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ABSTRACT

IP TRAFFIC MODELING

Tarıyan, Sibel

M.S.c., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Reza Hassanpour

February 2007, 77 pages

RSVP allows Internet real-time applications to request a specific end-to-end QoS for

data stream before they start transmitting data. In this report firstly an overview

of RSVP is presented. After that the different quality of services available and the

relation between QoS and RSVP are explained. Then the fundamentals of RSVP as

a protocol are discussed. The performance issues and benchmarking are given next.

The experimental results and discussions conclude this thesis.

Keywords: RSVP, Quality of Service (QoS), Data flow.
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ÖZ

İNTERNET PROTOKOL TRAFİK MODELLEMESİ

Tarıyan, Sibel

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Reza Hassanpour

Şubat 2007, 77 sayfa

RSVP internet gerçek zamanlı uygulamarnda veri dizgisi için gönderimden önce bir

uçtan diğer uca servis kalitesi isteğinde bulunmaya izin verir. Bu tezde öncelikle

kuşbakışı RSVP sunulmuştur. Bunu takiben farklı servis kaliteleri ve servis kalitesi

ve RSVP arasındaki ilişki açıklandı. Bir protokol olarak RSVPnin temelleri ele

alındı. Performans sorunları ve karşılaştırmalı sınama sonuçları verildi. En son olarak

deneyler ve sonuçları ele alındı.

Anahtar Kelimeler: RSVP, Servis Kalitesi, Veri akışı.
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CHAPTER 1

INTRODUCTION

Internet allows the transmission of data between end points. In original design, it

tries to transmit as quickly as possible but there is no guarantee to the timeliness and

assurance of actual delivery. It provides its best effort service at end points. It may

give qualitatively better service, but without the quantitative bounds of a guaranteed

service it is far from expectations especially in an environment containing various

services to be handled in the media. There is a great deal of interest in network appli-

cations. Accomplishment of best effort service for one single service is far from present

day constraints. Due to demanding changes in end-point requirements, internet is af-

fected to meet the quality of service (QoS) requirements. There are several protocols

for real time services(Video Conferencing, Internet TV and Internet Telephony, are

rapidly growing and perfected) that support QoS of multimedia applications for IP

networks such as Resource Reservation Protocol(RSVP) , together with Real-Time

Transport Protocol(RTP) , Real-Time Control Protocol(RTCP), Real-Time Stream-

ing Protocol(RTSP),provides a working foundation for real-time services.

Utilization of RSVP in a network with different perspectives is analyzed and simula-

tions conducted are given in experiments.
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In this thesis, OPNET network simulation tool is used. OPNET is a network simu-

lation tool that outputs the characteristics of a real time network utilizing different

services with a priori parameters. Under given architecture and protocol, performance

of quality of service implications is carried out.

This thesis contains nine chapters. Chapter 1 contains introduction part. Chapter

2 describes introductory information about RSVP protocol. Chapter 3 gives back-

ground information about quality of service and Chapter 4 and 5 contain detailed

background of RSVP system and RSVP messages respectively. They are followed by

Chapter 6. It summarizes the drawbacks of RSVP. Chapter 7 details in OPNET and

its use with RSVP. Chapter 8 includes obtained simulation results and finally it is

concluded with summary and conclusions.
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CHAPTER 2

OVERVIEW

RSVP (Resource Reservation Protocol) is a resource reservation setup protocol for the

Internet. The RSVP protocol is used by hosts to obtain specific qualities of service

from the network for particular application data streams or flows. It is also used by

routers to deliver quality-of-service (QoS) requests to all nodes along the path of the

flows and to establish and maintain state to provide the requested service [1]. RSVP

carries the request through the network, visiting each node the network uses to carry

the stream. At each node, RSVP attempts to make a resource reservation for the

stream. Some applications require reliable delivery of data but do not impose any

stringent requirements for the timeliness of delivery. But applications such as video-

conferencing, IP telephony, NetRadio require almost exact opposite: Data delivery

must be timely but not necessarily reliable. Thus, RSVP was intended to provide

IP networks with the capability to support the divergent performance requirements

of differing application types. Originally RSVP was conceived by researchers at the

University of Southern California (USC) Information Sciences Institute (ISI) and Xe-

rox’s Palo Alto Research Center (PARC). Later the Internet Engineering Task Force

(IETF) specified an open version of RSVP in its RFC 2205 based basically on the

USC and PARC version. 2.1 shows the position of RSVP in the TCP/IP stack.

3



Figure 2.1: RSVP in TCP/IP Stack

Before mentioning this protocol we need to know a concept very closed to RSVP, and

this is the quality of service (QoS).
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CHAPTER 3

QUALITY OF SERVICE

Nowadays there are a lot of different kind of applications in Internet and each one

need different properties to run. For example, distributed multimedia applications

need to communicate in real-time and are sensitive to the quality of service they

receive from the network. These application requirements of multimedia systems

have to be transferred to the communication services and operating system. It is

difficult to give a formal definition of QoS but here we can read different definitions

from different organizations [2]:

• The International Telecomunication Union (ITU) refers to QoS as” A set of

quality requirements on the collective behavior of one or more objects”.

• The ATM Lexicon defines QoS as ”A term which refers to the set of ATM perfor-

mance parameters that characterize the traffic over a given virtual connection.”

• The Internet Engineering Task Force (IETF) addresses QoS issues for ATM as

”The demand for networked real time services grows, so does the need for shared

networks to provide deterministic delivery services. Such deterministic delivery

services demand that both the source application and the network infrastruc-

5



ture have capabilities to request, setup, and enforce the delivery of the data.

Collectively these services are referred to as bandwidth reservation and Quality

of Service (QoS)”

3.1 QoS Requirements

A packet stream from a source to a destination is called flow. In a connection-oriented

network, all the packets belonging to a flow follow the same route; in a connectionless

network, they may follow different routes. The needs of each flow can be characterized

by four primary parameters: reliability, delay, jitter, and bandwidth. Together these

determine the QoS (Quality of Service) the flow requires. Several common applications

and the stringency of their requirements are listed in Table 3.1.

Table 3.1: The Stringent of The Quality of Service Requirements

Application Reliability Delay Jitter Bandwidth

E-mail High Low Low Low

File transfer High Low Low Medium

Web access High Medium Low Medium

Remote login High Medium Medium Low

Audio on demand Low Low High Medium

Video on demand Low Low High High

Telephony Low High High Low

Videoconferencing Low High High High

The first four applications have stringent requirements on reliability. No bits may be

6



delivered incorrectly. This goal is usually achieved by doing checksum each packet

and verifying the checksum at the destination. If a packet is damaged in transit,

it is not acknowledged and will be retransmitted eventually. This strategy gives

high reliability. The four final (audio/video) applications can tolerate errors, so no

checksums are computed or verified.

File transfer applications, including e-mail and video, are not delay sensitive. If all

packets are delayed uniformly by a few seconds, no harm is done. Interactive appli-

cations, such as Web surfing and remote login, are more delay sensitive. Real-time

applications, such as telephony and videoconferencing have strict delay requirements.

If all the words in a telephone call are each delayed by exactly 2.000 seconds, the users

will find the connection unacceptable. On the other hand, playing audio or video files

from a server does not require low delay.

The first three applications are not sensitive to the packets arriving with irregular time

intervals between them. Remote login is somewhat sensitive to that, since characters

on the screen will appear in little bursts if the connection suffers much jitter. Video

and especially audio are extremely sensitive to jitter. If a user is watching a video

over the network and the frames are all delayed by exactly 2.000 seconds, no harm

is done. But if the transmission time varies randomly between 1 and 2 seconds, the

result will be terrible. For audio, a jitter of even a few milliseconds is clearly audible.

Finally, the applications differ in their bandwidth needs, with e-mail and remote login

not needing much, but video in all forms needing a great deal.

7



3.2 Techniques for Achieving Good Quality of Service

There is no single technique provides efficient, dependable QoS in an optimum way.

Instead a variety of techniques have been developed, with practical solutions often

combining multiple techniques. Some of the techniques used to achieve QoS are:

Over provisioning: An easy solution is to provide so much router capacity, buffer

space, and bandwidth that the packets just fly through easily. The trouble with

this solution is that it is expensive. To some extent, the telephone system is over

provisioned. It is rare to pick up a telephone and not get a dial tone instantly. There

is simply so much capacity available there that demand can always be met.

Buffering: Flows can be buffered on the receiving side before being delivered. Buffer-

ing them does not affect the reliability or bandwidth, and increases the delay, but it

smoothes out the jitter. For audio and video on demand, jitter is the main problem,

so this technique helps a lot.

There is a stream of packets being delivered with substantial jitter. Packet 1 is sent

from the server at t=0 sec and arrives at t=1 sec. Packets 2 undergoes more delay and

takes 2 sec to arrive. As the packets arrive, they are buffered on the client machine.

At t=10 sec, playback begins. At this time, packets 1 through 6 have been buffered

so that they can be removed from the buffer at uniform intervals for smooth play.

