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TRAVELLING WAVES SOLUTION FOR FRACTIONAL-ORDER

BIOLOGICAL POPULATION MODEL

Hassan Khan1, Rasool Shah1, J.F. Gómez-Aguilar2,3,*, Shoaib1,
Dumitru Baleanu4,5,6 and Poom Kumam7,8

Abstract. In this paper, we implemented the generalized (G
′

G
) and extended (G

′

G
) methods to solve

fractional-order biological population models. The fractional-order derivatives are represented by the
Caputo operator. The solutions of some illustrative examples are presented to show the validity of
the proposed method. First, the transformation is used to reduce the given problem into ordinary

differential equations. The ordinary differential equation is than solve by using modified (G
′

G
) method.

Different families of traveling waves solutions are constructed to explain the different physical behavior
of the targeted problems. Three important solutions, hyperbolic, rational and periodic, are investigated
by using the proposed techniques. The obtained solutions within different classes have provided effective
information about the targeted physical procedures. In conclusion, the present techniques are considered
the best tools to analyze different families of solutions for any fractional-order problem.

Mathematics Subject Classification. 34A34, 35A20, 35A22, 44A10, 33B15.

Received December 11, 2020. Accepted March 19, 2021.

1. Introduction

Fractional-Order Partial Differential Equations (FPDEs) are frequently used in different physical phenomena
in applied science such as biology, physics, engineering, systems identification, signal processing, control theory,
fractional dynamics and finance. These applications of FPDEs in various research areas have attracted the
researchers towards the subject of fractional calculus and particularly towards the study of FPDEs [10, 23,
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24, 28]. In this regard, mathematicians have developed different techniques to solve FPDEs, which arise in
various areas of applied science. Numerous numerical and analytical techniques have been developed [13, 17, 19–
21, 26, 27, 29, 35] to investigate the solution of FPDEs. It is observed extensively that the analytical methods
are difficult to apply for such problems and therefore it is considered a tough topic for mathematicians. In
this connection some efficient and powerful analytical methods have been suggested such as the Hirota method
[9], inverse scattering transform [1], the truncated Painleve expansion [14], the exp-function method [7], the
Weierstrass elliptic function method [29], the simplest equation method [27], the Jacobi elliptic function method

[19], ADM [35], the tanh-function method [9], the homogeneous balance method [1], the (G
′

G )-expansion method
[7, 14] and so on.

Among these analytical methods, the most updated and reliable technique has been used, which is known as

(G
′

G )-expansion method, for the solutions of FPDEs [15, 16, 18]. Initially, Wang et al. [6] have introduced the

latest version of (G
′

G )-expansion method. In this approach, the traveling wave solutions can be written in the
following form

V (ξ) =

n∑
j=0

aj(
G′

G
)j ,

where aj 6= 0.

Later on, Zhang et al. [22] have extended the simple (G
′

G )-expansion method for the traveling wave solutions

of some non-linear PDEs. In the extended (G
′

G )-expansion method the solution can be expressed in the following
form

V (ξ) =

n∑
j=−n

aj(
G′

G
)j ,

where a−n and an are not equal to 0 at same time.
Furthermore, this method is further modified for the solution of non-linear PDEs and FPDEs and can be

written in the following form

V (ξ) =

n∑
j=−n

aj(l +
G′

G
)j .

This method is called modified (G
′

G )-expansion method.

For all (G
′

G )-expansion methods mentioned above, the general solution of a linear second-order ordinary
differential equation (ODE) with some constant coefficients have been used to solve FPDEs. The Maple soft-

ware has been used to carry out the whole procedure by using an algorithm of (G
′

G )-expansion method. The
obtained analytical solutions include periodic and solitary wave solutions. These traveling wave solutions are
then presented in terms of trigonometric, hyperbolic and rational functions.

The aim of this article, is to use two modified (G
′

G )-expansion methods called extended (G
′

G )-expansion

method and generalized (G
′

G )-expansion method for the analytical solutions of a (2+1)-dimensional degenerated
fractional-order parabolic equation arising in spatial diffusion of biological populations. The general form of this
equation is given as [12]:

vσt (t, x, y) = v2
xx(t, x, y) + v2

yy(t, x, y) + f(v), x, y ∈ R, t ≥ 0 (1.1)
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where v represents the population density and f denotes supply of populations due to deaths and births. Both
v and f(v) are the functions of time t and position x, y in a region R and set out the diffusion of a biological
species in R. The function v(x, y, t) exhibits the number of individuals in an unit volume at time t and position
x, y. Over any subregion, the integral of v(x, y, t) presents the total population of that subregion at any time
t. The function f(v) shows the average rate at that individuals are supplied per unit volume at x, y by deaths
and births straightforwardly. For σ → 1 , the following three examples of constitutive equations for f(v) are:

1. f(v) = c where c is a arbitrary constant. This leads to Malthusian Law,
2. f(v) = v(c1 − c2v), where c1 and c2 are +ive constants. This leads to Verhulst Law,
3. f(v) = −cvr, where c ≥ 0 and 0 < r < 1. It leads to Porous Media.

