
Received July 5, 2020, accepted July 15, 2020, date of publication July 21, 2020, date of current version July 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3010819

Voronoi Boundary Visibility for Efficient
Path Planning
MOHAMMED RABEEA HASHIM AL-DAHHAN 1 AND
KLAUS WERNER SCHMIDT 2
1Department of Electronic and Communication Engineering, Çankaya University, 06790 Ankara, Turkey
2Department of Electrical and Electronics Engineering, Middle East Technical University, 06800 Ankara, Turkey

Corresponding author: Klaus Werner Schmidt (schmidt@metu.edu.tr)

ABSTRACT The subject of this paper is the computation of paths for mobile robots that navigate from a
start position to a goal position in environments with static obstacles. Specifically, we focus on paths that are
represented by straight lines. Such paths can for example directly be followed by omni-directional robots
or can be used as an initial solution for path smoothing. In this context, the most common performance
metrics are the path length, the obstacle clearance and the computation time. In this paper, we develop a new
path planning algorithm that addresses all the stated performance metrics. Our method first determines all
possible connections between the start position and goal position along the edges of the generalized Voronoi
diagram (GVD) of a given obstacle map. The shortest connections are then refined using a balanced method
for creating shortcuts along existing waypoints and introducing new waypoints in order to cut corners. As an
important feature, our method reduces the number of required waypoints by iteratively adding newwaypoints
and then removing unnecessary waypoints along solution paths. Moreover, our method takes into account
multiple start-goal connections, since the shortest start-goal connection along the edges of the GVD might
not lead to the shortest solution path. A comprehensive computational evaluation for a large number of maps
with different properties shows that the proposed method outperforms sampling-based algorithms such as
Probabilistic Roadmaps (PRM) and exact methods such as Visibility Graphs (VG) by computing close-to-
optimal solution paths with a specified minimum obstacle clearance in less time.

INDEX TERMS Mobile robots, path planning, obstacles, Voronoi diagram, safety.

I. INTRODUCTION
Nowadays, with the vast developments in technology,
autonomous and mobile robots [1] are employed in many
application fields such as autonomous driving [2], [3], nav-
igation in complex environments [4]–[6], vehicle routing [7],
buildings [8], industrial automation [9] and unmanned air
vehicles [10], [11]. Depending on the application and the
task to be solved, robots have to navigate in different types
of environments without colliding with obstacles. In static
environments, the location of obstacles is known [4], [12],
[13], whereas obstacles can change their location in dynamic
environments [14], [15]. When applying methods of compu-
tational geometry, maps represent objects such as obstacles
in the form of geometrical shapes such as lines, polygons or
circular shapes [16], [17]. On the other hand it is possible to

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro Neto .

employ binary images, where the free space and obstacles are
represented by white and black pixels, respectively [18]–[20].

As an important application, path planning for mobile
robots has attracted much attention in the recent years [12],
[15], [21]. Path planning is concerned with finding a feasible
robot path between a start and goal position, while avoiding
obstacles in the robot environment [22], [23]. Hereby, the
most common performance metrics to validate the quality of
solution paths are the path length, the distance (clearance) to
obstacles, which relates to path safety, and the computation
time [16], [24].

There are different possible scenarios for robotic path plan-
ning depending on the availability of information about the
environment [13], [25]–[27], the type of obstacles (static or
dynamic) [15] and the robot type [21], [23], [28]. In this
paper, we focus on the path planning in static environments,
where robot paths are represented by straight-line segments.
Such paths are for example suitable for omni-directional

134764 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-1376-6825
https://orcid.org/0000-0003-3840-2737
https://orcid.org/0000-0003-2177-5078

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

robots [28] or can be used as initial solutions when applying
path smoothing [29], [30].

The most important performance metric in robotic
path planning is the path length. In the recent liter-
ature, sampling-based algorithms based on Probabilistic
Roadmaps (PRM) or Rapidly exploring RandomTrees (RRT)
are most popular for path planning in known environ-
ments with static obstacles [13], [24]–[27], [31]. On the
one hand, the PRM algorithm generates random sample
nodes and introduces connections between close nodes in the
obstacle-free region to determine a solution path [25]. On the
other hand, the RRT algorithm is based on the idea of growing
a tree in the obstacle-free region from the start position to
the goal position [26]. Although these basic sampling-based
algorithms generally cannot guarantee finding (optimal) solu-
tions, their extensions such as the PRM* algorithm and the
RRT* algorithm in [13] ensure convergence to an optimal
path if the number of samples increases. Moreover, the Fast
Marching Tree (FMT) algorithm in [27] combines features of
PRMs and RRTs to determine shorter solution paths. Find-
ing an optimal path is guaranteed when using the Visibility
Graph (VG) for polygon maps [32]. Nevertheless, the VG
cannot be directly computed for maps with general obstacle
shapes and its computation is inefficient in practice without
additional customized data structures [33].

A second important performance metric in robotic path
planning is path safety in order to avoid collisions [24],
to account for possible uncertainties during path following
[20] and to facilitate re-planning in dynamic environments
with moving objects [15]. Regarding this performance met-
ric, two different objectives are considered in the literature.
On the one hand, there are several methods aiming at the
computation of short solution paths while maximizing the
distance to obstacles [8], [18], [24], [34], [35]. On the other
hand, various methods focus on minimizing the path length
while guaranteeing a specified minimum distance of solution
paths to obstacles [15], [16], [20], [36]. Methods addressing
the first objective are frequently based on the generalized
Voronoi diagram (GVD) [34], [37], which partitions an envi-
ronment into Voronoi regions of points that are closest to an
obstacle. Then, the Voronoi boundary (VB) represents the
border of the Voronoi regions such that each point on the
VB has a maximum possible distance to obstacles. Since
solution paths along the VB can be unnecessarily long [34],
several methods suggest to define a safe region for robot
navigation around the VB for solution paths. The work in
[34] inflates the VB depending on the maximum distance
to obstacles at each point of the VB. Hereby, the degree of
inflation is specified by a parameter that provides a tradeoff
between path length and path safety. Differently, [8], [18],
[35] inflate the VB by a fixed amount. [18] applies the
fast marching method on this inflated VB, [8] proposes a
skilled-RRTmethod that generates samples along the inflated
VB and [35] generates short and safe solution paths by
reducing the sampling space for the PRM* and FMT algo-
rithms to the inflated VB. Sampling-based safe path plan-

ning with the aim of maximizing the obstacle clearance is
as well addressed by the Confidence Random Tree (CRT)
algorithm [24], which selects samples based on the clearance
from obstacles (denoted as confidence) but without comput-
ing the VB. Regarding the second objective, [36] proposes
the visibility-Voronoi complex for polygon maps in order
to generate short solution paths with a minimum obstacle
clearance whenever possible. [38] suggests to first refine the
shortest path along the VB by removing unnecessary turns
and then introduces additional points in order to shorten the
solution path. Hereby, modifications of the path are only
accepted if the obstacle clearance stays above a given value.
A minimum obstacle clearance is ensured in [15], [20] by
inflating the obstacle region using morphological dilation.

Computing robot paths quickly is of high importance espe-
cially in the case of real-time and dynamic path planning.
Here, it is required to find a solution pathwithin a few seconds
after determining or updating the map of the robot environ-
ment. In this context, the Quick RRT* (Q-RRT*) algorithm
in [31] speeds up the convergence of the RRT* algorithm
by avoiding small turns and by employing informed-RRT*
to explore narrow passages. Similarly, the synchronized
biased-greedy RRT algorithm in [39] directly grows trees
towards the goal location and the meta-algorithm in [40]
speeds up the exploration phase of the RRT algorithm in order
to find a high-quality initial solution path fast. Amodification
of the sampling strategy of the PRM algorithm is proposed
in [41]. Small local roadmaps are generated based on the
obstacle boundaries in difficult parts of the environment and
the number of connections is reduced based on the size of the
local roadmaps. The comparison of different path planning
algorithms in [42] further indicates that the PRM algorithm
is the best of the studied algorithms in finding short paths
for real-time path planning. As an alternative methods such
as [37] speed up the search process for a solution path by
guiding the search along the VB.

The main motivation of this paper is the development of
a path planning method that addresses all the performance
metrics discussed above. In particular, we aim at the fast
computation of close-to-optimal solution paths that ensure
a given minimum obstacle clearance for maps with general
obstacle shapes. In this context, it has to be noted that the
stated performance metrics are in principle conflicting. That
is, obtaining a shorter path generally leads to unsafe paths and
a longer computation time, whereas solution methods with
small computation times will generally produce longer robot
paths.

Apart from this fact, it has to be pointed out that the path
planning problem for mobile robots is performed either in 3D
or 2D space. In particular, when considering nonholonomic
mobile robots (that cannot arbitrarily move in any direc-
tion), it is important to take into account the robot position
(x- and y-direction) as well as the heading angle when plan-
ning robot paths. However, when planning paths for robots
that can move in any direction (such as omni-directional
robots), straight-line paths that only depend on waypoints in

VOLUME 8, 2020 134765

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

2D-space are suitable. More importantly, such straight-line
paths can as well be used as initial solutions for generating
smooth paths for nonholonomic mobile robots.

