
PHYLOGENETIC SUPERTREE CONSTRUCTION
USING CONSTRAINT PROGRAMMING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
ÇANKAYA UNIVERSITY

BY

ALKIM ÖZAYGEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

APRIL 2006

 iv

ABSTRACT

PHYLOGENETIC SUPERTREE CONSTRUCTION

USING CONSTRAINT PROGRAMMING

Özaygen, Alkım

M.S.c., Department of Computer Engineering

Supervisor : Prof. Dr. Mehmet Reşit Tolun

April 2006, 50 pages

In biology, a phylogenetic tree, or phylogeny, is used to show the

genealogic relationships of living things. It is a codification of data about

evolutionary history. The tree of life shows the path evolution took to get to the

current diversity of life and can help us also to search for the genealogy of

disparate living organisms.

In this thesis our aim is to provide a different approach for the

construction of The Tree of Life. That is, we will propose a constraint

programming solution to the decision problem of constructing a

supertree that is compatible with a collection of given phylogenetic

trees that share some species, which we will encode as constraint satisfaction

problems.

Keywords: Phylogeny, Supertree, Constraint Programming

 v

ÖZ

KISIT PROGRAMLAMA KULLANARAK

SÜPERAĞAÇ OLUŞTURULMASI

Özaygen, Alkım

Yükseklisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi : Prof. Dr. Mehmet Reşit Tolun

Nisan 2006, 50 sayfa

Biyolojide filogenetik ağaç, canlılar arası bağlantıları göstermek için

kullanılır. Evrim tarihi hakkında veri kodlamasıdır. Hayat Ağacı günümüzdeki

çeşitliliğe ulaşmadaki evrimin izlediği süreci gösterir ve birbirinden tamamen

farklı yaşayan organizma soylarının araştırılmasında yardımcı olur.

Bu tezde amaç Hayat Ağacının oluşturulmasında farklı bir yaklaşım

sunmak. Karar verme problemleri ve optimizasyon problemlerine kısıt koşul

programlama çözümü öneriyoruz, ki bunu da kısıt koşul sağlama problemleri

şeklinde kodlayacağız.

Anahtar Kelimeler: Filogeni, Süperağaç, Kısıt Programlama

 vi

ACKNOWLEDGMENTS

I wish to express my deepest gratitude to Assoc. Prof. Dr. Pierre Flener for

his guidance, advice, criticism, encouragements and insight throughout the

research. Without his enormous support and guidance this study would not be

possible. Also I thank the Computing Science Division (CSD) of the Department of

Information Technology (IT) at Uppsala University, Sweden, for hosting me as a

visiting researcher from 3 February to 3 April 2005. The experiments in this

thesis were conducted using the ILOG OPL 3.7 academic license of the ASTRA

research group at Uppsala University.

I also wish to thank Prof. Dr. Mehmet Reşit Tolun and Dr. Ali Rıza Aşkun

for their suggestions and comments and their encouragement during the writing

of this thesis.

Many of my friends suported me during my worst time in my master

program. Among all of these people, it is impossible to forget Aslı Baysuğ, Ceren

Uzel, Çiğdem Aydemir, Esra Flener, Hakan Ertürk, Hakan Şapçı, Memduh

Haldun Ülkenli, Nesrin Güner, Yıldız and Eftal Kurtuluş. Besides them I also wish

to thank Altay Özaygen, Güzden Varinlioğlu, Hande Gözükan, Mustafa Dilaver

and Tayfun Asker for their support during the writing of the thesis.

I am especially grateful to Meral and Tuna for nothing in particular but

everything in general.

 vii

TABLE OF CONTENTS

STATEMENT OF NON PLAGIARISM ..iii

ABSTRACT... iv

ÖZ ..v

ACKNOWLEDGMENTS ... vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES .. ix

CHAPTERS:

1. INTRODUCTION ..1

1.1 Basic Phylogenetic Concepts and Definitions2

1.1.1 Trees ...2

1.1.2 Subtrees ..4

1.1.3 Rooted Triples and fans ...4

1.2 Constraint Programming ...5

1.2.1 A Short Description ...5

1.2.2 How it Works ...6

1.2.3 OPL Studio (by ILOG) ...11

2. A BASIC MODEL ...12

2.1 Introduction ...12

2.1.1 Triple representation of a binary tree13

2.1.2 Supertrees ...14

 viii

2.1.3 Algorithm Break Up ...15

2.1.4 Algorithm OneTree ...16

2.1.5 Ultrametric Trees ...19

2.1.6 Min-Ultrametric ...21

2.2 The Constraint Part ..21

2.2.1 A Simple Example...24

3. SUPERTREE CONSTRUCTION FOR

ANCESTRAL DIVERGENCE DATES AND NESTED TAXA.........................29

3.1 Introduction ..29

3.2 Ancestral Divergence Dates..30

3.2.1 Phylogenetic Ranking..30

3.2.2 Ancestral Divergence Dates...30

3.2.3 The Constraint Part ..32

3.2.4 Absolute Divergence Time ...35

3.3 Nested Taxa...40

4. CONCLUSIONS ..49

REFERENCES.. R1

 ix

LIST OF FIGURES

FIGURES

1.1 Four examples of phylogenetic trees. (1) and (2) are unrooted. (3) and (4)

are rooted. (2) and (4) are binary. ...2

1.2 In a binary tree each internal node has degree three with the exception

of the root which has degree two..3

1.3 An example of dendogram..4

1.4 Example of a subtree...4

1.5 A binary rooted triple ab|c ..5

1.6 A Search Tree for the Send More Money Problem8

1.7 A solution to the 8Queens problem..9

1.8 The search space shrunk after making one choice (a), and

making the second choice (b) ..10

2.1 A binary phylogenetic tree, where species a and b are more closely

related to each other than they are to species c. This small tree can
also be represented as the rooted triple (ab|c)13

2.2 Two input trees T1 and T2 and a supertree..14

2.3 The new tree T’ after applying the BreakUp algorithm. The new label

set A’ = A \ a1 = {a2, a3, a4, a5}...15

2.4 Applying the OneTree algorithm to two input trees

((a2, a7), a6) and ((((a1, a2),a3),(a4, a5)), a6) gives us the supertree
(((((a1, a2),a3), a7),(a4, a5)), a6).. ..18

2.5 a) A symmetric matrix D. b) An ultrametric tree for matrix D20

2.6 Construction of an ultametric tree from the matrix (shown in
 Figure 2.5) ..20

2.7 A min-ultrametric tree and it’s matrix, where the internal nodes are

labelled according to their depth. ...21

 x

2.8 Two input trees ((a2, a7), a6) and ((((a1, a2),a3),(a4, a5)), a6)24

2.9 13 solutions found after combining the trees in Figure 2.827

2.10 The four extra solutions...28

2.11 The matrix of Solution 10 and it’s min-ultrametric tree. At internal

node 2 we see that the tree is not bifurcating.28

3.1 A ranked phylogenetic tree ..30

3.2 An application of RANKEDTREE ..32

3.3 Two rooted phylogenetic trees T1 and T2 and the relative divergence

dates...32

3.4 Virtual branch forming without losing min-ultrametric properties,

where div(a, e) predates div(c, f) ...35

3.5 One of the three ranked phylogenetic trees obtained combining the

trees in Figure 3.3 ...35

3.6 The assignment of intervals as given by the boundry value...................38

3.7 After assigning 3.0 to the internal vertice (c, f) and 3.1 to the internal

vertices (a, d) and (a, e) ...38

3.8 After assigning 4.0 to the internal vertice (a, b) and 4.1 to the internal

vertice (a, c), (a, f), (b, c) and (b, f) ..38

3.9 After assigning 4.1 to the internal vertice (b, d) and (b, e) and 0 to the

internal vertice (d, e)..39

3.10 After assigning 4.1 to the internal vertice (c, d) and (c, e)39

3.11 Finding the first solution ...39

3.12 Two semi-labelled trees ...40

3.13 An application of nested taxa where the input trees describe the

evolution of spiders ...41

3.14 One of the four possible supertree solution generated after combining

the input trees in Figure 3.13 ..47

 1

CHAPTER 1

INTRODUCTION

According to Pennisi today biologists have catalogued about 1.7

million of species and they estimates of the total number of species ranges

from 4 to 100 million [1]. With this explosion in the amount of data in

taxonomy it is no longer possible to analyze and build trees by hand.

Consequently there is a growing need for new techniques to speed up this

process accurately.

In recent years researchers, especially mathematicians, have shown

much interest in phlogenetic tree construction and proposed new

approaches in building supertrees. Until now some polynomial time

algorithms have been proposed.

In this thesis we are trying to approach this problem using

constraint programming, which is first proposed by Gent et al. [2].

In this chapter we discuss the basic phylogenetic concepts and five

a short description of constraint programming.

In Chapter 2 we describe some algorithms used for breaking up the

tree into triples and forming a tree from these triples. Then we model a

simple example using OPL (Optimization Programming Language).

 2

In the third chapter we extend the model proposed by Gent et al. [2]

by implementing new constraints for divergence date and nested taxa

informations.

1.1 Basic Phylogenetic Concepts and Definitions

1.1.1 Trees

Since this thesis is about phylogenetic trees, it is therefore

appropriate to start by defining a tree.

Trees can be classified as unrooted or rooted phylogenetic trees. An

unrooted phylogenetic tree or just unrooted tree is an acyclic connected

graph having no internal vertices of degree two and every leaf having

different label. The leaves are vertices of degree one (Figure 1.1).

Figure 1.1: Four examples of phylogenetic trees. (1) and (2) are unrooted. (3) and

(4) are rooted. (2) and (4) are binary.

A rooted tree on tree, on the other hand, is similar to an unrooted

tree, except it has one internal vertex of degree two, which is called the

root. The internal vertices of unrooted/rooted (except the root) trees can

 3

have degree three or greater. For example a binary phylogenetic tree, is a

tree having all internal vertices of degree three. Again the only exception is

the root, which has degree two (Figure 1.2). In a fully resolved binary

phylogenetic tree with n leaf nodes there are n-1 internal nodes.

Figure 1.2: In a binary tree each internal node has degree three with the

exception of the root which has degree two.

