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Abstract
In this article, we give a definition and discuss several properties of the δ-β-Gabor
integral operator in a class of locally integrable Boehmians. We derive delta
sequences, convolution products and establish a convolution theorem for the given
δ-β-integral. By treating the delta sequences, we derive the necessary axioms to
elevate the δ-β-Gabor integrable spaces of Boehmians. The said generalized
δ-β-Gabor integral is, therefore, considered as a one-to-one and onto mapping
continuous with respect to the usual convergence of the demonstrated spaces. In
addition to certain obtained inversion formula, some consistency results are also
given.
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1 Preliminaries
Due to various applications of the Dirac delta distribution and its usual implementation in
physics, engineering, and partial differential equations, various distribution spaces have
been considered in literature. Distributions or generalized functions are objects that gen-
eralize the classical notion of functions. They are widely used in geometry, mathematical
physics, stochastic analysis, harmonic analysis, and the theory of linear and nonlinear par-
tial differential equations as it is much easier to establish a distributional solution than a
classical one. The space of Boehmians is a space of generalized functions constructed in an
algebraic way similar to the construction of the field of quotients. When a multiplication is
interpreted as a convolution, the construction of a space of Boehmians, applied to a differ-
ent function space, yields a different space of Boehmians. Boehmians also allow different
identifications of integral operators to be isomorphisms. Therefore, several integral op-
erators have been applied to various spaces of Boehmians in various papers in the recent
past. For example, the Stieltjes integral operator was extended to a space of Boehmians
of Fox’s H-function type (see, e.g., [1]), the Hartley integral operator was extended to a
space of strong Boehmians (see, e.g., [2]), the Hilbert integral operator was extended to a
space of Boehmians (see, e.g., [3]), the Mellin integral operator was extended to a space
of Boehmians of quaternion type (see, e.g., [4]), the short-time Fourier integral operator
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was extended to a space of H-Boehmians (see, e.g., [5]), the fractional Fourier integral was
extended to a space of Boehmians (see, e.g., [6]), the quaternion Fourier integral was ex-
tended to a quaternionic set of Boehmians (see, e.g., [7]) and many others, to mention but a
few. However, further extensions of integral operators to Boehmian spaces were obtained
in [1–10] (see also citations therein).

The Gabor integral transform operator, among other integral transform operators, was
proposed as a time-frequency integral operator to perform simultaneous time-frequency
analysis of signals. This frequently was used for feature extraction, non-stationary signal
processing, radar systems, sonar systems, communications, and space sciences (see, e.g.,
[11]). For a given window function g and coordinates in the space and the frequency do-
mains q and q̃, the Gabor integral operator of a signal ϕ is given as follows (see, e.g., [12]):

Ggϕ(q, q̃) =
∫
R

ϕ(x)g(x – q̃) exp(i2πqx) dx, (1)

when the integral exists. If g is a given window function satisfying the integral equation

∫
R

∣∣g(x)
∣∣2 dx = 1,

then the signal function ϕ can be recovered from the Gabor spectrum integral Ggϕ as
follows:

ϕ(x) =
∫
R

∫
R

Ggϕ(q, q̃)g(x – q)exp(i2πqx) dq dq̃. (2)

The Gabor integral operator of an image has much lower entropy than the pixel represen-
tation of the image, and the expansions of the Gabor, for every low bit rates, can provide
better signal compression than the discrete cosine integral operator can (see, e.g., [8, 10–
18]). If δ and β are real numbers, when β is fixed, then the collection gβ ,δ

q,q̃ of functions is
defined by

gβ ,δ
q,q̃ (x) = exp

(
2iqx – qq̃

2

)
gβ

δ (x – q̃), (3)

where gβ

δ is a family of Gaussian window functions defined by

gβ

δ (x) = δ
1
4 exp

(
iβx2 – 2δx2

2

)
. (4)

With respect to the family gβ

δ of window functions, the δ-β-Gabor integral operator of a
signal ϕ is defined by (see, e.g., [13, Eq. (4)])

Gβ

δ ϕ(q, q̃) =
∫
R

gβ ,δ
q,q̃ (x)ϕ(x) dx. (5)

The δ-β-Gabor integral operator is the δ-β-extension of the Gabor integral operator when
δ = 1 and β = 0. It is closely related to the Wigner–Ville integral operator

W
(
gβ

δ

)
(x, ξ ) = C exp

(
–

2δ + β2

2δ
x2 –

1
2δ

ξ 2 +
β

δ
xξ

)
,
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and they are related by (see, e.g., [13])

