
PARALLELIZATION STUDY ON THE CLUSTERING

TECHNIQUE TO MINE LARGE DATASETS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

ÇANKAYA UNIVERSITY

BY

AHMET ARTU YILDIRIM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

JANUARY 2011

IV

ABSTRACT

PARALLELIZATION STUDY ON THE CLUSTERING

TECHNIQUE TO MINE LARGE DATASETS

YILDIRIM, Ahmet Artu

M.Sc., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Cem ÖZDOĞAN

January 2011, 55 pages

Parallel clustering algorithm implementations concerning message passing

interface (MPI) and compute unified device architecture (CUDA) model with

their applications to very large datasets have been presented in the thesis.

WaveCluster is a novel clustering approach based on wavelet transforms.

Despite it’s novelty, it requires considerable amount of time to collect results

for large sizes of multidimensional datasets. In the MPI algorithm; divide and

conquer approach has been followed and communication among processors

are kept at minimum to achieve high efficiency. Developed parallel

WaveCluster algorithm exposes high speedup and scales linearly with the

increasing number of processors. Parallel behavior of WaveCluster approach

has been also investigated by executing the algorithm on graphical

processing unit (GPU). High speedup values have been obtained in the

computation of wavelet transform and connected component labeling

algorithms in the GPUs with respect to the sequential algorithms running on

the CPU.

Keywords : Cluster Analysis, WaveCluster Approach, Parallel WaveCluster

V

ÖZ

GENĠġ VERĠ KÜMELERĠNĠ ĠġLEME AMACIYLA ÖBEKLEME TEKNĠĞĠ

ÜZERĠNE PARALELLEġTĠRME ÇALIġMASI

YILDIRIM, Ahmet Artu

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi : Doçent Dr. Cem ÖZDOĞAN

Ocak 2011, 55 sayfa

Bu tezde, mesaj geçirme arayüzü (MPI) ve birleĢik aygıt mimarisi

hesaplaması (CUDA) modelini uygulayarak geliĢtirilen paralel öbekleme

algoritmaları, çok geniĢ veri kümeleri üzerindeki uygulamaları ile birlikte

tanıtılmıĢtır. WaveCluster, wavelet dönüĢümü tabanlı yenilikçi bir öbekleme

analizi yaklaĢımıdır. Bu yaklaĢımın etkinliğine rağmen, çok boyutlu geniĢ veri

kümeleri üzerinde çalıĢtırıldığında çalıĢma zamanı fazla olmaktadır.

GeliĢtirilen MPI algoritmasında; yüksek verimlilik değerlerini elde etmek için

iĢlemciler arasındaki haberleĢme en az seviyede tutulmuĢtur. Yapılan

deneysel çalıĢmalarda, MPI algoritması yüksek hızlanma değerleri vermiĢtir

ve ayrıca artan iĢlemci sayısı ile birlikte doğrusal bir çalıĢma karakteristiği

göstermiĢtir. WaveCluster yaklaĢımı ayrıca grafik iĢlemci ünitesi (GPU)

üzerinde CUDA modeli uygulanarak paralelleĢtirilmiĢtir. GeliĢtirilen CUDA

algoritmasında, wavelet dönüĢümü ve bağlı parçaları iĢaretleme algoritmaları

geliĢtirilmiĢtir. CPU üzerinde sıralı çalıĢan WaveCluster yaklaĢımına kıyasla

CUDA algoritmalarında yüksek hızlanma değerleri elde edilmiĢtir.

Anahtar Kelimeler : Öbekleme Analizi, WaveCluster YaklaĢımı, Paralel

WaveCluster

VI

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisor Assoc. Prof.

Dr. Cem ÖZDOĞAN for his professional guidance and continuous

encouragement throughout my thesis study. His dedication and enthusiasm

for scientific research is unsurpassed.

I also like to thank my wife ġule YILDIRIM for her support during the thesis

study.

Finally, I have great pleasure to express my gratitude to Çankaya University

in which the experiments were carried out on the computer cluster system of

Boron.

VII

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM ... III

ABSTRACT. .. IV

ÖZ .. V

ACKNOWLEDGMENTS ... VI

TABLE OF CONTENTS. .. VII

LIST OF TABLES. ... IX

LIST OF FIGURES .. X

CHAPTERS:

 1. INTRODUCTION .. 1

 2. DATA MINING .. 5

 2.1. Data Mining Methods ... 7

 3. PARALLEL COMPUTING ... 9

 3.1. Message Passing Interface .. 12

 3.2. CUDA Programming Model .. 13

 3.3. Parallel Data Mining Approaches ... 16

 4. CLUSTER ANALYSIS. .. 19

 4.1. Sequential Cluster Analysis Algorithms .. 19

VIII

 4.2. Parallel Cluster Analysis Algorithms... 21

 5. WAVECLUSTER APPROACH .. 24

 6. PARALLEL WAVECLUSTER ALGORITHMS 28

 6.1. Parallel WaveCluster Algorithm on Shared Memory Architecture

 Using CUDA .. 28

 6.1.1. Implementation of low-frequency component extraction of

 the signal ... 28

 6.1.2. Implementation of connected component labeling 30

 6.2 Parallel WaveCluster Algorithm on Distributed Memory

 Architecture Using MPI ... 32

 7. EXPERIMENTAL RESULTS OF THE CUDA ALGORITHMS 38

 8. EXPERIMENTAL RESULTS OF THE MPI ALGORITHM 41

 9. CONCLUSION .. 53

REFERENCES .. R1

APPENDICES:

 A. MPI CODE OF PARALLEL WAVECLUSTER ALGORITHMS A1

 B. CURRICULUM VITAE ... A32

IX

LIST OF TABLES

Table 1 Performance Results of CUDA and CPU Versions of Low-

 Frequency Component Extraction for ρ = 1 (Times in

 Microseconds) .. 39

Table 2 Performance Results of CUDA and CPU Versions of Connected

 Component Labeling (CCL) for ρ = 1 (Times in Microseconds) ... 39

Table 3 Aggregate Speedup Results of CUDA Algorithms for ρ = 1

 (Times in Microseconds) .. 40

Table 4 Execution Times (in Seconds) with and without Consideration of

 I/O Times for SD1 with Varying Dataset Sizes and Number of

 Processors (np) for ρ = 3 Using 1 Gbit and 100 Mbit Ethernet

 Controller Cards ... 43

Table 5 Efficiencies for SD1 (Upper) and SD2 (Lower) with Varying

 Dataset Sizes (DS8, DS16, DS32 and DS65) and Number of

 Processors (1, 2, 4, 8, 16, 32; 1 Gbit Ethernet) at Scale Level, ρ =

 3 ... 49

X

LIST OF FIGURES

Figure 1 Knowledge Discovery Steps .. 6

Figure 2 Shared Memory Model for m Number of Memory (M) and n

 Number of Procesor (P) and Cache (C) 10

Figure 3 Distributed Memory Model for n Number of Memory (M),

 Procesor (P) and Cache (C) ... 11

Figure 4 Automatic Scalability of CUDA Program 14

Figure 5 Two-scale Discrete Wavelet Transform Filter Bank 25

Figure 6 WaveCluster Algorithm Multi-Resolution Property. (a) Original

 Source Dataset. (b) ρ = 2 and 6 Clusters are Detected. (c) ρ = 3

 and 3 clusters are Detected. (Where ρ is the Scale Level) 26

Figure 7 Iteration Demonstration of Connected Component Labeling

 CUDA Algorithm ... 31

Figure 8 Decomposition of Large Dataset with 2 Dimensions for Varying

 Number of Processors (np). (a) np = 16 (b) np = 8 33

Figure 9 Demonstration of Parallel Wavecluster Algorithm Based for

 Distributed Memory Architecture .. 37

Figure 10 Sample Datasets Used in Experiments (a) SourceDataset1 (SD1)