The leaves of the tree represent species. For example let L(T) be the

set of leaves for tree T. If T the set of trees, then we can say that L(T) is the

union of the leaf sets of the trees in T.

In a rooted tree we say that a vertex a is an ancestor of a vertex b, if

the path from b to the root passes through a. We can also say that b is the

descendant of a.

The vertices adjacent to a vertex that are descendants of the vertex

are called the children of the vertex, and the adjacent vertex that is an

ancestor is called the parent of that vertex. Sometimes the internal

vertices of a phylogenetic tree are labelled (section Nested Taxa).

Rooted phylogenetic trees can be displayed with a vertical axis

representing the time each branching point occurred. These diagrams are

called dendograms (Figure 1.3).

 4

Figure 1.3: An example of dendogram.

1.1.2 Subtrees

Let T be a rooted tree and choose a vertex v in T. If we remove the

edge between v and the parent of v, say p, we get two connected

subgraphs. Then let v be the root of the subgraphs containing v, then this

is called the subtree of T rooted at v. Briefly a subtree T' is a tree whose

vertices and edges form the subsets of the vertices and edges of a given

tree T. An example of a subtree is shown in Figure 1.4.

Figure 1.4: Example of a subtree.

1.1.3 Rooted Triples and Fans

For every three leaves a, b, c there are four possible rooted trees

with leaf set a, b, c.

 5

The binary rooted trees on three leaves are called rooted triples and

((ab)c) (or ab|c) denotes the rooted triple with a pair of leaves a, b

connected to a third leaf c via the root (Figure 1.5). For a rooted triple

((ab)c) to fit a rooted tree T, the path from a to b does not share any

vertices with the path from c to the root. Briefly a rooted triple is a tree

with three leaves and two internal vertices.

Figure 1.5: A binary rooted triple ((ab)c).

Non-binary rooted trees with three leaves are called fan triples. We

call a fan with k leaves a k-fan.

1.2 Constraint Programming

1.2.1 A Short Description

Constraint programming [3][4][5] is an alternative approach to

programming developed since the mid 1980s. Based on a combination of

techniques dealing with reasoning and computing, it is now becoming the

method of choice for modelling many types of optimization problem, in

particular, those involving heterogeneous constraints and combinatorial

search. It has been successfully applied in a number of fields including

molecular biology, electrical engineering, operations research and

numerical analysis. It has recently been identified by the ACM (Association

for Computing Machinery) as a strategic directions in computing research

(http://www.acm.org/pubs/surveys/sdcr/).

The reason for this interest in constraint programming is simple.

Early programming languages, such as FORTRAN-66, closely reflected the

underlying physical architecture of the computer. Since then, the major

direction of programming language design has been to give the

 6

programmer freedom to define objects and procedures which correspond

to entities and operations in the application domain. Object oriented

languages, in particular, provide good mechanisms for declaring program

components which capture the behaviour of entities in a particular

problem domain. However, traditional programming languages, including

object oriented languages, provide little support for specifying

relationships or constraints among programmer-defined entities. It is the

role of the programmer to explicitly maintain these relationships, and to

find objects which satisfy them.

However, for many applications, the important point of the problem

is to model the relationships and find objects that satisfy them. For this

reason, since the late 1960’s, there has been interest in programming

languages which allow the programmer simply to state relationships

between objects. It is the role of the underlying implementation to ensure

that these relationships or ‘constraints’ are maintained. Such languages

are called constraint programming languages.

1.2.2 How it Works

Let us begin by defining what a constraint is. We encounter

constraints in our everyday life and these help us to take decisions.

Some examples of constraints are:

- I must feed the cat before going to school.

- I must take an appointment before going to the dentist.

- I must have 1 YTL to take the bus in Ankara.

We can define a combinatorial problem as to search for a certain

combination of values assigned to variables such that they satisfy a set of

constraints. In some cases we need an assignment that minimises or

maximises a certain entity. Such problems are called combinatorial

optimisation problems.

 7

Briefly Constraint Programming is a framework for solving

combinatorial (optimisation) problems based on constraints.

A given problem can be specified in many different ways. It is up to

the user to do this in a correct and effective way.

In a constraint program at least the following must be

considered:

1. Domains (sets of values), e.g. Z, R, {1, 2, 3, 4, 5}, [1, 10),

{“red”, “green”, “yellow”}.

2. Variables that range over domains, e.g., x ∈ {1, 2, 3, 4,

5}

3. Constraints that define a set of valid combinations of

values for a set of variables. E.g. the set of valid combinations

for x < y, where x, y ∈ {1, 2, 3}, is {(1, 2), (1, 3), (2, 3)}.

Example 1: Send More Money

Assign distinct values to the variables s, e, n, d, m, o, r, y

such that the equation

holds.

Domains: {0, …, 9}

Variables: s, e, n, d, m, o, r, y ∈ {0, …, 9}

 8

Constraints:

s ≠ e, s ≠ n, s ≠ d, …, y ≠ m, y ≠ o, y ≠ r,

 1000 . s + 100 . e + 10 . n + d

+ 1000 . m + 100 . o + 10 . r + e

= 1000 . m + 1000 . o + 100 . n + 10 . e + y,

s ≠ 0, m ≠0

The above is then a constraint-based model of the

problem. Here we need to find a solution, i.e., an assignment to

the variables s, e, n, d, m, o, r, y from the domain {0, …, 9} such

that all the constraints are satisfied.

A simple and naïve way of doing this is ordinary search:

Try all combinations of assignments in some systematic way

until a satisfying one is found. But this is very inefficient. There

are 108 such combinations which makes the search tree huge

(Figure 1.6).

Figure 1.6: A Search Tree for the Send More Money Problem.

But in a constraint programming framework, the

constraints are active entities that try to remove values from the

domains of the variables and thus exclude certain combinations

automatically, which shrinks the search space by pruning

branches in the search tree.

 9

Example 2: nQueens

Given is a chess board and 8 queens. We are trying to find

a way to place the 8 queens on the chess board such that no

two queens attack each other following the rules of chess. One

of the possible solutions is presented in Figure 7.

Figure 1.7: A solution to the 8Queens problem.

The problem can be generalized to find a way to place n

queens on an nxn chess board with the conditions:

1. No two queens on the same row.

2. No two queens on the same column.

3. No two queens on the same NorthWest-SouthEast

diagonal.

4. No two queens on the same NorthEast-SouthWest

diagonal.

We can model the problem as:

Let qi denote the row of the queen placed in column i.

Then the constraints can be stated as follows:

Variables: q1, …, qn ∈ {1, …, n}

 10

Constraints:

1. For every i ≠ j ∈ {1, …, n} : qi ≠ qj

2. For every i < j ∈ {1, …, n} : qi – i ≠ qj – j

3. For every i < j ∈ {1, …, n} : qi + i ≠ qj + j

Solving the nQueens Problem

A complete search tree for the generalised nQueens

problem has nn leaves. (Since we have n variables in our model

and each variable can take any out of n values.) Again, using

only naïve search is not practical even for small n. With the

search space shrinking ability of constraint programming this is

not a very challenging problem.

Let us look to the Five-Queens Problem step by step in

order to view how constraint programming shrinks the search

space.

After making one choice the search space shrunk (Figure

1.8.a) and after making the second choice we’ll have a few

options to place the other queens (Figure 1.8.b).

Figure 1.8: The search space shrunk after making one choice (a), and

making the second choice (b).

 11

3. OPL Studio (by ILOG)

The Optimization Programming Language (OPL)[6]

developed by Pascal Van Hentenryck is a new modelling

language for combinatorial optimization that simplifies the

formulation and solution of combinatorial problems. The most

significant dimension of OPL is the support for constraint

programming, including sophisticated search specifications,

logical and higher order constraints, and support for scheduling

and resource allocation applications.

OPL Studio (by ILOG) [7] is the development environment

of OPL. In addition to the traditional "edit, execute, and debug"

cycle support, it provides automatic visualisations of the

results, visual tools for debugging and monitoring OPL models

(i.e., visualizations of the search space).

In this thesis we used ILOG OPL 3.7 for the construction

of the supertrees.

 12

CHAPTER 2

A BASIC MODEL

2.1 Introduction

Usually the evolutionary relationship of species in biological studies

is represented by a rooted tree with labelled leaves where the leaves

represent the species and the internal vertices represent the ancestors.

In general our aim is to combine a set of input rooted trees with

labels at the leaves to get a single supertree with all the labels in the set of

input trees. Here, according to Ng and Wormald [8], the set of output

supertrees must “fit” the set of input trees as much as possible. Because

sometimes in the input trees a leaf can be labelled with several labels. It is

also possible that some input trees can contain conflicting information. In

this chapter we will simply consider that each leaf or species is labelled by

a single label, the labels all being different, and that conflicting

information in the input trees result in no output supertree.

To obtain an output supertree, the obtained supertree must be

compatible with the input trees. That is the topology of each input tree

must be equivalent to a subtree of the obtained supertree while respecting

the labelling.

 13

In brief, we are given a set of rooted trees with labelled leaves and

need to find a rooted tree T such that T contains subtrees homomorphic to

all the given trees.

To obtain such supertrees we begin by breaking up each input tree

into a set of triples and fans (using the BreakUp algorithm [8]). We then

combine all the triples to produce supertrees that are compatible with the

given set of input trees, of course, if the set is consistent (using the

OneTree algorithm [8][9]).

2.1.1 Triple representation of a binary tree

In Figure 2.1 we have three species: a, b and c. Here a and b are

more closely related to each other than they are to c. In a more specific

way, we say that the most common ancestor of a and b is greater than the

most recent common ancestor of a and c (equally b and c). We can notice

also from the figure that the most recent common ancestor of a and b is

the furthest internal node from the root, which is the most recent ancestor

of a and c (equally b and c). We compare most recent common ancestors

by measuring their distance from the root. That is,

 mrca(a, b) > mrca(a, c) (2.1)

 equally mrca(a, b) > mrca(b, c) (2.2)

 mrca(a, c) = mrca(b, c) (2.3)

Figure 2.1: A binary phylogenetic tree, where species a and b are more

closely related to each other than they are to species c. This small tree can also be

represented as the rooted triple ((ab)c).