∣∣Gβ

δ ϕ(q, q̃)
∣∣2 = W

(
gβ

δ

)
�W (ϕ),

where � is the convolution product of the Fourier convolution type (see, e.g., [19])

ϕ�ψ(ξ ) =
∫
R

ψ(t)ϕ(ξ – t) dt, (6)

and C is some constant. However, the δ-β-Gabor integral of a signal may look much bet-
ter than the Gabor integral operator since the choice of δ and β , which brings out features
best, will depend on the time-frequency content of the signal itself. It, therefore, becomes
natural to adapt the choice of parameters δ and β to the phase point (q, q̃). However, this
article firstly aims to discuss convolution products and convolution theorems for the δ-β-
Gabor integral operator. It then generates two sets of Boehmians and gives some charac-
teristics of the extended δ-β-Gabor integral operator. For the convenience of the reader,
we distribute our results into four sections. In Sect. 2, we introduce convolution products
and prove a convolution theorem. In Sect. 3, we generate the δ-β-Gabor sets of Boehmi-
ans. In Sect. 4, we discuss the δ-β-Gabor integral on the set of Boehmians and obtain an
inversion formula as well as radical properties of the generalized integral.

2 Convolutions and convolution theorem
In mathematics, the convolution is a mathematical operation on two functions, producing
a third function that is typically viewed as a modified version of one of the original func-
tions, giving the area overlap between the two functions as one of the original functions
is translated. Convolutions have applications including probability, statistics, computer
vision, image and signal processing, electrical engineering, and differential equations. At
any rate, the purpose of this section is to devise the convolution product and derive the
convolution theorem for the δ-β-Gabor integral operator for arbitrary real numbers δ

and β .
The analysis of the Gabor integral operator successfully brings light to a very beneficial

convolution product that works in with the Fourier convolution product. The compatible
convolution product is defined as follows.

Definition 1 Let ϕ ∈ L1(R) and F ∈ L1(R2). Then, for ϕ and F , we define an integral equa-
tion 	

q̃
q as follows:

ϕ 	q̃
q F(q, q̃) =

∫
R

ϕ(x) exp

(
2iqx – qx

2

)
F(q, q̃ – x) dx, (7)

provided the right-hand side integral exists for all coordinates q and q̃.

To establish the δ-β-Gabor convolution theorem, we firstly derive the following prelim-
inary result.

Theorem 2 Let gβ ,δ
q,q̃ and gβ

δ be defined as in Eq. (3) and Eq. (4), respectively. Then, for real
numbers z and x, we have

gβ ,δ
q,q̃ (z + x) = exp

(
2iqx – qx

2

)
exp

(
2iqz – q(q̃ – t)

2

)
gβ

δ (z).
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Proof By using Eq. (3) and employing the change of variables w = z + x – q̃, the above
equation routinely becomes

gβ ,δ
q,q̃ (z + x) = exp

(
2i(q + z) – qq̃

2

)
gβ

δ (w).

Hence, by taking into account the definition of a family of the Gaussian window functions
gβ

δ , we get

gβ ,δ
q,q̃ (z + x) = exp

(
iq(z + x)

)
exp

(
–

qq̃
2

)
δ

1
4 exp

(
iβw2 – 2δw2

2

)
.

This can alternatively be written as

gβ ,δ
q,q̃ (z + x) = exp(ipx) exp

(
2ipz – q(q̃ – x) – qx

2

)
δ

1
4 exp

(
iβw2 – 2δw2

2

)
.

Therefore, by using a simple computation and making a rearrangement on the above ex-
ponents yield

gβ ,δ
q,q̃ (z + x) = exp

(
2iq – qx

2

)
exp

(
2iqz – q(q̃ – x)

2

)
δ

1
4 exp

(
iβw2 – 2δw2

2

)
.

Indeed, the definition of gβ

δ gives

gβ ,δ
q,q̃ (z + x) = exp

(
2iqx – qx

2

)
exp

(
2iqz – q(q̃ – x)

2

)
gβ

δ (z).

This finishes the proof of the theorem. �

Now, as we are implementing the Fourier convolution product � in our next investiga-
tion, we have to be very familiar with the convolution properties on the set of integrable
functions that we recall (see, e.g., [6]):

ϕ�ψ = ψ�ϕ and ϕ�(ψ�θ ) = (ψ�ϕ)�θ .

On the basis of the above definitions, the convolution theorem of the Gabor integral Gβ

δ

can be derived as follows.