In present research work, we have considered the following particular forms of (1.1) i.e.:

vσt (t, x, y) = v2
xx(t, x, y) + v2

yy(t, x, y) + h(v2 − r), (1.2)

and

vσt (t, x, y) = v2
xx(t, x, y) + v2

yy(t, x, y) + v(1− rv), (1.3)

where fractional derivative vσt is described in the Riemann-Liouville derivative sense. This derivative operator
is defined as:

Dσ
t f(t) =


1

Γ(1−σ)
d
dt

∫ t
0
(t− φ)−α(f(φ)− f(0))dφ,

1 > σ > 0,
(f (a)(t))(σ−a), a+ 1 > σ ≥ a, a ≥ 1.

with the properties

Dσ
t t
r =

Γ(1 + r)

Γ(1 + r − σ)
tr−σ,

Dσ
t (x(t)y(t)) = y(t)Dσ

t x(t) + x(t)Dσ
t y(t),

Dσ
t x(y(t)) = Dσ

g x[y(t)](g
′
(t))σ.

Before the present research work, the mathematicians have used various techniques to solve biological pop-
ulation models. In this respect, Samia Bushnaq et al. [33] have extended the optimal homotopy asymptotic
method (OHAM) to solve fractional-order biological population models. Fatemeh Shakeri and Mehdi Dehghan
have found the numerical solution of some biological population models using He’s variational iteration method
(VIM) [12]. El-Sayed et al. have solved four biological problems with the help of ADM [4]. Baleanu et al. have
investigated the biological models’ solution by using a simple (G’/G)-expansion method [31].

In this paper, two types of (G
′

G )-expansion methods have been used for the solutions of equations (1.2) and
(1.3). It is concluded that the present study provides more families of traveling waves solutions and therefore
analyze the physical problems in more directions as previously done by other methods.

The rest paper structure is as follows: Section 2 provides the methodology of the proposed method; in
Section 3, analytical solutions of some selected biological population models are presented; some graphs of
solution functions and discussion upon our study are presented in Section 4. Finally, a brief conclusion has been
listed.
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2. The (G
′

G
)-expansion method

In this section, the mechanism of (G
′

G )-expansion method for the solutions of FPDEs is presented. For this
purpose, we consider the general non-linear FPDE given as:

Q(v,Dα
t v,D

β
x1
v,Dγ

x2
v,Dδ

x3
v, vDα

x1
v. . . ) = 0, 0 < α, β, γ, δ ≤ 1, (2.1)

where v is an unknown function of x1, x2, x3, . . . , xn and t, Q is a polynomial in v and its fractional partial
derivatives. To solve (2.2), the following steps are taken:

i. First, a variable transformation called complex transformation given as [32]:

v(t, x1, x2 · · ·xn) = v(ϕ),

where ϕ = a
tα

Γ(α+ 1)
+ b

xβ1
Γ(β + 1)

+ · · ·+ ϕ0,
(2.2)

where a, b, . . . , ϕ0 are arbitrary constants, is applied.
ii. This transformation converts (2.2) into a non-linear ODE of the form:

P (V, V ′, V ′′, V V ′, . . . ) = 0, (2.3)

where the derivatives of V in (2.3) are w. r .t ϕ. If possible, (2.3) can be integrated w.r.t ϕ one or more
time.

iii. In third step we suppose G′

G solution for (2.3). This solution is expressed in the following cases:

Case 1: The extended G′

G -expansion method represents the following series form solution:

V (ϕ) =

n∑
i=−n

ci(
G′(ϕ)

G(ϕ)
)i, (2.4)

Case 2: The generalized G′

G -expansion method represents the following series form solution:

V (ϕ) =

n∑
i=−n

ci(d+
G′(ϕ)

G(ϕ)
)i, (2.5)

where c′is and d are constants to be determined later. The positive integer n present in equations (2.4)
and (2.5) is called balance number and can be calculated by taking the homogenous balance between
the nonlinear terms and the highest order derivatives terms in equation (2.3). More precisely the balance
number can be found by using the following formulae [27]:

D(
dqV

dϕq
) = n+ q

D(V p(
dqV

dϕq
)s) = np+ s(q + n),

(2.6)

where D denotes degree of V (ϕ) i.e. D[V (ϕ)] = n while p, q and s are positive integers.
The function G(ϕ) present in equations (2.4) and (2.5), satisfies the following second-order linear ODEs:

G′′(ϕ) + λG′(ϕ) + µG(ϕ) = 0, (2.7)
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where λ and µ are arbitrary constants. By the general solution of equation (2.7) we have [27]:

(
G′

G
) =


√
D
2

C1sinh(
√

D
2 ϕ)+C2cosh(

√
D
2 ϕ)

C1cosh(
√

D
2 ϕ)+C2sinh(

√
D
2 ϕ)

− λ
2 D > 0

√
−D
2

−C1sin(
√
−D
2 ϕ)+C2cos(

√
−D
2 ϕ)

C1cos(
√
−D
2 ϕ)+C2sin(

√
−D
2 ϕ)

− λ
2 D < 0

C2

C1+C2ϕ
− λ

2 D = 0,

(2.8)

where D = λ2 − 4µ while C1 and C2 are arbitrary constants.
iv. According to the method, (2.4) or (2.5) with the help of (2.7) is substituted in (2.3) which provides a

polynomial in (G
′(ξ)
G(ξ) ).

v. Equating all coefficients of the same powers of (G
′(ξ)
G(ξ) ) in the subsequent polynomial to zero provides a

system of non-linear algebraic equations in c′is, λ and µ.
vi. The resultant system is then solved by using Maple software which determine the values of c′is, λ and µ.