 14

In Figure 2.1 we see that the most recent common ancestor of a

and b is interior node Y. We can note that mrca(a, b) = Y. All the relations

can be written as:

mrca(a, b) = mrca(b, a) = Y

mrca(a, c) = mrca(b, c) = X

We can say that

mrca(a, b) > mrca(a, c) => Y > X

mrca(a, b) > mrca(b, c) => Y > X

In triple notation the binary tree in Figure 2.1 is shown as ((a, b), c).

This means that

mrca(a, b) > mrca(a, c)

mrca(a, b) > mrca(b, c)

mrca(a, c) = mrca(b, c)

2.1.2 Supertrees

Suppose we have a set of k input trees T with different, overlapping

leaf sets. Let U
k

i
TiLS

1
)(

=
= (i.e., the set of all species which are in at least

one of the trees in T). So with a supertree method we take T as input and

return a supertree with the leaf set S (Figure 2.2). And we will construct

the possible supertrees using the triples.

Figure 2.2: Two input trees T1 and T2 and a supertree.

 15

In Figure 2.2 we can represent the two trees T1 and T2 as triples,

that is, ((a,b),c) and ((b,c),d).

2.1.3 Algorithm Break Up

The BreakUp algorithm takes as input a tree T and outputs a set of

rooted triples and fans, lets say G, that define that tree. The algorithm

finds the deepest interior node v in the tree. Interior node v{a1, a2) has two

leaf nodes, a1 and a2. BreakUp finds the parent of v{a1, a2), call it node w.

From w we find the sibling of v, call it node u. From u find any leaf node,

let’s say a3. BreakUp algorithms then writes out the triple ((a1, a2), a3),

deletes leaf nodes a1 and a2, and renames interior node v to become the

new leaf node labeled as a2. The algorithm is then applied to the reduced

tree and terminates when T is reduced to a triple or less (Figure 2.3). So

the idea is to start from the top of a branch and trim off a triple or fan as

appropriate, and then repeat the process.

Tree: (((a2),(a3,a4)),a5)

Triples: { ((a1, a2),a3), ((a3, a4),a2), ((a2, a4),a5) }

Figure 2.3: The new tree T’ after applying the BreakUp algorithm. The

new label set A’ = A \ a1 = {a2, a3, a4, a5}.

In a formal way we can represent the BreakUp algorithm according

to Ng and Wormald as:

 16

BreakUp(A, T, G)

Input: non-empty set A = {a1, a2,..., an} of labels, tree T with label set A.

Output: set G of triples and fans.

1. If T is a triple or fan then add T to G and return.

2. Identify among the set of all internal vertices of T a vertex v = v{a1,

a2), say, that is minimal under the partial ordering ≤.

3. If deg(v) > 3 then

add fan ai1 ... aik to G, where ai1 ... aik are the labels of the

leaves attached to v.

Let A’ = A \ {ai3 ... aik} and T’ = tree obtained from T by

deleting the leaves with labels ai3 ... aik.

else

identify a label ai3 where v{ai1,a13} is the immediate successor

to v and add the triple (a1, a2), a3 to G. Let A’ = A \ {a1} and

T’ = tree obtained from T by deleting the leaves with labels ai1

and ai2, and label the vertex v by ai2.

4. BreakUp(A’, T, G).

2.1.4 Algorithm OneTree

The OneTree algorithm takes as input a set of rooted triples G,

produced by processing a number of trees with the BreakUp algorithm,

and a set of species A and outputs a supertree that contains the species in

A respecting the triples in G.

The OneTree algorithm constructs the tree if the input set is

consistent. Inconsistent input will result in the output of the empty tree.

Thus, the algorithm can be used as a test for consistency.

 17

The algorithm starts constructing at the root level and uses the

input triples and fans to divide the labels into disjoint subsets, where

labels in the same subset must lie in the same branch attached to the

root. For example for a triple (ab)c, the labels a and b must be on the

same branch, whilst for a fan (ab...e), the labels must all be on one branch

or else each one on a different branch. If there is only one triple in R then

the tree is defined by that triple. Otherwise the algorithm constructs a

graph G using R as follows. Construct in G the edges {(a,b) | ((a,b),c) ∈ R ∧

{a, b, c} ⊆ S}. If G is a single component then the OneTree algorithm

delivers the empty tree. If not the algorithm creates an internal node, lets

say v. For each component Si in G we collect in Ri the set of rooted triples

in R with leaves in Si. OneTree is then called recursively on each pair (Si,

Ri), and the resultant subtrees are then attached to v. Note that this can

result in trees having interior nodes with degree greater than three.

In a formal way we can represent the OneTree algorithm according

to Ng and Wormald as:

OneTree(G, A, v, T)

Input: set G of triples and fans, nonempty set A = {a1,…,an} of labels

containing all labels in G, vertex v.

Output: tree T with root vertex v.

1. If n = 1, set T = v with label a1 and return. If n = 2, create T

by attaching two new vertices to v, label them a1 and a2 and return.

2. Create sets Si = {ai}, i = 1,…, n.

3. For each triple (a,b),c, merge the two sets Si and Sj containing

a and b (if i ≠ j).

4. repeat

for any fan F with at least two labels in the same set Si, merge Si

with all sets Sj containing any label in F.

until

 each fan with at least two labels in the same set Si has every

label in Si.

5. If there is now only one set Si, set T = 0 and return.

 18

6. For each set Si, create a vertex vi, set G’ := the set of triples

and fans containing only those labels in Si, and call OneTree(G’, Si,

vi, T’). If T’ = 0, then set T = 0 and return. Otherwise, add T’ and the

edge vi to T.

In Figure 2.4 two trees are combined to produce a supertree. First

the two input trees, with the BreakUp algorithm, are broken up into

rooted triples. OneTree algorithm takes these rooted triples, transforms

them into a supertree. In Figure 2.4 we show only one of the nine possible

supertrees that respect the rooted triples produced.

Supertree: (((((a1, a2), a3), a7), (a4, a5)), a6)

Triples: {((a2, a7), a6), ((a1, a2), a3), ((a2, a3), a4),

 ((a4, a5), a3), ((a2, a5), a6)}

Figure 2.4: Applying the OneTree algorithm to two input trees

((a2, a7), a6) and ((((a1, a2),a3),(a4, a5)), a6) gives us the supertree

(((((a1, a2),a3), a7),(a4, a5)), a6).

 19

After having two algorithms, BreakUp algorithm for breaking up the

input trees to rooted triples and OneTree algorithm for deciding if a

supertree can be constructed from these rooted triples generated, we need

an algorithm to find an optimized supertree solution to the selected

problem. For the optimized supertree solution Semple and Steel [10] and

more recently Page [11] have proposed some algorithms. For the decision

and optimisation problem Gent et al. [2] proposed a constraint satisfaction

programming approach, where they encode the decision and optimisation

problem as a constraint satisfaction problems [12]. In this thesis we will

use as base this constraint programming approach. So first we need to

use the ultrametric matrix method to represent the trees in matrix form to

operate on. Then we will extract the constraints for generating binary

tree(s).

2.1.5 Ultrametric Trees

An ultrametric tree is a rooted tree where each internal node is

labeled by a number and has at least two children. In the tree along the

path from the root to the leaf the labels strictly decrease.

The ultrametric tree can be represented by a symmetric n x n

matrix D of real numbers. So each of the leaves of the tree T is labeled by

a unique row of D and each internal node of T is labeled by one entry from

D. In the matrix, Di,j is the distance data measure. It can be viewed as the

length of time since species i and j diverged. We can also say that Di,j

represents the label of the most recent common ancestor of i and j. In

Figure 2.5 we present a symmetric matrix D and its ultrametric tree.

 20

Figure 2.5: a) A symmetric matrix D. b) An ultrametric tree for matrix D.

From Figure 2.5.a) we see that the diagonal values are all 0, since

an existing species doesn’t diverge from itself. If we look at the symmetric

matrix and ultrametric tree we can see that the most common ancestor of

A and E is labeled 3 and the most common ancestor of A and C is labeled

8. As we have said the most recent common ancestor label can be viewed

as the distance data measure. We can also consider the leaves as species.

So we can say that the species A and E have diverged say 3 million years

ago and A and C have diverged 8 million years ago.

The tree is constructed from the matrix in the following manner:

In Figure 2.5 consider the row for A. It has distances 0 8 8 5 3 to

the nodes A, B, C, D, E. Since 8 is the largest label we can say that it is the

least common ancestor of ‘A’ and there are nodes 5 and 3 on the same

path as shown in the Figure 2.6.

Figure 2.6: Construction of an ultametric tree from the matrix (shown in Figure

2.5).

 21

2.1.6 Min-Ultrametric Trees

The min-ultrametric tree is a rooted tree where we label internal

nodes according to their depth. Here the root has depth zero, and the

depth of an internal node is one plus the label of its parent node. In Figure

2.7 we present a min-ultrametric tree, where the internal nodes are

labelled with their depth.

Figure 2.7: A min-ultrametric tree and its matrix, where the internal nodes are

labelled according to their depth.

2.2 The Constraint Part

Having defined some basic tree concept and explained some

algorithms to form a supertree we can now pass to the constraint part of

the job. Here we will present a constraint encoding which provides a

unique representation of trees. Here the basic idea is to encode the depth

of the most recent common ancestors in the tree. We know that in a fully

resolved binary phylogenetic tree with n leaf nodes (species) there are n-1

internal nodes. So we have a symmetric n x n two dimensional array D

where each variable Di,j takes a value in the range 0 to n-2 and the value

assigned represent the depth of the most recent common ancestor of leaf

nodes i and j. Since the matrix is symmetric, Di,j = Dj,i and we set

arbitrarily the diagonal values to 0 (Di,i = 0).

To form the matrix from the triples of the form ((a, b), c) we will

encode the constraint as:

 22

triple(a, b, c) ≡ [(Da,c = Db,c) ∧ (Da,b > Db,c) ∧ (Da,b > Da,c)] (2.4)

This constraint tells us that

1. The most recent common ancestor of a and c (Da,c) must be equal to

the most recent common ancestor of b and c (Db,c).

2. The most recent common ancestor of a and b (Da,b) must be greater

to the most recent common ancestor of b and c (Db,c).

