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In the present paper, our aim is to establish the boundedness of commutators of the fractional Hardy operator and its adjoint

operator on weighted Herz-Morrey spaces with variable exponents MKZ>%() (w).

1. Introduction

Hardy operators and related commutators play an indis-
pensable role in the theory of partial differential equations
[1, 2] and the characterization of function spaces [3-5].
Without going into much details, let us first define the frac-
tional Hardy operators [3]

1
2" *

Hg(z) = [mq ‘g(t)dt, H*g(z) = [ 9() dt,z e R"/{0}

Jiestel [
(1)

and related commutators:

[b,Hy] g=bHg — H(bg), {b, HE} g=bH"g— H*(bg).
()

It is important to note that taking f=0 in (1), we get
multidimensional Hardy operator defined and studied in
[6, 7]. Also, (1) reduces to the one dimensional Hardy
operator [8] if we choose f=0 and n=1. Here, we cite
some important literature with regards to the study of
Hardy-type operators on different function spaces which
include [9-15].

The new development of variable exponent commenced
with the work of Kov’a“cik and R’akosn’ik in [16], where a
class of function spaces having variable exponent was
defined, and basic properties of variable exponent Lebesgue
space were explored. Recently, the theory of variable expo-
nent analysis is modeled in terms of the boundedness of
the Hardy Littlewood maximal operator M [17-21]:

1
Mg(z) = sup —j j|g<t>|dt- 3)
Bballzen | Bl J 5 ) 5

Besides, Muckenhoupt A, theory [22] is generalized in

the recent span of time with regard to variable exponent
spaces ([23-28]). By taking into account the generalization
of function spaces with variable exponents and the same
with weights, many results like duality, boundedness of
sublinear operators, the wavelet characterization, and com-
mutators of fractional and singular integrals have been
studied [29-38].

Recently, authors have studied generalized Herz space in
terms of both Muckenhoupt weights and variable exponent
[39-41]. Moreover, an idea of combining two function
spaces to develop a new one is also an interesting problem
in Harmonic analysis. One such problem is considered in
[42] in which Herz-Morrey space was defined. Although,
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the weighted versions of Herz-Morrey spaces were intro-
duced recently in [43, 44].

In this piece of work, our main focus is on establishing
the boundedness of commutators of fractional Hardy opera-
tors on a class of function spaces called the weighted Herz-
Morrey space with variable exponents. We seek to find the
boundedness of these commutators with symbol functions
in BMO (bounded mean oscillation) spaces. In establishing
such a boundedness, we make use of the boundedness of
the fractional integral operator I

I = A dt 4
s0)@=| s (4)
on weighted Lebesgue space which was done in [39].

In the rest of this paper, the symbol C expresses a con-
stant whose value may differ at all of its occurrences. The
Greek letter y, denotes the characteristics function of a sphere
S where S is a measurable subset of R” and |S| represents its
Lebesgue measure. Before turning to our key results, let us first
define the relevant variable exponent function spaces.

2. Preliminaries

Let us consider a measurable function p(-) on R" having
range [1,00). The Lebesgue space with variable exponent
LPU)(R") is the set of all measurable function f such that

PORY) = {f : Jw (@)pmdamoo,for someo > 0}.
(5)

The space L’*)(R") turns out to be Banach function
space under the norm:

p(x)
[l = inf {a> 0: jw ('f(T”) dx < 1}. (©)

We denote by 2(R") the set of all measurable functions
p(): R — (1,00) such that

1<p_<p(x)<p, <oco, (7)

where

p_ = essinf o p(x), p, = esssup,eup(x).  (8)

Definition 1. Suppose p(-) is a real valued function on R".
We say that

(i) C*8(R") is the set of all local log-Holder continuous

oc

functions p(-) satisfying

-C

< —, x,yeR". (9)
log (]x - »1)

1
- < —,
pe=yl< 3
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(ii) “61)°g(]R") is the set of all local log-Holder continuous
function p(-) satisfying at the origin

C 1 .
lp(x) = p(0)]| ik |x—y|<§, xeR".

s log (|e+ (1/|x|
(10)

(i) B°8(R") is the set of all log-Holder continuous
functions satisfying at infinity

C
0 xeR". (11)

[p(x) = Poo| < log (e + [x])’

(iv) F8(R") = €% n ‘6%2% denotes the set of all global
log-Holder continuous functions p(-).