By putting all obtained values of unknown coefficients in (2.4) or (2.5) and using (2.8) we get families of
analytical solutions for (2.2).

3. Problems

In this section, solutions for the targeted fractional-order biological populations models are presented.

3.1. Problem 1

Consider the first biological population model given in (1.2):

vσt (t, x, y) = v2
xx(t, x, y) + v2

yy(t, x, y) + h(v2 − r), (3.1)

applying the transformation of the form

v(t, x, y) = v(ϕ), where ϕ =
ct

Γ(σ + 1)
+ kx+ ly, (3.2)

the following non-linear ODE is yielded,

cV ′ − h(V 2 − r) = 0. (3.3)

Balancing cV ′ with V 2 with the help of (2.6) we get n = 1.

3.2. Application of extended (G
′

G
)-expansion method

Putting n = 1 in equation (2.4) we get the following G
′

G for equation (3.3):

V (ϕ) = c−1(
G′(ϕ)

G(ϕ)
)−1 + c0 + c1(

G′(ϕ)

G(ϕ)
)1, (3.4)

where c−1, c0 and c1 are constants to be determined. Now putting equation (3.4) into equation (3.3) with

the help of equation (2.7) we get a polynomial in G′(ϕ)
G(ϕ) . By coefficient comparison in the polynomial we get a

system of algebraic equations. Solving this system with the help of Maple for c−1, c0, c1, c, h, k and r we get
the following cases of solutions:
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Case 1:

c0 = c0, c1 = 0, c−1 =
2µc0
λ

, c = c, h =
cλ

2c0
, r =

Dc20
λ2

, k = il, (3.5)

Case 2:

c0 =
c1λ

2
, c1 = c1, c−1 = 0, c = −hc1, h = h, r = c21(

λ2

4
− µ), k = il, (3.6)

Case 3:

c0 = c0, c1 = c1, c−1 = c−1, c = h = 0, r = r, k = il, (3.7)

where i =
√
−1 in above cases.

Now considering case 1, we have obtained the following families of travelling wave solutions.

Family 1: When D < 0 then equation (3.4) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V1 = c0 +
2µc0
λ

(√
−D
2

tan(

√
−D
2

ϕ)− Aλ

2

)−1

, (3.8)

(ii) When C1 = 0 and C2 6= 0

V2 = c0 +
2µc0
λ

(√
−D
2

cot(

√
−D
2

ϕ)− λ

2

)−1

, (3.9)

where ϕ = ct
Γ(σ+1) + kx+ ly.

Family 2: When D > 0 then equation (3.4) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V3 = c0 +
2µc0
λ

(√
D

2
tanh(

√
D

2
ϕ)− λ

2

)−1

, (3.10)

(ii) When C1 = 0 and C2 6= 0

V4 = c0 +
2µc0
λ

(√
D

2
coth(

√
D

2
ϕ)− λ

2

)−1

, (3.11)

where ϕ = ct
Γ(σ+1) + kx+ ly.
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Family 3: When D = 0 then equation (3.4) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V5 = c0 +
2µc0
λ

(
−λ

2

)−1

, (3.12)

(ii) When C1 = 0 and C2 6= 0

V6 = c0 +
2µc0
λ

(
1

ϕ
− λ

2

)−1

, (3.13)

where ϕ = ct
Γ(σ+1) + kx+ ly.

Now considering Case 2 we have obtained the following families of travelling wave solutions.

Family 4: When D < 0 then equation (3.4) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V7 =
c1λ

2
+ c1

(√
−D
2

tan(

√
−D
2

ϕ)− Aλ

2

)1

, (3.14)

(ii) When C1 = 0 and C2 6= 0

V8 =
c1λ

2
+ c1

(√
−D
2

cot(

√
−D
2

ϕ)− λ

2

)1

, (3.15)

where ϕ = −hc1t
Γ(σ+1) + kx+ ly.

Family 5: When D > 0 then equation (3.4) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V9 =
c1λ

2
+ c1

(√
D

2
tanh(

√
D

2
ϕ)− λ

2

)1

, (3.16)

(ii) When C1 = 0 and C2 6= 0

V10 =
c1λ

2
+ c1λ

(√
D

2
coth(

√
D

2
ϕ)− λ

2

)1

, (3.17)

where ϕ = −hc1t
Γ(σ+1) + kx+ ly.

Family 6: When D = 0 then equation (3.4) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V11 =
c1λ

2
+ c1

(
−λ

2

)1

, (3.18)
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(ii) When C1 = 0 and C2 6= 0

V12 =
c1λ

2
+ c1λ

(
1

ϕ
− λ

2

)1

, (3.19)

where ϕ = −hc1t
Γ(σ+1) + kx+ ly.

Now considering Case 3 we have obtained the following families of travelling wave solutions.

