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In the present paper, our aim is to establish the boundedness of commutators of the fractional Hardy operator and its adjoint
operator on weighted Herz-Morrey spaces with variable exponents M _Kαð⋅Þ,λ

p,qð⋅Þ ðwÞ.

1. Introduction

Hardy operators and related commutators play an indis-
pensable role in the theory of partial differential equations
[1, 2] and the characterization of function spaces [3–5].
Without going into much details, let us first define the frac-
tional Hardy operators [3]

Hg zð Þ = 1
zj jn−β

ð
tj j≤ zj j

g tð Þdt, H∗g zð Þ =
ð

tj j> zj j

g tð Þ
tj jn−β

dt, z ∈ℝn/ 0f g

ð1Þ

and related commutators:

b,Hβ

� �
g = bHg −H bgð Þ,  b,H∗

β

h i
g = bH∗g −H∗ bgð Þ:

ð2Þ

It is important to note that taking β = 0 in (1), we get
multidimensional Hardy operator defined and studied in
[6, 7]. Also, (1) reduces to the one dimensional Hardy
operator [8] if we choose β = 0 and n = 1. Here, we cite
some important literature with regards to the study of
Hardy-type operators on different function spaces which
include [9–15].

The new development of variable exponent commenced
with the work of Kov’aˇcik and R’akosn’ık in [16], where a
class of function spaces having variable exponent was
defined, and basic properties of variable exponent Lebesgue
space were explored. Recently, the theory of variable expo-
nent analysis is modeled in terms of the boundedness of
the Hardy Littlewood maximal operator M [17–21]:

Mg zð Þ = sup
B:ball,z∈B

1
Bj j
ð

Bj j

ð
B
g tð Þj jdt: ð3Þ

Besides, Muckenhoupt Ap theory [22] is generalized in
the recent span of time with regard to variable exponent
spaces ([23–28]). By taking into account the generalization
of function spaces with variable exponents and the same
with weights, many results like duality, boundedness of
sublinear operators, the wavelet characterization, and com-
mutators of fractional and singular integrals have been
studied [29–38].

Recently, authors have studied generalized Herz space in
terms of both Muckenhoupt weights and variable exponent
[39–41]. Moreover, an idea of combining two function
spaces to develop a new one is also an interesting problem
in Harmonic analysis. One such problem is considered in
[42] in which Herz-Morrey space was defined. Although,
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the weighted versions of Herz-Morrey spaces were intro-
duced recently in [43, 44].

In this piece of work, our main focus is on establishing
the boundedness of commutators of fractional Hardy opera-
tors on a class of function spaces called the weighted Herz-
Morrey space with variable exponents. We seek to find the
boundedness of these commutators with symbol functions
in BMO (bounded mean oscillation) spaces. In establishing
such a boundedness, we make use of the boundedness of
the fractional integral operator Iβ

Iβ gð Þ zð Þ =
ð
ℝn

g tð Þ
z − tj jn−β

dt ð4Þ

on weighted Lebesgue space which was done in [39].
In the rest of this paper, the symbol C expresses a con-

stant whose value may differ at all of its occurrences. The
Greek letter χS denotes the characteristics function of a sphere
S where S is a measurable subset of Rn and ∣S ∣ represents its
Lebesguemeasure. Before turning to our key results, let us first
define the relevant variable exponent function spaces.

2. Preliminaries

Let us consider a measurable function pð·Þ on ℝn having
range ½1,∞Þ. The Lebesgue space with variable exponent
Lpð⋅ÞðℝnÞ is the set of all measurable function f such that

Lp ⋅ð Þ ℝnð Þ = f :
ð
ℝn

f xð Þj j
σ

� �p xð Þ
dx<∞,for someσ > 0

( )
:

ð5Þ

The space Lpð⋅ÞðℝnÞ turns out to be Banach function
space under the norm:

fk kLp ⋅ð Þ ℝnð Þ = inf σ > 0 :

ð
ℝn

f xð Þj j
σ

� �p xð Þ
dx ≤ 1

( )
: ð6Þ

We denote by P ðℝnÞ the set of all measurable functions
pð⋅Þ: ℝn ⟶ ð1,∞Þ such that