3. The most recent common ancestor of a and b (Da,b) must be greater

to the most recent common ancestor of a and c (Da,c).

To guarantee that D is a min-ultrametric matrix, we have to encode

the constraint as:

∀a ∈ {1.. n – 1}. ∀b ∈ {a + 1..n – 1}. ∀c ∈ {b + 1..n}

(triple(a, b, c) ∨ triple(b, c, a) ∨ triple(c, a, b)) (2.5)

This constraint tells us that for every a, b and c, where a, b and c

are different, there must be a triple ((a, b), c) or ((b, c), a) or ((c, a), b).

This also tells us that in the variables Da,b, Db,c, and Da,c the

minimum value must be shared by two of them and not the third one.

But these two constraints are not enough. We know that the

internal nodes along the path from the root to the leaf have to increase

and do not contain any gaps. For example a path 0, 1, 3, 4 is an

unwanted solution. Because we have a gap at depth 2. However a

solution like 0, 1, 2, 3 would be a legal sequence. So we have to insert

another constraint that will get rid of the solutions which have gaps. For

example if there is some d where Dc,d = 2, then there have to be some

values like a and b where Dc,b = 1 and Dc,a = 0. That is the depths let’s say

from the root to a leaf have to be simply 0, 1, 2, So our new constraint

is as:

∀a ∀b [(Da,b = i ∧ i > 0) → ∃ c (Da,c = i – 1) (2.6)

 23

Using this encoding the number of consistent possible

instantiations of variables in D is (2n – 2)! / (2n-1(n – 1)!) [13][14].

Using the set of triples R and instantiating D we can then start

constructing the tree. With this encoding we obtain the same results as

the algorithm OneTree. In order to find all solutions we allow our solving

procedure to backtrack in the search space whenever it finds a solution,

and to continue on for the next solution.

With the constraint written as

triple(a, b, c) ≡ [(Da,c = Db,c) ∧ (Da,b > Db,c) ∧ (Da,b > Da,c)] (2.7)

we can only find solutions for a binary tree. To generate trees with internal

nodes having more than two children we can change this constraint to

fantriple(a, b, c) ≡ [(Da,c = Db,c) ∧ (Da,b ≥ Db,c) ∧ (Da,b ≥ Da,c)] (2.8)

to allow the fans.

So far, our constraint model is the same as the one of Gent et al.

[2].

2.2.1. A Simple Example

Let’s solve the simple example of Figure 2.8.

 24

Trees: ((a2, a7), a6)

 ((((a1, a2),a3),(a4, a5)), a6)

Triples: {((a2, a7), a6),

((a1, a2), a3), ((a2, a3), a4), ((a4, a5), a3), ((a2, a5), a6)}

Figure 2.8: Two input trees ((a2, a7), a6) and ((((a1, a2),a3),(a4, a5)), a6).

Here we have two input trees ((a2, a7), a6) and ((((a1, a2),a3), (a4,

a5)), a6).

In OPL our encoding is as follows:

enum Species ...;

range intNodes 0..card(Species)-2;

var intNodes D[Species, Species];

struct Triple {Species i; Species j; Species k;};
{Triple} Triples = ...;

solve {
 forall(ordered i, j in Species)
 D[i, j] = D[j, i];

 forall(i in Species)
 D[i,i]=0;

 forall(ordered i, j in Species)
 D[i, j] > 0 => sum(k in Species: k<>i) (D[i, k] =
D[i, j] - 1) > 0;

 forall (triple in Triples)
 D[triple.i,triple.j] > D[triple.i,triple.k] =
 D[triple.j,triple.k];

 forall (ordered i, j, k in Species)

 25

 D[i, j] = D[i, k] < D[j, k] \/ D[i, j] = D[j, k] < D[i, k] \/
D[i, k] = D[j, k] < D[i, j];
};

display(ordered i,j in Species) D[i,j];

and the data file as:

Species = {a, b, c, d, e, f, g};

Triples = { <a, b, c> <d, e, c> <c, b, e> <e, b, f> <a, g, f>

};

In the model, we first declare the

enumeration, called Species, of leaf species of the given trees;

as indicated by the "..." annotation, it is to be imported from a

data file. Then, we declare the range, called intNodes, of the

depths of the internal nodes to be 0,...,n-2 where n is the size

of Species. Indeed, the most unbalanced phylogenetic tree, namely

the caterpillar tree, has all its n-1 internal nodes on a path, hence

the depths 0,...,n-2 suffice to label them.

The constraint

forall(ordered i, j in Species)
 D[i, j] = D[j, i];

is used in order to enforce the symmetry, where the most recent common

ancestor of species i and j must be the same recent common ancestor of

species j and i. Also we have to fix Di,i to an abitrary value between 0 and

n-1. Here we chose 0 by stating

 forall(i in Species)
 D[i,i]=0;

The constraint

forall(ordered i,j in Species)
D[i, j] > 1 => sum(k in Species: k<>i) (D[i, k] =
D[i, j] - 1) > 0;

 26

tells that if the most recent common ancestor of species i and j is greater

than one, then it must have a child one minus of its value. This constraint

prevent a gap forming along side the branches.

The constraint

forall (triple in Triples)
D[triple.i,triple.j] > D[triple.i,triple.k] =

D[triple.j,triple.k];

says that the matrix must be formed according to every triple listed.

Where the most recent common ancestor of i, j (Di, j) must be equal to the

most recent common ancestor of i, k (Di, k) which are less than the most

common ancestor of j, k (Dj, k).

The constraint

forall (ordered i, j, k in Species)
D[i, j] = D[i, k] < D[j, k] \/ D[i, j] =

D[j, k] < D[i, k] \/ D[i, k] = D[j, k] < D[i, j];

is a representation of, for the species i, j and k, all being different

1. The most recent common ancestor of i, j (Di, j) must be equal to

the most recent common ancestor of i, k (Di, k) which are less

than the most common ancestor of j, k (Dj, k).

or

2. The most recent common ancestor of i, j (Di, j) must be equal to

the most recent common ancestor of j, k (Dj, k) which are less

than the most common ancestor of i, k (Di, k).

or

3. The most recent common ancestor of i, k (Di, k) must be equal to

the most recent common ancestor of j, k (Dj, k) which are less

than the most common ancestor of i, j (Di, j).

This constraint tells us that for every species i, j and k, where i, j

and k are different, there must be a triple ((i, j), k) or ((j, k), i) or ((k, i), j).

This also tells us that in the variables Di, j, Dj, k, and Di, k the

minimum value must be shared by two of them and not the third one.

 27

With this constraint we generate the solutions without fans. After

searching the solutions we get nine solutions. The solutions are shown in

Figure 2.9.

Figure 2.9: 13 solutions found after combining the trees in Figure 2.8.

The constraint

forall (ordered i, j, k in Species)
D[i, j] = D[i, k] < D[j, k] \/ D[i, j] =

D[j, k] < D[i, k] \/ D[i, k] = D[j, k] < D[i, j];

Solution [1]

D[a1,a2] = 4
D[a1,a3] = 3
D[a1,a4] = 2
D[a1,a5] = 2
D[a1,a6] = 1
D[a1,a7] = 2
D[a2,a3] = 3
D[a2,a4] = 2
D[a2,a5] = 2
D[a2,a6] = 1
D[a2,a7] = 2
D[a3,a4] = 2
D[a3,a5] = 2
D[a3,a6] = 1
D[a3,a7] = 2
D[a4,a5] = 3
D[a4,a6] = 1
D[a4,a7] = 3
D[a5,a6] = 1
D[a5,a7] = 4
D[a6,a7] = 1

Solution [2]

D[a1,a2] = 4
D[a1,a3] = 3
D[a1,a4] = 2
D[a1,a5] = 2
D[a1,a6] = 1
D[a1,a7] = 2
D[a2,a3] = 3
D[a2,a4] = 2
D[a2,a5] = 2
D[a2,a6] = 1
D[a2,a7] = 2
D[a3,a4] = 2
D[a3,a5] = 2
D[a3,a6] = 1
D[a3,a7] = 2
D[a4,a5] = 3
D[a4,a6] = 1
D[a4,a7] = 4
D[a5,a6] = 1
D[a5,a7] = 3
D[a6,a7] = 1

Solution [3]

D[a1,a2] = 4
D[a1,a3] = 3
D[a1,a4] = 2
D[a1,a5] = 2
D[a1,a6] = 1
D[a1,a7] = 3
D[a2,a3] = 3
D[a2,a4] = 2
D[a2,a5] = 2
D[a2,a6] = 1
D[a2,a7] = 3
D[a3,a4] = 2
D[a3,a5] = 2
D[a3,a6] = 1
D[a3,a7] = 4
D[a4,a5] = 3
D[a4,a6] = 1
D[a4,a7] = 2
D[a5,a6] = 1
D[a5,a7] = 2
D[a6,a7] = 1

Solution [4]

D[a1,a2] = 4
D[a1,a3] = 3
D[a1,a4] = 2
D[a1,a5] = 2
D[a1,a6] = 1
D[a1,a7] = 4
D[a2,a3] = 3
D[a2,a4] = 2
D[a2,a5] = 2
D[a2,a6] = 1
D[a2,a7] = 5
D[a3,a4] = 2
D[a3,a5] = 2
D[a3,a6] = 1
D[a3,a7] = 3
D[a4,a5] = 3
D[a4,a6] = 1
D[a4,a7] = 2
D[a5,a6] = 1
D[a5,a7] = 2
D[a6,a7] = 1

Solution [5]

D[a1,a2] = 4
D[a1,a3] = 3
D[a1,a4] = 2
D[a1,a5] = 2
D[a1,a6] = 1
D[a1,a7] = 5
D[a2,a3] = 3
D[a2,a4] = 2
D[a2,a5] = 2
D[a2,a6] = 1
D[a2,a7] = 4
D[a3,a4] = 2
D[a3,a5] = 2
D[a3,a6] = 1
D[a3,a7] = 3
D[a4,a5] = 3
D[a4,a6] = 1
D[a4,a7] = 2
D[a5,a6] = 1
D[a5,a7] = 2
D[a6,a7] = 1

Solution [6]