In this context, path planning methods for higher-
dimensional spaces such as PRM* or RRT* are not as
beneficial for the low-dimensional spaces of mobile robots.
Although these methods are probabilistically complete (that
is, the probability that the planner fails to return a solution
decays to zero as the number of samples approaches infinity)
and asymptotically optimal (the solution path length con-
verges almost surely to the shortest path length) [13], they
do not guarantee finding a short path when putting restric-
tions on the computation time. Specifically, these methods
do not make use of the topology of the robot environment.
Differently, the GVD captures the topology of the robot
environment in the sense that the VB represents points in the
robot environment with a maximum distance from obstacles.
In particular, it is possible to follow the VB from the start
position to a desired goal position of a mobile robot. That
is, the existence of a solution path is guaranteed if there is a
connection along the VB. Nevertheless, such solution path is
generally unnecessarily long since it includes many turns to
keep a maximum distance from obstacles [16].

In view of the above discussion, the main contribution of
this paper is the efficient usage of the topology of the robot
environment based on the GVD in order to generate short
solution paths for mobile robots while ensuring a specified
minimum obstacle clearance and requiring a small computa-
tion time. To this end, the paper develops a new method for
the iterative refinement of initial solution paths along the VB.
First, our method constructs a graph that captures the topol-
ogy of the robot environment based on the GVD. The shortest
paths in this graph along the VB are used as initial solutions.
These initial solutions are then refined by iteratively applying
two main steps. On the one hand, unnecessary waypoints are
removed if it is possible to introduce an obstacle-free short-
cut. On the other hand, additional waypoints are introduced in
order to cut corners that are generated by the edges between
waypoints. As the main difference to existing work such as
[16], our method repeatedly adds and removes waypoints
such that the total number of waypoints always remains small.
This allows speeding up the solution process while obtaining
shorter paths. In particular, our method is able to closely
approximate solution paths based on the VG for polygon
maps. In addition, our path planning algorithm supports the
computation of safe paths with a minimum obstacle clear-
ance by inflating obstacles. In order to evaluate our method,
we perform a comprehensive comparison with existing state-
of-the-art methods regarding path length, path safety and
computation time.

The remainder of the paper is organized as follows.
Section II introduces the required notation and gives the
relevant background information on path planning for mobile
robots. The proposed method is developed in Section III and
its features are illustrated by a simple example environment.
In Section IV we perform a comprehensive evaluation of

FIGURE 1. Example robot environment.

the proposed algorithm with a large number of maps with
different properties. Section V gives conclusions and ideas
for future work.

II. BACKGROUND
A. NOTATION
The subject of this paper is the path planning for mobile
robots in two-dimensional (2D) static environments with
obstacles. Hereby, we focus on the generation of paths that
consist of straight-line segments. Such paths can for example
be followed by omni-directional robots, which are able to turn
on the spot [28], [43], [44] or can be used as a starting point
for generating smooth robot paths [29], [30]. Formally, the
configuration space is defined as C ∈ R2 and obstacles in C
are represented by the obstacle region Cobs ⊆ C. Accordingly,
the obstacle-free region that is available for the robot motion
is determined as Cfree = C \ Cobs. Fig. 1 shows an illustration
of the previously defined regions with an obstacle region that
consists of three circular obstacles that should not be hit by
the mobile robot.

Any point p ∈ C ⊆ R2 can be represented by its coordi-
nates x and y. That is, we write p = (x, y) as shown in Fig.1.
Considering that we are interested in straight-line paths in this
paper, a robot path P is defined by a sequence of n points
p1, p2, . . . , pn in C. Hence, we write P = (p1, p2, . . . , pn),
whereby pi ∈ C for i = 1, . . . , n. Defining the start and goal
point of a mobile robot as ps and pg, respectively, it must
hold that p1 = ps and pn = pg for any suitable robot
path. The actual robot path is then determined by connecting
subsequent points pi and pi+1 of a path P by straight lines
lpi,pi+1 for each i = 1, . . . , n − 1. Then, the set of points
traversed by the robot from ps to pg is given by PP ⊆ C,
whereby PP consists of all the points that are covered by the
line segments lp1,p2 , . . . , lpn−1,pn . Accordingly, we denote a
path P as collision-free if PP ∩ Cobs = ∅, that is, there is no
intersection of the points covered by the path and the obstacle
region. For later use in different algorithms, we also introduce
the function

CollisionFree(p, p̂) =

{
true if lp,p̂ ∩ Cobs = ∅
false otherwise

134766 VOLUME 8, 2020

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

that determines if the straight-line connection lp,p̂ between
two points p and p̂ intersects the obstacle region Cobs.
We write

A = {P|PP ⊆ Cfree} (1)

for the set of obstacle-free paths. We further introduce the
distance between two points pi = (xi, yi), pj = (xj, yj) ∈ C as

d(pi, pj) =
√
(xi − xj)2 + (yi − yj)2, (2)

the minimum distance between a point p ∈ C and a subset
C′ ⊆ C as

d(p, C′) = min
p′∈C′

d(p, p′) (3)

and the minimum distance between two subsets C′, C′′ ⊆ C
as

d(C′, C′′) = min
p′∈C′,p′′∈C′′

d(p′, p′′). (4)

Using (4), theminimum distance of a pathP from the obstacle
region can be written as d(PP, Cobs). Finally, we compute the
path length of P as

L(P) =
n−1∑
i=1

d(pi, pi+1). (5)

Using the notation introduced above, the main aim of
this paper is the computation of suitable obstacle-free robot
paths between a given start point ps ∈ Cfree and goal point
pg ∈ Cfree. In this context, we characterize suitability of
robot paths by performance metrics such as the path length
(finding the shortest path), path safety (finding a path with a
certain distance specification with respect to obstacles) and
the computation time.

B. GENERALIZED VORONOI DIAGRAM
The results presented in this paper are based on the usage of
the generalizedVoronoi diagram (GVD), which is a basic data
structure in robotic path planning [16], [34], [37]. In order
to formalize the related terminology, we consider a con-
figuration space C that contains a set of geometric objects
O1,O2, . . . ,Om such that Oi ⊆ C for i = 1, . . . ,m as
illustrated in Fig. 2.

Each objectOi is associated to a Voronoi region Vi. Specif-
ically, Vi defines the set of all points p ∈ C that are closer to
Oi than to any other objectOj with i 6= j [34], [37]. Formally,
we define

Vi = {p ∈ C|d(p,Oi) ≤ d(p,Oj),∀j 6= i}. (6)

Using (6), the collection of all regions V1, . . . ,Vm is denoted
as the generalized Voronoi diagram (GVD). As can be seen in
Fig. 2, adjacent Voronoi regions share a border that consists
of all points with an equal distance to at least two objects.
We write V for the set of all such points and we call V the
Voronoi boundary (VB). Formally,

V = {p ∈ C|∃i 6= j, d(p,Oi) = d(p,Oj)}. (7)

FIGURE 2. Example environment: (a) VB V; (b) Shortest connection of ps
and pg to V .

That is, for each point p ∈ V , there are at least two different
objects Oi,Oj with i 6= j with an equal distance to p. In par-
ticular, any robot path following the VB keeps a maximum
distance from the objects Oi, i = 1, . . . ,m, which can be
identified as obstacles. In addition, we denote points, where
multiple borders of the VB meet as branching points (BPs).
To this end, we define the set of BPs B as the set of all points
on the boundary of at least 3 Voronoi regions.

B = {p ∈ V|∃i, j, k, i 6= j 6= k,

d(p,Oi) = d(p,Oj) = d(p,Ok)}. (8)

Finally, we denote parts of the VB between BPs as segments
of the VB. Considering two BPs bi, bj ∈ B, we write Pbi,bj ⊆
V for the points covered by the segment between bi and bj
and consider |Pbi,bj | as the length of the segment.
There are various studies for the computation of the GVD

in the existing literature [16], [34], [37]. The underlying
assumption in this paper is that the robot environment is
represented by a binary image. That is, the relevant regions
Cfree and Cobs are not identified by geometric objects but by
the pixel color such that obstacle pixels are black and the
free space is characterized by white pixels as demonstrated
in Fig. 2 (a). We note that the focus of this paper is not the
computation of GVDs. Hence, we employ the fact that GVDs
can be obtained based on the medial axis transform [45].
Accordingly, we use the morphological operation of ‘‘skele-
tonization’’ as in [46], [47] to determine an approximation of
the VB that consists of the image pixels on the medial axis
with an equal minimum distance to obstacle pixels (see (7)).
Then, BPs are determined as image pixels that are connected
to at least three segments of the VB.