1 < p− ≤ p xð Þ ≤ p+ <∞, ð7Þ

where

p− ≔ essinf x∈ℝn p xð Þ, p+ ≔ esssupx∈ℝn p xð Þ: ð8Þ

Definition 1. Suppose pð·Þ is a real valued function on ℝn.
We say that

(i) Clog
loc ðℝnÞ is the set of all local log-Holder continuous

functions pð·Þ satisfying

p xð Þ − p yð Þj j ≲ −C
log x − yj jð Þ ,  x − yj j < 1

2 , x, y ∈ℝn: ð9Þ

(ii) C log
0 ðℝnÞ is the set of all local log-Holder continuous

function pð·Þ satisfying at the origin

p xð Þ − p 0ð Þj j ≲ C
log e + 1/ xj jð Þj jð Þ ,  x − yj j < 1

2 , x ∈ℝn:

ð10Þ

(iii) C log
∞ ðℝnÞ is the set of all log-Holder continuous

functions satisfying at infinity

p xð Þ − p∞j j ≤ C∞
log e + xj jð Þ , x ∈ℝn: ð11Þ

(iv) C logðℝnÞ =C log
∞ ∩C

log
loc denotes the set of all global

log-Holder continuous functions pð·Þ.

It was proved in [21] that if pð⋅Þ ∈P ðℝnÞ ∩ ClogðℝnÞ,
then Hardy-Littlewood maximal operator M is bounded on
Lpð⋅ÞðℝnÞ.

Suppose wðxÞ is a weight function on ℝn, which is non-
negative and locally integrable on ℝn. Let Lpð⋅ÞðwÞ be the
space of all complex-valued functions f on ℝn such
thatf w1/pð⋅Þ ∈ Lpð⋅ÞðℝnÞ. The space Lpð⋅ÞðwÞ is a Banach func-
tion space equipped with the norm:

fk kLp ⋅ð Þ wð Þ = f w
1
p ⋅ð Þ

��� ���
Lp ⋅ð Þ

: ð12Þ

Benjamin Muckenhoupt introduced the theory of Apð1
< p<∞Þ weights on ℝn in [22]. Recently, in [39, 40], Izuki
and Noi generalized the Muckenhoupt Ap class by taking p
as a variable.

Definition 2. Let pð⋅Þ ∈P ðℝnÞ. A weightw is anApð⋅Þ weight if

sup
B

1
Bj j w1/p ⋅ð ÞχB

��� ���
Lp ⋅ð Þ

w−1/p ⋅ð ÞχB

��� ���
Lp ′ ⋅ð Þ

<∞: ð13Þ

In [25], the authors proved thatw ∈ Apð⋅Þ if and only ifM is

bounded on the space Lpð⋅Þ.

Remark 3 (see [39]). Suppose pð⋅Þ, qð⋅Þ ∈P ðℝnÞ ∩C logðℝnÞ
and pð·Þ ≤ qð·Þ, then we have

A1 ⊂ Ap ⋅ð Þ ⊂ Aq ⋅ð Þ: ð14Þ

Definition 4. Suppose p1ð⋅Þ, p2ð⋅Þ ∈P ðℝnÞ and β ∈ ð0, nÞ
such that 1/p2ðxÞ = 1/p1ðxÞ − β/n. A weight w is said to be
Aðp1ð⋅Þ, p2ð⋅ÞÞ weight if

χBk kLp2 ⋅ð Þ wp2 ⋅ð Þð Þ χBk kLp1 ⋅ð Þ wp1 ⋅ð Þð Þ′ ≤ C Bj j1−β
n: ð15Þ
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Definition 5 (see [39]). Suppose p1ð⋅Þ, p2ð⋅Þ ∈P ðℝnÞ and β
∈ ð0, nÞ such that 1/p2ðxÞ = 1/p1ðxÞ − β/n. Then, w ∈
Aðp1ð⋅Þ,p2ð⋅ÞÞ if and only if wp2ð⋅Þ ∈ A1+p2ð⋅Þ/p1′ð⋅Þ.

Now, we define the variable exponent weighted Morrey-

Herz space M _K
αð⋅Þ,λ
q,pð⋅Þ ðwÞ. Let Bk = fx ∈ℝn : jxj ≤ 2kg, Ak =

Bk/Bk−1, and χk = χAk
for k ∈ℤ.