Unfortunately, Packet 8 has been delayed so much that it is not available when its

play slot comes up, so playback must stop until it arrives, creating an annoying gap

in the music or movie. This problem can be alleviated by delaying the starting time

8



even more, although doing so also requires a larger buffer. Commercial web sites that

contains streaming audio or video all use players that buffer for about 10 seconds

before starting to play.

Traffic Shaping : Buffering is not always possible, for example, with videoconfer-

encing. However, if something could be done to make the server (and hosts in general)

transmit at a uniform rate, quality of service would be better. 30 packets are sent to

the server machine in 30 seconds. But how do the packets go? The answer is traffic

shaping which is the packets distribution in the time. Traffic shaping is a technique

which smoothes out the traffic on the server side, rather than on the client side. Traf-

fic shaping reduces congestion and thus helps the carrier live up to its promise. Such

agreements are not so important for file transfers but are of great importance for real-

time data, such as audio and video connections which have stringent quality-of-service

requirements.

In effect, with traffic shaping the customer says to the carrier: My transmission

pattern will look like this; can you handle it? If the carrier agrees, the issue arises of

how the carrier can tell if the customer is following the agreement and what to do if

the customer is not. Monitoring a traffic flow is called traffic policing.

The Leaky Bucket Algorithm :Imagine a bucket with a small hole in the bottom.

No matter the rate at which water enters the bucket, the outflow is at a constant rate,

ρ, when there is any water in the bucket and zero when the bucket is empty. Also,

once the bucket is full, any additional water entering it spills over the sides and is

lost.
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The same idea can be applied to packets. Conceptually, each host is connected to the

network by an interface containing a leaky bucket, that is, a finite internal queue. If

a packet arrives at the queue when it is full, the packet is discarded. In other words,

if one or more processes within the host try to send a packet when the maximum

number is already queued, the new packet is unceremoniously discarded. It is called

the leaky bucket algorithm. Implementing the original leaky bucket algorithm is easy.

The leaky bucket consists of a finite queue. When a packet arrives, if there is room

on the queue it is appended to the queue; otherwise, it is discarded. At every clock

tick, one packet is transmitted.

The byte-counting leaky bucket is implemented almost the same way. At each clock

tick, a counter is initialized to n. If the first packet on the queue has fewer bytes than

the counter value of the counter, it is transmitted, and the counter is decremented

by that number of bytes. Additional packets may also be sent, as long as the counter

is high enough. When the counter drops below the length of the next packet on the

queue, transmission stops until the next tick, at which time the residual byte count

is reset and the flow can continue.

Token Bucket Algorithm :The leaky bucket algorithm enforces a rigid output pat-

tern at the average rate, no matter how bursty the traffic is. For many applications,

it is better to allow the output to speed up somewhat when large bursts arrive, so

a more flexible algorithm is needed, preferably one that never loses data. One such

algorithm is the token bucket algorithm. In this algorithm, the leaky bucket holds

tokens, generated by a clock at the rate of one token every ∆T sec.
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The implementation of the basic token bucket algorithm is just a variable that counts

tokens. The counter is incremented by one every ∆T and decremented by one when-

ever a packet is sent.

Essentially what the token bucket does is allow bursts, but up to a regular maximum

length. Calculating the length of the maximum rate burst is slightly tricky. If we call

the burst length S sec, the token bucket capacity C bytes, the token arrival rate ρ

bytes/sec, and the maximum output rate M bytes/sec, we see that an output burst

contains a maximum of C+ ρS bytes. Hence we have C+ ρ.S =MS. We can solve this

equation to S=C/(M- ρ).In conclusion, S sec burst length can be accepted without

losing data.

Resource Reservation :Being able to regulate the shape of the offered traffic is

a good start to guaranteeing the quality of service. However, effectively using this

information implicitly means requiring all the packets of a flow to follow the same

route. Spraying them over routers at random makes it hard to guarantee anything.

As a consequence, something similar to a virtual circuit has to be set up from the

source to the destination, and all the packets that belong to the flow must follow

this route. Once we have a specific route for a flow, it becomes possible to reserve

resources along that route to make sure the needed capacity is available[3].

There are three basic levels of end-to-end QoS that can be provided across a hetero-

geneous network [2, 4, 5]:

Best-effort service: Internet offers a service based on the” best effort” delivery

model. This model delivers data to the destination as soon as possible, but with
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no commitment as to bandwidth or latency. For this reason,”the best effort” model

is inadequate for applications requiring timeless. The FIFO queues are the best

characterization of this service.

Differentiated service (DiffServ): Is traffic that requires timeliness of delivery

and that varies its rate accordingly. It means that some traffic is treated better than

the rest, but not a fast and guarantee. For instance, MPEG-II video averages about 3

to 7 Mbps, depending on the amount of change in a picture. As an example, 3 Mbps

might be a picture of a painted wall, although 7 Mbps would be required for a picture

of waves on the ocean. This service is as well referred as Controlled delay service.

Integrated service (IntServ): This service requires a guaranteed transmission

rate from its source to its destination. The objective of IntServ is to have only one IP

network which has best-effort service and flows with a QoS. This is provided through

QoS tools RSVP and CBWFQ. It is called as well guaranteed bit-rate service. It

shows different treating of data flow in RSVP and Best Effort.

Figure 3.1: Service Types

The reader can find more information about the Controlled-Load and Guaranteed

Quality of Service in the next references [6, 7].
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3.3 Real Time Protocols

The Integrated Services working group in IETF (Internet Engineering Task Force) de-

veloped an enhanced Internet service model called Integrated Services that includes

best-effort service and real-time service, see RFC 1633. Integrated Services allows

applications to configure and manage a single infrastructure for multimedia applica-

tions and traditional applications. The real-time service will enable IP networks to

provide quality of service to multimedia applications. Resource Reservation Protocol

(RSVP) , together with Real-Time Transport Protocol(RTP) , Real-Time Control

Protocol(RTCP), Real-Time Streaming Protocol(RTSP),provides a working founda-

tion for real-time services. The most widely used transport-level protocol is TCP.

Although TCP has proven its value in supporting a wide range of distributed appli-

cations, it is not suited for use with real-time distributed applications. By real-time

distributed applications, we mean one in which a source is generating a stream of

data at a constant rate, and one or more destinations must deliver that data to an

application at the same constant rate. Examples of such applications include audio,

video conferencing, live video distribution, shared workspaces, remote medical diag-

nosis, telephony, command and control systems, distributed interactive simulations,

games, and real-time monitoring. A number of features of TCP disqualify it for use

as transport protocol for such applications:

1. TCP is a point-to-point protocol that sets up connection between two end points.

Therefore, it is not suitable for multicast distributions.

2. TCP includes mechanisms for retransmission of lost segments, which then arrive
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out of order. Such segments are not usable in most real-time applications.

3. TCP contains no convenient mechanism for associating timing information with

segments, which is another real-time requirement.

The other widely used transport protocol, UDP, does not exhibit the first two char-

acteristics listed but, like TCP, does not provide timing information. By itself UDP

does not provide any general purpose tools useful for real-time applications [8].

Real time protocols cover specific needs by applications with real-time characteristics.

Real-time applications have specific requirements from the lower layers, mainly in

terms of packet loss, delay, and jitter. Traditional transport protocols such as TCP

and UDP have been designed for general use and are not specialized for such specific

purposes. In particular, real-time protocols have to be able to deliver high throughput,

handle multicast, manage the transmission quality and be friendly to the rest of the

traffic and more importantly to the congestion-sensitive TCP traffic [9].

The most widely used protocols for carrying real-time application data are RTP and

RTCP protocols.

3.3.1 Real Time Protocol(RTP)

Real-time transport protocol (RTP) is an IP-based protocol providing support for The

transport of real-time data such as video and audio streams. The services provided by

RTP include time reconstruction, loss detection, and content identification. RTP is

primarily designed for multicast of real-time data, but it can be also used in unicast.
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It can be used for one-way transport such as video-on-demand as well as interactive

services such as internet telephony [10]. RTP is designed to work in conjunction with

the auxiliary control protocol RTCP to get feedback on quality of data transmission

and information about participants in the on-going session. Packets sent on the

internet have unpredictable delay and jitter. But multimedia applications are require

appropriate timing in data transmission and playing back.

RTP provides time stamping, sequence numbering and other mechanisms to take care

of the timing issues. Through these mechanisms, RTP provides end-to-end transport

for real-time data over datagram networks.

RTP is typically run on top of UDP to make use of its multiplexing and checksum

functions. UDP was chosen as the target transport protocol for RTP because of two

reasons:

First, RTP is primarily designed for multicast; the connection-oriented TCP does not

scale well and therefore is not suitable.

Second, for real-time data, reliability is not as important as timely delivery. Even

more, reliable transmission provided by retransmission as in TCP is not desirable.

RTP and RTCP packets are usually transmitted using UDP/IP service.