XI

 (b) SourceDataset2 (SD2) .. 42

Figure 11 Execution Times with I/O per Object per Processors for SD1

 with Respect to Dataset Sizes for 100 Mb (Upper Data Line) and

 1Gb (Lower Data Line) Ethernet at Scale Level, ρ = 3 vs Number

 of Processors (np). Inset: That of np=8, 16, 32 45

Figure 12 Execution Times for SD1 with Varying Dataset Sizes (DS8,

 DS16, DS32 and DS65) and Number of Processors (1, 2, 4, 8,

 16, 32; 1 Gbit Ethernet) at Different Scale Levels (ρ); (a) ρ = 1,

 (b) ρ = 3 and (c) ρ = 5 .. 46

Figure 13 Speedup Plots for SD1 (Upper Plots) and SD2 (Lower Plots)

 with Varying Dataset Sizes (DS8, DS16, DS32 and DS65) and

 Number of Processors (1, 2, 4, 8, 16, 32; 1 Gbit Ethernet) at

 Different Scale Levels; (a, d) ρ = 1 , (b, e) ρ = 3 and (c, f) ρ = 5 .. 48

Figure 14 Speedups with Varying Number of Objects in Dataset and

 Number of Processors (1, 2, 4, 8, 16, 32; 1 Gbit Ethernet) at

 Scale Level ρ = 3. (a) SD1 (b) SD2 .. 51

CHAPTER 1

INTRODUCTION

There has been an explosive growth of very large datasets or databases

in scientific and commercial domains with the recent progress in data storage

technology. On the other hand, decision makers have rather scarce time to make

up the right strategy which have critical importance to survive in the competitive

market. This phenomenon is also applicable to researchers who need to make

efficient analysis of current and past datasets in order to develop novel ideas.

To cope with this problem, data mining techniques have been highly utilized in

numerous fields in order to be able to extract useful information as finding patterns,

trends, rules, etc.

Clustering is a common data mining technique used for information retrieval by

grouping similar objects located in the dataset into disjoint classes or clusters [12].

Since cluster analysis has become crucial task for mining of the data, considerable

amount of researches are carried out in developing sequential clustering analysis

methods such as K-means [24], BIRCH [43], DBSCAN [11], STING [39] and

WaveCluster [34]. Clustering algorithms have been used in various fields including

satellite image segmentation [26], unsupervised document clustering [37] and

clustering of bioinformatics data [25].

Despite to substantial improvements on processor technology in terms of

speed, sequential clustering algorithms may still not complete the required task

in a reasonable amount of time at very large datasets. Besides, there may not

have enough amounts of available main memory resources to hold all the data

on a single computer. One of the possible solutions to overcome those issues

1

and efficiently mine huge datasets is to make utilization of parallel algorithms

[20]. Parallel processing approach is highly used as dividing the task into smaller

subtasks and executing them simultaneously to cope with memory limits and to

decrease the execution time of the sequential task.

Parallel computer architecture is classified according to the memory sharing

model. One of the parallel architectures is distributed memory architecture which

consists of processors or nodes connected with each other by means of network

infrastructure. In this model, each node has its own memory. As a traditional

way, message passing interface (MPI) [18] is extensively used to achieve

the communication among the processors by simply sending and receiving

messages. The other parallel architecture is shared memory architecture. As

its name implies, each node has shared memory dedicated to the computer.

Processors access the memory simultaneously by means of data bus. In shared

memory systems, OpenMP [8], as an application programming interface (API),

provides the programmer flexibility, ease of use and transparency in the creation

of the threads running on the central processing unit (CPU). Furthermore, with

the advent of many-core graphical processing units (GPUs), GPUs could be

used for general purpose computation as a coprocessor of the CPU in addition

to its traditional usage of accelarating the graphic rendering. There has been

a substantial interest to speed up the CPU-intensive tasks in a parallel manner

on GPUs to utilize its enormous computational performance for shared memory

system. As an API to do GPU computation, NVIDIA introduced CUDA (Compute

Unified Device Architecture) in November 2006 [29] to enable data-parallel

general purpose computations on NVIDIA GPUs in an efficient way. Last but not

least, hybrid model is a parallel computer architecture with the combination of the

shared memory model and distributed memory model.

WaveCluster approach is a novel clustering approach designed for large

2

spatial datasets. The algorithm has the ability of detecting arbitrary shape clusters

at different scales by taking advantage of wavelet transform and can handle noises

in an appropriate way. Wavelet transform is a mathametical tool to transform

the signal into low and high frequency components (transformed feature space).

WaveCluster algorithm detects the connected components in the transformed

feature space by applying connected component labeling algorithm and then

maps the objects in the transformed feature space to the objects in the original

feature space. Wavelet transform could be applied to the feature space multiple

times or recursively. Each transform yields coarser representation of the signal.

So, the algorithm detects the clusters in different accuracy levels from fine to

coarse. By this way, WaveCluster approach gains multi-resolution feature with

wavelet transform.

WaveCluster algorithm is an effective algorithm. On the other hand, execution

time of the algorithm has become a serious concern when dataset size is

very large or huge. In this thesis, parallel WaveCluster algorithms have been

presented with respect to message passing model and CUDA model. In the MPI

algorithm, master-slave and divide and conquer approach have been followed

by distributing the sub datasets to processors and employing the processors to

apply WaveCluster approach on its sub dataset. In the final phase, merging

operation is required to make the detected clusters globally valid. The algorithm

has a time complexity of O(N). This means that the algorithm scales linearly

with the increasing number of objects (N) in the dataset. These results show

that it will be possible to mine huge datasets with this algorithm, depending

on the available hardware, without having restrictions such as dataset size

and other relevant criteria. Several test studies are performed and obtained

results show that the algorithm possesses high and linear speedup aspects with

minimum communication requirements. In the CUDA algorithms, WaveCluster

3

algorithm has been investigated to achieve GPU level parallelization. The CUDA

implementations of two main sub-algorithms of WaveCluster approach; namely

extraction of low-frequency component from the signal using wavelet transform

and connected component labeling are presented. Divide and conquer approach

is followed on the implementation of wavelet transform and multi-pass sliding

window approach on the implementation of connected component labeling. Then,

the corresponding performance evaluations are reported for each sub-algorithm

with respect to increasing dataset size.

The rest of the thesis is organized as follows. Data mining is discussed in

section 2. Parallel computing is introduced in section 3. Section 4 presents

cluster analysis with the algorithms of sequential and parallel cluster analysis.

WaveCluster approach is explained in section 5. The CUDA and MPI level parallel

WaveCluster algorithms are presented in section 6. The experimental results of

the CUDA algorithm and MPI algorithm are given in section 7 and 8, respectively.

Finally, I conclude the thesis in section 9.

4

CHAPTER 2

DATA MINING

Data mining is widely used to detect the patterns and extract the meaningful

information from the stored dataset. The main purpose to employ the data mining

algorithm is to make estimation for future as using the past data and defining

the class of each element of the dataset [12]. Today, data mining is extensively

utilized to discriminate star-galaxy using neural network in the field of astronomy

[30], to find association rules with respect to customer and sale information in the

marketing [2], to detect the credit card fraud in the financial sector [7], to detect to

predict crystal structure in the field of quantum chemistry [13] and the like.

The term of Knowledge Discovery from Data (KDD) is often used as a synonym

of data mining. The process of knowledge discovery typically consists of seven

steps [19], as it follows:

1. Data Cleaning : In this phase, the noise and inconsistent data are removed.

2. Data Integration : In case of that there are multiple data sources scattered

physically, the data could be required to be combined in the data warehouse

to make the data mining process more effective.

3. Data Selection : Relevant data are retrieved from the database for the task

of analysis.

4. Data Transformation : The data could be transformed or consolidated

into forms appropriate for mining by performing summary or aggregation

operations.

5

5. Data Mining : As an essential process, intelligent methods or algorithms are

applied in order to extract data patterns.

6. Pattern Evaluation : Truly interesting patterns representing knowledge are

identified according to the interestingness measures.