Definition 6. Let w be a weight on ℝn, λ ∈ ½0,∞Þ, q ∈ ð0,∞Þ,
pð⋅Þ ∈P ðℝnÞ and αð⋅Þ: ℝn ⟶ℝ with αð⋅Þ ∈ L∞ðℝnÞ. The
spaceM _K

αð⋅Þ,λ
q,pð⋅Þ ðwÞ is the set of all measurable functions which

is given by

M _K
α ⋅ð Þ,λ
q,p ⋅ð Þ wð Þ = f ∈ Lp ⋅ð Þ

loc ℝn/ 0f g,wð Þ: fk kM _K
α ⋅ð Þ,λ
q,p ⋅ð Þ wð Þ<∞

� �
,

ð16Þ
where

fk kM _K
α ⋅ð Þ,λ
q,p ⋅ð Þ wð Þ = sup

k0∈Z
2−k0λ 〠

k0

k=−∞
2kα ⋅ð Þq f χkk kqLp ⋅ð Þ wð Þ

 !1/q

: ð17Þ

Obviously, M _K
αð⋅Þ,0
q,pð⋅ÞðwÞ = _K

αð⋅Þ
q,pð⋅ÞðwÞ is the weighted Herz

space with variable exponent (see [30]). Here, it is important
to refer to some of the pioneering studies of the Herz space
with constant exponents made in [45, 46].

3. Some Useful Lemmas

We start this section with some useful lemmas that will be
helpful in proving our main results.

Lemma 7 (see [47]). If X is Banach function space, then

(i) The associated space X ′ is also Banach function space

(ii) k⋅kðX ′Þ′ and k⋅kX are equivalent

(iii) If g ∈ X and f ∈ X ′, thenð
ℝn

f xð Þg xð Þj j ≤ gk kX fk kX ′ ð18Þ

is the generalized Hölder inequality.

Lemma 8 (see [39]). Suppose X is a Banach function space.
Then, we have that for all balls B,

1 ≤
1
Bj j χBk kX χBk kX ′ : ð19Þ

Lemma 9 (see [28, 39]). Let X be a Banach function space.
Suppose that the Hardy Littlewood maximal operator M is
weakly bounded on X; that is,

χ Mf >σf g
��� ���X ≲ σ−1 fk kX ð20Þ

is true for σ > 0 and for all f ∈ X. Then, we have

sup
B:ball

1
Bj j χBk kX χBk kX ′ <∞: ð21Þ

Lemma 10 (see [39, 48]).

(1) Xðℝn,WÞ is Banach function space equipped with the
norm

fk kX ℝn ,Wð Þ = f wk kX , ð22Þ
where

X ℝn,Wð Þ = f ∈M : fW ∈ X :f g: ð23Þ

(2) The associate space X ′ðℝn,W−1Þ is also a Banach
function space

Lemma 11 (see [39]). Let X be a Banach function space.
Assume thatM is bounded on X ′, then there exists a constant
δ ∈ ð0, 1Þ for all B ⊂ℝn and E ⊂ B,

χEk kX
χBk kX

≲
Ej j
Bj j

� �δ

: ð24Þ

The paper [16] shows that Lpð⋅ÞðℝnÞ is a Banach function

space and the associated space Lp′ð⋅ÞðRnÞ with equivalent norm.
Remark 12. Let pð⋅Þ ∈P ðℝnÞ, and by comparing the Lebes-

gue space Lpð⋅Þðwpð⋅ÞÞ and Lp′ð⋅Þðw−p′ð⋅ÞÞ with the definition
of Xðℝn,WÞ, we have

(1) If we take W =w and X = Lpð⋅ÞðℝnÞ, then we get
Lpð⋅Þðℝn,wÞ = Lpð⋅Þðwpð⋅ÞÞ

(2) If we consider W =w−1 and X = Lp′ð⋅ÞðℝnÞ, then we

have Lp′ð⋅Þðw−p′ð⋅ÞÞ = Lp′ð⋅Þðℝn,w−1Þ

By virtue of Lemma 10, we get ðLpð⋅Þðℝn,wÞÞ′ =
ðLpð⋅Þðwpð⋅ÞÞÞ′ = Lp′ð⋅Þðw−p′ð⋅ÞÞ = Lp′ð⋅Þðℝn:w−1Þ. Next, in view
of Lemma 11 and Remark 12, we have the following Lemma.