D[a1,a2] = 4
D[a1,a3] = 3
D[a1,a4] = 2
D[a1,a5] = 2
D[a1,a6] = 1
D[a1,a7] = 2
D[a2,a3] = 3
D[a2,a4] = 2
D[a2,a5] = 2
D[a2,a6] = 1
D[a2,a7] = 2
D[a3,a4] = 2
D[a3,a5] = 2
D[a3,a6] = 1
D[a3,a7] = 2
D[a4,a5] = 4
D[a4,a6] = 1
D[a4,a7] = 3
D[a5,a6] = 1
D[a5,a7] = 3
D[a6,a7] = 1

Solution [7]

D[a1,a2] = 5
D[a1,a3] = 3
D[a1,a4] = 2
D[a1,a5] = 2
D[a1,a6] = 1
D[a1,a7] = 4
D[a2,a3] = 3
D[a2,a4] = 2
D[a2,a5] = 2
D[a2,a6] = 1
D[a2,a7] = 4
D[a3,a4] = 2
D[a3,a5] = 2
D[a3,a6] = 1
D[a3,a7] = 3
D[a4,a5] = 3
D[a4,a6] = 1
D[a4,a7] = 2
D[a5,a6] = 1
D[a5,a7] = 2
D[a6,a7] = 1

Solution [8]

D[a1,a2] = 5
D[a1,a3] = 4
D[a1,a4] = 2
D[a1,a5] = 2
D[a1,a6] = 1
D[a1,a7] = 3
D[a2,a3] = 4
D[a2,a4] = 2
D[a2,a5] = 2
D[a2,a6] = 1
D[a2,a7] = 3
D[a3,a4] = 2
D[a3,a5] = 2
D[a3,a6] = 1
D[a3,a7] = 3
D[a4,a5] = 3
D[a4,a6] = 1
D[a4,a7] = 2
D[a5,a6] = 1
D[a5,a7] = 2
D[a6,a7] = 1

Solution [9]

D[a1,a2] = 5
D[a1,a3] = 4
D[a1,a4] = 3
D[a1,a5] = 3
D[a1,a6] = 1
D[a1,a7] = 2
D[a2,a3] = 4
D[a2,a4] = 3
D[a2,a5] = 3
D[a2,a6] = 1
D[a2,a7] = 2
D[a3,a4] = 3
D[a3,a5] = 3
D[a3,a6] = 1
D[a3,a7] = 2
D[a4,a5] = 4
D[a4,a6] = 1
D[a4,a7] = 2
D[a5,a6] = 1
D[a5,a7] = 2
D[a6,a7] = 1

 28

was for generating binary trees. If we want that this model generates

solutions comprising supertrees with fans, we should change this

contstraint to

forall (ordered i, j, k in Species)
D[i, j] = D[i, k] <= D[j, k] \/ D[i, j] = D[j, k] <=

D[i, k] \/ D[i, k] = D[j, k] <= D[i, j];

where we will get 13 solutions. The four extra solutions with fans are

shown in Figure 2.10.

Figure 2.10: The four extra solutions.

The min-ultrametric tree of Solution 10 with fans is shown in

Figure 2.11.

Figure 2.11: The matrix of Solution 10 and its min-ultrametric tree. At internal
node 2 we see that the tree is not bifurcating.

Solution [10]

D[a1,a2] = 4
D[a1,a3] = 3
D[a1,a4] = 2
D[a1,a5] = 2
D[a1,a6] = 1
D[a1,a7] = 2
D[a2,a3] = 3
D[a2,a4] = 2
D[a2,a5] = 2
D[a2,a6] = 1
D[a2,a7] = 2
D[a3,a4] = 2
D[a3,a5] = 2
D[a3,a6] = 1
D[a3,a7] = 2
D[a4,a5] = 3
D[a4,a6] = 1
D[a4,a7] = 2
D[a5,a6] = 1
D[a5,a7] = 2
D[a6,a7] = 1

Solution [11]

D[a1,a2] = 4
D[a1,a3] = 3
D[a1,a4] = 2
D[a1,a5] = 2
D[a1,a6] = 1
D[a1,a7] = 2
D[a2,a3] = 3
D[a2,a4] = 2
D[a2,a5] = 2
D[a2,a6] = 1
D[a2,a7] = 2
D[a3,a4] = 2
D[a3,a5] = 2
D[a3,a6] = 1
D[a3,a7] = 2
D[a4,a5] = 3
D[a4,a6] = 1
D[a4,a7] = 3
D[a5,a6] = 1
D[a5,a7] = 3
D[a6,a7] = 1

Solution [12]

D[a1,a2] = 4
D[a1,a3] = 3
D[a1,a4] = 2
D[a1,a5] = 2
D[a1,a6] = 1
D[a1,a7] = 3
D[a2,a3] = 3
D[a2,a4] = 2
D[a2,a5] = 2
D[a2,a6] = 1
D[a2,a7] = 3
D[a3,a4] = 2
D[a3,a5] = 2
D[a3,a6] = 1
D[a3,a7] = 3
D[a4,a5] = 3
D[a4,a6] = 1
D[a4,a7] = 2
D[a5,a6] = 1
D[a5,a7] = 2
D[a6,a7] = 1

Solution [13]

D[a1,a2] = 4
D[a1,a3] = 3
D[a1,a4] = 2
D[a1,a5] = 2
D[a1,a6] = 1
D[a1,a7] = 4
D[a2,a3] = 3
D[a2,a4] = 2
D[a2,a5] = 2
D[a2,a6] = 1
D[a2,a7] = 4
D[a3,a4] = 2
D[a3,a5] = 2
D[a3,a6] = 1
D[a3,a7] = 3
D[a4,a5] = 3
D[a4,a6] = 1
D[a4,a7] = 2
D[a5,a6] = 1
D[a5,a7] = 2
D[a6,a7] = 1

 a1 a2 A3 a4 a5 a6 a7

a1 0 4 3 2 2 1 2

a2 4 0 3 2 2 1 2

a3 3 3 0 2 2 1 2

a4 2 2 2 0 3 1 2

a5 2 2 2 3 0 1 2

a6 1 1 1 1 1 0 1

a7 2 2 2 2 2 1 0

 29

CHAPTER 3

SUPERTREE CONSTRUCTION FOR ANCESTRAL

DIVERGENCE DATES AND NESTED TAXA

3.1 Introduction

Until now we have shown a basic model with min-ultrametric

supertree construction. In this chapter we will try to show some new

constraints in order to extend the allowable information that can be used

for phylogenetic inference. In the first part we will include in the input

ancestral divergence dates which may be either relative or absolute. For

example, in this group the input could include information such as

whether one particular divergence event on one side of a tree occurred

before or after a divergence event on the other side of the tree, or actual

time estimates of certain divergence events. In the second part we will deal

with nested taxa. We will use input rooted trees in which some of the

interior vertices as well as all of their leaves are labelled, which will allow

the inclusion of nested taxa in the input. For the description of the

problems we used Bryant, Semple and Steel’s works [15][16].

 30

3.2 Ancestral Divergence Dates

3.2.1 Phylogenetic Ranking

A phylogenetic ranking helps us to arrange the tree’s interior

vertices according to the order of the speciation events. For example let T

be a rooted phylogenetic tree. We will create a rank function for this tree

to arrange the order in the set of interior vertices (all positive integers), call

it Viv. Here for all v1, v2 ∈ Viv, we say that r(v1) < r(v2) if v2 is a proper

descendant of v1. We say that the pair (T, r) is a ranked phylogenetic tree.

So the ranking of the interior vertices of the rooted phylogenetic tree is an

ordering of the speciation events. An example of a ranked phylogenetic

tree is illustrated in Figure 3.1.

Figure 3.1: A ranked phylogenetic tree.

For example the speciation event of species c and d took place

before the speciation event of species a and b. Here two different interior

vertices ((e, d) and (c, f)) may be assigned the same positive integer which

means that there is no particular ordering on the associated speciation

events.

3.2.2 Ancestral Divergence Dates

Here we will briefly describe the RANKEDTREE algorithm that

incorporates relative divergence times developed by Semple et al. [15].

Then we will proceed to our constraint programming approach.

 31

The RANKEDTREE algorithm is an extension of the BUILD

approach, developed for other purposes in 1981 [17], which outputs a tree

precisely if the input collection satisfies a particular compatibility

criterion. So the RANKEDTREE algorithm takes as input the rooted

phylogenetic trees as well as the information detailing the order of the

speciation events that occurred.

A relative divergence date “div(c, d) predates div(a, b)” tells us that if

a, b, c, d are leaf labels of T, then the rank assigned to the interior vertex

of T corresponding to the most recent common ancestor of c and d is less

than the rank assigned to the interior vertex of T corresponding to the

most recent common ancestor of a and b.

If we look at the ranked phylogenetic tree shown in Figure 3.2 we

can see that it preserves the relative divergence date ‘div(e, b) predates

div(c, f)’. A collection P of rooted phylogenetic trees and a collection D of

relative divergence dates are compatible if there is a ranked phylogenetic

tree T such that the discrete topology of T displays each of the trees in P

and the ranking of the interior vertices of T preserves all of the relative

divergence dates in D.

To illustrate the ranking in a tree let’s take the phylogenetic cat

family tree example shown in Figure 3.2(a) and (b). Here each species

name is abbreviated to 3-letters labels and the branch lengths are

represented by the ranking of the internal vertices (which does not reflect

the real time). Here we can notice that only the three species ‘LPA’, ‘PON’,

and ‘CCR’ are present in both trees. A resulting supertree obtained from

combining these two trees is shown in Figure 3.2(c).

 32

Figure 3.2: An application of RANKEDTREE.

3.2.3 The Constraint Part

Figure 3.3: Two rooted phylogenetic trees T1 and T2 and the relative divergence
dates.

 div(a, e) predates div(c, f)
and div(a, b)predates div(a, d).

 33

In the example of Figure 3.3, we will try to combine these trees with

their relative divergence time using constraint programming.

Below is the model (.mod file) and the data (.dat) for Figure 3.3.