It was proved in [21] that if p(-) € 2(R") N CI°8(R"),
then Hardy-Littlewood maximal operator M is bounded on
LPO(RM).

Suppose w(x) is a weight function on R”, which is non-
negative and locally integrable on R”. Let L*")(w) be the
space of all complex-valued functions f on R" such

thatfw'?") € IP0)(R"). The space [**)(w) is a Banach func-
tion space equipped with the norm:

Al = [ f

(12)

)i8

Benjamin Muckenhoupt introduced the theory of A, (1
< p<0oo) weights on R” in [22]. Recently, in [39, 40], Tzuki
and Noi generalized the Muckenhoupt A, class by taking p
as a variable.

Definition 2. Let p(-) € (R"). A weight wis an A, weight if

<oo.  (13)

‘w—w(-) X

1 Up(:
_ p()
S‘;p |B| Hw XB 100 0

In [25], the authors proved that w € Ay ifand only if M is
bounded on the space L0,

Remark 3 (see [39]). Suppose p(-), q(-) € P(R") N G°8(R")
and p(-) <q(-), then we have

Definition 4. Suppose p,(-),p,(-) € P(R") and Be(0,n)

such that 1/p,(x) = 1/p,(x) — B/n. A weight w is said to be
A(py () p,(+)) weight if

_B
HXB”LPZ(')(sz(')) ||XBHLP1('1(wm<->)’ < C|B|1 " (15)
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Definition 5 (see [39]). Suppose p;(-), p,(-) € P(R") and S
€(0,n) such that 1/p,(x)=1/p,(x)—B/n. Then, we

Ap (), if and only if wh0 € A .

Now, we define the variable exponent weighted Morrey-
Herz space MKZQ(;\(w) Let By={xeR": x| <2k}, A =
B/B,_,, and Xk = Xa, for ke Z.

Definition 6. Let w be a weight on R”, A € [0,00), q € (0,00),
p(-) e P(R") and a(-): R" — R with a(-) e L°(R"). The

space MKZ;)(/)\ (w) is the set of all measurable functions which

is given by

MK} 0) = { € LD R0} ) [ o0 |
(16

where

K, 1/q
e = —koA ka(>q q
Hf”MKq;)(t)‘(w :;IZ)Z (k_zoo 2 ||ka|Lp<‘>(w)> - (17)

Obviously, MKZ;E(; (w) = K:;)()(w) is the weighted Herz

space with variable exponent (see [30]). Here, it is important
to refer to some of the pioneering studies of the Herz space
with constant exponents made in [45, 46].

3. Some Useful Lemmas

We start this section with some useful lemmas that will be
helpful in proving our main results.

Lemma 7 (see [47]). If X is Banach function space, then

(i) The associated space X' is also Banach function space
(ii) [|ll x
(iii) If ge X and f € X',

) and ||-||y are equivalent

then

|, rege = sl (19

is the generalized Holder inequality.

Lemma 8 (see [39]). Suppose X is a Banach function space.
Then, we have that for all balls B,

1
I'< E”XBHXHXB”X" (19)

Lemma 9 (see [28, 39]). Let X be a Banach function space.
Suppose that the Hardy Littlewood maximal operator M is
weakly bounded on X; that is,

| ga oy [ X <0711 (20)

is true for o >0 andfor all f € X. Then, we have

SUp 1 |B| X8l xl1X8llx <00 (21)

Lemma 10 (see [39, 48]).

(1) X(R", W) is Banach function space equipped with the
norm
1f e, wy = [Ifwllxo (22)
where
XR,W)y={feM: fWeX:}. (23)

(2) The associate space X'(R", W) is also a Banach
function space

Lemma 11 (see [39]). Let X be a Banach function space.