Lemma 13 (see [41]). Let pð·Þ ∈P ðRnÞ ∩C log ðℝnÞ be a
Log Hölder continuous function both at infinity and at origin,

if wp2ð·Þ ∈ Ap2ð·Þ implies w−p2′ ∈ Ap2′ð·Þ. Thus, the Hardy Little-

wood operator is bounded on Lp2′ð∙Þðwp2′ð∙ÞÞ, and there exist
constants δ1, δ2 ∈ ð0, 1Þ such that

χEk kLP2 ∙ð Þ wp2 ·ð Þ	 

χBk kLP2 ∙ð Þ wp2 ·ð Þ	 
 = χEk k

LP2
′ ∙ð Þw−P

2
′ ∙ð Þ	 


′

χBk k
LP2

′ ∙ð Þw−P
2
′ ∙ð Þ	 


′
≲

Ej j
Bj j

� �δ1

,

χEk k LP2 ∙ð Þð wp2 ·ð Þ
′
χBk k LP2 ∙ð Þð wp2 ·ð Þ
′ ≲ Ej j

Bj j
� �δ1

,

ð25Þ

for all balls B and all measurable sets E ⊂ B.
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Lemma 14 (see [39]). Let p1ð·Þ ∈P ðℝnÞ ∩C logðRnÞ and 0
< β < n/p1+ and 1/p2ð·Þ = 1/p1ð∙Þ − β/n. If ∈Aðp1ð·Þ, p2ð·ÞÞ,
then Iβ is bounded from Lp1ð·ÞðwP1ð·ÞÞ to Lp2ð·ÞðwP2ð·ÞÞ.

4. Main Results and their Proofs

Definition 15. Let f ∈ L1locðRnÞ and set

bk kBMO = sup
B

ð
B
b xð Þ − bBj jdx, ð26Þ

where the supremum is taken all over the balls B ∈ℝn and
bB = jBj−1 Ð BbðyÞdy. The function b is a bounded mean
oscillation if kbkBMO <∞ and BMOðℝnÞ consist of all f
∈ L1locðℝnÞ with BMOðℝnÞ <∞. For a comprehensive
review of the BMO space, we suggest the reader to follow
the books [49, 50].

Lemma 16. Let qð·Þ ∈P ðℝnÞ and w be an Aqð·Þ weight. Then,
for all b ∈ BMO and all l, i ∈ℤ with l > i, we have

bk kBMO ∼ sup
B:Ball

1
χBk k

L
q ∙ð Þ wq ·ð Þð Þ

b − bBð ÞχBk k
L
q ∙ð Þ wq ·ð Þð Þ , ð27Þ

b − bBi
	 


χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ ≤ C l − ið Þ bk kBMO χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ :

ð28Þ
Proof. First part of this lemma is a consequence of [[41], The-
orem 18]. Next, we will prove (28), for all l, i ∈ℤ with l > i

b − bBi
	 


χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ

≤ C b − bBl

�� �� + b − bBl
�� ��	 


χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ

≤ C b − bBl

	 

χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ + bBl − bBi

	 

χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ

n o
:

ð29Þ

In the view of (27), we have

b − bBi
	 


χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ ≤ C bk kBMO χBl

��� ���
L
q ∙ð Þ wq ·ð Þð Þ : ð30Þ

Also, it is easy to see that

bBl − bBi
�� �� ≤ 〠

l−1

n=1
bn+1 − bnj j

≤ 〠
l−1

n=1

1
Bnj j
ð
Bn

bn+1 − b xð Þj jdx

≤ C 〠
l−1

n=1

1
Bn+1j j

ð
Bn

bn+1 − b xð Þj jdx

= C l − ið Þ bk kBMO ℝnð Þ:

ð31Þ

Combining (29), (30), and (31), we get (28).

Proposition 17. Let qð·Þ ∈P ðℝnÞ, 0 < p <∞, and 0 ≤ λ <∞.
If αð·Þ ∈ L∞ðℝnÞ ∩C logðℝnÞ, then

fk kp
M _K

α ·ð Þ,λ
p,q ·ð Þ wq ·ð Þð Þ = sup

k0∈Z
2−k0λp 〠

k0

j=−∞
2jα ·ð Þp fχj

��� ���p
L
q ∙ð Þ wq ·ð Þð Þ

≤max

(
sup
k0∈Z
k0<0

2−k0λp 〠
k0

j=−∞
2jα ·ð Þp fχ j

��� ���p
L
q ∙ð Þ wq ·ð Þð Þ

 !
, sup
k0∈Z
k0<0

�
 
2−k0λp 〠

−1

j=−∞
2jα ·ð Þp fχj

��� ���p
L
q ∙ð Þ wq ·ð Þð Þ

 !