7. Knowledge Presentation : Visualization and knowledge representation

techniques are employed to present the mined knowledge to the user.

The steps of data cleaning, data integration, data selection and data trans-

formation are regarded as a type of data preprocessing in which the data are

prepared for mining. Although data mining is the step of the process of knowledge

discovery, the term of data mining is used in place of knowledge discovery among

scientific and commercial fields.

Databases

Data

Warehouse

Transformed

Data

Patterns

Knowledge

Cleaning and

Integration

Selection and

Transformation

Data Mining

Evaluation and

Presentation

Figure 1: Knowledge Discovery Steps

6

2.1. Data Mining Methods

In general, data mining tasks can be classified into two categories which

are descriptive and predictive mining task [19]. Descriptive mining tasks, as

its name implies, characterize the general properties of the data. Whereas

predictive mining task infers from the current data in order to make prediction.

On the other hand, data mining algorithms can be grouped into four main groups:

Classification, cluster analysis, association rule mining and regression analysis.

The purpose of classification is to determine the class of the element in the

dataset. The process of classification consists of two main steps. In the first

step, also known as learning or training step, analysis is made over a training

set by means of classification algorithm. Training set has number of elements

called as tuples. A tuple X is represented by an n − dimensional attribute vector

associated class labels where X = (x1, x2, ..., xn)[19]. The size of training set is

rather important to provide the accuracy of a classifier. So, in case insufficient

number of elements are analysed to model the characteristics of the dataset, a

known phenomena named overfitting occurs where not only the general patterns

are extracted but also patterns of noisy data are incorporated into the model.

In the second step, the elements are classified based on the extracted pattern

information from the training step.

If the class of elements are determined in advance before performing clas-

sification process, It is called supervised learning. Decision trees and neural

networks are the most common known data mining methods in supervised

learning. Contrary to supervised learning, if the classes are not known in advance,

the analysis process is defined as cluster analysis. Cluster analysis is one of the

most widely used common technique for grouping a set of objects into classes of

similar objects or clusters.

7

In association rule mining, the relationships are sought between the elements

in the dataset and the found relationship is named as association rule. The most

encountered task in association rule mining is to detect the purchasing trend of

the customers in market basket analysis. By finding the rules using the past

sales information, one can predict the future customer demands and construct

an inventory strategy to satisfy the customer’s needs, coincided with gaining more

profit. The association rule should be based on a minimum support threshold and

a minimum confidence value in order to accept the rule valid. One of the most

well-known association rule mining algorithm is the algorithm of Apriori which was

developed by Agrawal et. al. [2].

Regression analysis is used to make numerical prediction based on past data.

The main aim is to find the general formula which models the relationship between

one or more independent variables (predictor) and dependent (response) variable.

The features of the dataset are listed in the side of independent variables and

response variable is calculated to predict future value with respect to predictor

variables.

8

CHAPTER 3

PARALLEL COMPUTING

Parallel processing approach is highly used as dividing the task into smaller

subtasks and running them simultaneously to cope with memory limits and to

decrease the execution time of the sequential task. In addition, larger problems,

such as simulation of climate change, weather prediction and the like, can be

solved in a fast and efficient manner by means of parallel computation.

Before delving into parallel computing, Flynn’s taxonomy [14] will be presented

in order to be able to differentiate the type of computer architecture. Flynn’s

taxonomy is the basic classification of computer architectures based on instruction

and data stream, types of which are SISD (single instruction, single data stream),

SIMD (single instruction, multiple data streams), MISD (multiple instruction, single

data stream) and finally MIMD (multiple instruction, multiple data streams). As the

descriptions of the classifications follow [10]:

* SISD: It defines the computer which runs in a serial manner. The instructions

are fetched and executed sequentially without parallelism. The computers

with one processor are classified into this group.

* SIMD: Multiple processors execute the same instruction on different data in

a parallel manner. Graphical processing units (GPUs) and array processors

are the examples of this classification.

* MISD: Multiple processors execute different instructions on a single datum.

It is deemed impractical in terms of possibility.

9

* MIMD: Multiple processors execute diverse instructions on diverse data.

Parallel systems based on distributed memory model are classified under

this model.

The classification of parallel computer architecture is based on memory

sharing paradigm which are shared memory model, distributed memory model

and hybrid model.

1M 2M 3M 4M mM. . .

BUS

1C

1P 2P

2C

3P

3C

4P

4C

nP

nC

. . .

Figure 2: Shared Memory Model for m number of memory (M) and n

number of procesor (P) and cache (C)

In the shared memory model, the system has its own dedicated memory

which is simultaneously accessed and shared among the processors. One

of the advantage of this model is that there is no extra data copy operation

among diverse memories which fosters the parallel computation. Processors are

connected to shared memory by shared bus. Shared memory model could be

divided into Uniform Memory Access (UMA) and Non-Uniform Memory Access

(NUMA). In uniform memory access, each processor could access the memory

in an equal time regardless of its distance to memory. The most encountered

10

example of this model is represented by Symmetric Multiprocessors (SMP).

Nevertheless, in non-uniform model, processors have not equal access time to

memory modules. Graphical processing unit (GPU) model and thread model

could be regarded as shared memory model.

Distributed memory model is highly utilized in the parallel computation field.

In this model, each processor are connected to each other through computer

network. As its name implies, the memory modules are distributed and each

processor can execute its task independently. Processors access its own local

memory over local memory bus and the other processor’s memory over the

network infrastructure. The communication overhead and synchronization among

processors are the major concerns in this model.

NETWORK INFRASTRUCTURE

. . .

1C

1P

1M

2C

2P

2M

3C

3P

3M

nC

nP

nM

Figure 3: Distributed Memory Model for n number of memory (M),

procesor (P) and cache (C)

Hybrid model is the combination of the shared memory model and distributed

memory model. It has been employed increasingly in lots of computer systems.

According to the TOP500 [38] list released on November 2010, the hybrid

architecture model based on the CPU and GPU has been employed on the most

powerful computer system in the world named Tianhe-1A in China where each

11

computer has NVIDIA Tesla M2050 GPUs.

3.1. Message Passing Interface

Message Passing Interface (MPI) is a specification which provides mechanism

among the processors to communicate with each other by simply sending and

receiving messages. Message passing is a powerful and very general method

of expressing parallelism [31]. Message-passing programs can be used to

create extremely efficient parallel programs, and currently message passing is

the most widely used method of programming many types of parallel programs

[31]. To achieve this sort of parallelism, Message-Passing interface (MPI) forum

consisting of numerous individuals and groups has released a specification

named Message Passing Interface (MPI) in May 1994 to overcome the problem

of non-standardization and portability. Although MPI specification is designed

to be used for distributed memory systems, it is possible to utilize its functions

for a system with shared memory model. Message Passing Interface has been

implemented by means of library calls using the programming languages of C,

fortran and etc.

In MPI model, there are two type of communication routines which are

point-to-point communication and collective communication. MPI point-to-point

operations typically involve message passing between two, and only two, different

MPI tasks. One task is performing a send operation and the other task is

performing a matching receive operation [4]. In point-to-point communication,

processes could communicate with each other in a blocking and non-blocking

way. Blocking communication means process could use the corresponding buffer

safely after MPI send function MPI Send returns. MPI Send routine does not

imply that counter receiving process has received all the message. Because

12

many MPI implementations use system buffer apart from the buffer of sending

parameter to improve program performance by copying the buffer passed into

MPI Send function into system buffer. To achieve synchronous blocking message

passing, MPI Ssend is used. On the other hand, MPI receive function MPI Recv

always returns after all the buffer is filled and message is obtaned totaly, so

it is synchronous blocking routine in nature. Communication routines occur in

the context of a communicator. A communicator defines the set of processes

allowed to communicate with each other belong to the same group. There is

a pre-defined communicator named MPI COMM WORLD which consists of all

the processes. For message identification, tag value is used in point-to-point

communications. To receive any message regardless of the tag, pre-defined

parameter of MPI ANY TAG should be passed to the MPI routines.