Theorem 3 Let ϕ and ψ be arbitrarily given in L1(R), and let q and q̃ be the coordinates
in the space and frequency domains, then we have

Gβ

δ (ϕ�ψ)(q, q̃) =
(
Gβ

δ ϕ 	q̃
q ψ

)
(q, q̃).

Proof Let ϕ and ψ be arbitrarily given. Then, by considering the integral relation pre-
sented in Eq. (7), we write

Gβ

δ (ϕ�ψ)(q, q̃) =
∫
R

ψ(t)
∫
R

gβ ,δ
q,q̃ (x)ϕ(x – t) dx dt. (8)
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Hence, the substitution x = z + t, consequently, changes Eq. (8) into the integral relation

Gβ

δ (ϕ�ψ)(q, q̃) =
∫
R

ψ(t)
∫
R

gβ ,δ
q,q̃ (z + t)ϕ(z) dz dt. (9)

Thus, with the aid of Theorem 2, Eq. (9) can be nicely expressed as

Gβ

δ (ϕ�ψ)(q, q̃) =
∫
R

ψ(t) exp

(
2iqt – qt

2

)(∫
R

gβ ,δ
q,q̃–t(z)ϕ(z) dz

)
dt.

Therefore, by employing Eq. (5), the Gabor integral of the convolution can be given as
follows:

Gβ

δ (ϕ�ψ)(q, q̃) =
∫
R

ψ(t) exp

(
2iqt – qt

2

)
Gβ

δ (ϕ)(q, q̃ – t) dt.

Hence, by using Eq. (7) we complete the proof of the theorem. �

Indeed, analogous to many magnificent research works related to various integral op-
erators, this convolution theorem still lacks the elegance and simplicity of the Euclidean
Fourier integral operator, which states that the Fourier integral operator of a convolu-
tion of two functions is the product of their respective Fourier transforms. Although the
convolution product and the convolution theorem of the δ-β-Gabor integral operator are
not so accessible as the Euclidean Fourier convolution product and convolution theorem,
they will serve us nicely to present a simple though rigorous approach to the generalized
δ-β-Gabor spaces of Boehmians. It also serves to derive a linear bijection between the
Boehmian spaces.

3 δ-β-Gabor spaces of Boehmians
Denote by D(R) the space of smooth functions of compact supports over R and, at the
same time, denote by L1

loc(R2) the space of locally integrable functions over R2. Denote by
� the set of delta sequences {δn} from (D(R), �) satisfying �1 – �3, where

�1 :
∫
R

δn = 1 for all n ∈N.

�2 : |δn| < M, M ∈R, 0 < M, n ∈ N.

�3 : suppδn ⊆ (–γn,γn),γn → 0 as n → ∞.

With L1
loc(R2), D(R), �, the product �, and the product 	

q̃
q, we generate a space B(R2) of

Boehmians which works in as a range space of the generalized δ-β-Gabor integral opera-
tor. Therefore, we start with the proof of the following fundamental result.

Lemma 4 Let F ∈ L1
loc(R2) and ϕ,ψ ∈ D(R). Then we have

F 	q̃
q (ϕ�ψ)(q, q̃) =

(
F 	q̃

q ϕ
)
	q̃

q ψ(q, q̃) in L1
loc

(
R

2),

where (q, q̃) ∈R
2.
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Proof By employing the definitions of the convolution products 	
q̃
q and �, we respectively

obtain

F 	q̃
q (ϕ�ψ)(q, q̃) =

∫
R

F(q, q̃ – x) exp

(
2iqx – qx

2

)
(ϕ�ψ)(x) dx

=
∫
R

F(q, q̃ – x) exp

(
2iqx – qx

2

)∫
R

ϕ(x – y)ψ(y) dy dx.

Hence, with the aid of Fubini’s theorem, we simplify the above equation to write

F 	q̃
q (ϕ�ψ)(q, q̃) =

∫
R

ψ(y)
∫
R

F(q, q̃ – x) exp

(
2iqx – qx

2

)
ϕ(x – y) dx dy. (10)

Therefore, a proper change in the variables changes Eq. (10) into the standard form

F 	q̃
q (ϕ�ψ)(q, q̃)

=
∫
R

ψ(y) exp

(
2iqy – qy

2

)∫
R

F
(
q(q̃ – y) – z

)
exp

(
2iqx – qx

2

)
ϕ(z) dz dy

=
∫
R

ψ(y) exp

(
2iqy – qy

2

)(
F 	q̃

q ϕ
)
(q, q̃ – y) dy.