+ 2−k0λp 〠
k0

j=0
2jα ∞ð Þp fχj

��� ���p
L
q ∙ð Þ wq ·ð Þð Þ

 !!)
:

ð32Þ

Proof. The proof is similar to the proof of Proposition 17 in
[44]. So, we omit the details.

Theorem 18. Let 0 < p1 ≤ p2 <∞, q2ð·Þ ∈P ðℝnÞ ∩C logðℝnÞ,
and q1ð·Þ be such that 1/q1ð·Þ = 1/q2ð∙Þ − β/n:.

Also, let wq2ð·Þ ∈ A1, b ∈ BMOðℝnÞ, λ > 0, and αð·Þ ∈ L∞
ðℝnÞ ∩C logðℝnÞ be log Hölder continuous at the origin, with
αð0Þ ≤ αð∞Þ < λ + nδ2 − β, where 0 < δ2 < 1, then

b,Hβ

� �
f

�� ��
M _K

α ·ð Þ,λ
p2 ,q2 ·ð Þ wq2 ·ð Þð Þ ≤ C bk kBMO fk kM _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq2 ·ð Þð Þ:

ð33Þ

Proof. For any f ∈M _K
αð·Þ,λ
p1,q1ð·Þðwq1ð·ÞÞ, if we denote f l = f ·

χl = f · χAl
, and for each l ∈ℤ,

f xð Þ = 〠
∞

1=−∞
f xð Þ · χl xð Þ = 〠

∞

1=−∞
f l xð Þ, ð34Þ

then it is not difficult to see that

b,Hβ

� �
f xð Þχj xð Þ

��� ��� ≤ 1
xj jn−β

ð
Bj

b xð Þ − b yð Þð Þf yð Þj jdy · χj xð Þ

≤ 2−j n−βð Þ 〠
j

l=−∞

ð
Bj

b xð Þ − b yð Þð Þf yð Þj jdy · χ j xð Þ

≤ 2−j n−βð Þ 〠
j

l=−∞

ð
Bj

b xð Þ − bBl
	 


f yð Þ�� ��dy · χj xð Þ

+ 2−j n−βð Þ 〠
j

l=−∞

ð
Bj

b xð Þ − bBl

	 

f yð Þ�� ��dy · χj xð Þ

= E1 + E2:

ð35Þ
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The generalized Hölder inequality (Lemma 7) yields
the following inequality for E1:

E1 = 2−j n−βð Þ 〠
j

l=−∞

ð
Bl

b xð Þ − bBl

	 

f yð Þ�� ��dy · χj xð Þ

≤ 2−j n−βð Þ 〠
j

l=−∞
b xð Þ − bBl

	 
�� �� · χj xð Þ f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

� χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′ :

ð36Þ

Applying the norm on both sides and using Lemma
16, we get

E1k k Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ ≤ 2−j n−βð Þ 〠
j

l=−∞
b xð Þ − bBl

· χBj

� 
��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

≤ 2−j n−βð Þ 〠
j

l=−∞
j − lð Þ bk kBMO χBl

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′ :

ð37Þ

Now, we turn to estimate E2. For this, we have

E2 ≤ 2−j n−βð Þ 〠
j

l=−∞
b yð Þ − bBl

· χl

	 
�� ��
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ · χj xð Þ

≤ 2−j n−βð Þ 〠
j

l=−∞
b yð Þ − bBl · χBl

� 
��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ · χj xð Þ:

ð38Þ

Similar to the estimation for E1, we take the norm on
both sides of above inequality and use Lemma 16 to
obtain

E2k kLq2 ∙ð Þ wq2 ·ð Þð Þ ≤ 2−j n−βð Þ 〠
j

l=−∞
b yð Þ − bBl

	 

· χl

�� ��
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ · χj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

≤ 2−j n−βð Þ 〠
j

l=−∞
bk kBMO χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ χBj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ:

ð39Þ

Hence, from inequalities (35), (37), and (39), one
has k½b,Hβ�fχjkLq2ð∙Þðwq2ð·ÞÞ ≤ 2−jðn−βÞkbkBMO∑

j
l=−∞ðj − 1Þ

k f lkLq1ð∙Þðwq1ð·ÞÞkχBj
k
ðLq2ð∙Þðwq2ð·ÞÞÞ

kχBl
kðLq1ð∙Þðwq1ð·ÞÞÞ′ , which by

virtue of Lemma 9 reduces to

b,Hβ

� �
fχj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ ≤ 2jβ bk kBMO 〠

j

l=−∞
j − lð Þ f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

� χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′ χBj

��� ���−1
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′ :