Collective communication routines are used to pass messages in a group

manner and consist of the operations of broadcasting, scattering, gattering and

all-to-all. Contrary to point-to-point communication, collective communication

routines are not blocking and there is no message identification by means of tag

argument. These routines have also syncronization function of MPI Barrier to

block all the processes until all processes reach to that routine and collective

computation functions such as MPI Reduce and variants to make collective

computations including finding maximum, minimum, sum, product and logical

operations such as operations of AND, OR and etc. on the data.

3.2. Cuda Programming Model

While message passing interface (MPI) [18] is extensively used to achieve

the communication among the computers on a distributed memory system, there

13

has been a substantial interest to speed up the CPU-intensive tasks on many-

core graphical processing units (GPUs) to utilize its enormous computational

performance for shared memory system.

To do GPU computation, one remedy is to adapt the computational task to

the graphics APIs such as OpenGL or DirectX, but they are not convenient

for non-graphics applications and impose many hurdles to the general purpose

application programmer [9]. NVIDIA introduced CUDA (Compute Unified Device

Architecture) in November 2006 [29] to enable data-parallel general purpose

computations on NVIDIA GPUs in an efficient way. In the CUDA programming

model [29], GPU runs the computationally intensive data-parallel parts of the

application as a co-processor in a SPMD (Single-Program Multiple-Data) manner

while allowing the CPU to conduct concurrent tasks and sequential parts of the

application. Currently, there are several but increasing number of CUDA studies

which have been conducted on the field of data mining to take advantage of the

high performance of GPUs [1, 23].

Block 0 Block 2 Block 4 Block 6

Block 1 Block 3 Block 5 Block 7

Block 0 Block 1

Multithreaded Cuda Program

GPU with 2 Cores

Core 0 Core 1

GPU with 4 Cores

Core 0 Core 1 Core 2 Core 3

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Figure 4: Automatic Scalability of CUDA Program

14

From the point of programmer’s view, GPU is regarded as a device that runs

hundreds of concurrent lightweight threads with zero scheduling overhead. In

this model, all threads execute the same instruction but perform on different data

concurrently. The common function, called kernel, is executed by each thread

that can be programmed by ANSI C language extended with several keywords

and constructs. Besides, other languages such as CUDA Fortran, OpenCL and

DirectCompute, are supported by CUDA software environment [29]. When the

kernel is invoked, CUDA runtime creates a grid which is composed of blocks of

threads. Each thread and block is distinguished by the built-in index variables

which are automatically assigned by CUDA runtime and each thread accesses its

memory region using these index variables. The runtime values of grid and block

sizes are specified at the kernel invocation time via language extensions.

The CUDA memory model employs three levels of memory sharing to take

advantage of high memory bandwidth of the CUDA device which are local, shared

and global memories [28]. Local memory provides very fast access for threads

with very limited size used to store non-array local variables that are private to

each thread. Shared memory is allocated for all threads within the same block

which has also fast access time and is used to store frequently accessed data

to save global memory bandwidth. The synchronization mechanism of shared

memory is succeeded by calling syncthreads() barrier function which blocks until

all threads within the same block have reached this routine. There is no intrinsic

synchronization mechanism among the threads in different blocks to allow thread

blocks to be scheduled in any order across any number of cores automatically

(automatic scalability) as shown in Figure 4 and to avoid the possibility of deadlock

[28]. Finally, global memory is the slowest but has highly large memory size when

compared to local and shared memories and is the only accessible memory from

all threads and the host application. The contents of global memory are retained

15

during the lifetime of the application if not being freed intentionally.

3.3. Parallel Data Mining Approaches

There are three basic approaches for parallelization of data mining algorithms

[35] , as it follows:

* Independent Search : Each processor has access to the whole data set,

but each mines a different part of the search space, starting from a randomly

chosen initial position. The cost of an independent search strategy algorithm

has the form:

costi = ki[STEP + ACCESS] + σpg + σ (3.1)

In Equation 3.1, ki is the number of iterations of the whole program, STEP

and ACCESS are the costs of the single iteration of the algorithm and its

data accesses as before, σpg is the cost of sharing the answers among the

processors at the end, and σ is the cost of computing the best solution.

* Parallelized Sequential Data Mining Algorithm : Each processor restricts

itself to generating a particular subset of the set of possible results. There

are two variant: In the first, each processor generates complete results, but

with restrictions on the variable values in some positions. Validating such

concepts means examining only a subset of the rows of the data set. In

the second, each processor generates partial results but the variable can

take any values. Validating such results requires examining a subset of the

columns.

The basic structure of these algorithms is first to partition and then to repeat

the following steps:

16

* Execute a special variant of a data mining algorithm on the entire data

set, or perhaps a segment of it, and the current partial set of results to

derive a new partial set of results.

* Exchange the partial results with other processors, deleting results that

are not globally correct.

The cost of a parallelized algorithm has the form:

costi = ki[SPECIAL+ ACCESS + EXCH +RES] (3.2)

In this expression, SPECIAL is the complexity of a single step of the special

algorithm, EXCH is the cost of exchanging the partial results, and RES is

the cost of resolving the partial results or partial result set into a consistent

set.

* Replicated Sequential Data mining Algorithm : Each processor works on

a partition of the data set and executes what is more or less the sequential

algorithm. Because each processor sees only partial information, it builds

entire results that are locally, but possibly not globally, correct. They are

called as approximate concepts. Processors exchange approximate results,

or facts about them, to check their global correctness.

The cost of a replicated algorithm has the form:

costi = ki[STEP + ACCESS + rpg +RES] (3.3)

where ki is the number of iterations required by the parallel algorithm,

ACCESS is the cost of data access, rpg is the cost of a total exchange

between the processors of these approximate results and RES is the

17

computation cost of using these approximate results to compute better

approximations for the next iteration.

When all these approaches are regarded, although it is not possible to say that

one strategy is the best overall, there is a strong tendency for replicated strategies

to be better than other parallelized strategis.

18

CHAPTER 4

CLUSTER ANALYSIS

Cluster analysis is the sort of data mining technique that is used to discover the

similar objects based on the criterion defined by the algorithm and these objects

are assigned into groups or clusters. As stated formally [17], let dataset X ∈
R
m×n be the set of objects xi, 1 ≤ i ≤ m, for any dimension of n. The goal of

clustering is to map group of more similar objects xi into K nonempty clusters

C1, C2, C3, . . . , CK . Cluster analysis is highly used in many fields such as data

mining, bioinformatics and pattern recognition.

4.1. Sequential Cluster Analysis Algorithms

K-means clustering algorithm is the well-known clustering algorithm that

groups the objects of the data set into k clusters (C1, C2, ..., CK) based on

Euclidean distance between the data point xi and the cluster mean µj. The aim of

the algorithm is to minimize the variance with respect to nearest cluster centroid.

The value of cluster number K is selected prior to the execution of the algorithm

which is the main hurdle for the analyzer to define. The algorithm achieves the

clustering by minimizing the function of sum of squares:

K
∑

j=1

∑

xi∈Cj

||xi − µj||2 (4.1)

K-means algorithm has the time complexity of O(NKT) where N is the number

of objects, K is the cluster number and T is the iteration count [42].

19

The algorithm of BIRCH (Balanced Iterative Reducing and Clustering using

Hierarchies) [43] performs incremental clustering based on the data structure

named CF (Clustering Feature) tree. A Clustering feature is a triple summarizing

the information about a cluster which consists of number of data points in the

cluster N , the linear sum of the N data points LS and square sum of the N data

points SS. BIRCH is an incremental method that does not require the whole

dataset in advance, and only scans the dataset once. After the dataset scan, it

constructs the CF tree. A dense region of points is treated collectively as a single

cluster. Points in sparse regions are treated as outliers and removed optionally. In

the first phase of the algorithm, BIRCH loads the dataset info memory by building

a CF tree. In the second phase, the condense operation is conducted by building

a smaller CF tree. This operation also provides efficient memory utilization. In the

phase 3, it defines the clusters and as an optional, makes cluster refining. BIRCH

has the time complexity of O(N2).