Hence, we have reached the conclusion that F 	
q̃
q (ϕ�ψ) = (F 	

q̃
q ϕ) 	

q̃
q ψ . To complete the

proof of this lemma, we have to show

F 	q̃
q ϕ ∈ L1

loc
(
R

2) (11)

for every F ∈ L1
loc(R2) and φ ∈ D(R). Let K be a compact subset of R2, then we have

∫
K

∣∣(F 	q̃
q ϕ

)
(q, q̃)

∣∣d(q, q̃) =
∫

K

∣∣∣∣
∫
R

F(q, q̃ – x)ϕ(x) exp

(
2iqx – qx

2

)
dx

∣∣∣∣d(q, q̃)

≤
∫
R

∣∣ϕ(x)
∣∣
∫

K

∣∣F(q, q̃ – x)
∣∣d(q, q̃) dx

≤ A
∫
R

∣∣ϕ(x)
∣∣dx,

where A is a certain positive constant such that
∫

K

∣∣F(q, q̃ – x)
∣∣d(q, q̃) ≤ A as F ∈ L1

loc
(
R

2). (12)

Also, as ϕ ∈ D(R) and ϕ is a smooth function of compact support, we have
∫
R

∣∣ϕ(x)
∣∣dx ≤ B

for some B ∈R. Hence, we have obtained F 	
q̃
q ϕ ∈ L1

loc(R2) for all F ∈ L1
loc(R2) and ϕ ∈ D(R).

The proof of the theorem is, therefore, finished. �

Each of the identities of the following lemma has a routine verification and, hence, the
proof is left to the reader. Details are, therefore, omitted.
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Lemma 5 Let F , {Fn} ∈ L1
loc(R2) and ϕ,ψ ∈ D(R) and α ∈ C. Then we have F 	

q̃
q (ϕ + ψ) =

F 	
q̃
q ϕ + F 	

q̃
q ψ , (αF) 	

q̃
q ϕ = α(F 	

q̃
q ϕ) and

Fn 	q̃
q ϕ → F 	q̃

q ϕ as n → ∞ as Fn → F as n → ∞.

Lemma 6 For {δn} ∈ � and F ∈ L1
loc(R2), we have

F 	q̃
q δn → F in L1

loc
(
R

2) as n → ∞. (13)

Proof Let K ⊆R
2 be compact. Then, by using the concept of �1, we have

∫
K

∣∣(F 	q̃
q δn – F

)
(q, q̃)

∣∣d(q, q̃)

=
∫

K

∣∣∣∣
(
F 	q̃

q δn
)
(q, q̃) – F(q, q̃)

∫
R

δn(x) dx
∣∣∣∣d(q, q̃)

≤
∫

K

(∫
R

∣∣∣∣F(q, q̃ – x) exp

(
2iqx – qx

2

)
– F(q, q̃)

∣∣∣∣
∣∣δn(x)

∣∣dx
)

d(q, q̃)

≤
∫

K

(∫ γn

–γn

∣∣F(q, q̃ – x) – F(q, q̃)
∣∣∣∣δn(x)

∣∣dx
)

d(q, q̃)

≤ M
∫

K

∫ γn

–γn

∣∣F(q, q̃ – x) – F(q, q̃)
∣∣dx d(q, q̃).

The last inequality follows from �2 and the fact that {δn} ⊆ D(R). Hence, as F ∈ L1
loc(R2),

by pursuing simple computations, we write

∫
K

∣∣(F 	q̃
q δn → F

)
(q, q̃)

∣∣d(q, q̃) ≤ MAμ(K)(2γn),

where μ(K) is the Lebesgue measure of K and A is some positive constant. Hence, by �3,
we have

∥∥F 	q̃
q δn – F

∥∥ ≤ MAμ(K)(2γn) → 0

as n → ∞. This finishes the proof of the theorem. �

The Boehmian space B(R2) with the sets (L1
loc(R2),	q̃

q), (D(R), �), �(R) is defined.
The sum of the Boehmians ϕn/δn and gn/εn in B(R2) is given as

ϕn/δn + gn/εn =
(
ϕn 	q̃

q δn + gn 	q̃
q δn

)
/(δn�εn),

whereas a multiplication of a Boehmian ϕn/δnin B(R2) by a complex number γ ∈ C is
defined as γ (ϕn/δn) = (γ ϕn/δn). On the other hand, the extension of 	

q̃
q and Dα to B(R2) is

introduced as follows:

(ϕn/δn) 	q̃
q (gn/εn) =

(
ϕn 	q̃

q gn
)
/(δn�εn) and Dα(ϕn/δn) =

(
Dαϕn/δn

)
,α ∈R.
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Moreover, an extension of 	
q̃
q to B(R2) 	

q̃
q L1

loc(R2), where (ϕn/δn) is in B(R2) and ω in
L1

loc(R2), is given as

(ϕn/δn) 	q̃
q ω =

(
ϕn 	q̃

q ω
)
/δn.