3.3.2 RTP Control Protocol (RTCP)

RTCP is the control protocol that works in conjunction with RTP. It provides sup-

port for real-time conferencing for large groups within an internet, including source
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identification and support for gateways and multicast-to-unicast translators. In an

RTP session, participants periodically send RTCP packets to convey feedback on

quality of data delivery and information of membership. It is standardized in RFC

1889 and RFC 1890. RTCP provides QoS monitoring and congestion control, source

identification, inter-media synchronization, and control information scaling services.

3.3.3 Real Time Streaming Protocol(RTSP)

Instead of storing large multimedia files and playing back, multimedia data is usually

sent across the network in streams. Streaming breaks data into packets with size

suitable for transmission between the servers and clients. The real-time data flows

through the transmission, decompress the second and playing back pipeline just like

a water stream. A client can play first packet, decompress the second, while receiving

the third. Thus the user can start enjoying the multimedia without waiting to the

end of transmission.

RTSP, the Real Time Streaming Protocol, is a client-server multimedia presentation

protocol to enable controlled delivery of streamed multimedia data over IP network.

It provides ”VCR style” remote control functionality for audio and video streams, like

pause, fast forward, reverse, and absolute positioning. Source of data include both

live data feeds and stored clips.

RTSP is an application-level protocol designed to work with lower-layer protocols like

RTP, RSVP to provide complete streaming service over internet. It provides means

for choosing delivery channels (such as UDP, multicast UDP and TCP) and delivery
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mechanisms based upon RTP.

RTSP aims to provide the same services on streamed audio and video just HTTP

does for text and graphics. It is designed intentionally to have similar syntax and

operations so that most extension mechanisms to HTTP can be added to RTSP.

As many real-time applications have been developed in the internet, the best effort de-

livery model became inadequate for these new applications. TCP, used widely in cur-

rent internet, is not well suited to real-time applications. Instead, Real-Time Trans-

port Protocol (RTP) is usually implemented on top UDP, which is better adapted to

real-time applications. However, this protocol mechanism is not enough to guarantee

a specific quality of service (QoS) for a session between a sender and a receiver [11].
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CHAPTER 4

DETAILED BACKGROUND OF RSVP SYSTEM

The RSVP protocol performs a reservation for each flow requiring QoS services; a

flow is defined by five tuples (source IP address, destination IP address, transport

protocol, source port, and destination port). Each flow needs several RSVP messages,

to request, maintain and release the required resources.

With an RSVP based quality of service architecture there are two basic elements:

sources and destinations, all of them run RSVP daemons that participate in RSVP

protocol and exchange RSVP messages on behalf of their hosts. They exchange ba-

sically two types of messages: PATH and RESV. The RSVP source sends a PATH

message which is encapsulated in IP or UDP datagrams. The message travels through

the network to the destination.

When it is received by the destination, if it wants to make a reservation for the

particular RSVP flow, it responds with a RESV message and it traverses the reverse

path back to the sender. Otherwise, a RESV ERROR message is issued and is sent

back to the receiver. An end-to-end reservation is successfully established when the

RESV message reaches the sender and is successfully processed by the RSVP daemon

on the sender and in all the other nodes in the middle.
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A multicast reservation session can also be made. In this case the sender sends the

PATH messages to a multicast group address. As in the case of unicast, the path

messages travels through the network to all the members of the multicast group.

When PATH messages reach the receivers, each receiver independently decides if it

wants to request a reservation for the session. Each receiver can potentially request for

different reservations for the same session [12]. Figure 4.1 shows an example, where S1

and S2 are sources, and D1, D2 and D3 are destinations of data. D1, D2 and D3 are

members of the same multicast group and S1 and S2 send messages to this multicast

group. But we can see in the figure that not all the destinations make the same

reservation. D3 sends RESV messages to S1 and S2, so it accepts all the reservations.

D2 only accepts one of the reservation requests sending one RESV message to S1.

But D1 does not want to make any reservation and does not send any RESV message

to S1 and S2.

Figure 4.1: PATH and RESV Messages Flows in RSVP

It has to be clear that RSVP is a protocol to negotiate a quality of service for an

specific application and it is not a routing protocol. It uses the routing table in

routers to determine routes to the appropriate destinations. So it was designed to
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interoperate with existing unicast and multicast IP routing protocols [13].

4.1 Data Flows

A session in RSVP is defined to be a data flow with a particular destination and

transport-layer protocol [1]. An RSVP session is defined by 3-tuple consisting on:

• Destination address: Destination IP address of the packages (unicast or multi-

cast) IPv4/UDP SESSION objects: Class = 1, C-Typ = 1, IPv4 DestAddress

(4 bytes) IPv6/UDP SESSION objects: Class = 1, C-Type = 2, IPv6 DestAd-

dress (16 bytes)

• Protocol ID: Protocol ID is the identifier ID of the IP protocol

• Destination port (optional): UDP/TCP destination port field

The optional Destination Port parameter is a ”generalized destination port”, i.e., some

further demultiplexing point in the transport or application protocol layer. Note that

it is not strictly necessary to include Destination Port in the session definition when

Destination Address is multicast, since different sessions can always have different

multicast addresses. However, Destination Port is necessary to allow more than one

unicast session addressed to the same receiver host.
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Figure 4.2: IPv4 UDP Session Object.

Figure 4.3: IPv6 UDP Session Object.

Figure 4.2 and Figure 4.3 show the format of UDP session objects for IPv4 and IPv6

addresses with C-Type = 1 and C-Type = 2, respectively. It can be extended to

accommodate other address by defining a new C-Type. The format contains fields

such as the destination IP address, the IP protocol identifier, and the destination

TCP or UDP port of a data flow. There are two types of these objects to support

IPv4 and IPv6 addressing. These addresses can be either unicast or multicast. A flag

field can be set if a host is not capable of policing and wants the edge network device

to perform policing. All RSVP messages require this object to identify a flow.

4.2 Traffic control

Quality of service is implemented for a particular data flow by mechanisms collectively

called ”traffic control”. These mechanisms include (1) a packet classifier, (2) admission

control, and (3) a ”packet scheduler” or some other link-layer-dependent mechanism to
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determine when particular packets are forwarded. The ”packet classifier” determines

the QoS class (and perhaps the route) for each packet. For each outgoing interface,

the ”packet scheduler” or other link-layer-dependent mechanism achieves the promised

QoS. Traffic control implements QoS service models defined by the Integrated Services

Working Group.

During reservation setup, an RSVP QoS request is passed to two local decision mod-

ules, ”admission control” and ”policy control”. Admission control determines whether

the node has sufficient available resources to supply the requested QoS. Policy control

determines whether the user has administrative permission to make the reservation.

If both checks succeed, parameters are set in the packet classifier and in the link layer

interface (e.g., in the packet scheduler) to obtain the desired QoS. If either check

fails, the RSVP program returns an error notification to the application process that

originated the request. Figure 4.4 shows the main modules in a host and a router.

RSVP protocol mechanisms provide a general facility for creating and maintaining

distributed reservation state across a mesh of multicast or unicast delivery paths.

RSVP itself transfers and manipulates QoS and policy control parameters as opaque

data, passing them to the appropriate traffic control and policy control modules for

interpretation.

Since the membership of a large multicast group and the resulting multicast tree

topology are likely to change with time, the RSVP design assumes that state for

RSVP and traffic control state is to be built and destroyed incrementally in routers

and hosts. For this purpose, RSVP establishes ”soft” state; that is, RSVP sends
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periodic refresh messages to maintain the state along the reserved path(s). In the

absence of refresh messages, the state automatically times out and is deleted [1].

Figure 4.4: RSVP in Hosts and Routers.

4.3 Reservation styles

Reservation style indicates to the network element that an aggregation of reservation

request is possible for a multicast group. Resource reservation controls how much

bandwidth is reserved, whereas reservation filter determines the packets that can make

use of this reservation. RSVP supports three styles of reservation. A description of

these styles is provided in the following subsections. If we have different senders for

the same RSVP session, then we have two modes:

• Distinct Reservation: creates a different reservation for each upstream sender.

• Shared Reservation: creates a shared reservation for specified senders.

But we have another option that controls the set of senders. With this option there

are also two options:

• Explicit: select a list of the senders.
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• Wildcard: selects all the senders for the session. And now if we mix these

modes, then as we can see in Figure 4.5, there exist the Fixed-Filter style (FF),

the Shared-Explicit style (SE), and the Wildcard-Filter (WF):

Figure 4.5: Reservation Attributes and Styles

The Wildcard-Filter (WF) style creates a single reservation shared by all flows from all

upstream senders. The Shared-Explicit style (SE) creates a single reservation shared

by selected upstream senders, so is the same than the Wildcard-Filter but with not all

the senders. And the last style is the Fixed-Filter, which creates a distinct reservation

for data packets from a particular sender. This is the last style because there is no

defined style for a distinct reservation in a Wildcard sender selection. WF and SE

are appropriate for multicast applications in which multiple data sources are unlikely

to transmit simultaneously.