ð40Þ

Now using Lemma 13, we learn

b,Hβ

� �
fχj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

≤ 2jβ bk kBMO 〠
j

l=−∞
j − lð Þ f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

�
χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

χBl

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′

χBl

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′

χBj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′

≤ 2jβ bk kBMO 〠
j

l=−∞
j − lð Þ2 l−jð Þnδ2 bk kBMO f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

�
χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

χBl

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′

:

ð41Þ

In the definition of the fraction integral Iβ, we replace f by
χBl to obtain

Iβ χBl

� 

xð Þ ≥ C2lβχBl

xð Þ, ð42Þ

from which we infer that

χBl
xð Þ ≤ C2−lβIβ χBl

� 

xð Þ: ð43Þ

Taking the norm on both sides and using Lemmas 14 and
9, respectively, we get

χBl

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ ≤ C2lβ Iβ χBl

� 
��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

≤ C2lβ χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þ

≤ C2l n−βð Þ χBl

��� ���−1
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′ :

ð44Þ
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In view of Lemmas 8 and 9, the use of (44) into (41) results
in the following inequality:

b,Hβ

� �
fχj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

≤ C bk kBMO 〠
j

l=−∞
2l n−βð Þ2jβ j − lð Þ2 l−jð Þnδ2 f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

� χlk k Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ χlk k Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′
� 
−1

≤ C bk kBMO 〠
j

l=−∞
2 j−lð Þ β−nδ2ð Þ j − lð Þ f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

� 2−ln χlk k Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ χlk k Lq2 ∙ð Þ wq2 ·ð Þð Þð Þ′
� 
−1

≤ C bk kBMO 〠
j

l=−∞
2 j−lð Þ β−nδ2ð Þ j − lð Þ f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ:

ð45Þ

Now, by virtue of the condition p1 ≤ p2 and Proposition
17, we have

b,Hβ

� �
fχj

��� ���p1
M _K

α ·ð Þ,λ
p2,q2 ·ð Þ wq2 ·ð Þð Þ

≤max

(
sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα 0ð Þp1 b,Hβ

� �
fχj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !
, sup
k0∈Z
k0≥0

�
 
2−k0λp1 〠

k0

j=−∞
2 jα 0ð Þp1 b,Hβ

� �
fχj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !

+ 2−k0λp1 〠
k0

j=0
2jα ∞ð Þp1 b,Hβ

� �
f χj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !!)
=max X1, X2, X3f g,

ð46Þ

where

X1 = sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα 0ð Þp1 b,Hβ

� �
fχj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !
,

X2 = sup
k0∈Z
k0≥0

2−k0λp1 〠
−1

j=−∞
2jα 0ð Þp1 b,Hβ

� �
fχj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !
,

X3 = sup
k0∈Z
k0≥0

2−k0λp1 〠
k0

j=0
2jα 0ð Þp1 b,Hβ

� �
fχj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !
:

ð47Þ

To estimate X1, X2, and X3, we make use of the conditions
on αð·Þ, such that for l < 0, we have

f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ = 2−lα 0ð Þ 2jα 0ð Þp1 f lk kp1
Lq1 ∙ð Þ wq1 ·ð Þð Þ

� � 1
p1

≤ 2−lα 0ð Þ 〠
l

1=−∞
2iα 0ð Þp1 f ik kp1

Lq1 ∙ð Þ wq1 ·ð Þð Þ

 ! 1
p1

≤ 2l λ−α 0ð Þð Þ2−lλ 〠
l

1=−∞
2iα ·ð Þp1 f ik kp1

Lq1 ∙ð Þ wq1 ·ð Þð Þ

 ! 1
p1

≤ C2l λ−α 0ð Þð Þ fk kM _K
α ·ð Þ,λ
p1,q1 ·ð Þ wq1 ·ð Þð Þ,

ð48Þ

and for l ≥ 0, we obtain

f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ = 2−lα ∞ð Þ 2lα ∞ð Þp1 f lk kp1
Lq1 ∙ð Þ wq1 ·ð Þð Þ

� � 1
p1

≤ 2−lα ∞ð Þ 〠
l

1=−∞
2iα ∞ð Þp1 f ik kp1

Lq1 ∙ð Þ wq1 ·ð Þð Þ

 ! 1
p1

≤ 2l λ−α ∞ð Þð Þ2−lλ 〠
l

1=−∞
2iα ·ð Þp1 f ik kp1

Lq1 ∙ð Þ wq1 ·ð Þð Þ

 ! 1
p1

≤ C2l λ−α ∞ð Þð Þ fk kM _K
α ·ð Þ,λ
p1,q1 ·ð Þ wq1 ·ð Þð Þ:

ð49Þ

In order to estimate X1, we need to use αð0Þ ≤ αð∞Þ < n
δ2 + λ − β.