Family 7: When D < 0 then equation (3.4) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V13 = c−1

(√
−D
2

tan(

√
−D
2

ϕ) +
λ

2

)−1

+ c0 + c1

(√
−D
2

tan(

√
−D
2

ϕ) +
λ

2

)
, (3.20)

(ii) When C1 = 0 and C2 6= 0,

V14 = c−1

(√
−D
2

cot(

√
−D
2

ϕ) +
λ

2

)−1

+ c0 + c1

(√
−D
2

cot(

√
−D
2

ϕ) +
λ

2

)
, (3.21)

where ϕ = kx+ ly.

Family 8: When D > 0 then equation (3.4) and equation (2.8) intimate the following solutions: (i) When
C1 6= 0 and C2 = 0

V15 = c−1

(√
D

2
tanh(

√
D

2
ϕ) +

λ

2

)−1

+ c0 + c1

(√
−D
2

tanh(

√
D

2
(ϕ)) +

λ

2

)
, (3.22)

(ii) When C1 = 0 and C2 6= 0,

V16 = c−1

(√
D

2
coth(

√
D

2
ϕ) +

λ

2

)−1

+ c0 + c1

(√
D

2
coth(

√
D

2
(ϕ)) +

λ

2

)
, (3.23)

where ϕ = kx+ ly.

Family 9: When D = 0 then equation (3.4) and equation (2.8) intimate the following solutions: (i) When
C1 6= 0 and C2 = 0

V17 = c−1

(
λ

2

)−1

+ c0 + c1

(
λ

2

)
, (3.24)

(ii) When C1 = 0 and C2 6= 0,

V18 = c−1

(
1

ϕ
− λ

2

)−1

+ c0 + c1

(
1

ϕ
− λ

2

)
, (3.25)

where ϕ = kx+ ly.
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3.3. Application of Generalized (G
′

G
)-expansion method

Putting n = 1 in equation (2.5) we get the following G
′

G for equation (3.3):

V (ϕ) = c−1(d+
G′(ϕ)

G(ϕ)
)−1 + c0 + c1(d+

G′(ϕ)

G(ϕ)
)1, (3.26)

where c−1, c0, d and c1 are constants to be determined. Now putting equation (3.26) into equation (3.3) with

the help of equation (2.7) we get a polynomial in G′(ϕ)
G(ϕ) . By coefficient comparison in the polynomial we get a

system of algebraic equations. Solving this system with the help of Maple for c−1, c0, c1, c, h, l, k and r we get
the following cases of solutions:

Case 1:

c0 = − c−1(λ− 2d)

−µ+ dλ− d2
, c1 = 0, c−1 = c−1, c = c, d = d,

h =
−c(−µ+ dλ− d2)

c−1
, r =

Dc2−1

4(−µ+ dλ− d2)2
, k = il,

(3.27)

Case 2:

c0 = −c1d+
c1λ

2
, c1 = c1, c−1 = 0, c = −hc1, h = h, r = c21

λ2 − µ
4

,

d = d, k = il,

(3.28)

Case 3:

c0 = c0, c1 = c1, c−1 = c−1, d = d, c = h = 0, r = r, k = il, (3.29)

Case 4:

c0 = 0, c1 = c1, c−1 = −µc1 +
λ2c1

4
, d = d, c = −hc1, h = h, r = c21D,

l =
λ

2
, k = il,

(3.30)

where i =
√
−1 in above cases.

Now considering Case 1 we have obtained the following families of travelling wave solutions.

Family 1: When D < 0 then equation (3.4) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V1 = − c−1(λ− 2d)

−µ+ dλ− d2
+ c−1

(
d+

√
−D
2

tan(

√
−D
2

ϕ)− Aλ

2

)−1

, (3.31)
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(ii) When C1 = 0 and C2 6= 0

V2 = − c−1(λ− 2d)

−µ+ dλ− d2
+ c−1d+

(√
−D
2

cot(

√
−D
2

ϕ)− λ

2

)−1

, (3.32)

where ϕ = ct
Γ(σ+1) + kx+ ly.

Family 2: When D > 0 then equation (3.4) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V3 = − c−1(λ− 2d)

−µ+ dλ− d2
+ c−1

(
d+

√
D

2
tanh(

√
D

2
ϕ)− λ

2

)−1

, (3.33)

(ii) When C1 = 0 and C2 6= 0

V4 = − c−1(λ− 2d)

−µ+ dλ− d2
+ c−1

(
d+

√
D

2
coth(

√
D

2
ϕ)− λ

2

)−1

, (3.34)

where ϕ = ct
Γ(σ+1) + kx+ ly.

Family 3: When D = 0 then equation (3.4) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V5 = − c−1(λ− 2d)

−µ+ dλ− d2
+ c−1

(
d− λ

2

)−1

, (3.35)

(ii) When C1 = 0 and C2 6= 0

V6 = − c−1(λ− 2d)

−µ+ dλ− d2
+ c−1

(
d+

1

ϕ
− λ

2

)−1

, (3.36)

where ϕ = ct
Γ(σ+1) + kx+ ly.

Now considering Case 2 we have obtained the following families of travelling wave solutions.