C. VORONOI DIAGRAM AND SOLUTION PATH
COMPUTATION
The VB V of the GVD can be used to determine robot paths
with a maximum distance/clearance from the obstacles [15],
[16], [34], [36]. Hereby, given a start point ps and a goal
point pg, it is first required to connect these points to V .
Generally, such connection is achieved by computing the
shortest collision-free path from ps and pg to V [16], [37]
and extending the GVD by these paths. Then, Dijkstra’s algo-
rithm [48] or the A? search algorithm [49] can be applied to

VOLUME 8, 2020 134767

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

determine the shortest path between ps and pg in this extended
GVD as depicted in Fig. 2 (b). In this paper, we employ A?

search since it commonly leads to smaller computation times
compared to Dijkstra’s algorithm by guiding the search.

III. VORONOI BOUNDARY VISIBILITY FOR EFFICIENT
PATH PLANNING
In this section, we develop our proposed method for the
fast computation of short solution paths using information
from the GVD as described in Section II-B. Section III-A
introduces a new method for connecting the start/goal point
to the GVD and then defines a graph that captures the con-
nectivity of the VB V using the BPs in B. Then, Section III-B
introduces the VB Visibility (VV) algorithm for determining
short paths along the VB and Section III-C develops a new
method for the iterative refinement of solution paths. Finally,
Section III-E discusses how this method can be extended
in case a minimum obstacle clearance is specified for path
safety.

A. CONNECTION OF THE START AND GOAL POINT
As described in Section II-C, one way of connecting ps and
pg to the VB is finding the shortest collision-free path from
ps/pg to V . In this section, we propose an alternative method
that leads to shorter solution paths. In particular, for ps,
we determine all points on the VB that have an equal distance
to ps and to the obstacle region Cobs. Formally, we determine
the set Vs ⊆ V such that

∀pj ∈ Vs, d(pj, ps) = d(pj, Cobs). (9)

Similarly, for pg, we compute the set Vg ⊆ V such that

∀pj ∈ Vg, d(pj, pg) = d(pj, Cobs). (10)

These points are guaranteed to have a collision-free connec-
tion to ps and pg, respectively. Moreover, these points can
be computed efficiently based on an image with a modified
obstacle region Ĉobs = Cobs ∪ {ps, pg}. To this end, we follow
the procedure described in Algorithm 1.

Algorithm 1 Connection of the Start and Goal Point
1: Input: C, Cobs, ps, pg
2: Output: V , B
3: Initialize: Ĉobs = Cobs ∪ {ps, pg}
4: Determine the VB V for C and Ĉobs
5: Determine all BPs B on the VB
6: Determine Vs ⊆ B as the BPs on the circle around ps
7: Determine Vg ⊆ B as the BPs on the circle around pg
8: Connect ps/pg to the respective BPs in Vs/Vg
9: Remove all segments of V on the circles around ps/pg

That is, the proposed algorithm first determines the GVD
for the image with the modified obstacle region Ĉobs = Cobs∪
{ps, pg} (line 3) with the VB V . This GVD has the property
that the start point ps and the goal point pg are encircled by the
VB as illustrated in Fig. 3 (a). Then, the algorithm determines

FIGURE 3. Connection of ps and pg to V: (a) GVD; (b) BPs; (c) Connection
to BPs on Vs and Vg; (d) Resulting V .

FIGURE 4. (a) Original GVD with BPs; (b) Artificial BP b5.

all BPs on V (line 5). The BPs on the circle around ps are
identified as Vs (line 6), whereas the BPs on the circle around
pg belong to Vg (line 7) as can be seen in Fig. 3 (b). Then, the
points ps/pg are connected to the corresponding BPs in Vs/Vg
(line 8). This procedure is depicted in Fig. 3 (c). Finally, the
unnecessary parts of the circles around ps and pg are removed
(line 9) to obtain the resulting VB V in Fig. 3 (d).

Using the outputs V , B of Algorithm 1, we next compute
a graph G = (V ,E) that characterizes the connectivity of the
VB. That is, the vertexes of G are defined as V = B and the
edges E contain all (unordered) pairs {bi, bj} with bi, bj ∈ V
such that there is a direct connection between bi and bj on V .
We further take into account the special case, where different
connections between a pair of vertexes bi, bj exist on V . This
case can for example be seen in Fig. 4. Here, there are two
connections between the BPs b1 and b4. In order to resolve
this ambiguity, we simply insert an artificial BP on one of the
connections (for example the longer one as in Fig. 4 (b)) and
update the edges accordingly.

The graph for the example environment in Fig. 4 is given
by the vertexes V = {ps, pg, b1, b2, b3, b4, b5} and the edges
E = {{ps, b1}, {ps, b2}, {b1, b4}, {b1, b5}, {b2, b3}, {b2, pg},

134768 VOLUME 8, 2020

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

FIGURE 5. Graph for the example environment.

TABLE 1. k = 6 shortest start-goal walks for the example.

{b3, pg}, {b3, b4}, {b4, b5}}. We finally label each edge
{bi, bj} ∈ E by the path length |Pbi,bj | on V between the BPs
bi and bj. The labeled graph for the example environment is
shown in Fig. 5.

For the graphG = (V ,E), we define a walk inG by a finite
sequence of vertexes (v1, v2, . . . , vn) with v1, . . . , vn ∈ V
such that each edge {vi, vi+1} ∈ E for i = 1, . . . , n − 1.
In particular, we are interested in walks from ps to pg, that
is, v1 = ps and vn = pg. In order to avoid confusion with
the notion of a ‘‘path’’ in the robot environment, we use the
notion of a start-goal walk for a walk from ps to pg in G.
Using G, it is possible to determine the shortest start-goal
walk along V using the A? search algorithm [49] (we denote
the overall algorithm as VA? in the sequel). Moreover, it is
possible to compute the k shortest (cycle-free) start-goal
walks using Yen’s algorithm [50]. Accordingly, we introduce
the notation W1, . . . ,Wk to denote the k shortest (collision-
free) start-goal walks from ps to pg along V . We further
note that the maximum number of different shortest start-goal
walks depends on the topology of each environment and
can also be determined by Yen’s algorithm. For the example
environment, there are 6 different start-goal walks, which are
given in Table 1.

For each edge {vi, vi+1} ∈ E , we write Pvi,vi+1 ⊆ V for the
corresponding path between the points vi, vi+1 ∈ V (recall
that V = B). Then, the path PWj ⊆ V that corresponds to a
start-goal walk Wj = (v1, . . . , vn), is given by the concate-
nation of the paths Pv1,v2 , . . . ,Pvn−1,vn (note that v1 = ps
and vn = pg). Accordingly, any path PWj , j = 1, . . . , k ,
constitutes a solution of the path planning problem and there
is no solution of the path planning problem if k = 0.

B. VORONOI BOUNDARY VISIBILITY ALGORITHM
It is a well-known fact that robot paths following the VB V
take unnecessary turns and are hence comparably long [16],
[18], [34]. Accordingly, we suggest to first employ a shortcut

heuristic to reduce the path length. Our method uses the
information obtained from the VB V and the corresponding
graph G in Section III-A to determine a collision-free path
PVV = (p1, . . . , p|PVV|) such that {p1, . . . , p|PVV|} ⊆ V .
Since our algorithm is based on the visibility of points

on V , we denote it as VB Visibility (VV) algorithm. We next
explain the VV algorithm following the pseudo-code given
in Algorithm 2. It is based on an initial solution path
P = (p1, . . . , p|P|) that is for example obtained from a
start-goal walkWj as in Section III-A and the obstacle region
Cobs (line 1). The algorithm then determines two different
sequences of waypoints to be followed. In the first case (l = 1
in line 3), the algorithm follows the given path P from ps
to pg. In the second case (l = 2), the waypoints of P are
ordered in the reverse direction from pg to ps (line 5). PVV is
initialized with p1, which is equal to ps for l = 1 and to pg for
l = 2 (line 5). Moreover, the points pcur and plast keep track
of the current point to be explored and the last collision-free
connection point, respectively. The algorithm loops over all
points in P (line 6). It is then checked if the straight-line
connection from pcur to pi is collision-free (flag = true in
line 7). If flag is true, plast is updated since there is no col-
lision on the straight-line connection from pcur to pi (line 9).
If flag is false, it holds that the straight-line connection from
pcur to pi intersects with the obstacle region Cobs (line 10).
Nevertheless, we know from the previous iteration (where
flag must have been true) that the straight-line connection
from pcur to plast is collision-free. Hence, we accept plast
on the solution path (line 11) and restart the search for a
collision-free connection from plast (line 12 and 13). The
search for new points terminates if a connection to the goal
point pg is found (line 14). The algorithm finally compares
the two solution paths P1 (for l = 1) and P2 (for l = 2) and
returns the shorter one as the result. In the sequel, we denote
the path PVV resulting from Algorithm 2 as a VV-path.