CLARA (Clustering LARge Applications) is designed to handle large data sets

in which performs sampling [22]. The operation of drawing an only sample of the

data set is to foster the clustering analysis. It applies PAM [22] on the sample

data set, and then finds the medoids of the sample. If the sample is drawn

in a sufficiently random way, the medoids of the sample would approximate the

medoids of the entire data set [27]. CLARA operates on multiple samples for

better approximation which gives the best clustering result.

CLARANS aims to identify spatial structures that may be present in the data

[27]. CLARANS uses randomized search to facilitate the clustering of a large

number of objects. The algorithm studies on the efficiency and effectiveness of

three different approaches to calculate the similarities between polygon objects.

They are the approach that calculates the exact separation distance between

two polygons, the approach that overestimates the exact distance by using the

20

minimum distance between vertices, and the approach that underestimates the

exact distance by using the separation distance between the isothetic rectangles

of the polygons. The results has shown that it is more efficient than the algorithms

of PAM and CLARA and calculating the similarity between two polygons by using

the separation distance between the isothetic rectangles of the polygons is the

most efficient and effective approach.

DBSCAN is the clustering algorithm [11] which relies on a density-based notion

of clusters. It is designed to discover clusters of arbitrary shape. DBSCAN

requires only one input parameter and supports the user in determining an

appropriate value for it. The key idea is that for each point of a cluster the

neighborhood of a given radius has to contain at least a minimum number of

points, i.e. the density in the neighborhood has to exceed some threshold. The

shape of a neighborhood is determined by the choice of a distance function for

two points p and q, denoted by dist(p, q). For instance, when using the Manhattan

distance in 2D space, the shape of the neighborhood is rectangular. Note, that

this approach works with any distance function so that an appropriate function

can be chosen for some given application. One drawback of this algorithm is that

there are at least a minimum number (MinPts) of points in an Eps-neighborhood

of that point which is hard to determine like k-means algorithm. The algorithm has

the time complexity of O(NlogN).

4.2. Parallel Cluster Analysis Algorithms

In recent years, there have been increasing amount of research in implementa-

tion of the parallel clustering algorithms to speedup the corresponding sequential

clustering algorithm.

21

Zhang et al. [44] proposed a parallel implementation of the K-means clustering

algorithm. They adopted master-slave model and introduced dynamic load

balance for enhancing the efficiency of parallel K-means. At the beginning of the

algorithm, the master processor divides the sample and sends them accompany

with cluster center to each slave one. Each slave processor receives the dataset

with size of SN where N is the entire data size and P is the slave number. Each

slave processor executes clustering operation for received data and returns the

clustering results to the master. The master partitions a new sub-dataset and

sends it to the slave. This is continued until there are no more data in the master

and all the results are returned. So far an iterative process is completed. If

the value difference between twice error-squared function than ǫ where ǫ ≤ 10−6

then the algorithm is ended. Otherwise the master processor computes the new

cluster center again and a new iterative procedure begins. This algorithm has

no acceleration ratio due to excessive communication time over computation time

when dataset scale between 100K and 700K. After dataset scale reaches to the

value of 800K, the beneficial acceleration ratio is obtained as computation time

being larger than communication time.

Arlia and Coppola [3] presented their results concerning the parallelization of

DBSCAN clustering algorithm based on master-slave model. In their algorithm,

The Master module performs cluster assignment, while the Slave module answers

neighborhood queries using the R*-Tree. Reading spatial information is decoupled

from writing labels, and the Slave has a pure functional behaviour. Having

restructured the algorithm to a Master-Slave cooperation, its structure must be

expressed using the skeletons of language. There is pipeline parallelism between

Master and Slave, and functional independent replication can be exploited among

multiple Slaves. Cluster labels are kept and checked in the Master, which can

quickly become a bottleneck. This algorithm gives consistently good speed-ups

22

but needs verification for larger input sets.

Boutsinas and Gnardellis [6] reported a clustering methodology for scaling up

any clustering algorithm. The main idea of this methodology is based on running

the clustering algorithm s times on subsets of the sample of data in parallel. This

algorithm requires construction of a new table called Meta-table by merging all

partial local results and applying clustering algorithm over the Meta-table globally.

This procedure continues iteratively until certain stopping criteria are sustained.

23

CHAPTER 5

WAVECLUSTER APPROACH

WaveCluster algorithm is a novel, grid-based clustering algorithm based on

wavelet transform [34]. WaveCluster algorithm conforms all requirements of being

good clustering algorithm such as discovery of clusters with arbitrary shape, ability

to handle outliers and handling of multi-dimensional datasets. The goal of this

algorithm is to map group of more similar or dense spatial objects into disjoint

clusters on transformed feature space using wavelet transform. The collection of

objects in the feature space composes an n-dimensional signal. Examinations

have shown that WaveCluster algorithm outperforms BIRCH [43] and CLARANS

[27] as much as 8 to 10 times, and 20 to 30 times [34], respectively.

WaveCluster approach consists of two main sub-algorithms which are wavelet

transform and connected component labeling algorithm. Wavelet transform is a

mathematical transformation tool which are used to decompose the signal of f(n)

into average subband (approximation coefficients) and detail subbands (detail

coefficients). Wavelet transform could be applied to the signal multiple times

on average subbands to take advantage of its multi-resolution analysis feature.

The operation of recursively decomposing the signal by applying averaging and

differencing the coefficients, is called a filter bank. Each operation of wavelet

transform constitutes half objects in the transformed feature space for each

dimension when compared to previous feature space. For one dimensional

wavelet transform, let V 0 be the average subband of the feature space at last scale

and V j be the average subband of the signal which has number of 2j objects.

Each objects in the average subband of the feature space V j also contained in

24

the average subband of the feature space V j+1. Hence, the feature spaces are

nested [36], that is:

V 0 ⊂ V 1 ⊂ V 2 ⊂ . . . (5.1)

In discrete wavelet transformation (DWT), the function f(n) is discrete where

f(n) = f(x0 + n∆x) for some x0, ∆x and n = 0, 1, 2, ...,M − 1 (M = 2J) and

the wavelet operation could be regarded as a convolution operation using filtering

techniques which yields wavelet coefficients [16]. The DWT filter bank of one-

dimensional signal has been depicted for two scale in Figure 5 where hϕ is low

pass filter and hψ is high pass filter. The signal components are represented as

Wϕ and Wψ for low-frequency component (average subband) and high-frequency

component (detail subband), respectively.

f (n) = Wφ (J, n)

hψ (n) 2 ↓

hφ (n) 2 ↓

Wψ (J - 1, n)

hψ (n) 2 ↓

hφ (n) 2 ↓

Wψ (J - 2, n)

Wφ (J - 1, n)

Wφ (J - 2, n)

Figure 5: Two-scale Discrete Wavelet Transform Filter Bank

There are many popular wavelet algorithms including Haar wavelets, Daubechies

wavelets and Mexican Hat wavelets. In the experiments, Haar wavelets [36] are

selected because of its simplicity, fast and memory-efficient characteristics [21]. It

should also be mentioned that it is necessary to scale source dataset linearly to

power of two for each dimension, since the signal rate decreases by a factor of

two at each level in the discrete wavelet transform. For Haar wavelets, the feature

space are convoluted with 2x2 Haar matrix in a recursive manner, as it follows:

25

H2 =
1√
2

∣

∣

∣

∣

∣

∣

1 1

1 −1

∣

∣

∣

∣

∣

∣

(5.2)

In WaveCluster approach, cluster analysis is performed by applying connected

component labeling algorithm on the objects located in the transformed feature

space (low-frequency component of the signal). The low-frequency component is

the product of the operation of wavelet transform, whereas the connected com-

ponents are found using connected component labeling algorithm with respect to

the feature of pixel connectivity for each direction. Cluster analysis is conducted

recursively on the transformed feature space that provides multi-resolution feature

in clustering as finding clusters from fine (low scale value) to coarse (high scale

value). In Figure 6, the effect of the wavelet transformation on source dataset (see

Figure 6(a)) is demonstrated.