4.4 Examples of Reservation Styles

4.4.1 Wildcard Filter

The wildcard filter (and shared explicit) style reservation is suitable for multicast

sessions where sources are not likely to send information at the same time. Typically,

audio applications are suitable for this style since only a limited number of participants
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can converse with each other simultaneously. A reservation slightly exceeding the

requirements for a single speaker (for over speaking and interjections) will be sufficient

for this style.

We look at the wildcard-filter style using an example in Figure 4.6.These examples

use a rate of Kbps for simplification (in reality token bucket parameters are used).The

example uses a multicast session with three senders S1,S2 and S3 and three receivers

H1,H2,H3.The senders S1 and S2 as well as receivers H1 and H2 are shown to be

on LAN segment capable of implementing traffic priority schemes. Following are the

requirements of receivers:

-H1 wants to reserve 3 Kbps

-H2 wants to reserve 2 Kbps

-H3 wants to reserve 4 Kbps

Figure 4.6: Example of Wildcard Filter
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Reservation for H2 and H3 are merged 4 Kbps (if0, R2).

Another request comes from H1 on if1 at R2 for 3 Kbps.R2 sends a merged

request via (if2, R2) of 4 Kbps.

It is larger of (if1, R2) 3 Kbps and (if0, R2) 4Kbps.Router R1 forwards a 4

Kbps request on if1 and if2 (to S1, S2 and S3 ).

An important point to note here is that the source is not identified and that

merger of requests at routers does not use the sum of the incoming requests, but takes

the larger of the two values.

4.4.2 Shared Explicit

The shared-explicit-filter style reservation is similar to wildcard-filter, with the only

difference that here, sender are identified. The reservation is shared among all senders

in the list. Figure 4.7 shows an example of the shared-explicit-filter style reservation.

In this case, following are the requirements of receivers:

-H1 wants to reserve 1 Kbps for S1 and S2.

-H2 wants to reserve 3 Kbps for S1 and S3.

-H3 wants to reserve 2 Kbps for S2.
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Figure 4.7: Example of Wildcard Filter

A reservation for sources S1, S2 and S3 from H2 and H3 on (if0, R2) is merged to

3 Kbps. Another request comes from H1 on if1 of R2 for 1 Kbps to S1 and S2.The

requests on if0 and if1 of router R2 are merged and forwarded on if2 as 3 Kbps for

S1, S2, and S3.The requests received on if0 of router R1 are forwarded as follows:

• On if2 3 Kbps for S1 and S2.

• On if1 3 Kbps for S3.

4.4.3 Fixed Filter

The fixed-filter style reservation is suitable for applications such as videoconferencing,

where one window is required for each sender and all these windows need to be

updated simultaneously. Fixed-style reservation requires that receivers identify the

source from which they want to receive the reservation along with the bandwidth

required. Bandwidth is not shared (between sources), since reservations are made for

a particular source.
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Figure 4.8: Example of Wildcard Filter

Figure 4.8 shows how the fixed-filter style reservation can be used. Following are the

requirements of receivers:

• H1 wants to reserve3 Kbps for S1 and 4 Kbps for S2.

• H2 wants to reserve 2 Kbps for S1 and 2 Kbps for S3.

• H3 wants to reserve 1 Kbps for S1.

The reservation for source S1 from H2 and H3 is merged to 2 Kbps at (if0, R2).The

reservation for source S3 of 2 Kbps from H2 arrives at (if0, R2).Another request comes

from H1 on if1 of R2 for 3 Kbps to S1 and 4Kbps to S2.The requests on if0 and if1 of

router R2 are merged and forwarded on if2 as follows:

• 3 Kbps for S1;

• 4 Kbps for S2;

• 2 Kbps for S3.
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The requests received on if0 of router R1 are forwarded as follows:

• On if2 3 Kbps for S1 and 4 Kbps for S2;

• On if1 2 Kbps for S3.
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CHAPTER 5

RSVP MESSAGES

As we said before, an RSVP sender transmits PATH messages downstream and store’s

information in each node along the way. This information includes the IP address of

each previous hop in the traffic path which will be used to forward the subsequent

RESV message. The RSVP receiver sends the RESV message upstream to the sender,

which creates a reservation state in each node along the traffic path, following the same

way than the previous PATH message. An RSVP message consists on the heading and

the object. The heading is very important because in it there is the type of message

and with it each node can recognize if the message is a PATH, RESV or an Error

message. Then with the object the sender or the receiver specifies the reservation

style and the quality of service. In the next figures we can see the heading format and

the object format. The RSVP objects travel in RSVP messages and contain specific

information for different purposes. We will see it in more detail in next section [13].

Figure 5.1: RSVP Header
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Figure 5.2: RSVP Object

5.1 PATH Messages

This message as we told before is sent by the host which wants to make a QoS

reservation. This message travels along the network using the way given by the

routing protocols and they keep the ’path state’ which will be followed by the RESV

messages to ind the sender. It contains the IP address of the previous node, to allow

the RESV messages to ind the same way back to the sender. This message includes

the Sender Template, the Sender TSpec and the Adspec.

Sender Template: describes the format of the data traffic that the sender will send.

The Sender Template contains a parameter which identifies the sender’s flow from

other flows that share the same RSVP session on the same link; this parameter is

called Filter Spec (Filter specification).

• Sender TSpec: describes the traffic flow that the sender wants to generate. This

parameter is not modified by the intermediate receivers [14].

• Adspec: collects information from the intermediate network elements.

When a node receives a PATH message, it modifies the Adspec with resource infor-
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mation and sends it to the next downstream hop. This parameter is very important

for receivers because it allow them to choose a QoS control service and determine the

right reservation parameters. While the PATH message goes toward the receiver, the

nodes in the middle include some information in the Adspec object as delay and band-

width estimates and various parameters used by specific QoS control services. The

information in the Adspec is updated each time the PATH message passes through a

node. At each node the Adspec is processed by the traffic-control module. Then it

updates the Adspec identifying the services specified in the Adspec and calling each

process to update it. If there is any QoS specified in the Adspec that the node doesn’t

support, then a flag is set to report this to the receiver.Figure 5.3 shows perfectly how

is established the path state between the RSVP sender and receiver.

Figure 5.3: Path State
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5.2 RESV Messages

Each receiver sends reservation messages (RESV) through the network to the senders.

They follow the same way as the PATH messages but it the opposite direction. They

create and keep a ’reservation state’ for each node in the way as we can see in Fig-

ure 5.4.

5.2.1 Reservation Model

A RESV message contains information about the reservation style, the Flowspec ob-

ject and the Filterspec that identify the sender(s). This pair is called a flow descriptor.

• Flowspec: specifies the desired QoS and is used to set the parameters in the

packet scheduler of each node.

• Filter spec: defines the set of data packets (defined in terms of sender parame-

ters) to receive the QoS defined by the flowspec and is used to set parameters

by the packet classifier. The format differs between the IP versions.

Figure 5.4: Reservation State
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To get the appropriate QoS between a sender and a receiver is necessary to commu-

nicate some information to the nodes between them. Some of this information is the

Receiver Tspec and the Receiver Rspec. The first one describes the nvoke the desired

QoS. This information is contained in the Flowspec and carried in the RESV mes-

sages. The information in the Flowspec may be modified at any intermediate node in

the traffic path. In each node an RSVP reservation request take two actions:

Make a reservation on the link: The RSVP process passes the request to the

admission and policy control modules. If there is some fail in some of them then the

process sends an error message to the receiver(s). But if it passes both tests then the

packet classifier is setup and it select that data packets defined by the Filterspec and

interact with the link-layer to find the QoS defined by the Flowspec.

Forward the request upstream: The set of senders which a reservation request

is propagated is called SCOPE. We should differentiate between a reservation re-

Figure 5.5: Router Using RSVP

quest when a node forwards it and when a node receive it. Because the traffic control

mechanism modifies the flowspec hop-by-hop and reservations from different down-

stream branches of the multicast tree from the same sender (or set of senders) must

be merged as reservations travel upstream [1]. Figure 5.5 shows the incoming and
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outgoing interfaces of a router.

5.2.2 Soft State

The soft state is the maintenance of the reservation state along a particular traffic

path, which is maintained by RESV messages. This mechanism is necessary because

Internet is a dynamic network, it means that some routers can stop working or others

can appear.

The soft state has to be maintained in each node to allow changes in the network

without ask to the end nodes. To keep the soft state is necessary to refresh each node

after some specific time. When a path changes, the next PATH message will start

the ’path state’ in the new way. The next RESV message will then set up the new

soft state. In one node, the soft state can be deleted after a certain period of time

(Timeout) or with some specific messages called Teardown. We will tell more about

these messages in the next section.

5.3 Teardown Messages

These messages are used to remove the path or the reservation state. It is not nec-

essary to remove the last reservation, but it is recommended for all the end nodes to

send a teardown message when an application finish. There are two kinds of these

messages:

• Path Tear: it goes through all receivers by removing the ’path state’.
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• Resv Tear: it goes through all senders removing the ’reservation state’.