Algorithm 2 ComputeVV(P, Cobs)
1: Input: P, Cobs
2: Output: PVV
3: for l = 1, 2 do
4: if l = 2 then
5: ∀i = 1, . . . , |P|: pi = p|P|−i+1

Initialize: Pl = (p1); pcur = p1; plast = p1
6: for k = 2, . . . , |P|1 do
7: flag = CollisionFree(pcur, pi)
8: if flag = true then
9: plast = pi
10: else
11: Pl = (Pl, plast)
12: pcur = plast
13: k = k − 1
14: if plast = p|P| then
15: break
16: return argminP1,P2{L(P1),L(P2)}

VOLUME 8, 2020 134769

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

FIGURE 6. VV-path illustration for: (a) PW1
with L(PVV) = 657.1; (b) PW2

with L(PVV) = 677.5; (c) PW3
with L(PVV) = 755.0; (d) PW5

with
L(PVV) = 840.1.

For illustration, we compute the VV-paths for W1, W2,
W3 and W5 in Table 1. That is, for i = 1, 2, 3, 5, we apply
Algorithm 2 with the initial path PWi . The resulting VV-paths
are shown in Fig. 6.
Remark 1: We note that shortcut heuristics with the same

objective of reducing the number of waypoints and removing
unnecessary turns were introduced in [16], [51]. Different
from our algorithm, the algorithm in [16] suggests to itera-
tively remove points from a given path P if the connection
between its adjacent points is collision-free. Although this
method is also able to reduce the path length, we will show
in Section IV that our algorithm generally leads to shorter
paths. For later usage, we refer to the algorithm in [16] as the
Remove Redundancy (RR) algorithm. In addition, we intro-
duce the function RemoveRedundancy in the form

PRR = RemoveRedundancy(P, Cobs)

such that PRR is the solution path when applying the RR
algorithm with an initial solution path P.
The algorithm in [51] also uses the idea of checking con-

nections to waypoints until a collision is detected. Differently,
that algorithm only evaluates the path from ps to pg but omits
the path from pg to ps. It is obtained from Algorithm 2 by
iterating only for l = 1 in line 3. �

For illustration, we show two paths that are obtained
for the initial path PW1 of the example environment.
Fig. 7 (a) and (b) depict the solution paths PVV and PRR
obtained from ComputeVV and RemoveRedundancy,
respectively. It can be seen that both paths select waypoints
on PW1 . Hereby, PVV defines a shorter connection since
computeVV looks ahead more.

FIGURE 7. (a) PVV with L(PVV) = 657.1; (b) PRR with L(PRR) = 666.2.

C. VV WITH INTERMEDIATE POINTS
The VV-paths computed by Algorithm 2 are able to avoid
unnecessary turns when following the VB as can be seen in
Fig. 6. Nevertheless, it is still the case that VV-paths have
unnecessary corners that increase the path length. Accord-
ingly, we suggest to apply the technique of adding Steiner
points in order to cut corners. We note that this technique
was first introduced in [16]. Nevertheless, in this paper we
propose a particular combination with Algorithm 2 and the
graph G that both reduces the computation time and enables
the reduction of the path length.

We first formalize the technique in [16] in Algorithm 3
for later usage in our improved algorithms. The algorithm is
denoted as ComputeST since it introduces Steiner points to
compute a solution path PS (line 2) based on a given feasible
path P that is for example obtained from Algorithm 2, the
obstacle region Cobs and a distance value 1 (line 1). The
solution path is initialized with the given path (line 3) and the
algorithm terminates if PS only contains the start and goal
point (line 5). Otherwise, the algorithm repeats the following
iteration (line 6 to 22): The algorithm tries to reduce the path
length by looking at 3 consecutive points pL, p, pR (line 7)
starting from ps = PS[1]. Hereby, the notation PS[i] denotes
the i-th waypoint in PS and the main idea is to remove a
potential corner with pwhenmoving from pL to pR. Then, the
algorithm tries to put new points pSL and pSR between p, pL
and p, pR. These points are generated at increasing distances
k · 1 from p (line 12). pSL and pSR are accepted as new
waypoints if their straight-line connection is collision-free
(line 15). No more new points can be generated if there is
a collision (line 17) or the generated points do no longer
lie between p, pL and p, pR (line 11). After completing the
generation of new points, the algorithm checks if any new
points could be found (line 18). If there are new points, the
original point p is removed from PS and replaced by p̂SL and
p̂SR (line 19). Then, the algorithm continues from the next
unvisited waypoint (line 20 or 22). If the goal point pg is
reached (line 9), the inner loop (line 9) terminates. If no more
improvement in the solution path PS can be achieved (line 6),
PS is returned.

Fig. 8 illustrates the successive application ofcomputeVV
in Algorithm 2 and Algorithm 3 for the initial paths PW1 and
PW2 in Fig. 6. In both cases, it can be seem that additional

134770 VOLUME 8, 2020

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

Algorithm 3 ComputeST(P, Cobs, 1)
1: Input: Collision-free path P = (p1, . . . , p|P|) such that
p1 = ps and p|P| = pg; Cobs; 1

2: Output: Solution path PS
3: Initialize: PS = P; nold = ∞
4: if |PS| = 2 then
5: return PS
6: while |PS| 6= nold do
7: nold = |PS|; p = PS[2]; pL = PS[1]; pR = PS[3]
8: dL = d(pL, p); dR = d(pR, p); uL =

pL−p
dL

; uR =
pR−p
dR

9: while p 6= pg do
10: p̂SL = p; p̂SR = p; k = 1
11: while k ·1 < dL and k ·1 < dR do
12: pSL = p+ uL · k ·1; pSR = p+ uR · k ·1
13: flag = CollisionFree(pL, pR)
14: if flag = true then
15: p̂SL = pSL; p̂SR = pSR
16: else
17: break
18: if p̂SL 6= p then
19: PS = (ps, . . . , pL, p̂SL, p̂SR, pR, . . . , pg)
20: p = p̂SL
21: else
22: p = pR
23: return PS

FIGURE 8. (a) Algorithm 2 for PW1
with L(PVV) = 657.1; (b) Algorithm 2

and 3 for PW1
with L(PS) = 637.0; (c) Algorithm 2 for PW2

with
L(PVV) = 677.5; (d) Algorithm 2 and 3 for PW2

with L(PS) = 645.4.

waypoints are introduced in order to remove unnecessary
corners in the VV-paths.

D. OVERALL PATH COMPUTATION
As can be seen in Fig. 8, the length of solution paths can
be reduced when applying Algorithm 2 and 3 consecutively.

Nevertheless, it also has to be noted that the solution path
PS of Algorithm 3 can have an increased number of way-
points since it repeatedly adds newwaypoints. That is, shorter
connections between some of the added waypoints might be
possible. Accordingly, we next define two particular combi-
nations of Algorithm 2 and 3 for the efficient computation of
short solution paths with a small number of waypoints. The
first method, which constitutes the main contribution of the
paper, is stated in Algorithm 4. Here, the input parameters
1init and 1min represent the initial and minimum distance
value for the refinement according to Algorithm 3. The
algorithm first computes the VB B and the set of BPs B
according to Algorithm 1 (line 3) and then determines the
k shortest paths PW1 , . . . ,PWk from ps to pg along the VB
following the graph construction in Section III-A (line 4).
Then, the shortest path is initialized with the shortest path
PW1 along the VB and the algorithm tries to reduce all the
paths PWk , i = 1, . . . , k (line 6 to 14). In each iteration, the
solution candidate P is initialized with PWi . The algorithm
first applies the VV algorithm (line 8) and then repeatedly
inserts Steiner points inP in order to remove corners (line 10).
Hereby, 1 is decreased until the minimum resolution given
by 1min is reached (line 9 and 12). Moreover, ComputeVV
is repeatedly applied (line 11) in order to keep the number of
points in PS small. At the end of each iteration, the solution
candidate is updated if the current path P is shorter than the
previously found paths (line 14). The algorithm returns the
shortest path PS found among all the candidates (line 15).
Since Algorithm 4 repeatedly adds Steiner points and applies
VB visibility, it is denoted as VV-ST-R algorithm.

Algorithm 4 VV-ST-R(C, Cobs, ps, pg, k, 1init, 1min)

1: Input: C; Cobs; ps; pg;1init; 1min.
2: Output: Solution path PS
3: Compute V and B using Algorithm 1
4: Compute the k shortest paths PW1 , . . . ,PWk as described

in Section III-A
5: Initialize: PS = PW1

6: for i = 1, . . . , k do
7: P = PW1 ; 1 = 1init
8: P = ComputeVV(P, Cobs)
9: while 1 ≥ 1min do

10: P = ComputeST(P, Cobs, 1)
11: P = ComputeVV(P, Cobs)
12: 1 = 1/2
13: if L(P) < L(PS) then
14: PS = P
15: return PS

The second method is a modification of Algorithm 4 that is
stated for comparison with the work in [16]. The main differ-
ence betweenAlgorithm 4 and 5 is the usage ofComputeVV.
While this function is used repeatedly in each iteration of the
while loop in Algorithm 4, it is only used at the beginning
and end of the computation for each shortest path PWi in

VOLUME 8, 2020 134771

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

Algorithm 5 (line 8 and 12). Accordingly, Algorithm 5 is
denoted as VV-ST algorithm.