The model file:

enum Species ...;

range intNodes 0..card(Species)-2;

var intNodes D[Species, Species];

struct Triple {Species i; Species j; Species k;};
{Triple} Triples = ...;

struct Predate {Species i; Species j; Species k; Species l;};
{Predate} Predates = ...;

solve {
 forall(ordered i, j in Species)
 D[i, j] = D[j, i];

 forall(i in Species)
 D[i, i] = 0;

 forall(ordered i,j in Species
 D[i,j]>0 => sum(k in Species: k<>i & k<>j)
 (D[i,k]=D[i,j]-1) > 0 \/ sum(p in Predates: p.k=i \/ p.l=i)
 (D[p.i,p.j]=D[i,j]-1) > 0 ;

 forall(triple in Triples)
 D[triple.i, triple.j] > D[triple.i, triple.k] =
 D[triple.j, triple.k];

 forall(ordered i, j, k in Species)
 D[i, j] = D[i, k] < D[j, k] \/ D[i, j] = D[j, k] <
 D[i, k] \/ D[i, k] = D[j, k] < D[i, j];

// D[i, j] = D[i, k] <= D[j, k] \/ D[i, j] = D[j, k] <=
// D[i, k] \/ D[i, k] = D[j, k] <= D[i, j]; // with fans

 forall(predate in Predates)
 D[predate.i, predate.j] < D[predate.k, predate.l];
};

search{
generate(D);
 forall(i in Species)
 forall(j in Species: i<j & not bound(D[i,j]))
 tryall(k in [dmin(D[i,j])..dmax(D[i,j])]) D[i,j]=k;
};

display(ordered i, j in Species) D[i,j];

 34

The data file:

Species = {a, b, c, d, e, f};

Triples = {<a, b, c> <c, f, b> <e, d, a>};

Predates = {
 <a, e, c, f>
 <a, b, a, d>
} ;

We can notice that in this example we split the model and the data

part to two different files. Here our aim is to find a way to represent this

new problem with a minimum syntactic change. So while holding most of

our constraints from the the previous example, we have to insert a new

and simple constraint for this problem.

In this model we first declared a record Predate consisting of four

fields i, j, k and l using Predates in the data file with

struct Predate {Species i; Species j; Species k; Species l;};
{Predate} Predates = ...;

and using a new constraint

 forall(predate in Predates)
 D[predate.i, predate.j] < D[predate.k, predate.l];

which states that the divergence of species i and j occured before the

divergence of species k and l. For example from the data file on our

example, we can say that the divergence of species a and e occured before

the divergence of species c and f.

Also in this model we used the constraint

forall(ordered i,j in Species)
D[i,j]>0 => sum(k in Species: k<>i & k<>j)
 (D[i,k]=D[i,j]-1) > 0 \/ sum(p in Predates: p.k=i \/ p.l=i)
 (D[p.i,p.j]=D[i,j]-1) > 0 ;

in place of

forall(ordered i,j in Species)
 D[i, j] > 1 => sum(k in Species: k<>i) (D[i, k] =
D[i, j] - 1) > 0;

 35

With this constraint our intention was again to prevent gap forming

along the branch. But this time using the predates data. This constraint

tells that if the most recent common ancestor of species i and j is greater

than one, then it must have a child one minus of its value or it must have

a child having one minus the predate value. For example here for the most

recent common ancestor for the species c and f D[c, f] must be predated by

the most recent common ancestor of species a and e D[a, e]. So in this

example if D[b, e] is 2 then D[c, f] cannot be 4. Where this constraint prevent

any gap along the branch. In other words there are some virtual branches

forming, and their internal nodes increasing by one along these virtual

branches (shown in Figure 3.4).

Figure 3.4: Virtual branch forming without losing min-ultrametric properties,
where div(a, e) predates div(c, f).

So running this model we find the solution shown in Figure 3.5

below.

Figure 3.5: One of the three ranked phylogenetic trees obtained combining the
trees in Figure 3.3.

3.2.3 Absolute Divergence Time

Now let’s go further and insert some absolute divergence time

bounds to our internal vertices. The divergence time bound for species a

 36

and b is a lower or an upper bound denoted by l(a, b) and u(a, b),

respectively on the unit of time ago that a and b diverged. These species

can also have both lower and upper bounds, where obviously l(a, b) < u(a,

b). If there is no upper or lower bound on the divergence time of a and b,

these will be taken obviously as: l(a, b) = 0 and u(a, b) = ∞.

Now let’s return to our example of Figure 3.3 and improve it by

adding some divergence time bounds as follows:

l(a, d) = 1 and u(a, d) = 3.5

l(a, b) = 4 and u(a, b) = 6

l(c, f) = 3 and u(c, f) = 5

Below is the model (.mod file) and the data (.dat) for this example.

The model:

enum Species=...;

range intNodes 0..65;

var intNodes D[Species, Species];

struct Triple {Species i; Species j; Species k; };
{Triple} Triples =...;

struct Predate {Species i; Species j; Species k; Species l;};
{Predate} Predates =...;

struct Boundary {Species i; Species j; int k; int l;};
{Boundary} Boundaries =...;

solve {
 forall(ordered i, j in Species)
 D[i, j] = D[j, i];

 forall(i in Species)
 D[i,i]=0;

 forall (triple in Triples)
 D[triple.i,triple.j] < D[triple.i,triple.k] =
 D[triple.j,triple.k];

 forall (ordered i, j, k in Species)
 D[i, j] = D[i, k] > D[j, k] \/ D[i, j] = D[j, k] > D[i, k] \/
 D[i, k] = D[j, k] > D[i, j];

 forall (predate in Predates)
 D[predate.i,predate.j] > D[predate.k,predate.l];

 forall(ordered Boundary in Boundaries)
 Boundary.k <= D[Boundary.i, Boundary.j] <= Boundary.l;
};

 37

search{
generate(D);
 forall(i in Species)
 forall(j in Species: i<j & not bound(D[i,j]))
 tryall(k in [dmin(D[i,j])..dmax(D[i,j])]
ordered by decreasing k) D[i,j]=k;
};
display(ordered i,j in Species) D[i,j]/10.0;

The data file:

Species = {a, b, c, d, e, f};

Triples = { <a, b, c> <c, f, b> <e, d, a> };

Predates = {
 <a, e, c, f>
 <a, b, a, d>
} ;

Boundaries = {
 <a, d, 10, 35>
 <a, b, 40, 60>
 <c, f, 30, 50>
 };

The concept in this model, is the same as the previous example, but

this time we include also a boundary information. To represent this

information in our model we first declared a record Boundary consisting

of four fields i, j, k and l using Boundaries in the data file with

struct Boundary {Species i; Species j; int k; int l;};
{Boundary} Boundaries =...;

and inserted a boundary constraint as:

forall(ordered Boundary in Boundaries)
 Boundary.k <= D[Boundary.i, Boundary.j] <= Boundary.l;

telling that the most recent common ancestor of species i and j must be

within the boundary conditions stated in the data file.

But the tricky part is in the search procedure:

search{
 generate(D);
 forall(i in Species)
 forall(j in Species: i<j & not bound(D[i,j])) tryall(k in
[dmin(D[i,j])..dmax(D[i,j])] ordered by decreasing k) D[i,j]=k;
};

 38

Here we determined how the search will be, trying from the

minimum value to maximum value D[i, j]. Using the ‘stepping in model’

feature in ILOG OPL studio and also displaying the value of D we are able

to analyze the boundary values and possible solutions step by step. Below

in the Figures 3.6 to 3.11 we can see the steps of the value of D while

searching for a solution.

Figure 3.6: The assignment of intervals as given by the boundry value.

Figure 3.7: After assigning 3.0 to the internal vertice (c, f) and 3.1 to the internal
vertices (a, d) and (a, e).

Figure 3.8: After assigning 4.0 to the internal vertice (a, b) and 4.1 to the internal
vertice (a, c), (a, f), (b, c) and (b, f).

 39

Figure 3.9: After assigning 4.1 to the internal vertice (b, d) and (b, e) and 0 to the
internal vertice (d, e).

Figure 3.10: After assigning 4.1 to the internal vertice (c, d) and (c, e).

Figure 3.11: Finding the first solution.

Here it is important to note that the minimum value of the internal

vertice can be assigned 0. In which case we say that the divergence has

just occurred for the species (in this case the internal vertice (d, e)). Also

we transformed the decimal values to integers and put the interior vertex

values to be at most 65.

 40

3.3 Nested Taxa

Until now we saw how to combine collections of rooted phylogenetic

with overlapping leaf sets into a single rooted phylogenetic tree. But in all

these collections of rooted phylogenetic tree we didn't see any nested taxa.

For example, we didn’t take into account examples like “mammals” and

“domestic cat”. Because the “domestic cat” is nested inside the

“mammals”, they cannot be represented by two distinct leaves in a single

rooted phylogenetic tree. But in practice there is a need to insert this

taxonomic information into the resulting supertree as well. In brief we

need to find a way to combine rooted trees where the resulting supertree

displays all nestings shared by all of the input trees. We call the rooted

tree in which all the leaves as well as some of the interior vertices are

labelled, semi-labelled trees. Two semi-labelled trees are shown in Figure

3.12.

Figure 3.12: Two semi-labelled trees.

Semple and Daniel [16] [18] proposed two algorithms (SEMI-

LABELLEDBUILD and ANCESTRALBUILD) for combining collections of

rooted semi-labelled trees following a problem posed by Page [11]. Instead

of describing these two algorithms we will use constraint programming

and illustrate the resulting model on the example of Semple et al. [18]

taken from study S1x6x97c14c42c30 in TreeBASE [19] where the input

trees describe the evolution of spiders, shown in Figure 3.13.

 41

Figure 3.13: An application of nested taxa where the input trees describe the
evolution of spiders.