It can be generated by an application in an end-node or by a router as a result

of a timeout.

5.4 Error Messages

There are two types of error messages:

• PathErr: it is generated when there is an error sending a PATH message.

• ResvErr: it is generated when there is an error sending a RESV message.

The PathErr is sent to the sender with the type of the error and the IP address of the

node who has detected the error. The ResvErr is directed to the flow receiver who

requested the reservation. These messages do not modify the path state in the nodes

through which they pass.

5.5 Merging

The concept of merging appears in multicast traffic and RSVP because of the packet

delivering at each node. As it was told before, each RESV message carries the

Flowspec which specifies the desired QoS. Then if there are different RSVP receivers

which each one sends their RESV message, in one of the routers in the middle of the

way between the sender and the receiver, it will receive different RESV messages. And

it will have to send to the same RSVP sender. So it has to merge the Flowspecs. The
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largest Flowspec from all the merged Flowspecs is used to define the single merged

Flowspec.

It is very important to mention that different reservation styles cannot be merged

because they are incompatible. In Figure 5.6, it is shown how merging works with

two receivers and one sender [13].

Figure 5.6: Merging
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CHAPTER 6

RSVP PROTOCOL PROBLEMS

6.1 Issues Affecting Deployment of RSVP

Wide scale deployment of RSVP must be approached with care, as there remains a

number of an outstanding issue that may affect the success of deployment.

6.1.1 Scalability

The resource requirements for running RSVP on a router increase proportionally with

the number of separate sessions (i.e., RSVP reservations). Thus, supporting numerous

small reservations on a high-bandwidth link may easily overly tax the routers and is

inadvisable.

Furthermore, implementing the packet classification and scheduling capabilities cur-

rently used to provide differentiated services for reserved flows may be very difficult

for some router products or on some of their high speed interfaces.

These scaling issues imply that it will generally not be appropriate to deploy RSVP
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on high-bandwidth backbones at the present time. Looking forward, the operators of

such backbones will probably not choose to naively implement RSVP for each separate

stream.

Rather, techniques are being developed that will, at the ”edge” of the back-

bone, aggregate together the streams that require special treatment. Within the

backbone, various less costly approaches would then be used to set aside resources for

the aggregate as a whole, as a way of meeting end-to-end requirements of individual

flows.

6.1.2 Security Considerations

The RSVP WG submission for Proposed Standard includes two security related doc-

uments [15, 16]. The study in [15] addresses denial and hijacking or theft of service

attacks. The study in [16] addresses RSVP mechanisms for data flows that themselves

use IPSEC.

The first document is proposed to protect against spoofed reservation requests

arriving at RSVP routers; such requests might be used to obtain service to unautho-

rized parties or to lock up network resources in a denial of service attack. Modified

and spoofed reservation requests are detected by use of hop-by-hop MD5 checksums

(in an Integrity Object) between RSVP neighbor routers.

As described, RSVP hop-by-hop authentication assumes that key management

and distribution for routers is resolved and deployed. Until an effective key infrastruc-

ture is in place, manually keyed session integrity might be used. That RSVP needs
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an effective key infrastructure among routers is not unique to RSVP: it is widely

acknowledged that there are numerous denial of service attacks on the routing infras-

tructure (quite independent of RSVP) that will only be resolved by deployment of a

key infrastructure. Theft of service risks will require the user to deploy with caution.

An elementary precaution is to configure management logging of new and changed

filter specifications in RSVP-enabled infrastructure. The second security-related doc-

ument provides a mechanism for carrying flows in which the transport and user octets

have been encrypted (RFC 1827). Although such encryption is highly beneficial to

certain applications, it is not relevant to the functional security of RSVP or reserva-

tions.The following section on Policy Control includes additional discussion of RSVP

authorization security.

6.1.3 Policy Control

Policy control addresses the issue of who can, or cannot, make reservations once

a reservation protocol can be used to set up unequal services. Currently, the RSVP

specification defines a mechanism for transporting policy information along with reser-

vations. However, the specification does not define policies themselves.

At present, vendors have stated that they will use the RSVP-defined mech-

anism to implement proprietary policies. The RSVP WG is chartered to specify a

simple standardized policy object and complete simple mechanisms for session use of

the Integrity object in the near future.

This applicability statement may be updated at the completion of the WG’s
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charter. Before any decision to deploy RSVP, it would be wise to ensure that the

policy control available from a vendor is adequate for the intended usage. In addition

to the lack of documented policy mechanisms in any of the policy areas (such as

access control, authorization, and accounting), the community has little experience

with describing, setting and controlling policies that limit Internet service. Therefore

it is likely that vendor solutions will be revised often, particularly before the IETF

has developed any policy specification [17].

6.2 RSVP Protocol Performance Issues

6.2.1 Processing Overhead

By ”processing overhead” we mean the amount of processing required to handle mes-

sages belonging to a reservation session. This is the processing required in addition to

the processing needed for routing an (ordinary) IP packet. The processing overhead

of RSVP originates from two major issues:

1. Complexity of the protocol elements: First, RSVP itself is per-flow based;

thus the number of states is proportional to RSVP session number. Path and

Resv states have to be maintained in each RSVP router for each session (and

Path state also has to record the reverse route for the correspondent Resv mes-

sage).

Second, being receiver-initiated, RSVP optimizes various merging operations for

multicast reservations while the Resv message is processed. To handle multicast,
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other mechanisms such as reservation styles, scope object, and blockade state

are also required to be presented in the basic protocol. This not only adds

sources of failures and errors, but also complicates the state machine. ” Third,

the same RSVP signaling messages are used not only for maintaining the state,

but also for dealing with recovery of signaling message loss and discovery of

route change. Thus, although protocol elements that represent the actual data

(e.g., QoS parameters) specification are separated from signaling elements, the

processing overhead needed for all RSVP messages is not marginal. ” Finally, the

possible variations of the order and existence of objects increases the complexity

of message parsing and internal message and state representation.

2. Implementation-specific Overhead: There are two ways to send and receive

RSVP messages: either as ”raw” IP datagrams with protocol number 46, or as

encapsulated UDP datagrams, which increase the efficiency of RSVP processing.

Typical RSVP implementations are user-space daemons interacting with the

kernel; thus, state management, message sending, and reception would affect

the efficiency of the protocol processing. In [18], It is stated that state (memory)

management can use up to 17-18 % of the total execution cost, but it is possible

to decrease that cost to 6-7%, if appropriate action is taken to replace the

standard memory management with dedicated memory management for state

information. RSVP/routing, RSVP/policy control, and RSVP/traffic control

interfaces can also pose different overhead depending on implementation. For

example, the RSVP/routing overhead has been measured to be approximately

11-12% of the total execution cost.
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6.2.2 Bandwidth Consumption

By ”bandwidth consumption” we mean the amount of bandwidth used during the

lifetime of a session: to set up a reservation session, to keep the session alive and

finally closing it. RSVP messages are sent either to trigger a new reservation or to

refresh an existing reservation. In standard RSVP, Path/Resv messages are used

for triggering and refreshing/recovering reservations, identically, which results in an

increased size of refresh messages. The hop-by-hop refreshment may reduce the band-

width consumption for RSVP, but could result in more sources of error/failure events.

The study in [19] presents a way to bundle standard RSVP messages and reduces the

refreshment redundancy by Srefresh message. Thus, the following formula represents

the bandwidth consumption in bytes for an RSVP session lasting n seconds:

F(n) = (bP + bR) + ((n/Ri) ∗ (bP + bR)) + bPt (6.1)

Where, bP: IP payload size of Path message bR: IP payload size of Resv message bPt:

IP payload size of Path Tear message Ri: refresh interval For example, for a simple

Controlled Load reservation without security and identification requirements (where

bP is 172 bytes, bR is 92, bPt is 44 bytes, and Ri is 30 seconds), the bandwidth

consumption would be as follows:

F(n) = (172 + 92) + ((n/30) ∗ (172 + 92)) + 44 (6.2)

= 308 + (264n/30)bytes

RSVP recommended using in small local network because of scalability problem.

However RSVP still have some problems in small network such as signaling traffic

overhead, limitation of the resource reservation [20].
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6.3 Routing Reservations

There is a fundamental interaction between resource reservation set up and routing,

since reservation requires the installation of flow state along the route of data packets.

If and when a route changes, there must be some mechanism to set up a reservation

along the new route. RSVP protocol works under the assumption that RSVP software

must exists in the receivers, senders and routers. There are four routing issues faced

by a reservation setup protocol such as RSVP.

1. Find a route that supports resource reservation. This is simply ”type-of-service”

routing, a facility that is already available in some modern routing protocols.