Family 4: When D < 0 then equation (3.4) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V7 = −c1d+
c1λ

2
+ c1

(
d+

√
−D
2

tan(

√
−D
2

ϕ)− Aλ

2

)1

, (3.37)

(ii) When C1 = 0 and C2 6= 0

V8 = −c1d+
c1λ

2
+ c1

(
d+

√
−D
2

cot(

√
−D
2

ϕ)− λ

2

)1

, (3.38)
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where ϕ = −hc1t
Γ(σ+1) + kx+ ly.

Family 5: When D > 0 then equation (3.4) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V9 = −c1d+
c1λ

2
+ c1

(
d+

√
D

2
tanh(

√
D

2
ϕ)− λ

2

)1

, (3.39)

(ii) When C1 = 0 and C2 6= 0

V10 = −c1d+
c1λ

2
+ c1λ

(
d+

√
D

2
coth(

√
D

2
ϕ)− λ

2

)1

, (3.40)

where ϕ = −hc1t
Γ(σ+1) + kx+ ly.

Family 6: When D = 0 then equation (3.4) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V11 = −c1d+
c1λ

2
+ c1

(
d− λ

2

)1

, (3.41)

(ii) When C1 = 0 and C2 6= 0

V12 = −c1d+
c1λ

2
+ c1λ

(
d+

1

ϕ
− λ

2

)1

, (3.42)

where ϕ = −hc1t
Γ(σ+1) + kx+ ly.

Now considering Case 3 we have obtained the following families of travelling wave solutions.

Family 7: When D < 0 then equation (3.4) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V13 = c−1

(
d+

√
−D
2

tan(

√
−D
2

ϕ) +
λ

2

)−1

+ c0 + c1

(
d+

√
−D
2

tan(

√
−D
2

ϕ) +
λ

2

)
,

(3.43)

(ii) When C1 = 0 and C2 6= 0

V14 = c−1

(
d+

√
−D
2

cot(

√
−D
2

ϕ) +
λ

2

)−1

+ c0 + c1

(
d+

√
−D
2

cot(

√
−D
2

ϕ) +
λ

2

)
,

(3.44)

where ϕ = kx+ ly.
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Family 8: When D > 0 then equation (3.4) and equation (2.8) intimate the following solutions: (i) When
C1 6= 0 and C2 = 0

V15 = c−1

(
d+

√
D

2
tanh(

√
D

2
ϕ) +

λ

2

)−1

+ c0 + c1

(
d+

√
−D
2

tanh(

√
D

2
(ϕ)) +

λ

2

)
, (3.45)

(ii) When C1 = 0 and C2 6= 0

V16 = c−1

(
d+

√
D

2
coth(

√
D

2
ϕ) +

λ

2

)−1

+ c0 + c1

(
d+

√
D

2
coth(

√
D

2
(ϕ)) +

λ

2

)
, (3.46)

where ϕ = kx+ ly.

Family 9: When D = 0 then equation (3.4) and equation (2.8) intimate the following solutions: (i) When
C1 6= 0 and C2 = 0

V17 = c−1

(
d+

λ

2

)−1

+ c0 + c1

(
d+

λ

2

)
, (3.47)

(ii) When C1 = 0 and C2 6= 0

V18 = c−1

(
d+

1

ϕ
− λ

2

)−1

+ c0 + c1

(
d+

1

ϕ
− λ

2

)
, (3.48)

where ϕ = kx+ ly.

Now considering Case 4 we have obtained the following families of travelling wave solutions.

Family 10: When D < 0 then equation (3.4) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V19 =(−µc1 +
λ2c1

4
)

(
d+

√
−D
2

tan(

√
−D
2

ϕ) +
λ

2

)−1

+ c1

(
d+

√
−D
2

tan(

√
−D
2

ϕ) +
λ

2

)
,

(3.49)

(ii) When C1 = 0 and C2 6= 0

V20 =(−µc1 +
λ2c1

4
)

(
d+

√
−D
2

cot(

√
−D
2

ϕ) +
λ

2

)−1

+ c1

(
d+

√
−D
2

cot(

√
−D
2

ϕ) +
λ

2

)
,

(3.50)

where ϕ = −hc1t
Γ(σ+1) + kx+ ly.
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Family 11: When D > 0 then equation (3.4) and equation (2.8) intimate the following solutions: (i) When
C1 6= 0 and C2 = 0

V21 =(−µc1 +
λ2c1

4
)

(
d+

√
D

2
tanh(

√
D

2
ϕ) +

λ

2

)−1

+ c1

(
d+

√
−D
2

tanh(

√
D

2
(ϕ)) +

λ

2

)
,

(3.51)

(ii) When C1 = 0 and C2 6= 0

V22 =(−µc1 +
λ2c1

4
)

(
d+

√
D

2
coth(

√
D

2
ϕ) +

λ

2

)−1

+ c1

(
d+

√
D

2
coth(

√
D

2
(ϕ)) +

λ

2

)
,

(3.52)

where ϕ = −hc1t
Γ(σ+1) + kx+ ly.