The model file:

//* Example from the TreeBASE study: S1x6x97c14c42c30

{string} Species = ...;

struct Triple {
 string i;
 string j;
 string k;
 };
{Triple} Triples =...;

struct Polytomy {
 {string} s;
};

{Polytomy} Polytomies =...;
struct Ancestor {
 string anc;
 string suc;
 };

{Ancestor} Ancestors =...;

{string} Leaves = Species diff {ancestor.anc | ancestor in
Ancestors};

range intNodes 0..8;

var intNodes D[Leaves, Leaves];

{Triple} Triplets = Triples
 union {<ancestor.suc,l,m> | ancestor in Ancestors & <k,l,m> in
Triples : k = ancestor.anc}
 union {<k,ancestor.suc,m> | ancestor in Ancestors & <k,l,m> in
Triples : l = ancestor.anc}
 union {<k,l,ancestor.suc> | ancestor in Ancestors & <k,l,m> in
Triples : m = ancestor.anc} ;

 42

{Triple} Triplettes = Triplets diff {<k,l,m> | <k,l,m> in Triplets
& <p,q> in Ancestors : k = p \/ l = p \/ m = p };

solve {
 forall(ordered i, j in Leaves)
 D[i, j] = D[j, i];

 forall(i in Leaves)
 D[i, i] = 0;

 forall(ordered i, j in Leaves)
 D[i, j] > 0 => sum(k in Leaves: k<>i) (D[i, k] =
 D[i, j] - 1) > 0;

 forall (triplette in Triplettes)
 D[triplette.i, triplette.j] > D[triplette.i, triplette.k] =
 D[triplette.j, triplette.k];

 forall(ordered i, j, k in Leaves)
 D[i, j] = D[i, k] <= D[j, k] \/ D[i, j] = D[j, k] <= D[i, k]
\/
 D[i, k] = D[j, k] <= D[i, j];

 forall (<s> in Polytomies)
 forall (ordered i, j in s: i <> s.first() \/ j <>
s.next(s.first()))
 D[i, j] = D[s.first(), s.next(s.first())];
};

display(ordered i, j in Leaves) D[i,j];

The data file:

Species = {
 "Scytodoidea", "Filistatidae", "Amaurobioidea",
 "Lycosoidea", "Eresidae", "Oecobiidae", "Deinopidae",
 "Uloboridae", "Araneoidea", "Dictynoidea",
 "Austrochilidae", "Paleocribellatae", "Gradungulidae",
 "Araneoclada", "Hypochilidae", "Mygalomorphae",
 "Liphistiomorphae", "Amblypygi",

 "Neocribellatae", "Araneomorphae","Orbiculariae",
 "Opisthothelae", "Araneae", "Arachnida"
 };
Triples = {
 <"Scytodoidea", "Filistatidae", "Eresidae">
 <"Amaurobioidea", "Lycosoidea", "Scytodoidea">
 <"Deinopidae", "Uloboridae", "Araneoidea">
 <"Deinopidae", "Araneoidea", "Scytodoidea">
 <"Scytodoidea", "Amaurobioidea", "Araneoidea">
 <"Scytodoidea", "Dictynoidea", "Austrochilidae">
 <"Scytodoidea", "Austrochilidae", "Paleocribellatae">

 <"Gradungulidae", "Austrochilidae", "Araneoclada">
 <"Austrochilidae", "Araneoclada", "Hypochilidae">
 <"Austrochilidae", "Hypochilidae", "Mygalomorphae">
 <"Austrochilidae", "Mygalomorphae", "Liphistiomorphae">

 43

 <"Austrochilidae", "Liphistiomorphae", "Amblypygi">

 <"Orbiculariae", "Dictynoidea", "Austrochilidae">
 <"Araneomorphae", "Mygalomorphae", "Liphistiomorphae">
 <"Araneoclada", "Austrochilidae", "Paleocribellatae">
 <"Neocribellatae", "Hypochilidae", "Mygalomorphae">
 <"Araneomorphae", "Mygalomorphae", "Liphistiomorphae">
 <"Opisthothelae", "Liphistiomorphae", "Amblypygi">
 <"Paleocribellatae", "Hypochilidae", "Mygalomorphae">
 };

Polytomies = {
 <{"Scytodoidea", "Amaurobioidea", "Eresidae",
 "Oecobiidae"}>
 <{"Scytodoidea", "Deinopidae", "Dictynoidea"}>
 };

Ancestors = {
 <"Orbiculariae", "Araneoidea">
 <"Orbiculariae", "Uloboridae">
 <"Orbiculariae", "Deinopidae">

 <"Araneoclada", "Scytodoidea">
 <"Araneoclada", "Filistatidae">
 <"Araneoclada", "Amaurobioidea">
 <"Araneoclada", "Lycosoidea">
 <"Araneoclada", "Eresidae">
 <"Araneoclada", "Oecobiidae">
 <"Araneoclada", "Orbiculariae">
 <"Araneoclada", "Dictynoidea">

 <"Neocribellatae", "Gradungulidae">
 <"Neocribellatae", "Austrochilidae">
 <"Neocribellatae", "Araneoclada">

 <"Araneomorphae", "Neocribellatae">
 <"Araneomorphae", "Hypochilidae">
 <"Araneomorphae", "Paleocribellatae">

 <"Opisthothelae", "Mygalomorphae">
 <"Opisthothelae", "Araneomorphae">

 <"Araneae", "Opisthothelae">
 <"Araneae", "Liphistiomorphae">

 <"Arachnida", "Araneae"> <"Arachnida", "Amblypygi">
 } ;

In this model we declared a Polytomies and Ancestors in the data file

with

 struct Polytomy {
 {string} s;
 };

 {Polytomy} Polytomies =...;
 struct Ancestor {

 44

 string anc;
 string suc;
 };

and using the constraint

 forall (<s> in Polytomies)
 forall (ordered i, j in s: i <> s.first() \/ j <>
s.next(s.first()))

 D[i, j] = D[s.first(), s.next(s.first())];
 };

we stated that the most recent common ancestor for every fan species are

equal.

And using the statement

{string} Leaves = Species diff {ancestor.anc | ancestor in
Ancestors};

we defined the leaves in the supertree by replacing all the ancestors in

Species by their descendants.

By stating

{Triple} Triplets = Triples
 union {<ancestor.suc,l,m> | ancestor in Ancestors & <k,l,m> in
Triples : k = ancestor.anc}
 union {<k,ancestor.suc,m> | ancestor in Ancestors & <k,l,m> in
Triples : l = ancestor.anc}
 union {<k,l,ancestor.suc> | ancestor in Ancestors & <k,l,m> in
Triples : m = ancestor.anc} ;

we define Triplets by adding the descendants to the ancestors in the

Triples enumeration and by

 {Triple} Triplettes = Triplets diff {<k,l,m> | <k,l,m> in
Triplets & <p,q> in Ancestors : k = p \/ l = p \/ m = p };

we define Triplettes by removing the ancestors triples from the

Triplets.

We determined the internal nodes, from the input trees internal nodes

depth (by counting the paranthesis in the newick file representations of

the input trees), to be in the range 0 to 8.

Since the input trees are semi labelled we can’t directly apply the BreakUp

algorithm to collect the triples. Instead we can apply a three step process:

 45

1. for each given tree T, generate triples using BreakUp on T;

2. for each given tree T, generate triples using BreakUp on each tree

obtained from T by cutting all the descendants of some ‘labeled’

internal node of T;

3. if the root of some given tree T is labeled, say N, and is not the root

of some other given tree T', then generate triples using BreakUp on

the subtree of T' rooted at the parent of N, where the subtree rooted

at N has been replaced by T.

In the first step the triples

For T1

 <"Gradungulidae", "Austrochilidae", "Araneoclada">
 <"Austrochilidae", "Araneoclada", "Hypochilidae">
 <"Austrochilidae", "Hypochilidae", "Mygalomorphae">
 <"Austrochilidae", "Mygalomorphae", "Liphistiomorphae">
 <"Austrochilidae", "Liphistiomorphae", "Amblypygi">

and for T2

 <"Scytodoidea", "Filistatidae", "Eresidae">
 <"Amaurobioidea", "Lycosoidea", "Scytodoidea">
 <"Deinopidae", "Uloboridae", "Araneoidea">
 <"Deinopidae", "Araneoidea", "Scytodoidea">
 <"Scytodoidea", "Amaurobioidea", "Araneoidea">
 <"Scytodoidea", "Dictynoidea", "Austrochilidae">
 <"Scytodoidea", "Austrochilidae", "Paleocribellatae">

are generated.

On the second step

For T1

 <"Neocribellatae", "Hypochilidae", "Mygalomorphae">
 <"Araneomorphae", "Mygalomorphae", "Liphistiomorphae">
 <"Opisthothelae", "Liphistiomorphae", "Amblypygi">

for T2

<"Orbiculariae", "Dictynoidea", "Austrochilidae">
 <"Araneoclada", "Austrochilidae", "Paleocribellatae">

On the third step placing “Paleocribellatae” on T2 under

“Araneomorphae” on T1 we get

<"Paleocribellatae", "Hypochilidae", "Mygalomorphae">

 46

To generate the ancestor data structure we placed all the species

under labeled internal node. For example here we didn’t placed all the

species under “Arachnida”. We just stated

<"Arachnida", "Araneae"> <"Arachnida", "Amblypygi">

in order to prevent to state all the species under “Araneae”.

After running the model we get 4 solutions. To generate a graphical

representation of this 4 possible solutions we first produce ultrametric

matrix solutions using an OPL script shown below.

ofile result("matrix.txt");
Model m("Spiders.mod","Spiders.dat") editMode;

int k := 0;
while m.nextSolution() do {
 k := k + 1;
 result << "-Solution " << k << "-" <<endl;
 result << " " << card(m.Leaves) << endl;

 forall(i in m.Leaves) {
 result << i << " ";

 forall(j in m.Leaves) {
 if i=j then
 result << m.D[i,j] << " " ;
 else
 result << 9-m.D[i,j] << " " ;
}
 result << endl;
}
 result << endl;
}
 result.close();

In this script we substracted internal node numbers from nine

(which is out of the range of internal values) in order to get an ultrametric

matrix. The output of the script is shown below.