2. Find a route that has sufficient unreserved capacity for a new flow. Early ex-

periments on the ARPANET showed that it is difficult to do load-dependent

dynamic routing on a packet-by-packet basis without instability problems. How-

ever, instability should not be a problem if load-dependent routing is performed

only at reservation setup time. Two different approaches might be taken to

finding a route with enough capacity. One could modify the routing protocol(s)

and interface them to the traffic control mechanism, so the route computation

can consider the average recent load. Alternatively, the routing protocol could

be (re-)designed to provide multiple alternative routes, and reservation setup

could be attempted along each in turn.

3. Adapt to a route failure When some node or link fails, adaptive routing finds

an alternate path. The periodic refresh messages of RSVP will automatically

request a reservation along the new path. Of course, this reservation may fail be-
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cause there is insufficient available capacity on the new path. This is a problem

of provisioning and network engineering, which cannot be solved by the routing

or setup protocols. There is a problem of timeliness of establishing reservation

state on the new path. The end-to-end robustness mechanism of refreshes is

limited in frequency by overhead, which may cause a gap in real-time service

when an old route breaks and a new one is chosen.

4. Adapt to a route change (without failure) Route changes may occur even with-

out failure in the affected path. Although RSVP could use the same repair

techniques as those described in (3), this case raises a problem with the ro-

bustness of the QoS guarantees. If it should happen that admission control

fails on the new route, the user will see service degradation unnecessarily and

capriciously, since the original route is still functional. To avoid this problem,

a mechanism called ”route pinning” has been suggested. This would modify

the routing protocol implementation and the interface to the classifier, so that

routes associated with resource reservations would be ”pinned”. The routing

protocol would not change a pinned route if it was still viable. It may even-

tually be possible to fold together the routing and reservation setup problems,

but we do not yet understand enough to do that. Furthermore, the reserva-

tion protocol needs to coexist with a number of different routing protocols in

use in the Internet. Therefore, RSVP is currently designed to work with any

current-generation routing protocol without modification. This is a short-term

compromise, which may result in an occasional failure to create the best, or even

any, real-time session, or occasional service degradation due to a route change.

We expect that future generations of routing protocols will remove this compro-
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mise, by including hooks and mechanisms that, in conjunction with RSVP, will

solve the problems (1) through (4) just listed. They will support route pinning,

notification of RSVP to trigger local repair, and selection of routes with ”IS”

support and adequate capacity [21].

6.4 QoS-Based Routing and Resource Reservation

It is important to understand the difference between QoS-based routing and resource

reservation [22]. While resource reservation protocols such as RSVP [23]. provide a

method for requesting and reserving network resources, they do not provide a mech-

anism for determining a network path that has adequate resources to accommodate

the requested QoS. Conversely, QoS-based routing allows the determination of a path

that has a good chance of accommodating the requested QoS, but it does not include

a mechanism to reserve the required resources.

Consequently, QoS-based routing is usually used in conjunction with some form of

resource reservation or resource allocation mechanism [22]. Simple forms of QoS-

based routing have been used in the past for Type of Service (TOS) routing [24]. In

the case of OSPF, a different shortest-path tree can be computed for each of the 8

TOS values in the IP header [25]. Such mechanisms can be used to select specially

provisioned paths but do not completely assure that resources are not overbooked

along the path. As long as strict resource management and control are not needed,

mechanisms such as TOS-based routing are useful for separating whole classes of

traffic over multiple routes. Such mechanisms might work well with the emerging
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Differential Services efforts [26].

Combining a resource reservation protocol with QoS-based routing allows fine control

over the route and resources at the cost of additional state and setup time. For exam-

ple, a protocol such as RSVP may be used to trigger QoS-based routing calculations

to meet the needs of a specific flow.
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CHAPTER 7

OPNET

7.1 Overview of OPNET

Network simulations are created for the purpose of studying a system’s performance

and behavior under various circumstances. In broad terms, the process of building

and simulating a network model is a repetitive process that involves four steps, which

are graphically illustrated in Figure 7.1. The first and non-repetitive step involves the

initial specification and development of a system model. Since the objective of most

system modeling is to measure a system’s performance and to make observations

regarding its behavior, data collection must be specified and simulations must be

executed (for sufficient time and under variable behavior), which is the second step. In

the third step, the results collected during the simulations are examined and analyzed.

Based on the analysis of these results, the initial system is modified accordingly in

order to correct possible errors or to add more functionality, which becomes the fourth

step in the process. As shown in the figure 7.1, steps 2, 3 and 4 are continuously

repeated until satisfactory and correct results are collected [27].

Network simulation is an important tool for researchers and engineers that allow an-
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alyzing network’s behavior and performance. Network simulator is usually the first

place to verify a new idea or existing one. There are various reasons for using network

simulators such as lacking hardware, difficulties in modifying the equipment, complex-

ity of real-world equipment, dependable statistics collection and the requirement of

separating simulated process from other activities [28]. In this thesis, OPNET IT

Figure 7.1: The Steps Used to Build a Network Model and Run Simulations

Guru Academic Edition 9.1 simulation tool is used. OPNET IT Guru Academic Edi-

tion provides a graphical environment that directly reflects the results of actual run,

devices, protocols and applications. It gives us a rise for network analysis through

powerful tools that is integrated with Graphical User Interface (GUI) [27].

There is another network simulator in the community. It is so called NS2. It was

developed under VINT (Virtual InterNetwork Testbed) project, by University of Cal-

ifornia at Berkeley, University of Southern California’s Information Sciences Institute,

Lawrence Berkeley National Laboratory (LBNL), and Xerox Palo Alto Research Cen-

ter (PARC). The main sponsors are the Defense Advanced Research Projects Agency

(DARPA) and the National Science Foundation (NSF). Ns-2 seems to be completely

free for both educational and commercial purposes (although some older code, still

in use, explicitly grants rights to educational type of use only, so the actual status is

a bit unclear for commercial projects). The simulator is available with a full source
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code, validation tests, a rich set of examples and a good manual. Moreover, additional

support may be provided by the ns-2 user mailing list.

The differences between NS and OPNET are enumerated as [28, 29]:

1. In NS, there is a lack of user interface. OPNET has rapid simulation develop-

ment environment with GUI support that gives opportunity to get what you see

without sacrificing from performance.

2. NS is more difficult to learn but OPNET has good documentation. and enriched

with exact utilization of real life.

3. NS is less generic and less configurable than OPNET. OPNET has flexibility in

model development enhanced with API

4. OPNET has a clear state of mind with illustrative animation support.

5. OPNET is very easy to install and has support for a server running the autho-

rization software

6. OPNET has expanding user community that appears to be dominant supported

by forum in the community.

7. OPNET has emerging technologies like discrete event (both fully parallel and

serial), flow- based, hybrid simulation, and co-simulation technologies.

Opnet IT Guru Academic Edition System Requirements:

• Intel Pentium III, 4 or compatible (500 MHz or better)
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• 256 MB RAM

• 400 MB disk space

• Display: 1024 x 768 or higher resolution, 256 or more colors

• The English language version of the following operating systems are supported:

Microsoft Windows NT (Service Pack 3, 5, or 6a; Service Packs 4 and 6 are

not supported) Windows 2000 (Service Pack 1 and 2 are supported but not

required) Windows XP (Service Pack 1 is required)

7.2 Incorporating RSVP with OPNET

7.2.1 Data Colleciton Specification

OPNET allows for a very large number of potential statistics. For this reason, collec-

tion mechanisms are deactivated by default when a simulation is executed. However,

OPNET provides a mechanism to explicitly activate statistics of particular interest,

which are recorded in appropriate output files. This is accomplished by specifying a

list of probes when running a simulation, which indicate the particular statistic that

should be collected.

In order to investigate the RSVP in the network environment, the following statistics

have been specified and studied that allowed for the system’s behavioral study and

validation.

• Link Delays, Throughput and Utilization (for identifying any congested links).
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• RSVP Control Traffic sent and received (for verifying the protocol’s correct

functionality).

• Application Traffic sent and received (for verifying the correct traffic flow through

the system’s components).

7.2.2 QOS Setup And Specification

Quality of Service parameters setup may be performed at the IP level. At the IP level

QoS is achieved by the utilizing the RSVP protocol.

The following sections will describe how QoS setup is achieved in the OPNET simu-

lation tool.

7.2.2.1 IP Level QoS Configuration

Nodes in the network are capable of running TCP or UDP applications, they utilize

the Resource Reservation Protocol to request specific Quality of Service from the

network for the application data streams that are serving and are sensitive to time

delay.

In essence, RSVP reserves resources (bandwidth and buffers) for the traffic, which

in turn should result in lower delay and delay variation, and eventually to improved

system throughput. OPNET allows configuration of RSVP on intermediate and ad-

vanced host and router node models, which means models whose names end with

“ int” or “ adv”.
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The first step in configuring RSVP is to create named data-flow specifications. This

is achieved by including a “QoS Attribute Configuration” object in the scenario (see

Figure 7.2), which may be found in the “utilities” object palette. Data-flow specifi-

cations can be created by editing the RSVP Flow Specification attribute of the QoS

Attribute Configuration objects (see Figure 7.2). These specifications are used when

defining RSVP profiles and for reserving bandwidth and buffer size in a node’s IP

links.