(a) (b) (c)

Figure 6: WaveCluster algorithm multi-resolution property. (a) Original

source dataset. (b) ρ = 2 and 6 clusters are detected. (c) ρ = 3 and 3

clusters are detected. (where ρ is the scale level)

The results of WaveCluster algorithm for different values of ρ are shown in

Figures 6(b) and 6(c); where ρ (scale level) represents how many times wavelet

transform is applied on the feature space. There are 6 clusters detected with

26

ρ = 2 (Figure 6(b)) and 3 clusters are detected with ρ = 3 (Figure 6(c)). In the

performed experiments, connected components are found on average subbands

(feature space) using classical two-pass connected component labelling algorithm

[33] at different scales.

Algorithm 1 WaveCluster Algorithm

1: Quantize feature space, then assign objects to the units.

2: Apply wavelet transform on the feature space.

3: Find the connected component components (clusters) in the subbands of

transformed feature space, at different levels.

4: Assign label to the units.

5: Make the lookup table.

6: Map the objects to the clusters.

WaveCluster algorithm contains three phases. In the first phase, algorithm

quantizes feature space and then assigns objects to the units. This phase also

affects the performance of clustering for different values of interval size. In the

second phase, discrete wavelet transform is applied on the feature space multiple

times. WaveCluster algorithm gains the ability to remove outliers with wavelet

transform and detects the clusters at different levels of accuracy (multi-resolution

property). Following the transformation, dense regions (clusters) are detected

by finding connected components and labels are assigned to the units in the

transformed feature space. Next, a lookup table is constructed to map the units

in the transformed feature space to original feature space. In the third and last

phase, WaveCluster algorithm assigns the cluster number of each object in the

original feature space.

27

CHAPTER 6

PARALLEL WAVECLUSTER ALGORITHMS

Despite effectiveness of WaveCluster algorithm, execution time of the al-

gorithm has become a serious concern when dataset size is large. In this

section, parallel WaveCluster algorithms based on the message passing model

for distributed memory multiprocessors [40] and CUDA algorithms of WaveCluster

approach for shared memory system [41] are presented.

6.1. Parallel Wavecluster Algorithms on Shared Memory
Architecture Using CUDA

In recent years, CUDA algorithms have been gaining interest a lot among the

researchers to speed-up the sequential algorithms in a parallel manner by utilizing

powerful and cutting-edge graphical processing units (GPUs). In this section,

parallel WaveCluster approach based on CUDA model is presented. Since

the algorithms of extraction of low-frequency component by means of wavelet

transform and connected component labeling are the fundamental sub-algorithms

of WaveCluster approach, these algorithms have been implemented with respect

to CUDA model in the study.

6.1.1. Implementation of low-frequency component
extraction of the signal

28

Discrete wavelet transform is the core part of the WaveCluster algorithm which

takes advantage of its multi-resolution feature. As mentioned previously, since

WaveCluster tries to find dense regions over low-frequency component of the

signal, only the extraction phase of the low-frequency component is implemented.

The algorithm is designed for 2-dimensional feature space to ease algorithm

demonstration, but it can be expanded to many dimensional wavelet transform

unless the limit of shared memory allocation is exceeded. The algorithm can be

regarded as simple convolution operation as well.

There are many wavelet types exist such as Haar, Daubechies, Morlet and

Mexican hat. In the implementation, Haar wavelet is used, because its initial

window width is two which leads us to less waste of shared memory usage.

The host function calls kernel function as much as the value of scale and kernel

function returns the lower frequency representation (Vj−1) of the feature space (Vj)

at each iteration.

Divide and conquer approach is followed in the CUDA implementation of

this process. Each thread is responsible to calculate one approximation value

extracted from local disjoint 2x2 square-shaped points of feature space. Before

kernel invocation, input feature space is transferred from host memory to global

memory of the device and output buffer is allocated in device memory to store

transformed feature space. In the kernel, input feature space is transferred from

global memory into shared memory of buffer I to make data access efficient. Each

thread firstly applies one-dimensional wavelet transform to each column of local

feature space and stores intermediate values in the shared memory buffer of H.

The final approximation value is eventually calculated by applying second one-

dimensional wavelet transform to each row of points on H. So, buffer H is used to

store temporal results. If the aim is only to calculate approximation representation

of the signal, the operation can be halted here. However, the implementation also

29

Algorithm 2 CUDA Algorithm of Low-Frequency Component Extraction

Require: V j, lastlevel, threshold

Ensure: V j−1

1: declare I[dim.y ∗ 2][dim.x ∗ 2] in shared memory

2: declare H[dim.y ∗ 2][dim.x] in shared memory

3: load thread-related disjoint 2x2 points of V j into buffer I

4: apply one-dimensional wavelet transform to each column of points of 2x2 field

and store values into buffer H

5: apply one-dimensional wavelet transform to each row of points over H and

store approximation value in local memory m

6: if lastlevel = true then

7: if val > threshold then

8: m←MAXFLOAT

9: else

10: m← threadindex

11: end if

12: end if

13: V j−1[threadindex]← m

makes the data suitable for usage in the connected component labeling algorithm.

For that purpose, it performs thresholding operation at the last iteration (last level

of wavelet transformation) to assign maximum float value to background points

and unique thread index value to foreground points with respect to threshold value.

This operation also removes outliers on the transformed feature space.

6.1.2. Implementation of connected component labeling

30

Iteration: 3 Down

30 1
8 11

131415 17

26
31323334

Source Dataset

30 0
3 11

131414 17

26
31262634

Iteration: 1 Steady

30 0
0 11

131314 17

26
26262626

Iteration: 2 Right

30 0
0 11

13 0 0 11

26
26262626

00 0
0 11

13 0 0 11

26
26262626

Iteration: 4 Steady

00 0
0 11

 0 0 0 11

26
26262626

Iteration: 5 Right

00 0
0 11

 0 0 0 11

26
26262626

Result Dataset

Figure 7: Iteration Demonstration of Connected Component Labeling

CUDA Algorithm

In this algorithm, multi-pass CCL algorithm based on sliding window approach

is presented which groups the points with respect to pixel connectivity by sliding

many windows over feature space concurrently. Each thread is responsible of

2x2 square-shaped field forming a window where calculates the minimum value

of these points and assigns the minimum value to its foreground points. As a

prerequisite, each foreground point is expected to be assigned unique increasing

value in a left-to-right and top-to-bottom manners. Maximum float number are

assigned to background points to ensure consistency in the algorithm. The

algorithm consists of three sub-operations. In the first sub-operation, the windows

stay steady and in the second and third sub-operation, windows move to the right

and down respectively. Thus, the minimum value of connected points can be

propagated in all directions. The algorithm continues to iterate until no point value

changes in all three sub-operations. For that reason, additional 3 iterations are

executed to detect this stopping criterion. If any thread changes any value of the

points, the variable of ischanged is assigned true value that kept in the global

memory. The host function of the kernel keeps track of the ischanged variable

31

for each sub-operation and then resets its value to false before kernel invocation.

The execution time of the algorithm is highly dependent to the maximum distance

between two points within cluster. Since GPU runs each operation very fast in

a parallel manner, the algorithm finishes the execution in a reasonable amount

of computation time. The algorithm demonstration is depicted in Figure 7 where

each window is surrounded with bold line.