Family 12: When D = 0 then equation (3.4) and equation (2.8) intimate the following solutions: (i) When
C1 6= 0 and C2 = 0

V23 = (−µc1 +
λ2c1

4
)

(
d+

λ

2

)−1

+ c1

(
d+

λ

2

)
, (3.53)

(ii) When C1 = 0 and C2 6= 0

V24 = −(µc1 +
λ2c1

4
)

(
d+

1

ϕ
− λ

2

)−1

+ c1

(
d+

1

ϕ
− λ

2

)
, (3.54)

where ϕ = −hc1t
Γ(σ+1) + kx+ ly.

3.4. Problem 2

Consider the second biological population model given in equation (1.3):

vσt (t, x, y) = v2
xx(t, x, y) + v2

yy(t, x, y) + v(1− rv), (3.55)

applying the transformation of the form

v(t, x, y) = v(ϕ) where ϕ =
ct

Γ(σ + 1)
+ kx+ ly, (3.56)

the following non-linear ODE is yielded,

cV ′ − V (1− rV ) = 0 (3.57)
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Balancing cV ′ with V 2 with the help of equation (2.6) we get n = 1.

3.5. Application of extended (G
′

G
)-expansion method

Putting n = 1 in equation (2.4) we get the following G
′

G for equation (3.57):

V (ϕ) = c−1(
G′(ϕ)

G(ϕ)
)−1 + c0 + c1(

G′(ϕ)

G(ϕ)
)1, (3.58)

where c−1, c0 and c1 are constants to be determined. Now putting equation (3.58) into equation (3.57) with

the help of equation (2.7) we get a polynomial in G′(ϕ)
G(ϕ) . By coefficient comparison in the polynomial we get a

system of algebraic equations. Solving this system with the help of Maple for c−1, c0, c1, c, λ, k and µ we get
the following cases of solutions:

Case 1:

c0 = c0, c1 = 0, c−1 = c−1, c = −c0(−1 + c0r)

c−1
, λ =

c−1(−1 + 2c0r)

c0(−1 + c0r)
,

µ =
c2−1r

c0(−1 + c0r)
, k = il.

(3.59)

Case 2:

c0 = c0, c1 = c1, c−1 = 0, c = c1r, r 6= 0, λ =
−1 + 2c0r

c
, µ =

c0(−1 + c0r)

c21r
,

k = il.

(3.60)

Case 3:

c0 =
1

2r
, c1 =

1

16c−1r2
, c−1 = c−1, c =

1

16c−1r
, λ = 0, µ = −16r2, r 6= 0 (3.61)

where i =
√
−1 in above cases.

Now considering Case 1 we have obtained the following families of travelling wave solutions.

Family 1: When D < 0 then then equation (3.58) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V1 = c0 + c−1

(√
−D
2

tan(

√
−D
2

ϕ)− Aλ

2

)−1

, (3.62)

(ii) When C1 = 0 and C2 6= 0

V2 = c0 + c−1

(√
−D
2

cot(

√
−D
2

ϕ)− λ

2

)−1

, (3.63)
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where ϕ =
− c0(−1+c0r)

c−1
t

Γ(σ+1) + kx+ ly.

Family 2: When D > 0 then equation (3.58) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V3 = c0 + c−1

(√
D

2
tanh(

√
D

2
ϕ)− λ

2

)−1

, (3.64)

(ii) When C1 = 0 and C2 6= 0

V4 = c0 + c−1

(√
D

2
coth(

√
D

2
ϕ)− λ

2

)−1

, (3.65)

where ϕ =
− c0(−1+c0r)

c−1
t

Γ(σ+1) + kx+ ly.

Family 3: When D = 0 then equation (3.58) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V5 = c0 + c−1

(
−λ

2

)−1

, (3.66)

(ii) When C1 = 0 and C2 6= 0

V6 = c0 + c−1

(
1

ϕ
− λ

2

)−1

, (3.67)

where ϕ =
− c0(−1+c0r)

c−1
t

Γ(σ+1) + kx+ ly.

Now considering Case 2 we have obtained the following families of travelling wave solutions.

Family 4: When D < 0 then equation (3.58) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V7 = c0 + c1

(√
−D
2

tan(

√
−D
2

ϕ)− Aλ

2

)1

, (3.68)

(ii) When C1 = 0 and C2 6= 0

V8 = c0 + c1

(√
−D
2

cot(

√
−D
2

ϕ)− λ

2

)1

, (3.69)

where ϕ = c1rt
Γ(σ+1) + kx+ ly.
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Family 5: When D > 0 then equation (3.58) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V9 = c0 + c1

(√
D

2
tanh(

√
D

2
ϕ)− λ

2

)1

, (3.70)

(ii) When C1 = 0 and C2 6= 0

V10 = c0 + c1λ

(√
D

2
coth(

√
D

2
ϕ)− λ

2

)1

, (3.71)

where ϕ = c1rt
Γ(σ+1) + kx+ ly.

Family 6: When D = 0 then equation (3.58) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V11 = c0 + c1

(
−λ

2

)1

, (3.72)

(ii) When C1 = 0 and C2 6= 0

V12 = c0 + c1λ

(
1

ϕ
− λ

2

)1

, (3.73)

where ϕ = c1rt
Γ(σ+1) + kx+ ly.