Algorithm 5 VV-ST(C, Cobs, ps, pg, k, 1init, 1min)

1: Input: C; Cobs; ps; pg;1init; 1min.
2: Output: Solution path PS
3: Compute V and B using Algorithm 1
4: Compute the k shortest paths PW1 , . . . ,PWk as described

in Section III-A
5: Initialize: PS = PW1

6: for i = 1, . . . , k do
7: P = PW1 ; 1 = 1init
8: P = ComputeVV(P, Cobs)
9: while 1 ≥ 1min do
10: P = ComputeST(P, Cobs, 1)
11: 1 = 1/2
12: P = ComputeVV(P, Cobs)
13: if L(P) < L(PS) then
14: PS = P
15: return PS

Remark 2: We note that Algorithm 5 is shown in this
paper in order to evaluate the improvements of our method
compared to [16]. In particular, using k = 1 and replac-
ing ‘‘ComputeVV’’ by ‘‘RemoveRedundany’’ in line 8
and 12 leads to the algorithm in [16]. This algorithm is
denoted as RR-ST algorithm in the sequel since it applies
the RR algorithm and uses the addition of Steiner points. The
comprehensive evaluation in Section IV will reveal that both
Algorithm 4 and 5 lead to considerable reductions in the path
length without increasing the computation time. We further
note that we evaluated different methods for creating addi-
tional waypoints. For example, [52] uses the idea of Bisection
in order to generate Steiner points on neighboring edges of a
solution path. Nevertheless, there was no considerable effect
on the final result (regarding path length and computation
time) when using different methods. �
For illustration, we apply Algorithm 4 and 5 to the paths

PW1 and PW2 of the example environment as shown in Fig. 9.
Due to the repeated application of the VV algorithm in
Algorithm 4, it is the case that shorter solution paths are
found by this algorithm. Specifically, we get L(PS) = 633.9,
L(PS) = 635.6, L(PS) = 631.6 and L(PS) = 644.6 for
the solution paths in Fig. 9 (a), (b), (c) and (d), respectively.
It is further interesting to note that the solution path of
Algorithm 4 for the second-shortest start-goal walkW2 along
VB is shorter than the solution path for the shortest start-goal
walkW1 alongVB. This demonstrates the advantage of taking
into account several short start-goal walks instead of only the
shortest start-goal walk.

E. INFLATED OBSTACLE REGION
In addition to finding a shortest path in a given environment,
it is frequently required to determine a path that keeps a
minimum safety distance DS from the obstacle region Cobs

FIGURE 9. (a) Algorithm 5 for PW1
with L(PS) = 635.6; (b) Algorithm 4 for

PW1
with L(PS) = 633.9; (c) Algorithm 5 for PW2

with L(PS) = 644.6;
(d) Algorithm 4 for PW2

with L(PS) = 631.6.

[15], [16], [20], [20], [24]. That is, it is desired for the solution
path Ps that

d(PPS , Cobs) > DS. (11)

In order to address this issue within the proposed method-
ology, we define the inflated obstacle region Cobs(DS) that
contains all points in C, whose distance from Cobs is less or
equal to DS:

Cobs(DS) = {p ∈ C|d(p, Cobs) ≤ DS}. (12)

In particular, it holds that Cobs = Cobs(0). A viable method for
determining Cobs(DS) in a digital map is to inflate Cobs using
the morphological dilation operation [20]

Cobs(DS) = Cobs ⊕ BDS =

⋃
b∈BDS

Cobs,b, (13)

whereby BDS represents a disk with radius DS, ⊕ represents
the dilation operation and Cobs,b is the translation of Cobs
by b ∈ BDS .

Using Cobs(DS) instead of Cobs, all the algorithms in the
previous sections (Algorithm 1 to 5) can be applied in order
to find short solution paths that keep a distance of at least
DS to the obstacle region Cobs. In this case, we first compute
Cobs(Ds) using (13) and determine the VB for the resulting
map with inflated obstacle region using Algorithm 1. After
that, we apply Algorithm 4 using Cobs(DS) to obtain a solution
path PVV.
For illustration, we apply the proposed method to the

example environment. The inflated obstacle region and the
resulting safe solution paths for DS = 5 and DS = 10 are
shown in Fig. 10. As can be seen from Fig. 9 (d) and Fig. 10,

134772 VOLUME 8, 2020

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

FIGURE 10. Inflated obstacle region for the example environment:
(a) Cobs(5) with L(PS) = 636.9; (b) Cobs(10) with L(PS) = 642.4.

the solution paths become longer as the safety distance
increases. This is expected since the available free space for
the robot motion is reduced for larger values of DS.

IV. EVALUATION
In this section, we evaluate the solution paths PVV of the pro-
posed algorithms regarding the obtained path length L(PVV)
and the computation time TVV for obtaining the solution path.
To this end, we compare the obtained solutions to several
state-of-the-art methods for a large variety of environment
maps. All the algorithms are implemented in Matlab [53] and
run under the same conditions on a Laptop with Intel(R)
Core(TM) i7-4510 CPU @ 2.60Ghz processor and 6GB
RAM. Section IV-A investigates the properties of the VV
algorithm for maps with different properties. A compre-
hensive comparison of different algorithms is provided in
Section IV-B and IV-C.

A. PROPERTIES OF THE VV ALGORITHM
We first analyze the properties of the proposed path planning
algorithm depending on its constituent components. That
is, we evaluate the improvements achieved when applying
Algorithm 4 compared to Algorithm 2 and 5. For comparison,
we also show the results when using the VA? algorithm as
explained in Section III-A, the RR algorithm and the RR-ST
algorithm according to [16] and the PRM* algorithm in [13].
Here, the PRM* algorithm is applied with a large number
of 15 000 samples (denoted as PRM*-L) and serves as a
reference due to its proven convergence to a shortest path.
A brief description of the PRM* algorithm is provided in
Section I of the supplementary material.

Our evaluation in this section is based on four maps which
feature different properties and that are shown together with
their graphs in Fig. 11 and 12. Since this section focuses on
the evaluation of the VV algorithm, we denote these maps as
VV1, VV2, VV3, VV4. The maps VV1 and VV2 in Fig. 11
allow for multiple start-goal walks with similar length in their
respective graphs GVV1 and GVV2. Hereby, VV1 provides
scattered circular and polygonal shapes that leave sufficient
space for the robot motion, whereas the maze map VV2
offers tight passages as well as regions with free space. The
maps VV3 and VV4 in Fig. 12 have a single start-goal walk.
Although there is sufficient space for the robot motion in

FIGURE 11. Environment maps and corresponding graphs: (a) VV1;
(b) VV2.

FIGURE 12. Environment maps and corresponding graphs: (a) VV3;
(b) VV4.

VV3, this maps requires sharp turns of the robot. Differently,
the map VV4 is a maze map with curved obstacle boundaries
and tight passages. For each map, we consider three scenarios
with safety distances of DS = 0 (original map), DS = 5
and DS = 10 in order to validate the performance of our
algorithm in the case of minimum clearance requirements for
path safety as specified in Section III-E.

We first compare the different methods regarding the path
length. The obtained results for the different maps are shown
in Fig. 13 to 16. It is readily observed that VV-ST-R in
Algorithm 4 produces the shortest paths among the VB-based
algorithms for all the maps and for all the considered
safety distances DS. It can also be seen that replacing the
function RemoveRedundancy in [16] by the proposed
VV-algorithm (Algorithm 2) already leads to a consider-
able improvement. That is, VV improves on RR and VV-ST
improves on RR-ST. Moreover, an additional improvement
is achieved by VV-ST-R since it iteratively removes corners
by adding Steiner points and then reduces the number of

VOLUME 8, 2020 134773

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

FIGURE 13. Path length comparison for VV1.

FIGURE 14. Path length comparison for VV2.

FIGURE 15. Path length comparison for VV3.

FIGURE 16. Path length comparison for VV4.

waypoints using the VV-algorithm. Hereby, it is interesting to
note that VV-ST-R produces path lengths that are either very
close to or shorter than the ones from the close-to-optimal
PRM*-L paths.

In addition, our results regarding the computation time
are depicted in Fig. 17 to 20. Here, we note that the com-
putation time for PRM*-L is not shown in these figures
since it exceeds 10min and the computation time for all the
algorithms includes the computation of the GVD, which is
the prerequisite of all the VB-based algorithms. Since both
the RR algorithm and the RR-ST algorithm are based on

FIGURE 17. Computation time comparison for VV1.

FIGURE 18. Computation time comparison for VV2.

FIGURE 19. Computation time comparison for VV3.

FIGURE 20. Computation time comparison for VV4.

finding the shortest start-goal walk along the VB, the com-
putation of this walk using the VA? algorithm is included in
their computation time. Differently, the computation time for
the proposed algorithms VV, VV-ST and VV-ST-R includes
the computation of k shortest start-goal walks using Yen’s
algorithm. In our experiments, we use k = 4. It holds that

134774 VOLUME 8, 2020

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

TABLE 2. Number of iterations for the different algorithms.

all algorithms show a similar computation time with slight
variations depending on the chosen map. Hereby, it is inter-
esting to point out that applying the VV-algorithm repeatedly
(VV-ST-R) as suggested in Algorithm 4 reduces the path
lengths compared to Algorithm 5 and the algorithm in [16]
without increasing the computation time.