Definition 7 Let βn,β ∈ B(R2) for n = 1, 2, 3, . . . . Then the sequence {βn} is δ-convergent
to β , denoted by δ – limn→∞ βn = β(βn

δ→ β), provided there can be found a delta sequence
{δn} such that

(a) (βn 	
q̃
q δk) and (β 	

q̃
q δk) ∈ L1

loc(R2) for all n, k ∈ N,
(b) limn→∞ βn 	

q̃
q δk = β 	

q̃
q δk in L1

loc(R2) for every k ∈N.
Or, equivalently, δ – limn→∞ βn = β if and only if there are ϕn,k , ϕk ∈ L1

loc(R2) and {δk} ∈ �

such that (i) βn = ϕn,k/δk , β = ϕk/δk (ii) limn→∞ ϕn,k = ϕk ∈ L1
loc(R2) to every k ∈N.

Definition 8 Let βn,β ∈ B(R2) for n = 1, 2, 3, . . . . Then the sequence {βn} is �-convergent
to β , denoted by �-limn→∞ βn = β(βn

�→ β), provided there can be found a delta sequence
{δn} such that

(i) (βn – β) 	
q̃
q δn ∈ L1

loc(R2) (∀n ∈N) (ii) limn→∞(βn – β) 	
q̃
q δn = 0 in L1

loc(R2).

Defining the space H with the sets (L1
loc(R), �), (D(R), �), and �(R) is quite similar to the

construction of the space of Lp- Boehmians; for details, we refer to [9]. In H , addition of
ϕn/δn and gn/εn in H and � is, respectively, defined as

ϕn/δn + gn/εn = (ϕn�δn + gn�δn)/(δn�εn)

and

(ϕn/δn)�(gn/εn) = (ϕn�gn)/(δn�εn).

Multiplication of ϕn/δn in H by a complex number γ ∈ C is defined as

γ (ϕn/δn) = (γ ϕn/δn).

Dα of ϕn/δn in H is introduced as Dα(ϕn/δn) = Dαϕn/δn, α ∈R. For every ϕn/δn in H and κ

in L1
loc(R), � can be extended to H�L1

loc(R) by (ϕn/δn)�κ = (ϕn�κ)/δn.

Definition 9 Let βn,β ∈ H for n = 1, 2, 3, . . . . Then the sequence {βn} is δ-convergent to
β , denoted by δ – limn→∞ βn = β(βn

δ→ β), provided there can be found a delta sequence
{δn} such that

(i) βn�δk and β�δk ∈ L1
loc(R) for all n, k ∈N,

(ii) limn→∞ βn�δk = β�δk in L1
loc(R) for every k ∈N.

Or, equivalently,
δ – limn→∞ βn = β if and only if there are ϕn,k , ϕk ∈ L1

loc(R)and {δk} ∈ � such that
(i) βn = ϕn,k/δk , β = ϕk/δk ,
(ii) to every k ∈N, we have limn→∞ ϕn,k = ϕk in L1

loc(R).

Definition 10 Let βn,β ∈ H for n = 1, 2, 3, . . . . Then the sequence {βn} is �-convergent to
β , denoted by �-limn→∞ βn = β(βn

�→ β), provided there can be found a delta sequence
{δn} such that
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(i) (βn – β)�δn ∈ L1
loc(R) (∀n ∈N),

(ii) limn→∞(βn – β)�δn = 0 in L1
loc(R).

4 The Xβ
δ and Sβ

δ integrals
With the aid of the previous investigation, we estimate the Gabor Xβ

δ integral and its in-
version Sβ

δ on the respective spaces H(R) and B(R2) as follows.

Definition 11 Let ϕn/δn ∈ H(R), then the estimated δ-β-Gabor integral of ϕn/δn is defined
as

Xβ

δ (ϕn/δn) = Gβ

δ ϕn/δn, (14)

which lies in the space B(R2).

We recite some properties of the extension Xβ

δ of Gβ

δ with the help of the following
theorems.