Assume that M is bounded on X', then there exists a constant
8€(0,1) for all BCR" and ECB,

Ixsllx ~ \/B]
The paper [16] shows that IP")(R") is a Banach function

space and the associated space LP 0 (R") with equivalent norm.
Remark 12. Let p(-) € (R"), and by comparing the Lebes-
gue space I/*)(w’!)) and L? 'O (wP'0)) with the definition
of X(R", W), we have

(1) If we take W =w and X=LP('>(IR”
LPO(R", w) = LPO) (wP))

), then we get

(2) If we consider W =w™! and X = LPIO(]R
have P O (w'0)) = [P O(R", w™)

"), then we

By virtue of Lemma 10, we get (L*V)(R",w)) =
(LPO (wp0))) = 1" O (') = 'O (R".w™). Next, in view
of Lemma 11 and Remark 12, we have the following Lemma.

Lemma 13 (see [41]). Let p(-) € P(R") N € log (R") be a
Log Holder continuousfunction both at infinity and at origin,

if wP(-) € Ay implies w B Ay - Thus, the Hardy Little-

wood operator is bounded on LPZ (sz (), and there exist
constants 8,8, € (0, 1) such that

P ’(.)w-p "(+)
20w <|E>
LP2’<-)w—F2’<~>) |B|
el ez w?0) [E[\*
—<

I tsll g w?20) "~ \IB

| XEll e (wpz(‘)) _ HXE”(
sl (w20) Tl

(25)

for all balls B and all measurable sets E C B.



Lemma 14 (see [39]). Let p,(-) € P(R") N G'8(R") and 0

<B<nlp;, and 1lp,(-)=1/p,() = B/n. If €A(p,()p,(-));
then TP is bounded from LP10) (wP11)) to LP:0) (w"2()),

4. Main Results and their Proofs

Definition 15. Let f € L}, (Rn) and set
[bllno = sup | [65) - by, (26)
B

where the supremum is taken all over the balls B e R" and
by = B[ J3b(y)dy. The function b is a bounded mean
oscillation if [|b|| )0 <00 and BMO(RR") consist of all f
€Ll (R") with BMO(R")<oo. For a comprehensive
review of the BMO space, we suggest the reader to follow
the books [49, 50].

Lemma 16. Let q(-) € P(R") and w be an A, weight. Then,
for all be BMO and all I,i € Z with | > i, we have

1611 5ar0 ~ sup

HXB” ( ) ||(b_ bB)XBHLq(-)(u/’I('))’ (27)

H(b‘bB,)XB,

170 (w10 )< (l_l)”bHBMOHXB, CICRE
(28)

Proof. First part of this lemma is a consequence of [[41], The-
orem 18]. Next, we will prove (28), for all ,i € Z with [ > i

oty

.)(wq(->)

<CH |b—bg |+ |b- bB,|)XB, 0 (u0)
< C{ H b bB[ XBI q( )( ) + ‘ (bBl - bBi>XBl Lq(.)(uﬂ(')) }
(29)

In the view of (27), we have
H(b_b )XBI 0wt) S C”b”BMoHXB, 0 (wt)) - (30)
Also, it is easy to see that

-1

|bBl_bB,| < Z|bn+l - b,
n=1
L1
< b, — b(x)|dx
nleBnan| 1)l (31)

-1 1
|B

n+1| B

j by — b(x)|dx

n=1

- i) HbHBMO(]R”)'

Combining (29), (30), and (31), we get (28). O
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Proposition 17. Let q(-) € (R"), 0< p < 00, and 0 < A < co.
If a-) € L°(R") N G'8(R"), then

P - —koAp jo(-)p
1 s = 3282 ]_Zz (79 ey

< max

sup 2k0/\p< Z 2]0‘()PHfXJ o (wq(j)>, sup
koeZ j=—00 koeZ

ky<0 ky<0

-1
. (2-ko/\p< Z 21'04(4)17HfXj IL)q( }(wq(-))>
j=—00

%)

+ 2—k Ap (Z 2]a OO)PHfX]

(32)

Proof. The proof is similar to the proof of Proposition 17 in
[44]. So, we omit the details. O

Theorem 18. Let 0< p, <p, < 0, q,(-) € 2(R") N €°8(R"),
and q,(-) be such that 1/q,(-) = 1/q,(s) — B/n..