According to our analysis, the computation time of the
algorithms RR-ST, VV-ST and VV-ST-R is dominated by the
insertion of Steiner points usingComputeST. That is, a good
indicator for the computation time is the number of iterations
in the while loop in line 9 of Algorithm 3. Table 2 shows this
number of iterations for the different algorithms and maps
considered in this section. Hereby, we note that the displayed
number of iterations for the RR-ST algorithm includes a
single start-goal walk, whereas up to k = 4 start-goal walks
are considered for the VV-ST algorithm and the VV-ST-R
algorithm depending on the map.

It is readily observed that the smaller computation time
of VV-ST-R is related to the smaller number of iterations
compared to the other methods. The main reason for this
outcome is the repeated application of the VV algorithm,
reducing the number of waypoints of the intermediate solu-
tions paths P supplied to the function ComputeST in
Algorithm 4 and 5. Hereby, it has to be noted that the num-
ber of waypoints generally increases when adding Steiner
points, whereas the number of waypoints is reduced by the
application ofRemoveRedundancy orComputeVV. Con-
sidering RR-ST and VV-ST, it holds that the number of
waypoints is only reduced at the beginning (line 8) and end
(line 12) of the corresponding Algorithm 5. Accordingly, the
intermediate solution paths in line 10 of Algorithm 5 poten-
tially accumulate a large number of waypoints, leading to an

FIGURE 21. Solution paths for VV1 and DS = 5.

FIGURE 22. Solution paths for VV2 and DS = 10.

increased number of iterations when applying ComputeST.
Differently, using VV-ST-R, the number of waypoints of
intermediate solutions paths P supplied to ComputeST in
line 10 of Algorithm 4 is directly reduced after adding Steiner
points withComputeST by applyingComputeVV in line 11
of Algorithm 4. Hence, a smaller number of iterations is
required when adding Steiner points using ComputeST. In
summary, this discussion further clarifies the advantage of
iteratively adding new waypoints and then removing unnec-
essary waypoints by the VV-ST-R algorithm.

In addition to the computational results, Fig. 21 to Fig. 24
show a selection of solution paths for different maps and
methods (the complete set of figures with an animation of the
iteration steps is shown in Section II of the supplementary
material. The experiment can be repeated using the code in
[54]). Fig. 21 and 22 illustrate that the solution paths of
Algorithm 4 do not necessarily follow the shortest start-goal
walk, which is different from the algorithm in [16]. Further-
more, Fig. 23 and 24 highlight that the paths generated by
Algorithm 4 are able to tightly follow the shape of obstacles,
while favoring straight-line connections in free space. As a
result, these paths are even shorter than the paths obtained
from applying the PRM*-L algorithm with a large number of
nodes.

VOLUME 8, 2020 134775

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

FIGURE 23. Solution paths for VV3 and DS = 5.

FIGURE 24. Solution paths for VV4 and DS = 0.

B. COMPARISON WITH STATE-OF-THE-ART ALGORITHMS
The results in the previous section indicate that the VV-ST-R
algorithm outperforms other algorithms that are based on a
refinement of solution paths that follow the VB. We next
perform a comparison of this algorithm with several state-
of-the-art sampling-based path planning methods. To this
end, we consider the 15 different maps in Fig. 25 that were
previously used in path planing applications.

For the comparison, we choose the PRM* algorithm,which
extends the Probabilistic Roadmap (PRM) algorithm, and
the RRT* algorithm, which extends the Rapidly exploring
Random Tree (RRT) algorithm, since these algorithms are
probabilistically complete and asymptotically optimal [13].
In addition, we apply the Fast Marching Tree (FMT) algo-
rithm that is supposed to generate shorter paths than PRM*
and RRT* with a reasonable computation time without being
asymptotically optimal [27]. Finally, the very recent Confi-
dence Random Tree (CRT) algorithm is tailored for finding
solution paths that keep a safe distance from obstacleswithout
computing the GVD [24]. A description of these algorithms
is provided in Section I of the supplementary material. For
all these sampling-based algorithms, we take the average
of 100 trials andwe select a suitable number of nodes/samples

FIGURE 25. Maps for the comparative evaluation.

in order to ensure finding a solution path in more than 98%
of the trials. In addition, similar to the previous section,
we perform runs of the PRM*-L algorithm with 15 000 nodes
and a long computation time above 10 minutes as a reference
for close-to-optimal paths.

The results of our computational experiments are summa-
rized in Table 3 and 4. For convenience the cells of themethod
with the shortest path and the shortest computation time are
shaded in gray. As the first main observation, it can be seen
that the VV-ST-R algorithm always generates the shortest
path among the algorithms that produce a solution path in a
practical time. In addition, VV-ST-R has the smallest compu-
tation time in almost all of the cases. As a further advantage,
the VV-ST-R algorithm is guaranteed to find a solution path
if such path exists since it starts from a connection of the start
and goal point along the VB. The implication of this fact
can for example be seen when inspecting the computation

134776 VOLUME 8, 2020

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

TABLE 3. Path length comparison.

TABLE 4. Computation time comparison.

time for the map Z7 or Z12 for DS = 5. Here, PRM* and
FMT require a large number of nodes in order to find a
solution path since (i) there is only a narrow passage between
obstacles and (ii) most of the sampled nodes are generated in
the obstacle region or in the part of the free space that does
not contribute to the solution path. In contrast, VV-ST-R is
able to shorten the initial solution path, which is given by the
connection of ps and pg along the VB.

We further highlight several interesting observations from
the solutions obtained using the VV-ST-R algorithm for the
maps Z6, Z9, Z10, Z14 and Z15. A comparison of the solution
paths for VV-ST-R, PRM*-L and RR-ST can be found in
Fig. 26. The upper plot shows Z6 for DS = 0. Here, it can
be seen that VV-ST-R is able to generate solution paths that
turn around sharp corners, while finding short connections in
free space. In contrast, RR-ST cannot reduce the path length
in case the generated waypoints become too close to each
other. This observation is also supported by the second plot
for Z9 and DS = 0. This plot further illustrates that the
solution paths of VV-ST-R can tightly follow straight walls.
This is not the case for the solution paths of the PRM*-L
algorithm, which depend on the locations of the randomly

sampled nodes. The middle plot shows solution paths for Z10
and DS = 0. It can be readily observed that solution paths
generated by VV-ST-R can follow curved objects by placing
an increased number of waypoints where necessary. The sec-
ond plot from the bottom with Z14 and DS = 5 illustrates the
advantage of computing solution paths for multiple start-goal
walks along the VB. Here, VV-ST-R chooses a different
start-goal walk and is hence able to generate a solution path
that is considerably shorter than the path for RR-ST. Finally,
the lower plot with Z15 demonstrates that solution paths with
a reduced number of waypoints are obtained when applying
the VV-ST-R algorithm. For completeness, the solution paths
of VV-ST-R for the remaining maps and DS = 0 are shown
in Fig. 27.

We next discuss the ability of the VV-ST-R algorithm
to compute safe solution paths with a specified minimum
clearance. To this end, we writeDCRT for the minimum safety
distance obtained for each map by applying the CRT algo-
rithm, which tries to maximize the obstacle clearance at each
point of the solution path. Then, we select DS = DCRT + 1
as the safety distance for the other methods. We note that
this choice of DS is made in order to compare the idea of

VOLUME 8, 2020 134777

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

FIGURE 26. Several interesting cases of solution paths for VV-ST-R,
PRM*-L and RR-ST.

inflating the obstacle region with a method that generates
safe paths without inflating the obstacle region. In principle,
any choice of DS would be possible as long as there is a
connection between ps and pg along the VB. In addition
to path length and computation time, we also investigate the
minimum distance to Cobs as shown in Table 5.
Looking at the results for the path length, we first note that

the methods based on the inflated obstacle region are able
to find a shorter solution path than the CRT algorithm. This
is an expected result since the CRT algorithm is targeted for
achieving a maximum obstacle clearance. Most importantly,
VV-ST-R always finds the shortest safe solution paths among
all the methods with a practical computation time. In most of
the cases, the solution paths of VV-ST-R are determined with

FIGURE 27. Solution paths of VV-ST-R for different maps.

the shortest computation time and are as well shorter than the
ones of PRM*-L.