Algorithm 3 CUDA Algorithm of Connected Component Labeling

1: if windowdirection = RIGHT AND last thread in row then

2: return

3: end if

4: if windowdirection = DOWN AND last thread in column then

5: return

6: end if

7: declare I[dim.y ∗ 2][dim.x ∗ 2] in shared memory

8: calculate startPositionIndex of the local buffer with respect to direction

9: load disjoint 2x2 points(window) into buffer I using startPositionIndex

10: find minimum value among points in the window stored on buffer I

11: assign minimum value to foreground points

12: if anyvalueofpointsischanged then

13: ischanged← true

14: end if

6.2. Parallel Wavecluster Algorithm on Distributed
Memory Architecture Using MPI

In this section, parallel WaveCluster algorithm for distributed memory archi-

tecture [32] is presented. The master-slave model and SPMD (Single Process,

32

Multiple Data) techniques are applied to the algorithm as the parallelization

technique. In this approach, each copy of the single program runs on processors

independently and communication is provided by the manner of sending and

receiving messages among nodes. The terms of processor, core and node will be

used interchangeably in the text. In the computer cluster system, each workstation

is connected with an underlying Ethernet network. Datasets are stored in I/O

(Input/Output) server via network file system, so that each node in the virtual

system can have an access to datasets in a shared manner. Communication

requirements between master and slave nodes are managed by using Message

Passing Interface (MPI) [18]. MPI is a specification rather than an implementation.

OpenMPI [15] implementation is employed because of its high-performance and

it is one of the most widely used MPI implementation.

D0,0 D1,0 D2,0 D3,0

D0,1 D1,1 D2,1 D3,1

D0,2 D1,2 D2,2 D3,2

D0,3 D1,3 D2,3 D3,3

(a)

D0,0 D1,0

D0,1 D1,1

D0,2 D1,2

D0,3 D1,3

(b)

Figure 8: Decomposition of large dataset D with 2 dimensions for

varying number of processors (np). (a) np = 16 (b) np = 8

The replicated approach [35] has been followed in the parallel implementation

of WaveCluster algorithm. In this approach, each processor works on a specific

partition of the dataset and executes nearly identical code segments of the

algorithm. The obtained results from each processor are locally correct, but

possibly not globally. Hence, processors are subject to exchange their local results

and then to check the correctness. The replicated approach is not particularly

33

novel, but it is often the best way to increase performance in a data-mining

application [35].

Algorithm 4 Parallel WaveCluster Algorithm

1: parent broadcasts parameters of MC and ρ

2: for i = 1 to processorsize do

3: parent sends position vector of subset to processor i

4: end for

5: for all processor i, in parallel do

6: read and copy local dataset into memory using position vector

7: apply d dimensional wavelet transform on a d dimensional local dataset ρ

times

8: find connected components on transformed local feature space

9: assign cluster number cn to the units where (i− 1) ∗MC ≤ cn ≤ i ∗MC

10: send clustering border vector of local feature space to parent

11: end for

12: for i = 1 to processorsize do

13: parent creates merge table for processor i with respect to the adjacency

relations at clustering border vectors

14: parent sends merge table to processor i

15: end for

16: for all processor i, in parallel do

17: update cluster numbers of units of local feature space

18: make the lookup table

19: map the objects to the clusters using lookup table

20: write clustering results

21: end for

34

In the employed algorithm (see Algorithm 4), dataset is partitioned evenly

among processors in a grid manner as shown in Figure 8. Each subset of the

dataset has a size of N/P ; where N is the total size of the dataset and P

is the total number of processors. In the initialization phase, the parent node

broadcasts allowed maximum total number of clusters per node (MC) and scale

level (ρ) values to compute nodes (line 1). Then, parent node sends corresponding

position vectors of subsets of dataset to each node although it is possible for

each node to access to full dataset from I/O server over network. So that each

compute node can retrieve only required data to local memory. Two benefits are

acquired by this approach; reducing the bandwidth usage and overcoming the

restriction of limited amount of local memory for huge datasets. This position

vector information is also received by the parent node itself for admitting the parent

node into parallelization stage. Such that the possible idleness behavior of parent

node during calculation stages is prevented (lines 2-4). After reading and copying

the local dataset into local memories, processors applies d dimensional discrete

wavelet transform on a d dimensional local dataset ρ times. This transform

process highly affects the total execution time of parallel WaveCluster algorithm

according to the results of the experiments. Since it yields smaller size of feature

space at each iteration of wavelet transform, subsequent operations works on

smaller portions of data. In the next step, processors detect dense regions on

transformed local feature space by finding connected components and assigning

cluster number cn to the the units where (i − 1) ∗ MC ≤ cn ≤ i ∗ MC. The

parameter of MC is utilized to assign uniquely cluster number across processors.

For that reason, the value of MC may be selected according to the estimation of

maximum total number of clusters per local dataset (lines 5-11). At the moment of

last phase, detected clusters by each processor might be valid locally but may not

be globally. Therefore, a merge operation is needed to detect clusters globally.

35

After processors send the border vector containing of cluster numbers of the units

on borders for the local feature space to parent node, parent node creates a

merge table for each processor with respect to the adjacency relations at the

units of local feature space borders. This requirement for sustaining consistency

brings a barrier primitive. Accordingly all processors wait the parent node to

receive merged table (lines 12-15). Then, processors update cluster numbers

of units on local feature space. Finally, processors map the objects on original

feature space to the clusters using lookup table (lines 16-21). In lookup table,

each entry specifies relationships of one unit in the transformed feature space to

the corresponding units of the original feature space. The demonstration of the

algorithm is depicted in Figure 9.

In the two-pass connected component labeling, the implementation approach

of the operations of union and find is an important factor that highly affects the

performance of the WaveCluster algorithm. In the implementation, the union-find

data structure is utilized to perform these operations efficiently [33]. This data

structure is implemented as a vector array that represents a tree structure in which

first set contains the labels of the objects and the second set contains the parent

(target) labels of the objects. With the union-find data structure, the find procedure

runs in highly efficient manner when compared to the linked-list implementation.

The vector array of union-find data structure has the size of MC elements.

36

Parent:

- broadcasts MC and ρ values

- sends position vectors of subsets to all processors

Processors do in parallel:

- read and copy local dataset into memory using position vector

- apply wavelet transform on local dataset

- find connected components on transformed local feature space

- send border vector of local feature space to parent

 BARRIER

 BARRIER

Processors do in parallel:

- update cluster number of the units in local feature space

- make lookup table

- map the objects to the clusters via lookup table

- write clustering results

Parent:

- creates merge table and sends them to all processors

 BARRIER

Figure 9: Demonstration of Parallel Wavecluster Algorithm based for

Distributed Memory Architecture

In the constructing process of the merge tables which is performed by the

parent processor for each processor, if parent processor finds different labels

among the neighbor units of the clustering border vectors, the smaller of two labels

is assigned to the current units. To detect complex-shaped clusters, this procedure

is applied recursively for all clustering border vectors of each dimension. Each

entry in the merge table data structure has the member of index label and the

target label to resolve globally correct cluster number. When merging condition

occurs, all occurrences of the old label of the local units are changed with the new

label value by the processors in parallel.

37

CHAPTER 7

EXPERIMENTAL RESULTS OF THE CUDA
ALGORITHMS

The speedups of CUDA algorithms have been investigated and compared to

the sequential ones. The experiments were conducted on a Linux workstation with

2 GB RAM, Intel Core2Duo (2 Cores, 2.4 GHz, 4MB L2 Cache) processor and

NVIDIA GTX 465 (1 GB memory, 352 computing cores, each core runs at 1.215

GHz) with compute capability 2.0 and runtime version 3.10. Two-dimensional

synthetic dataset has been used in the experiments.

For the parallel experiments, the larger datasets of the source datasets are

obtained by by making multiple copies of the source dataset. The number of

clusters with the points are increased in a linear fashion.

Execution times (in microseconds) and corresponding kernel speedup values

for the low-frequency extraction algorithm are presented in Table 1. The results

indicates that at most 107.10 speedup have been achieved for the CUDA

algorithm and high speedups for increasing number of points.