Now considering Case 3 we have obtained the following families of travelling wave solutions.

Family 7: When D < 0 then equation (3.58) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V13 =c−1

(√
−D
2

tan(

√
−D
2

ϕ) +
λ

2

)−1

+
1

2r
+

1

16c−1r2

(√
−D
2

tan(

√
−D
2

ϕ) +
λ

2

)
,

(3.74)

(ii) When C1 = 0 and C2 6= 0

V14 =c−1

(√
−D
2

cot(

√
−D
2

ϕ) +
λ

2

)−1

+
1

2r
+

1

16c−1r2

(√
−D
2

cot(

√
−D
2

ϕ) +
λ

2

)
,

(3.75)

where ϕ =
1

16c−1r t

Γ(σ+1) + kx+ ly.



TRAVELLING WAVES SOLUTION FOR FRACTIONAL-ORDER BIOLOGICAL POPULATION MODEL 17

Family 8: When D > 0 then equation (3.58) and equation (2.8) intimate the following solutions: (i) When
C1 6= 0 and C2 = 0

V15 =c−1

(√
D

2
tanh(

√
D

2
ϕ) +

λ

2

)−1

+
1

2r
+

1

16c−1r2

(√
−D
2

tanh(

√
D

2
(ϕ)) +

λ

2

)
,

(3.76)

(ii) When C1 = 0 and C2 6= 0

V16 =c−1

(√
D

2
coth(

√
D

2
ϕ) +

λ

2

)−1

+
1

2r
+

1

16c−1r2

(√
D

2
coth(

√
D

2
(ϕ)) +

λ

2

)
,

(3.77)

where ϕ =
1

16c−1r t

Γ(σ+1) + kx+ ly.

3.6. Application of Generalized (G
′

G
)-expansion method

Putting n = 1 in equation (2.5) we get the following G
′

G solution for equation (3.57):

V (ϕ) = c−1(d+
G′(ϕ)

G(ϕ)
)−1 + c0 + c1(d+

G′(ϕ)

G(ϕ)
)1, (3.78)

where c−1, c0, d and c1 are constants to be determined. Now putting equation (3.78) into equation (3.57) with

the help of equation (2.7) we get a polynomial in G′(ϕ)
G(ϕ) . By coefficient comparison in the polynomial we get a

system of algebraic equations. Solving this system with the help of Maple for c−1, c0, c1, c, λ, d, k and ν we get
the following cases of solutions:

Case 1:

c0 = c0, c1 = 0, c−1 = c−1, c = −c0(−1 + c0r)

c−1
, d = d

λ =
c−1(−1 + 2c0r)

c0(−1 + c0r)
, µ =

c2−1r

c0(−1 + c0r)
, k = il.

(3.79)

Case 2:

c0 = c0, c1 = c1, c−1 = 0, c = c1r, r 6= 0, d = d

λ =
−1 + 2c0r

c
, µ =

c0(−1 + c0r)

c21r
, k = il.

(3.80)
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Case 3:

c0 =
1

2r
, c1 =

1

16c−1r2
, c−1 = c−1, c =

1

16c−1r
.

λ = 0, µ = −16r2, r 6= 0, d = d

(3.81)

where i =
√
−1 in above cases.

Now considering Case 1 we have obtained the following families of travelling wave solutions.

Family 1: When D < 0 then equation (3.78) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V1 = c0 + c−1

(
d+

√
−D
2

tan(

√
−D
2

ϕ)− Aλ

2

)−1

, (3.82)

(ii) When C1 = 0 and C2 6= 0

V2 = c0 + c−1

(
d+

√
−D
2

cot(

√
−D
2

ϕ)− λ

2

)−1

, (3.83)

where ϕ =
− c0(−1+c0r)

c−1
t

Γ(σ+1) + kx+ ly.

Family 2: When D > 0 then equation (3.78) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V3 = c0 + c−1

(
d+

√
D

2
tanh(

√
D

2
ϕ)− λ

2

)−1

, (3.84)

(ii) When C1 = 0 and C2 6= 0

V4 = c0 + c−1

(
d+

√
D

2
coth(

√
D

2
ϕ)− λ

2

)−1

, (3.85)

where ϕ =
− c0(−1+c0r)

c−1
t

Γ(σ+1) + kx+ ly.

Family 3: When D = 0 then equation (3.78) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V5 = c0 + c−1

(
d− λ

2

)−1

, (3.86)

(ii) When C1 = 0 and C2 6= 0

V6 = c0 + c−1

(
d+

1

ϕ
− λ

2

)−1

, (3.87)
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where ϕ =
− c0(−1+c0r)

c−1
t

Γ(σ+1) + kx+ ly.

Now considering Case 2 we have obtained the following families of travelling wave solutions.

Family 4: When D < 0 then equation (3.78) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V7 = c0 + c1

(
d+

√
−D
2

tan(

√
−D
2

ϕ)− Aλ

2

)1

, (3.88)

(ii) When C1 = 0 and C2 6= 0

V8 = c0 + c1

(
d+

√
−D
2

cot(

√
−D
2

ϕ)− λ

2

)1

, (3.89)

where ϕ = c1rt
Γ(σ+1) + kx+ ly.