We finally illustrate the findings of this experiment by
comparing the solution paths of VV-ST-R, PRM*-L and CRT
for the maps Z4, Z13 and Z14 in Fig. 28. Here, we first
note that both PRM*-L and CRT require a large number of
waypoints, leading to large computation times. The upper plot
shows that, even all the methods follow the same start-goal
walk, the shortest path is computed by VV-ST-R due to
the effective placement of a small number of waypoints.
In contrast, the solution paths of CRT show unnecessary
turns since this algorithm tries to find a path with the high-
est confidence of avoiding obstacles but without knowledge
about the VB. This is true both in cases where CRT follows
the correct start-goal walk (upper and center plot) and in
cases where CRT follows a different start-goal walk (bottom
plot). Furthermore, the safety distance achieved by CRT is
a result of applying the algorithm and cannot be adjusted as
for VV-ST-R by setting DS. We note that the complete set of
solution paths for the different maps is given in Section III

134778 VOLUME 8, 2020

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

TABLE 5. Performance evaluation for safe paths with DS = DCRT + 1.

FIGURE 28. Comparison of safe solution paths.

of the supplementary material and the related Matlab code is
available in [54].

C. COMPARISON TO THE VISIBILITY GRAPH
COMPUTATION
It is a well-known fact that Visibility Graphs (VGs) can be
used to find the shortest straight-line path between start and
goal points in robot environments with polygonal obstacles
[32], [55]. Hereby, the computation time strongly depends on
the number of obstacle vertexesNV that need to be considered

TABLE 6. Path length and computation time comparison for VV-ST-R
and VG.

during the computation. In this section, we compare the solu-
tion paths of the proposed method in Algorithm 4 and from
the VG for polygon maps with different numbers of obstacle
vertexes. The obtained results are summarized in Table 6 and
the solution paths are shown in Fig. 29 to 32.

It is readily observed that the number of vertexes signif-
icantly affects the computation time when using the VG.
Differently, the VV-ST-R algorithm is able to compute close-
to-optimal solution paths in a very short time. In this con-
text, we note that Table 6 reveals a common property of
solution paths obtained from the VG. Since the shortest
paths in the VG are generally tangent to obstacles or cross
obstacle vertexes, they contain semi-free configurations. That
is, robots will be in contact with the obstacle (zero clear-
ance) when passing such configurations [36]. In contrast,
our method determines solution paths that are completely
outside obstacles. The slightly longer solution paths obtained
by the VV-ST-R algorithm are due to this property of the VG.
We further emphasize that the VG is only applicable as an
exact method for polygon maps. Hence, a great advantage
of the proposed VV-ST-R algorithm is the computation of
close-to-optimal solution paths for general maps with very
small computation times. This is for example confirmed for

VOLUME 8, 2020 134779

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

FIGURE 29. VG comparison for the map VV3.

FIGURE 30. VG comparison for the map Z4.

FIGURE 31. VG comparison for the map Z13.

FIGURE 32. VG comparison for the map Z15.

the map in Section III and the maps VV1, VV4 and Z10 with
curved objects.

V. CONCLUSION
The subject of this paper is the path planning problem for
mobile robots in a two-dimensional configuration space with
obstacles. Hereby, we consider the practical case, where
an environment map is given as a digital map instead of
a collection of geometric objects with precise coordinates.
When solving the described path planning problem, different
performance metrics have to be taken into account. First,
it is desired to compute robot paths that are as short as
possible. Second, it is beneficial for safety if solution paths
have a specified minimum obstacle clearance. Finally, it is
very important for real-time applications to generate suitable
paths with a short computation time.

In order to address the stated requirements, we develop
a new path planning method that uses information about
the topology of the environment that is obtained from the
generalized Voronoi diagram (GVD) in order to determine
initial solution paths. These paths are then refined by iter-
atively removing waypoints to realize shortcuts and adding
newwaypoints to cut corners. Since the solution paths in each
iteration contain a small number of waypoints, our method is
computationally efficient, while producing close-to-optimal
solutions. Hereby, our method is guaranteed to find a solution
path whenever such path exists.

Our comparative evaluation with different state-of-the-art
methods and a large number of maps with different properties
shows that the proposed algorithm is able to produce better
solution paths in a short time.We further demonstrate that our
method allows addressing path safety by using environment
maps with inflated obstacles.

The proposed method is currently formulated for static
environments with straight-line solution paths. Accordingly,
our future work will focus on the extension to environments
with dynamic obstacles and the application of smoothing to
make the generated solution paths usable for nonholonomic
robots.

REFERENCES
[1] F. Rubio, F. Valero, and C. Llopis-Albert, ‘‘A review of mobile robots:

Concepts, methods, theoretical framework, and applications,’’ Int. J. Adv.
Robotic Syst., vol. 16, no. 2, pp. 1–22, 2019.

[2] S. Spanogianopoulos and K. Sirlantzis, Car-Like Mobile Robot Naviga-
tion: A Survey. Berlin, Germany: Springer, 2016, pp. 299–327.

[3] S. G. Tzafestas, ‘‘Mobile robot control and navigation: A global overview,’’
J. Intell. Robotic Syst., vol. 91, no. 1, pp. 35–58, Jul. 2018.

[4] M. Hoy, A. S. Matveev, and A. V. Savkin, ‘‘Algorithms for collision-free
navigation of mobile robots in complex cluttered environments: A survey,’’
Robotica, vol. 33, no. 3, pp. 463–497, Mar. 2015.

[5] I. Noreen, A. Khan, H. Ryu, N. L. Doh, and Z. Habib, ‘‘Optimal path
planning in cluttered environment using RRT*-AB,’’ Intell. Service Robot.,
vol. 11, no. 1, pp. 41–52, Jan. 2018.

[6] L. G. D. O. Veras, F. L. L. Medeiros, and L. N. F. Guimaraes, ‘‘Systematic
literature review of sampling process in rapidly-exploring random trees,’’
IEEE Access, vol. 7, pp. 50933–50953, 2019.

[7] D. G. Macharet and M. F. M. Campos, ‘‘A survey on routing problems and
robotic systems,’’ Robotica, vol. 36, no. 12, pp. 1781–1803, Dec. 2018.

[8] Y. Dong, E. Camci, and E. Kayacan, ‘‘Faster RRT-based nonholonomic
path planning in 2D building environments using skeleton-constrained path
biasing,’’ J. Intell. Robotic Syst., vol. 89, nos. 3–4, pp. 387–401,Mar. 2018.

[9] S. Agnisarman, S. Lopes, K. C. Madathil, K. Piratla, and A. Gramopad-
hye, ‘‘A survey of automation-enabled human-in-the-loop systems for
infrastructure visual inspection,’’ Autom. Construct., vol. 97, pp. 52–76,
Jan. 2019.

[10] R. Cui, Y. Li, and W. Yan, ‘‘Mutual information-based multi-AUV
path planning for scalar field sampling using multidimensional RRT,’’
IEEE Trans. Syst., Man, Cybern. Syst., vol. 46, no. 7, pp. 993–1004,
Jul. 2016.

[11] G. Jain, G. Yadav, D. Prakash, A. Shukla, and R. Tiwari, ‘‘MVO-based
path planning scheme with coordination of UAVs in 3-D environment,’’
J. Comput. Sci., vol. 37, Oct. 2019, Art. no. 101016.

[12] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser, ‘‘Heuristic approaches
in robot path planning: A survey,’’ Robot. Auto. Syst., vol. 86, pp. 13–28,
Dec. 2016.

[13] S. Karaman and E. Frazzoli, ‘‘Sampling-based algorithms for optimal
motion planning,’’ Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894,
Jun. 2011.

[14] M. G. Mohanan and A. Salgoankar, ‘‘A survey of robotic motion planning
in dynamic environments,’’ Robot. Auto. Syst., vol. 100, pp. 171–185,
Feb. 2018.

134780 VOLUME 8, 2020

M. R. H. Al-Dahhan, K. W. Schmidt: Voronoi Boundary Visibility for Efficient Path Planning

[15] B. B. K. Ayawli, X. Mei, M. Shen, A. Y. Appiah, and F. Kyeremeh,
‘‘Mobile robot path planning in dynamic environment using Voronoi
diagram and computation geometry technique,’’ IEEE Access, vol. 7,
pp. 86026–86040, 2019.

[16] P. Bhattacharya and M. Gavrilova, ‘‘Roadmap-based path planning—
Using the Voronoi diagram for a clearance-based shortest path,’’ IEEE
Robot. Autom. Mag., vol. 15, no. 2, pp. 58–66, Jun. 2008.

[17] P. Loncomilla, J. Ruiz-del-Solar, and L. Martínez, ‘‘Object recognition
using local invariant features for robotic applications: A survey,’’ Pattern
Recognit., vol. 60, pp. 499–514, Dec. 2016.

[18] S. Garrido, L. Moreno, M. Abderrahim, and F. Martin, ‘‘Path planning
for mobile robot navigation using Voronoi diagram and fast marching,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2006, pp. 2376–2381.

[19] R. Samaniego, J. Lopez, and F. Vazquez, ‘‘Path planning for non-circular,
non-holonomic robots in highly cluttered environments,’’ Sensors, vol. 17,
no. 8, p. 1876, Aug. 2017.

[20] B. B. K. Ayawli, X. Mei, M. Shen, A. Y. Appiah, and F. Kyeremeh,
‘‘Optimized RRT—A* path planning method for mobile robots in partially
known environment,’’ Inf. Technol. Control, vol. 48, no. 2, pp. 179–194,
Jun. 2019.