Theorem 12 (i) Xβ

δ : H(R) → B(R2) is well defined.
(ii) Xβ

δ : H(R) → B(R2) is linear, one-to-one, and onto.
(iii) Xβ

δ : H(R) → B(R2) is continuous with respect to δ and �-convergence.
(iv) Xβ

δ : H(R) → B(R2) is consistent with the operator Gβ

δ .
(v) Xβ

δ ((ϕn/δn)�(gn/εn)) = Xβ

δ (ϕn/δn) 	
q̃
q Xβ

δ (gn/εn).

Proof (i) Let ϕn/δn ∈ H(R). Then ϕn�δm = gm�δn for all m, n ∈ N. But then, by Theorem 3,
we have Gβ

δ (ϕn�δm) = Gβ

δ (gm�δn). Therefore, Gβ

δ ϕn 	
q̃
q δm = Gβ

δ gm 	
q̃
q δn.

Hence, we have

Gβ

δ ϕn/δn ∈ B
(
R

2).

Now, we show that Xβ

δ is independent of the representative. Let ϕn/δn = gn/εn in H(R),
then ϕn�εm = gm�δn for all m, n ∈ N. Applying Theorem 3 gives Gβ

δ ϕn 	
q̃
q εm = Gβ

δ gm 	
q̃
q δn.

Hence, Gβ

δ ϕn/δn = Gβ

δ gn/εn. Thus, Gβ

δ (ϕn/δn) = Gβ

δ (gn/εn).
Proof (ii) Linearity of Xβ

δ follows from linearity of Gβ

δ . Let ϕn/δn, gn/εn ∈ H(R) be such
that Xβ

δ (ϕn/δn) = Xβ

δ (gn/εn) ∈ B(R2). Then by Eq. (14) we get Gβ

δ ϕn/δn = Gβ

δ gn/εn. This
means that Gβ

δ ϕn 	
q̃
q εm = Gβ

δ gm 	
q̃
q δn for all m, n ∈N. Hence Theorem 3 gives Gβ

δ (ϕn�εm) =
Gβ

δ (gm�δn). As Gβ

δ : L1(R) → L1(R2) is one-to-one, we have ϕn�εm = gm�δn for all m, n ∈N.
This in turn yields ϕn/δn = gn/εn ∈ H(R). The onto condition is clear.

We prove Part (iv) as similar proofs for Part (iii) and the convolution theorem in Part
(v) may be followed in [9, 12]. Let ρ ∈ L1

loc(R2), then (ρ�δn)/δn is the representative of ρ in
H(R), {δn} ∈ � (∀n ∈ N). Clearly, for all n ∈ N, {δn} is independent of the representative.
Hence, by the convolution theorem, we get

Xβ

δ

(
(ρ�δn)/δn

)
= Gβ

δ (ρ�δn)/δn =
(
Gβ

δ ρ 	q̃
q δn

)
/δn = Gβ

δ ρ 	q̃
q (δn/δn).

Thus, (Gβ

δ ρ 	
q̃
q δn)/δn is the representative of Gβ

δ ρ in the space L1
loc(R2).

The proof is therefore finished. �

We introduce the inverse operator of Xβ

δ as follows.
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Definition 13 Let Gβ

δ ϕn/δn ∈ B(R2). We define the inverse Xβ

δ integral of a Boehmian
Gβ

δ ϕn/δn in B(R2) as follows:

Sβ

δ

(
Gβ

δ ϕn/δn
)

= ϕn/δn

for each {δn} ∈ �.

Theorem 14 Let Gβ

δ ϕn/δn ∈ B(R2) and ϕ ∈ L1
loc(R2) be given. We have

Sβ

δ

((
Gβ

δ ϕn/δn
)
	q̃

q ϕ
)

= (ϕn/δn)�ϕ and Xβ

δ

(
(ϕn/δn)�ϕ

)
=

(
Gβ

δ ϕn/δn
)
	q̃

q ϕ.

Proof Assume Gβ

δ ϕn/δn ∈ B(R2). For every ϕ ∈ L1
loc(R2), by using the convolution theorem

and Definition 11, we have

Sβ

δ

((
Gβ

δ ϕn/δn
)
	q̃

q ϕ
)

= Sβ

δ

((
Gβ

δ ϕn 	q̃
q ϕ

)
/δn

)

= Sβ

δ

(
Gβ

δ (ϕn�ϕ)
)
/δn

= (ϕn�ϕ)/δn

= (ϕn/δn)�ϕ.

As the proof of the second part is similar, we omit the details. This completely finishes the
proof of the theorem. �
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