Family 5: When D > 0 then equation (3.78) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V9 = c0 + c1

(
d+

√
D

2
tanh(

√
D

2
ϕ)− λ

2

)1

, (3.90)

(ii) When C1 = 0 and C2 6= 0

V10 = c0 + c1λ

(
d+

√
D

2
coth(

√
D

2
ϕ)− λ

2

)1

, (3.91)

where ϕ = c1rt
Γ(σ+1) + kx+ ly.

Family 6: When D = 0 then equation (3.78) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V11 = c0 + c1

(
d− λ

2

)1

, (3.92)

(ii) When C1 = 0 and C2 6= 0

V12 = c0 + c1λ

(
d+

1

ϕ
− λ

2

)1

, (3.93)

where ϕ = c1rt
Γ(σ+1) + kx+ ly.

Now considering Case 3 we have obtained the following families of travelling wave solutions.
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Family 7: When D < 0 then equation (3.78) and equation (2.8) intimate the following solutions:
(i) When C1 6= 0 and C2 = 0

V13 =c−1

(
d+

√
−D
2

tan(

√
−D
2

ϕ) +
λ

2

)−1

+
1

2r
+

1

16c−1r2

(
d+

√
−D
2

tan(

√
−D
2

ϕ) +
λ

2

)
,

(3.94)

(ii) When C1 = 0 and C2 6= 0

V14 =c−1

(
d+

√
−D
2

cot(

√
−D
2

ϕ) +
λ

2

)−1

+
1

2r
+

1

16c−1r2

(
d+

√
−D
2

cot(

√
−D
2

ϕ) +
λ

2

)
,

(3.95)

where ϕ =
1

16c−1r t

Γ(σ+1) + kx+ ly.

Family 8: When D > 0 then equation (3.78) and equation (2.8) intimate the following solutions: (i) When
C1 6= 0 and C2 = 0

V15 =c−1

(
d+

√
D

2
tanh(

√
D

2
ϕ) +

λ

2

)−1

+
1

2r
+

1

16c−1r2

(
d+

√
−D
2

tanh(

√
D

2
(ϕ)) +

λ

2

)
,

(3.96)

(ii) When C1 = 0 and C2 6= 0

V16 =c−1

(
d+

√
D

2
coth(

√
D

2
ϕ) +

λ

2

)−1

+
1

2r
+

1

16c−1r2

(
d+

√
D

2
coth(

√
D

2
(ϕ)) +

λ

2

)
,

(3.97)

where ϕ =
1

16c−1r t

Γ(σ+1) + kx+ ly.

4. Discussion and graphs

Compared to other analytical methods, the (G
′
/G)-expansion method is an efficient analytical technique

because it provides several periodic and solitary traveling wave solutions with some parameters without any
linearization and discretization processes for solving problems. The proposed method results expose the inner
mechanism of physical phenomena and provide distinct exact solutions of different physical structures in non-
linear science. Besides physical applications, the series form solutions of method help the numerical solvers
compare the accuracy of their results and assist them in stability analysis. In the proposed method, the balance
between linear effect and nonlinearity effect gives rise to solitons. The solitons are solitary waves that propagate
with very little energy use and retain their shape and speed after colliding with another such wave. Our proposed
method provides three different important families of solitary wave solutions for the problems, such as periodic
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Figure 1. Soliton corresponding to hyperbolic solution (3.11) for σ = 1, c0 = 1, λ = 3, µ = 2,
k = −1, y = 0 and c = 1.

Figure 2. Soliton corresponding to rational solution (3.36) for d = 1 σ = 1, c−1 = 1, λ = 6,
µ = 9, k = −1, y = 0 and c = 1.

solitary wave solutions when λ2 − 4µ < 0, hyperbolic solitary wave solutions when λ2 − 4µ > 0 and rational
solitary wave solutions when λ2− 4µ = 0. The wave behaviors of some solutions are presented in the Figures 1-3.

Remarks 1: Soliton corresponding to the hyperbolic solution (3.11) represents the topological kink type solitary
wave profile.

Remarks 2: Soliton corresponding to the rational solution (3.36) represents dark solution type solitary wave
profile.

Remarks 3: Soliton corresponding to the solution (3.8) represents periodic solitary wave profile.
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Figure 3. Soliton corresponding to periodic solution (3.8) for σ = 1, c0 = 1, λ = 2, µ = 2,
k = −1, y = 0 and c = 1.

5. Conclusion

In the current research work, the analytical solution of fractional-order biological population models are

solved by using generalized and extended (G
′

G )-expansion methods. The graphical representation is provided
and confirms the validity of the proposed techniques. It has been observed that the geometry of the problems
is changed as the different conditions are implemented. As compared to other analytical techniques, the present
methods have provided effective and useful dynamics of the given physical phenomena. The three important
traveling wave solutions, rational, hyperbolic and trigonometric function solutions, are discussed to analyze
different physical phenomena behavior. Furthermore, it is investigated that the present method can be modified
to get more families of solutions of the given problem and thus provide a better explanation of the physical
problem with the help of free parameter involved in the solution, we can construct solutions that are closely
related to the physical problems arising in applied science.
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