Also, let w#(-) € A}, be BMO(R"), A >0, and a(-) € L™
(R") NG 8(R") be log Holder continuous at the origin, with
a(0) < a(00) <A+ nd,— B, where 0<8,< 1, then

10 Holllyggeon unairy S Clbllmaroll i oy

(33)

Proof. For any fEMKZf) ()(w% )), if we denote f,=f-
X1=f'XA[, and for each [€Z,

Y A ()

1=—00 1=—00

—b)f)ldy - x;(x)
|[(b(x) = b()f () |dy - x;(x)
|(b(x) = b, ) f(7)

|dy - x;(x)

c2 By J |(b(x) = b )f () |dy - x;()

(35)
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The generalized Holder inequality (Lemma 7) yields
the following inequality for E;:

£ =208 JB | (b(x) = b, ) f(¥)|dy - x;(x)

I=—0c0
i| bB; | X] f ||L'h<)(wq1 ) (36)
HXB’H La1() wa )))/'

Applying the norm on both sides and using Lemma
16, we get

"3 (e

nmmllemﬂ

B | (i ) < ~ by, s,

(qu(') (qu(')))

Ln( wa(')))'

j
<270 ¥ G=Dlellolxs |,

[t L22() qu(-)))’

wmmmwmﬂmﬂmm@mnv

(37)
Now, we turn to estimate E,. For this, we have
' j
Ey<2707P) 3 || (b(y) - by, x) | (100 (wn0)))’
I=—c0
NS il g ) (wn0)) 'Xj(x)
ey (38)
<2 i( )l;OOH(b()’) bB[ XBI)H qu( wa(,)))/

flls o) 1)

Similar to the estimation for E,;, we take the norm on
both sides of above inequality and use Lemma 16 to
obtain

Z (b0

Wil uno) H%

12| o (e < —b,) - XIH (1210 (wn0))’

192(%) (qu('))

<27 Z ”bHBMOHXBzH

Lai( wa ©) )) !

Nfillgme ) (wn©) HXB (Lt (quw))'

(39)

(37) and (39) one
Dbl g0t (= 1)

Hence, from inequalities (35),
has H[b Hﬁ]fX]”qu()w‘lz )<2 i

||fl||L‘11 u)‘ll ||XB || qu() qu ||XBI|| qu() wi € ))/) WhiCh by

virtue of Lemma 9 reduces to

, j

H[b’Hﬁ}fXj qu<-)(qu(~))Sz}ﬁHbHBMOlZOO( DIfllzne ) (win0))
HXBI‘ (Ln© (wn ) HXB (120 (wn0)))"”
(40)

Now using Lemma 13, we learn

H [b H’B]fX] 12209 (qu(-))
) j
<2 bl Y. G- DIl
I=—00
HXBIH (110 (wn ) HXBIH (120 (wi0)))'
HXBIH 120 (wi20))’ HXBf (120 (wn0)))’

j
<2 |bllgpr0 . (= D2 bl gygo 1l o ()
lI=—c0

wal

qu() wa()))

ol

qu( qu(')))’

(41)

In the definition of the fraction integral 14, we replace f by
X, to obtain

15 (Xs, ) (x) = C2P 5, (), (42)
from which we infer that
X, (0) = C2PIB x5, ) (). (43)

Taking the norm on both sides and using Lemmas 14 and
9, respectively, we get

I8
HXB' qu<->(qu<->)SC2 Hlﬁ (XB’) L920) (w2
I8
<2 HXB’ L (wfn(-)) (44)
-B)
< ”XBI Lm)(wqm))"



In view of Lemmas 8 and 9, the use of (44) into (41) results

in the following inequality:

H [0 Hglf x,

192(+) (qu(~))

< Cl1b] 10 Z 21t
I=—00

x (||xl|(mg.)(ww))||x,||(m<.>(w,,z<,>)),)1

J
j—1)(B-nd,
< Clbllpyo 2, 20

I=—00

X( ||Xl“(]ﬂz()(w'iz ))HXIH(UU (qu(»)),)—l

J
i—1
<Clbllgyo D, 2070
I=—00

Now, by virtue of the condition p, < p, and Proposition

17, we have

Py
b x|
[ # s oy

<max{ sup 2~ k"“’l( Z 2700y
=

koez
ky<0

—00

% (2k APy ( Z zm(O)PlH b, Hy fXJ‘

_kl)/\1
+ 27k (ZOZJ“‘X’PIH [b,H ] fx |
J

=max {X;, Xp, X3},

where

X, = sup 27 ( Z 2/(0)
koeZ
k<0

X, = sup 2’”‘171(2 2/0)
kyez
k>0

=0

ko
X, = sup 27k <22j“ H b, Hg| fX,

koeZ
k,>0
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To estimate X, X,, and X, we make use of the conditions
on «(+), such that for I < 0, we have

1

12(0) o jc(0)p "
1 illanco (wnt) =27 2 'Hlequw(wa 0)

PG 126D s

(Z 2ie(0 pl”fHqu (wm))
!

T
Szl(Au(o))21A< z 2106 Ple ||qu (wa ))

1=-0c0

G~ Dl

I(A-
< 202 (0) Hf”MkZi:)q'Am (wn0))’

(48)
(= DILf s (s

and for [ > 0, we obtain
(45)

1

2
||f1||Lq1 (wa()) =2" foleo (zla Pl”fl”]ﬂl( (wa ))

1

<1_ZOO2“X Pl”fHqu (wq1(~))>

1

i
SZZU‘—“(OO))z""( Z il p1||f|m (o ))
1) (w (

1=—00

1

(b, H.B}fXJ

, sup
L2 (qut-))> kOEZ

ky=0 < Czl(/\ a(c0)

Hf”MK (wa )
L92(+ (mzt))) (49)

In order to estimate X, we need to use «(0) < a(c0) <n
La2(+ (qu(')) 52 + A - ‘8
kU
(46) X, < sup 2~koAp, Z 2ja(0)p,
koeZ je-oo
ky<0
j b
‘ ( Y (- l>z<f’><ﬁ"‘*ﬁ|b||BMo||f,||m<->(wm))
I=—00
Ze )
I pa2¢) (w200 k
L= (qu ) <C sup 2”‘0’\171 Z 2]""(0)17
koeZ jEmeo
ky<0
[b H ]fX j )2
B j L2() (we2() ’ ) . n a(0
() (X G- 20O 1
J=—

ko j P
<C sup Z—ko/\Pl Z Zjd(O)Pl < Z (]_ l)z(j—l)(ﬁ—nﬁz)Zl(l—a(O)))
qu()(quo) ' koeZ j=—o0 oo
ky<0

b P
(47) |1Bllvollf IIMK:%(W_))
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k, j P
<C sup 27k z 2ty ( N (~fnd,- <>+A>>
kyeZ j==00 I=—
ky<0

P
[BllEwoll £ 3wt

Py
<C|b| BMonHMKﬁ)[;TO (wn0)’
(50)
The result of X, is similar to that of X,. Next, we will esti-

mate X below

X, < sup 27Rotn Z ()P

koeZ j=—c0
ky<0
j P
’ ( Z (j_l)z(]MﬁMZ)|b|BMo||fz||Lﬂ<'>(wm-)))
I=—00
kO
<C sup Z’kof\Pl Z 2ja(00)p1
kyeZ j=moo
ky<0
j Pl
n8,) ~l(A-a(c0))
(Zvo D0/ ]y g WQ
I=—00

k, j P
<C sup 2—k0)\P1 ZU: 2Jja(00)py ( z (] _ l) DB~ ﬂ5z)21(/\ a(oo)))

koeZ jmoo l=-c0
ky<0

Hb| BMOHfl MKL )( ))

ko j Py
<C sup 2 kopy Z 2]’@1( Z (]—l) (~B+nd,-a(co )M))

ko€Z j==00 l=—c0
ky<0

b f Pl. N
H ”BMOH ”MK;ELT(_)(M(-))