[21] A. Khan, I. Noreen, and Z. Habib, ‘‘On complete coverage path planning
algorithms for non-holonomic mobile robots: Survey and challenges,’’
J. Inf. Sci. Eng., vol. 33, pp. 101–121, 2017.

[22] P. Corke, Robotics, Vision and Control: Fundamental Algorithms in
MATLAB, 1st ed. Berlin, Germany: Springer, 2013.

[23] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki,
and S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Imple-
mentations. Cambridge, MA, USA: MIT Press, May 2005.

[24] Y. N. Kim, D. W. Ko, and I. H. Suh, ‘‘Confidence random tree-based
algorithm for mobile robot path planning considering the path length and
safety,’’ Int. J. Adv. Robotic Syst., vol. 16, no. 2, pp. 1–10, 2019.

[25] L. E. Kavraki, P. Svestka, J.-C. Latombe, andM.H.Overmars, ‘‘Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,’’
IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, Aug. 1996.

[26] S. M. LaValle and J. J. Kuffner, ‘‘Randomized kinodynamic planning,’’ Int.
J. Robot. Res., vol. 20, no. 5, pp. 378–400, May 2001.

[27] L. Janson, E. Schmerling, A. Clark, and M. Pavone, ‘‘Fast marching tree:
A fast marching sampling-based method for optimal motion planning
in many dimensions,’’ Int. J. Robot. Res., vol. 34, no. 7, pp. 883–921,
Jun. 2015.

[28] M. R. H. Al-Dahhan and M. M. Ali, ‘‘Path tracking control of a mobile
robot using fuzzy logic,’’ in Proc. 13th Int. Multi-Conf. Syst., Signals
Devices (SSD), Mar. 2016, pp. 82–88.

[29] M. Elbanhawi, M. Simic, and R. N. Jazar, ‘‘Continuous path smoothing
for car-like robots using B-Spline curves,’’ J. Intell. Robotic Syst., vol. 80,
no. S1, pp. 23–56, Dec. 2015.

[30] K. Renny Simba, N. Uchiyama, and S. Sano, ‘‘Real-time smooth trajectory
generation for nonholonomic mobile robots using Bézier curves,’’ Robot.
Comput.-Integr. Manuf., vol. 41, pp. 31–42, Oct. 2016.

[31] I.-B. Jeong, S.-J. Lee, and J.-H. Kim, ‘‘Quick-RRT*: Triangular
inequality-based implementation of RRT* with improved initial solution
and convergence rate,’’ Expert Syst. Appl., vol. 123, pp. 82–90, Jun. 2019.

[32] T. Lozano-Pérez and M. A. Wesley, ‘‘An algorithm for planning
collision-free paths among polyhedral obstacles,’’ Commun. ACM, vol. 22,
no. 10, pp. 560–570, Oct. 1979.

[33] S. Oh andH.W. Leong, ‘‘Edge n-level sparse visibility graphs: Fast optimal
any-angle pathfinding using hierarchical taut paths,’’ in Proc. 10th Annu.
Symp. Combinat. Search, Jun. 2017, pp. 64–72.

[34] E.Masehian andM. R. Amin-Naseri, ‘‘AVoronoi diagram-visibility graph-
potential field compound algorithm for robot path planning,’’ J. Robotic
Syst., vol. 21, no. 6, pp. 275–300, 2004.

[35] M. R. H. AL-DAHHAN and K. W. Schmidt, ‘‘Safe and efficient path
planning for omni-directional robots using an inflated Voronoi boundary,’’
Çankaya Univ. J. Sci. Eng., vol. 16, no. 2, pp. 46–69, 2019.

[36] R.Wein, J. P. van den Berg, and D. Halperin, ‘‘The visibility-Voronoi com-
plex and its applications,’’ Comput. Geometry, vol. 36, no. 1, pp. 66–87,
Jan. 2007.

[37] Q. Wang, M. Wulfmeier, and B. Wagner, ‘‘Voronoi-based heuristic for
nonholonomic search-based path planning,’’ in Intelligent Autonomous
Systems. Cham, Switzerland: Springer, 2016, pp. 445–458.

[38] P. Bhattacharya andM. L. Gavrilova, ‘‘Geometric algorithms for clearance
based optimal path computation,’’ inProc. 15th Annu. ACM Int. Symp. Adv.
Geographic Inf. Syst. GIS, 2007, pp. 1–4.

[39] K. Yang, ‘‘Anytime synchronized-biased-greedy rapidly-exploring random
tree path planning in two dimensional complex environments,’’ Int. J.
Control, Autom. Syst., vol. 9, no. 4, p. 750, 2011.

[40] J. Wang, W. Chi, M. Shao, and M. Q.-H. Meng, ‘‘Finding a high-quality
initial solution for the RRTs algorithms in 2D environments,’’ Robotica,
vol. 37, no. 10, pp. 1677–1694, Oct. 2019.

[41] R. Kala, ‘‘Homotopic roadmap generation for robot motion planning,’’
J. Intell. Robotic Syst., vol. 82, nos. 3–4, pp. 555–575, Jun. 2016.

[42] M. Korkmaz and A. Durdu, ‘‘Comparison of optimal path planning algo-
rithms,’’ in Proc. 14th Int. Conf. Adv. Trends Radioelecrtronics, Telecom-
mun. Comput. Eng. (TCSET), Feb. 2018, pp. 255–258.

[43] H. Kim and B. K. Kim, ‘‘Minimum-energy cornering trajectory planning
with self-rotation for three-wheeled omni-directional mobile robots,’’ Int.
J. Control, Autom. Syst., vol. 15, no. 4, pp. 1857–1866, Aug. 2017.

[44] A. Sheikhlar and A. Fakharian, ‘‘Online policy iteration-based tracking
control of four wheeled omni-directional robots,’’ J. Dyn. Syst., Meas.,
Control, vol. 140, no. 8, Aug. 2018.

[45] D. T. Lee, ‘‘Medial axis transformation of a planar shape,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-4, no. 4, pp. 363–369, Jul. 1982.

[46] R. Ogniewicz andM. Ilg, ‘‘Voronoi skeletons: Theory and applications,’’ in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 1992,
pp. 63–69.

[47] L. Mestetskiy and A. Semenov, ‘‘Binary image skeleton—Continuous
approach,’’ in Proc. Int. Conf. Comput. Vis. Theory Appl., 2008,
pp. 251–258.

[48] E. W. Dijkstra, ‘‘A note on two problems in connexion with graphs,’’
Numerische Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[49] P. Hart, N. Nilsson, and B. Raphael, ‘‘A formal basis for the heuristic
determination of minimum cost paths,’’ IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100–107, 1968.

[50] J. Y. Yen, ‘‘Finding the K shortest loopless paths in a network,’’ Manage.
Sci., vol. 17, pp. 712–716, Jul. 1971.

[51] M. Hasan, M. L. Gavrilova, and J. G. Rokne, ‘‘A geometric approach
to clearance based path optimization,’’ in Computational Science and
Its Applications ICCSA, O. Gervasi and M. L. Gavrilova, eds. Berlin,
Germany: Springer, 2007, pp. 136–150.

[52] D. Hsu, J.-C. Latcombe, and S. Sorkin, ‘‘Placing a robot manipulator amid
obstacles for optimized execution,’’ in Proc. IEEE Int. Symp. Assem. Task
Planning (ISATP), Jul. 1999, pp. 280–285.

[53] Version 9.6.0.1072779 (R2019a). MATLAB, TheMathWorks Inc., Natick,
MA, USA, 2019.

[54] M. R. H. Al-Dahhan and K.W. Schmidt. (2020). Path-Planning for Mobile
Robots Based on Voronoi Diagrams. [Online]. Available: http://users.
metu.edu.tr/schmidt/software/VoronoiVisibility.zip

[55] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computa-
tional Geometry: Algorithms and Applications, 3rd ed. Berlin, Germany:
Springer, 2008.

MOHAMMED RABEEA HASHIM AL-DAHH-
AN received the B.Eng. degree in computer
technology engineering from the Al-Maaref Col-
lege University, Iraq, in 2013, the M.Sc. degree
in mechatronics from Philadelphia University,
Jordan, in 2015, and the Ph.D. degree in electronic
and communication engineering from Çankaya
University, Turkey, in 2020. His research interests
include robotics and intelligent control.

KLAUS WERNER SCHMIDT received the
Diploma and Ph.D. degrees in electrical, elec-
tronic, and communication engineering from
the University of Erlangen-Nürnberg, Germany,
in 2002 and 2005, respectively.

He is currently a Professor with the Depart-
ment of Electrical and Electronics Engineering,
Middle East Technical University, Ankara. His
research interests include supervisory control for
discrete event systems, industrial automation sys-

tems, industrial communication networks, intelligent transportation systems,
and industrial project control. He is also an Associate Editor of Discrete
Event Dynamic Systems and the Turkish Journal of Electrical Engineering
& Computer Sciences.

VOLUME 8, 2020 134781