The second step in the RSVP configuration involves the creation of the RSVP profiles.

This may be performed by editing the RSVP profiles attribute of the QoS Attribute

Configuration object. By doing so, the various types of RSVP reservations that

may be used in the scenario are defined. In addition to a specific QoS, each profile

defines if, how and when a receiving node requests a reservation based on the following

attributes: A host application requests a reservation only if a PATH message indicates

Figure 7.2: QoS Attribute Configuration Object and Its Attributes

a traffic load higher than that defined by the Threshold (bytes/sec) attribute.

The Reservation Style attribute may be used for setting fixed- filter, shared-explicit

or wildcard-explicit reservations.

53



Specific data flows (defined in the QoS Attribute Configuration object’s RSVP Flow

Specification attribute) and sender list may be assigned to the RSVP profile by editing

the Reservation Parameters attribute

If the network cannot grant a reservation request, the RSVP profile’s Retry Policy

attribute determines how the host responds.

In the third step of the RSVP configuration process, the RSVP protocol is enabled

in all of the intermediate nodes. By default, RSVP is disabled on all node models.

Consequently, each intermediate node’s IP Address Information. QoS Info. RSVP

Info attribute must be set to “Enabled”. Due to the fact that modeling RSVP results

in higher packet generation and simulation run-times, it is recommended that RSVP

be enabled only on the nodes directly related to the study of each scenario.

After enabling RSVP in all intermediate nodes, RSVP must be enabled in receiver

applications running on host nodes.

Each host that runs RSVP must have the application RSVP parameters. Applica-

tion:RSVP Parameters.<Application name> .

RSVP Status attribute enabled. In addition, after enabling RSVP, one or more RSVP

profiles must be assigned to the application. These are used by the node to deter-

mine the type of reservation it will request from the network upon receiving a PATH

message.

Finally, data flows for an RSVP-enabled application session must be specified. This
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task is performed by including an Application Definition Configuration object in the

scenario (Figure7.3), which may also be found in the Utilities object palette, and

editing the object’s Application name. RSVP Parameters attribute. When editing

this attribute, the RSVP Status must be set to “Enabled” and both the Outbound

Flow and Inbound Flow attributes must be assigned data flows. These last two

attributes specify the bandwidth and buffer size that will be reserved on the node’s

IP links for the specified application’s traffic [27].

Figure 7.3: Application Definition Configuration Object and Its Attributes

Resource Reservation Event Sequence is described below: When a simulation is exe-

cuted and RSVP is enabled in particular nodes in the network model, the following

events happen, which eventually establish the resource reservation:

1. When a new TCP or UDP session is established, the Application/RSVP Inter-

face process sends a request to the local RSVP process to start RSVP processing

for the session (the RSVP/Application Interface process is a process that is re-

sponsible for initializing the RSVP processing for a session).

2. Upon receiving the request, the local RSVP process starts sending RSVP sig-

naling PATH messages towards the receiver.

3. The RSVP process of the receiver receives the PATH message and forwards the
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information from the message to the Application/RSVP interface process.

4. The Application/RSVP interface process decides whether the receiver will re-

quest a reservation for the traffic it receives. If it decides to make a reservation,

it contacts the local RSVP process.

5. The RSVP process at the receiver creates a RESV message, which is sent towards

the sender.

6. The RESV message is forwarded to the RSVP process at each intermediate node

(despite the fact that the packet’s final destination is the sender). The RSVP

process makes a reservation request to the local Traffic Control process (the

Traffic Control process is a process that is responsible for packet queuing and

output scheduling on a node, by using techniques such FIFO, WFQ, Custom

Queuing, etc).

7. The Traffic Control process receives a request from RSVP. Based on the available

resources, it grants or denies the reservation.

8. If the reservation is granted, the RESV message is forwarded towards the sender.

Otherwise, the RESV ERR message is sent to the receiver.

9. Steps 6, 7, and 8 are repeated at each intermediate node.

10. Finally, the RESV message reaches the sender. The sender sends a RESV CONFIRM

message that informs the receiver that the reservation has been established.
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7.2.2.2 Profile Configuration

OPNET utilizes a generic network application model to generate typical traffic pat-

terns. This is the applications model and most of the standard OPNET node models

embed the applications model to model the traffic they generate and the way they

treat the traffic they receive [30, 31]. Each application can be enabled or disabled on

the client nodes and can also be specified as a supported application service type on

the server nodes. Applications were specified in ”Application Definition Configura-

tion” objects (see Figure 7.3) at each level of the factory, by editing the Application

Definitions attribute. Each application was named after the network level it was ex-

ecuting. In addition, an increasing number was appended to that name in order to

differentiate the same applications that were executing in different factories, sections

and manufacturing cells. After specifying the applications, profiles for each applica-

tion had to be created, in order to allow the node models to utilize them. This was

performed by first including a ”Profile Definition” object in the same level as the

application (see Figure 7.4), which may be found in the ”utilities” object palette, and

then editing the Profile Configuration attribute of this object.

Figure 7.4: Profile Definition
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CHAPTER 8

EXPERIMENTS AND RESULTS

Figure 8.1: RSVP Enabled Network

In order to evaluate the performance of the RSVP model, this network model has

been created. The Ethernet network consists of three clients sending traffic to associ-

ated receivers via routers. All the nodes in the network are connected with PPP DS0

links with a 64 Kbps data rate. Client RSVP video node and Client no RSVP video

node are video applications while Client RSVP voice node is voice application. Two

video conferencing sessions are competing for the same resources. Traffic between
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Client RSVP video and Receiver RSVP video uses RSVP to reserve resources also

traffic between Client RSVP voice and Receiver RSVP voice uses RSVP to reserve re-

sources while traffic between Client no RSVP and Receiver no RSVP uses best effort

service. There is one session for each source-destination pair in-place for the duration

of the simulation. The reservation will be made for traffic in both directions. The

traffic generated by each client is described as having a bandwidth of 5,000 bytes/sec

and a buffer size of 5,000 bytes. These parameters will be used for the reservation.

Also reservation style is selected Wild Card. OPNET supports five different QoS

policies: RSVP Protocol, Committed Access Rate, (CAR), Custom Queuing (CO),

Priority Queuing (PQ), and Weighted Fair Queuing (WFQ). In addition OPNET’s

RSVP model supports Controlled Load service. This service is supported for WFQ

and Custom Queuing schemes. This scenario based on WFQ and RSVP.

Configuring Applications

Attributes describing RSVP parameters set by the application are defined in two

objects: the QoS Attribute Configuration object and the Application Attribute Con-

figuration object. To run an RSVP simulation, both objects must be included in the

scenario.

Also Profile Definition Attributes and IP Configuration Attributes can be seen for the

general network configuration.

Figure 8.2 illustrates the Profile definition Attributes are video reserved, Video unreserved

and voice reserved which are defined in Profile Definition. Figure 8.3 shows the IP

Configuration Attributes with default values.
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Figure 8.2: Profile Definition At-
tributes

Figure 8.3: IP config Attributes

Figure 8.4: Application Definition Attributes
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Figure 8.4 shows the Video conferencing and voice applications are defined in Appli-

cation Definition. For Video Applications, video conferencing status are ”On” and

other applications are ”Off”. For voice Application, voice status is ”On” and other

applications are ”Off”.

Figure 8.5: Video Conferencing Table Figure 8.6: RSVP Parameters Table

The following figures 8.5 and 8.6show the RSVP parameters on Video Conferencing

application and RSVP status of this application.

Figure 8.7: QoS Attribute Config Attributes

Figure 8.7, Figure 8.8, and Figure 8.9 illustrate the RSVP Flow Specification and

RSVP Profiles. The traffic generated by each client is described as having a bandwidth

of 5,000 bytes/sec and a buffer size of 5,000 bytes. These parameters will be used for

the reservation. Also reservation style is selected Wild Card.
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Figure 8.8: QoS Flow Spec Atribute Figure 8.9: QoS RSVP Reservation
Style

Figure 8.10: Statistics Collection Figure 8.11: Simulation Runtime Set-
tings
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Figure 8.12: Selected Simulation Results

Global and Node Statistics are selected before running simulation in Figure 8.10.

RSVP Global Statistics capture the total amount of RSVP traffic sent and received

in the whole network. RSVP Node Statistics capture the nodes and links individually.

Figure 8.11 illustrates The Simulation Configuration. Figure 8.12 shows the results

for selected information after running simulation.

Figure 8.13: Tot. Rsvp Traff. Sent Figure 8.14: Tot. Rsvp Traff. Sent

Figure 8.13 and Figure 8.14 show the Total RSVP sent packets on Clients and Re-

ceivers experienced using RSVP and not using RSVP. As expected, traffic not using
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RSVP (Client no RSVP node and Receiver no RSVP node) experienced zero.