X1 ≤ sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα 0ð Þp1

� 〠
j

l=−∞
j − lð Þ2 j−lð Þ β−nδ2ð Þ bk kBMO f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

 !p1

≤ C sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα 0ð Þp1

� 〠
j

l=−∞
j − lð Þ2 j−lð Þ β−nδ2ð Þ2l λ−α 0ð Þð Þ bk kBMO fk kM _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq1 ·ð Þð Þ

 !p1

≤ C sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα 0ð Þp1 〠

j

l=−∞
j − lð Þ2 j−lð Þ β−nδ2ð Þ2l λ−α 0ð Þð Þ

 !p1

� bk kp1BMO fk kp1
M _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq1 ·ð Þð Þ
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≤ C sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jλp1 〠

j

l=−∞
j − lð Þ2 l−jð Þ −β+nδ2−α 0ð Þ+λð Þ

 !p1

� bk kp1BMO fk kp1
M _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq1 ·ð Þð Þ

≤ C bk kp1BMO fk kp1
M _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq1 ·ð Þð Þ:

ð50Þ

The result of X2 is similar to that of X1. Next, we will esti-
mate X3 below

X3 ≤ sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα ∞ð Þp1

� 〠
j

l=−∞
j − lð Þ2 j−lð Þ β−nδ2ð Þ bk kBMO f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

 !p1

≤ C sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα ∞ð Þp1

� 〠
j

l=−∞
j − lð Þ2 j−lð Þ β−nδ2ð Þ2l λ−α ∞ð Þð Þ bk kBMO fk kM _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq2 ·ð Þð Þ

 !p1

≤ C sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα ∞ð Þp1 〠

j

l=−∞
j − lð Þ2 j−lð Þ β−nδ2ð Þ2l λ−α ∞ð Þð Þ

 !p1

� bk kp1BMO fk kp1
M _K

α ·ð Þ,λ
p1,q1 ·ð Þ wq2 ·ð Þð Þ

≤ C sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jλp1 〠

j

l=−∞
j − lð Þ2 l−jð Þ −β+nδ2−α ∞ð Þ+λð Þ

 !p1

� bk kp1BMO fk kp1
M _K

α ·ð Þ,λ
p1,q1 ·ð Þ wq2 ·ð Þð Þ

≤ C bk kp1BMO fk kp1
M _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq2 ·ð Þð Þ:

ð51Þ

Finally, we combine the estimates for Xiði = 1, 2, 3Þ, to
have the desired result.

Theorem 19. Let p1, p2, q1ð·Þ, q2ð·Þ, β, αð·Þ and w be as in
Theorem 18. In addition, if λ − nδ1 < αð0Þ ≤ αð∞Þ, where 1
< δ1 < 0, then

b,H∗
β

h i
f

��� ���
M _K

α ·ð Þ,λ
p2 ,q2 ·ð Þ wq2 ·ð Þð Þ ≤ C bk kBMO fk kM _K

α ·ð Þ,λ
p1 ,q1 ·ð Þ wq2 ·ð Þð Þ:

ð52Þ

Proof. We write

b,H∗
β

h i
f xð Þχj xð Þ ≤

ð
ℝn\Bj

yj jβ−n b xð Þ − b yð Þð Þf yð Þj jdy · χj xð Þ

≤ 〠
∞

l=j+1

ð
Bl

yj jβ−n b xð Þ − b yð Þð Þf yð Þj jdy · χj xð Þ

≤ 〠
∞

l=j+1

ð
Bl

yj jβ−n b xð Þ − bBl
�� ��f yð Þdy · χj xð Þ +

≤ 〠
∞

l=j+1

ð
Bl

yj jβ−n b yð Þ − bBl
	 


f yð Þ�� ��dy · χj xð Þ

= F1 + F2:

ð53Þ

We estimate F1 and F2 separately. A use of generalized
inequality results in the following:

F1 ≤ C 〠
∞

l=j+1
2−l n−βð Þ

ð
Bl

b xð Þ − bBl

	 

f yð Þ�� ��dy · χj xð Þ

≤ C 〠
∞

l=j+1
2−l n−βð Þ f ik kLq1 ∙ð Þ wq1 ·ð Þð Þ χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þ′

� b xð Þ − bBl

�� �� · χj:

ð54Þ

Applying the weighted Lebesgue space norm on both
sides and using Lemma 16, we obtain

F1k kLq2 ∙ð Þ wq2 ·ð Þð Þ ≤ C 〠
∞

l=j+1
2−l n−βð Þ b xð Þ − bBj

� 

χj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

� f ik kLq1 ∙ð Þ wq1 ·ð Þð Þ χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þ′

≤ C 〠
∞

l=j+1
2−l n−βð Þ bk kBMO b xð Þ − bBj

� 

χj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

� f ik kLq1 ∙ð Þ wq1 ·ð Þð Þ χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þ′ :

ð55Þ

Similarly,

F2 ≤ C 〠
∞

l=j+1
2−l n−βð Þ

ð
Bl

b yð Þ − bBl

	 

f yð Þ�� ��dy · χj xð Þ

≤ C 〠
∞

l=j+1
2−l n−βð Þ b yð Þ − bBl

· χj

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þ

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ′ · χj xð Þ xð Þ:

ð56Þ
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In view of the weighted Lebesgue norm and Lemma 16,
we get

F2k kLq2 ∙ð Þ wq2 ·ð Þð Þ ≤ C 〠
∞

l=j+1
2−l n−βð Þ b yð Þ − bBl

	 

· χj

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ · χj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

≤ C 〠
∞

l=j+1
2−l n−βð Þ l − jð Þ bk kBMO χlk k Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ · χj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ:

ð57Þ

Hence, from (53), (55), and (57), we obtain

b,H∗
β

h i
fχj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

≤ 〠
∞

l=j+1
2−l n−βð Þ l − jð Þ bk kBMO χj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

� f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ · χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′

≤ 〠
∞

l=j+1
2−l n−βð Þ l − jð Þ bk kBMO f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ

� χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′ χlk kLq2 ∙ð Þ wq2 ·ð Þð Þ

χj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

χlk kLq2 ∙ð Þ wq2 ·ð Þð Þ

≤ 〠
∞

l=j+1
2nδ j−1ð Þ2−l n−βð Þ l − jð Þ bk kBMO f1k kLq1 ∙ð Þ wq1 ·ð Þð Þ

� χBl

��� ���
Lq1 ∙ð Þ wq1 ·ð Þð Þð Þ′ χlk kLq2 ∙ð Þ wq2 ·ð Þð Þ:

ð58Þ

Using the condition of Aðq1ð·Þ, q2ð·ÞÞ weights given in
the Definition 4, the above inequality reduces to

b,H∗
β

h i
fχj

��� ���
Lq2 ∙ð Þ wq2 ·ð Þð Þ

≤ 〠
∞

l=j+1
2nδ1 j−lð Þ l − jð Þ bk kBMO f lk kLq1 ∙ð Þ wq1 ·ð Þð Þ:

ð59Þ

Next, the condition p1 < p2 and Proposition 17 help us to
write

b,H∗
β

h i
fχj

��� ���p1
M _K

α ·ð Þ,λ
p2,q2 ·ð Þ wq2 ·ð Þð Þ =max Y1, Y2, Y3f g, ð60Þ

where

Y1 = sup
k0∈Z
k0<0

2−k0λp1 〠
k0

j=−∞
2jα 0ð Þp1 b,H∗

β

h i
f · χj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !
,

Y2 = sup
k0∈Z
k0≥0

2−k0λp1 〠
−1

j=−∞
2jα 0ð Þp1 b,H∗

β

h i
f · χj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !
,

Y3 = sup
k0∈Z
k0≥0

2−k0λp1 〠
k0

j=0
2jα ∞ð Þp1 b,H∗

β

h i
f · χj

��� ���p1
Lq2 ∙ð Þ wq2 ·ð Þð Þ

 !
:

ð61Þ

Lastly, in view of the condition −nδ1 + λ < αð0Þ ≤ αð∞Þ,
we estimate Yi, i = 1, 2, 3, as we estimated Xi, i = 1, 2, 3, in
Theorem 18. Hence, we finish the proof.
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