-Solution 1-
 17
Scytodoidea 0 2 3 3 3 3 4 4 4 4 5 6 5 6 7 8 9
Filistatidae 2 0 3 3 3 3 4 4 4 4 5 6 5 6 7 8 9
Amaurobioidea 3 3 0 2 3 3 4 4 4 4 5 6 5 6 7 8 9
Lycosoidea 3 3 2 0 3 3 4 4 4 4 5 6 5 6 7 8 9
Eresidae 3 3 3 3 0 3 4 4 4 4 5 6 5 6 7 8 9
Oecobiidae 3 3 3 3 3 0 4 4 4 4 5 6 5 6 7 8 9
Deinopidae 4 4 4 4 4 4 0 2 3 4 5 6 5 6 7 8 9
Uloboridae 4 4 4 4 4 4 2 0 3 4 5 6 5 6 7 8 9

 47

Araneoidea 4 4 4 4 4 4 3 3 0 4 5 6 5 6 7 8 9
Dictynoidea 4 4 4 4 4 4 4 4 4 0 5 6 5 6 7 8 9
Austrochilidae 5 5 5 5 5 5 5 5 5 5 0 6 4 6 7 8 9
Paleocribellatae 6 6 6 6 6 6 6 6 6 6 6 0 6 6 7 8 9
Gradungulidae 5 5 5 5 5 5 5 5 5 5 4 6 0 6 7 8 9
Hypochilidae 6 6 6 6 6 6 6 6 6 6 6 6 6 0 7 8 9
Mygalomorphae 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0 8 9
Liphistiomorphae 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 9
Amblypygi 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0

-Solution 2-
 17
Scytodoidea 0 2 3 3 3 3 4 4 4 4 5 6 5 6 7 8 9
Filistatidae 2 0 3 3 3 3 4 4 4 4 5 6 5 6 7 8 9
Amaurobioidea 3 3 0 2 3 3 4 4 4 4 5 6 5 6 7 8 9
Lycosoidea 3 3 2 0 3 3 4 4 4 4 5 6 5 6 7 8 9
Eresidae 3 3 3 3 0 3 4 4 4 4 5 6 5 6 7 8 9
Oecobiidae 3 3 3 3 3 0 4 4 4 4 5 6 5 6 7 8 9
Deinopidae 4 4 4 4 4 4 0 2 3 4 5 6 5 6 7 8 9
Uloboridae 4 4 4 4 4 4 2 0 3 4 5 6 5 6 7 8 9
Araneoidea 4 4 4 4 4 4 3 3 0 4 5 6 5 6 7 8 9
Dictynoidea 4 4 4 4 4 4 4 4 4 0 5 6 5 6 7 8 9
Austrochilidae 5 5 5 5 5 5 5 5 5 5 0 6 4 6 7 8 9
Paleocribellatae 6 6 6 6 6 6 6 6 6 6 6 0 6 5 7 8 9
Gradungulidae 5 5 5 5 5 5 5 5 5 5 4 6 0 6 7 8 9
Hypochilidae 6 6 6 6 6 6 6 6 6 6 6 5 6 0 7 8 9
Mygalomorphae 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0 8 9
Liphistiomorphae 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 9
Amblypygi 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0

-Solution 3-
 17
Scytodoidea 0 1 2 2 2 2 3 3 3 3 4 5 4 6 7 8 9
Filistatidae 1 0 2 2 2 2 3 3 3 3 4 5 4 6 7 8 9
Amaurobioidea 2 2 0 1 2 2 3 3 3 3 4 5 4 6 7 8 9
Lycosoidea 2 2 1 0 2 2 3 3 3 3 4 5 4 6 7 8 9
Eresidae 2 2 2 2 0 2 3 3 3 3 4 5 4 6 7 8 9
Oecobiidae 2 2 2 2 2 0 3 3 3 3 4 5 4 6 7 8 9
Deinopidae 3 3 3 3 3 3 0 1 2 3 4 5 4 6 7 8 9
Uloboridae 3 3 3 3 3 3 1 0 2 3 4 5 4 6 7 8 9
Araneoidea 3 3 3 3 3 3 2 2 0 3 4 5 4 6 7 8 9
Dictynoidea 3 3 3 3 3 3 3 3 3 0 4 5 4 6 7 8 9
Austrochilidae 4 4 4 4 4 4 4 4 4 4 0 5 3 6 7 8 9
Paleocribellatae 5 5 5 5 5 5 5 5 5 5 5 0 5 6 7 8 9
Gradungulidae 4 4 4 4 4 4 4 4 4 4 3 5 0 6 7 8 9
Hypochilidae 6 6 6 6 6 6 6 6 6 6 6 6 6 0 7 8 9
Mygalomorphae 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0 8 9
Liphistiomorphae 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 9
Amblypygi 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0

-Solution 4-
 17
Scytodoidea 0 1 2 2 2 2 3 3 3 3 4 6 4 5 7 8 9
Filistatidae 1 0 2 2 2 2 3 3 3 3 4 6 4 5 7 8 9
Amaurobioidea 2 2 0 1 2 2 3 3 3 3 4 6 4 5 7 8 9
Lycosoidea 2 2 1 0 2 2 3 3 3 3 4 6 4 5 7 8 9
Eresidae 2 2 2 2 0 2 3 3 3 3 4 6 4 5 7 8 9
Oecobiidae 2 2 2 2 2 0 3 3 3 3 4 6 4 5 7 8 9

 48

Deinopidae 3 3 3 3 3 3 0 1 2 3 4 6 4 5 7 8 9
Uloboridae 3 3 3 3 3 3 1 0 2 3 4 6 4 5 7 8 9
Araneoidea 3 3 3 3 3 3 2 2 0 3 4 6 4 5 7 8 9
Dictynoidea 3 3 3 3 3 3 3 3 3 0 4 6 4 5 7 8 9
Austrochilidae 4 4 4 4 4 4 4 4 4 4 0 6 3 5 7 8 9
Paleocribellatae 6 6 6 6 6 6 6 6 6 6 6 0 6 6 7 8 9
Gradungulidae 4 4 4 4 4 4 4 4 4 4 3 6 0 5 7 8 9
Hypochilidae 5 5 5 5 5 5 5 5 5 5 5 6 5 0 7 8 9
Mygalomorphae 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0 8 9
Liphistiomorphae 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 9
Amblypygi 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0

The number of 17 at the head of the ultrametric matrix, computed

from

result << " " << card(m.Leaves) << endl;

gives us the number of species, which is required in the input file by

the tree drawing software PHYLIP [20].

Using the first solution matrix on PHYLIP we can generate in

Newick tree format [21] one of the 4 possible solutions. Finally we use

TreeView software [22] to generate the final tree shown in Figure 3.14.

Figure 3.14: One of the four possible supertree solution generated after
combining the input trees in Figure 3.13.

 49

CHAPTER 4

CONCLUSIONS

It has been shown much interest in phylogenetic systematics

recently. Because it is a method for biologists to reconstruct the pattern of

events that have led to the distribution and diversity of life. Due to the

“Tree of Life” initiatives [19] [23], and studies the researchers have tried to

find some new methods to combine large number of trees to construct

phylogenies on hundreds, or even thousands of species, where the

construction of Supertree is one of these methods and in which we tried to

approach in a different way, using constraint programming.

The advantages of using constraint programming was the ability

to model different types of model by adding only one or two new

constraints and to get every possible solutions.

It is important to note that all of the models described in this

thesis provides a solution or no solution. Which means that each

algorithm either returns a supertree with certain desirable properties

relative to the input or returns a statement indicating that there is no

such supertree, which is limiting their use. However this can be

progressed to some models which will always return a supertree and

 50

whose input includes information that goes beyond the properties shown

here.

 R1

REFERENCES

1. Pennisi, E. (2003), Modernizing the Tree of Life, Science, vol. 300, pp.
1692-1697.

2. Gent, IP. et al. (2003), Supertree Construction Using Constraint
Programming, in:Lecture Notes in Computer Science 2833, Rossi, F (ed),
Proc. 9th International Conference on Principles and Practice of
Constraint Programming (CP'2003), Springer.

3. Apt., K. R. (2003), Principles of Constraint Programming, Cambridge
University Press.

4. Marriott, K., Stuckey, P. (1998), Programming With Constraints: An
Introduction, MIT Press.

5. Dechter, R. (2003), Constraint Processing. Morgan Kaufmann Publishers.

6. Van Hentenryck, P. (1999), The OPL Optimization Programming Language,
MIT Press.

7. http://www.ilog.com, “Ilog”.

8. Ng, M. P., Wormald, N. C. (1995), Reconstruction of Rooted Trees From
Subtrees, Discrete Applied Mathematics, 69:19-31.

9. Bryant, D., Steel, M. (1995), Extension Operation on Sets of leaf-labeled
Trees, Advances in Applied Mathematics, 16:425-453.

10. Semple, C., Steel, M. (2000), A Supertree Method For Rooted Trees,
Discrete Applied Mathematics, 105:147-158.

11. Page, R. D. M. (2002), Modified Mincut Supertrees, Proceedings of the
Second International Workshop on Algorithms in Bioinformatics (WABI
2002), pp.537-552, Springer.

 R2

12. Tsang, E.P.K. (1993), Foundations of Constraint Satisfaction, Academic
Press, London and San Diego.

13. Schröder, E. (1870), Vier Combinatorische Probleme, Zeit. für Math. Phys.

14. Semple, C. and Steel, M. (2004). Cyclic Permutations and Evolutionary
Trees, Advances in Applied Mathematics 32(4): 669-680.

15. Bryant, D. et al. (2004), Supertree Methods for Ancestral Divergence Dates
and Other Applications. In Phylogenetic Supertrees: Combining Information
to Reveal the Tree of Life (ed. O. Bininda-Edmonds), Computational Biology
Series, Kluwer, pp.129-150.

16. Semple, C. et al. (2004), Supertree Algorithms for Ancestral Divergence
Dates and Nested Taxa, Bioinformatics 20, pp. 2355-2360.

17. Aho, A. V. et al. (1981), Inferring a Tree From Lowest Common Ancestors

With an Application to the Optimization of Relational Expressions, SIAM
Journal on Computing 10:405-421.

18. Daniel, P. and Semple, C. (2004), Supertree Algorithms for Nested Taxa.
In Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life
(ed. O. Bininda-Edmonds), Computational Biology Series, Kluwer, pp.151-
171.

19. http://www.treebase.org, “Treebase”.

20. http://evolution.genetics.washington.edu/phylip.html, “PHYLIP Software”.

21. http://evolution.genetics.washington.edu/phylip/newicktree.html, “Newick
Tree File”.

22. http://darwin.zoology.gla.ac.uk/~rpage/treeviewx/, “Treeview”.

23. http://tolweb.org/tree/, “Tree of Life”.