Figure 8.15: Tot. Rsvp Traff. Recv Figure 8.16: Tot. Rsvp Traff. Recv

Figure 8.15 and Figure 8.16 show the Total RSVP received packets on Clients and

Receivers experienced using RSVP and not using RSVP. As expected, traffic not using

RSVP (Client no RSVP node and Receiver no RSVP node) experienced zero.

Figure 8.17: Rsvp Path Msg Sent Figure 8.18: Rsvp Path Msg Sent

Figure 8.17 and Figure 8.18 show the RSVP Path Messages Sent on Clients and

Receivers experienced using RSVP and not using RSVP. As expected, traffic not

using RSVP (Client no RSVP node and Receiver no RSVP node) experienced zero.
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Figure 8.19: Rsvp Path Msg Recv Figure 8.20: Rsvp Path Msg Recv

Figure 8.19 and Figure 8.20 show the RSVP Path Messages Received on Clients and

Receivers experienced using RSVP and not using RSVP. As expected, traffic not using

RSVP (Client no RSVP node and Receiver no RSVP node) experienced zero.

Figure 8.21: Rsvp Resv Msg Sent Figure 8.22: Rsvp Resv Msg Sent

Figure 8.21 and Figure 8.22 show the RSVP Resv Messages Sent on Clients and

Receivers experienced using RSVP and not using RSVP. As expected, traffic not

using RSVP (Client no RSVP node and Receiver no RSVP node) experienced zero.
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Figure 8.23: Rsvp Resv Msg Recv Figure 8.24: Rsvp Resv Msg Recv

Figure 8.23 and Figure 8.24 show the RSVP Resv Messages Received on Clients and

Receivers experienced using RSVP and not using RSVP. As expected, traffic not using

RSVP (Client no RSVP node and Receiver no RSVP node) experienced zero.

Figure 8.25: Rsvp Conf Msg.s Sent Figure 8.26: Rsvp Conf Msg.s Sent

Figure 8.25 and Figure 8.26 show the RSVP Conf Messages Sent on Clients and

Receivers experienced using RSVP and not using RSVP. As expected, traffic not

using RSVP (Client no RSVP node and Receiver no RSVP node) experienced zero.
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Figure 8.27: Rsvp Conf Messages Recv Figure 8.28: Rsvp Conf Messages Recv

Figure 8.27 and Figure 8.28 show the RSVP Conf Messages Received on Clients and

Receivers experienced using RSVP and not using RSVP. As expected, traffic not using

RSVP (Client no RSVP node and Receiver no RSVP node) experienced zero.

Figure 8.29: No of Path States Figure 8.30: No of Path States

Figure 8.29 and Figure 8.30 show the RSVP Number of Path States on Clients and

Receivers experienced using RSVP and not using RSVP. As expected, traffic not

using RSVP (Client no RSVP node and Receiver no RSVP node) experienced zero,

because Path State information is used in RSVP.
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Figure 8.31: No of Resv States Figure 8.32: No of Resv States

Figure 8.31 and Figure 8.32 show the RSVP Number of Resv States on Clients and

Receivers experienced using RSVP and not using RSVP. As expected, traffic not

using RSVP (Client no RSVP node and Receiver no RSVP node) experienced zero.

Because Resv state information is used in RSVP.

Figure 8.33: No of Succ. Req.s Figure 8.34: No of Succ. Req.s

Figure 8.33 and Figure 8.34 show the RSVP Number of Successful Requests on Clients

and Receivers experienced using RSVP and not using RSVP. As expected, traffic not

using RSVP (Client no RSVP node and Receiver no RSVP node) experienced zero.
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Figure 8.35: Blockade States Figure 8.36: Blockade States

Figure 8.35 and Figure 8.36 show the RSVP Number of Blockade States on Clients

and Receivers experienced using RSVP and not using RSVP. As expected, traffic

not using RSVP and traffic using RSVP experienced zero, because Blockade State

information is used in RSVP routers.

Figure 8.37: P2P Queuing Delay Figure 8.38: P2P Queuing Delay

Figure 8.37 and Figure 8.38 compare the point-to-point queuing delay experienced

using RSVP with the queuing delay experienced not using RSVP between the Clients

to Router1 and Router2 to Receivers. As expected, traffic using RSVP reservation
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experienced less queuing delay.

Figure 8.39: P2P Queuing Delay Figure 8.40: P2P Queuing Delay

Figure 8.39 and Figure 8.40 compare the point-to-point queuing delay experienced us-

ing RSVP with the queuing delay experienced not using RSVP between the Receivers

to Router2 and Router1 to Clients. As expected, traffic using RSVP reservation

experienced less queuing delay.

Figure 8.41: Link Utilization Figure 8.42: Link Utilization

In Figure 8.41, utilization of the link between Router1 and Router2 is shown. RSVP

is used between Router1 and Router2. Maximum Reservable Bandwidth is a percent-
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age of the link bandwidth that RSVP can use. Maximum Reservable Bandwidth is

configured to 100%. As expected, traffic using RSVP reservation experienced using

full bandwidth. In Figure 8.42, throughput of the link between Router1 and Router2

is shown. It clearly shows how sufficient the link between Router 1 and Router 2 is

for this load.

Figure 8.43: Link Queuing Delay

In Figure 8.43 queuing delay of the link between Router1 and Router2 is shown.

RSVP is used between Router1 and Router2. In my scenario all clients are connected

to Router1. Therefore Router1 sends more confirmation messages. As expected, the

outgoing link between Router1 and Router2 experienced higher queuing delay.

Figure 8.44 and Figure 8.45 show the Total RSVP Traffic Sent and Received on

Router1 and Router2 experienced using RSVP. As expected, the network is used by

Router2 all the time so there is no too much change. The Router1 uses the network

some times.Therefore fast change can be seen.

These two figures(Figure 8.46 and 8.47) show the Total RSVP Resv Messages Sent

and Received on Router1 and Router2 experienced using RSVP. As expected, the
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Figure 8.44: RSVP Traffic Sent Figure 8.45: RSVP Traffic Recv

Figure 8.46: RSVP Resv Messages
Sent

Figure 8.47: RSVP Resv Messages
Recv
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network is used by Router2 all the time so there is no too much change. The Router1

uses the network some times.Therefore fast change cen be seen.

Figure 8.48: RSVP Resv Conf. Sent Figure 8.49: RSVP Resv Conf. Recv

Figure 8.48 and Figure 8.49 illustrate the RSVP Resv Confirmation Messages Sent

and Received on Router1 and Router2. In very minute one confirmation message is

sent.

Figure 8.50: RSVP Path Msg Sent Figure 8.51: RSVP Path Msg Recv

RSVP Path Messages Sent and Received are shown in the Figure 8.50 and Figure 8.51.

Figure 8.52 shows the Number of Successful Requests on Router1 and Router2. RSVP
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Figure 8.52: Succ. RSVP Requests Figure 8.53: Rej. RSVP Requests

setting is made by Router1.Therefore successful requests are available on Router1.

Figure 8.53 illustrates the Number of Rejected Requests on Router1 and Router2.

Because of the clients, all messages are sent via Router1.Router2 sends responses but

all requests from Router1 are successful. Thus number of rejected requests on Router1

is zero.

Figure 8.54: RSVP Path States Figure 8.55: RSVP Resv States

Path states are established by Path messages. Number of RSVP Path States on

Router1 and Router2 is experienced are shown in Figure 8.54. Figure 8.55 shows
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the Total RSVP Resv States on Router1 and Router2 experienced using RSVP. Each

receiver periodically sends a Resv message that establishes or updates the reservation

state. All the messages are sent via Router1 and requests are resulted from Router

1.Thus higher results can be seen on Router 1.

Figure 8.56: RSVP Blockade States

A reservation request that fails Admission Control creates blockade state which can

be seen in Figure 8.56. All the messages are sent via Router1 and requests are resulted

from Router 1. So blockade states results can be seen on Router 1.
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CHAPTER 9

CONCLUSIONS

We conducted some experiments by using OPNET IT Guru Academic Edition 9.1. A

scenario is established. Clients and receivers with/without RSVP are used in our sim-

ulation. Some results are obtained link utilization, throughput, point to point delay,

queuing delay, IP traffic are measured. RSVP protocol does allocation of bandwidth

before transmission. If allocation is not done, data transmission does not occur.

In summary RSVP has the following attributes [1]:

• RSVP makes resource reservations for unicast and multicast applications.

• RSVP sessions are simplex. Thus, a bidirectional exchange of data between a

pair of machines actually constitutes two separate RSVP simplex sessions.

• RSVP is receiver-oriented. The receiver of a data flow initiates and maintains

the resource reservation used for that flow.

• RSVP maintains soft state in routers and hosts, providing graceful support for

dynamic membership changes and automatic adaptation to routing changes.

• RSVP is not a routing protocol but depends upon present and future routing

76



protocols.

• RSVP transports and maintains traffic control and policy control parameters

that are opaque to RSVP.

• RSVP provides several reservation models or styles to fit a variety of applica-

tions.

• RSVP provides transparent operation through routers that do not support it.

• RSVP supports both IPv4 and IPv6.
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