðμ, ϑÞ = kμ − ϑ

kC .

Hypothesis (H2) is satisfied with μ0ðτÞ = μ0. Also, (H3)
holds the definition of the function δ. So, Theorem 3 yields
that problem (57) admits a solution.
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