<C|lb pﬂ., .
0ol sy

(51)

Finally, we combine the estimates for X;(i=1,2,3), to
have the desired result. O

Theorem 19. Letp,,p, q,(-),4,(*), B, a(-) and w be as in
Theorem 18. In addition, if A —nd; < a(0) < a(co), where 1
<8,<0, then

I[e H,;}fH < ClBllguiollf gt (o)

( q())
(52)

Proof. We write

[hHﬂf@Mﬂ@SJwWWW”KM@—bU»KﬂM%xﬂ@
b))y 1y (3)

A
™M

Blylﬁ |b(x) = by |f (y)dy - x;(x) +
1

A
g

] (b(y) = by, )f ()] dy - x;(x)

I=j+1 7 B
=F +F,.
(53)

We estimate F, and F, separately. A use of generalized
inequality results in the following:

Fecy o 0 1(b60) b))y 159

I=j+1
(54)
<cl§12 NI fill e (w0 HXBI 1 (un0)’
' ‘b(x) - bBl| “Xje

Applying the weighted Lebesgue space norm on both
sides and using Lemma 16, we obtain

\wmwzwzz (b -, )x,

_J+1 qu(')(qu(-))
Hf Hqu uﬂl HXBI Lai (wﬂ(‘))l
<C 27 1B p b(x) - by
;1 el (56) = 8,)2 o
Hf HL‘“ w’il HXBI Lot (m(-))"
(55)
Similarly,
F<C ) 2 ””L |(60) = b )f )| dy - x,(x)
I=j+1 1
56
<C le >Hb()})_bBlX] L‘ﬂw(wa(')) ( )
j—

il oy 1 (5) ).



In view of the weighted Lebesgue norm and Lemma 16,
we get

F y<cy 2! ﬁ>H b H
I Eall oo e IZ 0)=58) 25| o oy
Wil [ e

<c22

l j Hb”BMOHXlH(Lﬂ ) (wn >))’

I=j+1
: ||fl||qu wa HX] Lol (qu(.))'
(57)
Hence, from (53), (55), and (57), we obtain
H[b Hﬁ}fx] 120 (qu(~))
= ;12 l Il |b”BMOHX1 L20) (wiz))
i ) [ s
< Z 2! l MOl spollf i llzae ) (wn©)
I=j+1
H Il HX L20) (wi20))
x - 000 @7
XBl (L‘“(')( )) Xill g2 (qu )HXIHL‘IZ (qu(-))
(] 1
< 3 202D 1 )bl ol o g
l=j+1
ot s oy I

(58)

Using the condition of A(q,(+),q,(-)) weights given in
the Definition 4, the above inequality reduces to

H [b Hﬁ}fx] Lo (uﬂz(-))
0 (59)

< X 200 (= )bl ol fill e ()

l=j+1

Next, the condition p, < p, and Proposition 17 help us to
write

| (-1 | —max {Y,, Y, V;},  (60)

MKﬁi)q;() (wn20)
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where

ko
Y. = Z’ko’\l’l Zj“(O)P1’ |:b H* :| P ,
e <j-zoo A Al o)
ky<0
-1
Y, = 2 koApy 2ja(0)p, {b H* } ,
’ ksouepz (Z ball 120 (wn)
ky=0
ko »
Y, = 2_k0)LP1 2]'06(00)}71 ‘ b, H; :| ! .
3 ksouepZ <]ZO B f X L@z()(uﬂz())
ko0

(61)

Lastly, in view of the condition —nd; + A < a(0) < a(c0),
we estimate Y,,i=1,2,3, as we estimated X;,i=1,2,3, in
Theorem 18. Hence, we finish the proof. O
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