The sequential code of Connected Component Labeling (CCL) is implemented

using union-find data structure [33] which is highly fast and efficient with respect

to linked-list implementation of CCL algorithm. Table 2 shows the performance

results of the CCL CUDA algorithm. At most 5.56 speedup value is obtained as

dataset size increases in the dataset.

In CUDA model, the input buffer is needed to be transferred from host memory

to device memory before employing GPUs to execute kernel (CUDA function)

and vice versa for obtaining the outputs of the kernel using CUDA functions of

38

Table 1: Performance results of CUDA and CPU versions of Low-

Frequency Component Extraction for ρ = 1 (times in microseconds)

Dataset

Size

Number of

Points

Execution

Time

(CPU)

Execution

Time

(GPU)

Kernel

Speedup

256 65536 496 33 14.17

512 262144 1987 53 37.49

1024 1048576 7868 113 69.62

2048 4194304 31045 319 97.31

4096 16777216 123279 1151 107.10

Table 2: Performance results of CUDA and CPU versions of Connected

Component Labeling (CCL) for ρ = 1 (times in microseconds)

Dataset

Size

Number of

Points

Execution

Time

(CPU)

Execution

Time

(GPU)

Kernel

Speedup

256 65536 1082 1242 0.87

512 262144 4133 1503 2.74

1024 1048576 15555 3891 3.99

2048 4194304 57608 9689 5.94

4096 16777216 174586 31357 5.56

cudaMemcpy*. This extra transfer operation over data bus (such as PCI-E bus)

is known as fundamental drawback of CUDA model when compared to CPU

39

Table 3: Aggregate Speedup Results of CUDA Algorithms for ρ = 1

(times in microseconds)

Dataset

Size

Number of

Points

PCI-E

Transfer

Time

Aggregate

Speedup

256 65536 54522 0.02

512 262144 55306 0.10

1024 1048576 57904 0.37

2048 4194304 67182 1.14

4096 16777216 103664 2.18

execution. As far as developed parallel CUDA algorithms are concerned, this

phenomenon has been also observed. As seen in Figure 3, aggregate speedups

are decreased when the performance of data transfer between host and device

memory is counted into speedup calculation. Aggregate speedup is calculated as

seen in Formula 7.1.

Agg.Speedup = CPUExec.T ime/(TransferT ime+GPUExec.T ime) (7.1)

40

CHAPTER 8

EXPERIMENTAL RESULTS OF THE MPI ALGORITHM

All the experiments were performed on a cluster system having 32 cores with

a 2.8 GHz clock speed computers where each compute node has 4 cores with

fast Ethernet (100 Mbit/sec) and Gbit Ethernet (1 Gbit/sec) cards as underlying

communication infrastructure [5]. Two source datasets with different object

distribution characteristics (sparsity, see Figure 10) were used in the experiments.

SourceDataset1 (SD1) was originally used in Ref. [34] in which objects are

evenly distributed across the dataset. On the other hand, the SourceDataset2

(SD2) has data sparsity property. The aim of selecting SD2 is to measure the

performance of the algorithm on the datasets having unevenly distributed sparse

data characteristic. These datasets are also adapted to the aims by scaling

linearly for obtaining very large/huge datasets. Thereafter, these datasets are

called as DS(1 or 2)8 (with 67108864 objects), DS(1 or 2)16 (with 268435456

objects), DS(1 or 2)32 (with 1073741824 objects) and DS(1 or 2)65 (with

4294967296 objects). An object value occupies 4 bytes that is stored in an integer

array.

The behavior and performance of WaveCluster clustering approach based on

wavelet transforms with the developed parallel algorithm are investigated and

obtained results are presented in terms of execution times with and without I/O

costs, speed-up and efficiency for each source datasets (SD1 and SD2) with

respect to varying dataset sizes (DS8, DS16, DS32, DS65). The results for

datasets DS8, DS16, and DS32 were obtained with 1, 2, 4, 8, 16 and 32 core

cases. Furthermore, the case as beyond the limit of dataset size that does not

41

(a) (b)

Figure 10: Sample datasets used in experiments (a)SourceDataset1

(SD1) (b) SourceDataset2 (SD2)

fit into memory of a single processor within the available hardware is studied by

running huge dataset (DS65) with 8, 16 and 32 cores.

Table 4 shows the execution times of the developed algorithm with and without

I/O costs for ρ = 3 (as scale level) for SD1 using both 100 Mbit Ethernet and 1

Gbit Ethernet devices. The reason of presenting execution times results only for

ρ = 3 in this table is that this scale level represent the behavior of the parallel

WaveCluster algorithm as most conveniently in the aspects of wavelet transforms

and connected component labelling. The experiment results obtained using 100

Mbit Ethernet are given to demonstrate the performance of the algorithm on

low-speed network infrastructure. Execution times are obtained by utilizing MPI

routine MPI Wtime.

A shortcoming of dealing with large datasets in WaveCluster clustering

approach is that the required I/O operations may dominate the execution time.

This situation can be seen from Table 4 for both fast and giga Ethernet cases.

42

Table 4: Execution times (in seconds) with and without consideration of

I/O times for SD1 with varying dataset sizes and number of processors

(np) for ρ = 3 using 1 Gbit and 100 Mbit Ethernet controller cards.

Dataset/np 1 2 4 8 16 32

DS1 65 (I/O) 1 Gb - - - 807 657 574

DS1 65 (I/O) - - - 5832 5760 5720

DS1 32 (I/O) 1 Gb 777 559 274 204 165 143

DS1 32 (I/O) 1720 1569 1496 1457 1439 1430

DS1 16 (I/O) 1 Gb 174 125 61 43 35 30

DS1 16 (I/O) 444 392 374 364 359 357

DS1 8 (I/O) 1 Gb 38 28 22 17 11 7

DS1 8 (I/O) 107 97 92 90 89 88

DS1 65 1 Gb - - - 10.55 5.77 3.30

DS1 65 - - - 17.59 9.70 5.21

DS1 32 1 Gb 15.60 8.69 5.21 2.60 1.41 0.83

DS1 32 35.19 17.96 9.15 4.41 2.50 1.30

DS1 16 1 Gb 3.90 2.18 1.32 0.66 0.35 0.18

DS1 16 8.83 4.53 2.25 1.06 0.57 0.33

DS1 8 1 Gb 0.98 0.57 0.32 0.16 0.09 0.05

DS1 8 2.22 1.11 0.55 0.27 0.14 0.08

The time spent for I/O operations is mainly sourced from loading the data to

local memories of compute nodes during initialization stage and also some

comparatively very small time amount is spent for exchanging border vectors

between nodes during computations.

43

It could be possible to debate that the improvement with parallelization may

not be beneficial as much as expected due to the high I/O requirements during

the initialization stage. However, this limitation could be turned into a gain since

one may utilize two aspects that the parallelization may bring benefits for data

processing.

The first benefit is obtained by applying a parallelization scheme directly to

CPU-bound operations and the second one is that distributing the data for IO-

bound operations and processing in the context of distributed computing. The

benefit obtained from the former one in the study seems to be relatively small

due to the IO-bound nature of the WaveCluster approach. But, it should be

mentioned that there is a steady decrease at execution time without I/O times

by increasing number of processors. The later one brings us the capability

of handling larger sizes of datasets that it could not be possible to process

sequentially due to memory limitations. Furthermore, the execution times are

decreased considerably.

This divide-and-conquer type data distribution is achieved in the developed

algorithm just by sending corresponding global data pointers to compute nodes.

Each compute node loaded necessary data to local memory from file server via

network file system. Consequently, the time spent for I/O requirements is divided

among processors. This expected benefit is obtained from Gbit Ethernet rather

than fast Ethernet. As seen from Table 4, the values for I/O times have a tendency

to decrease with increasing number of processors for Gbit Ethernet due to higher

bandwidth.

Execution times with I/O per object per processors for each datasets at fast

and gigabit Ethernet cases are calculated and depicted in Figure 11 for varying

size of processors at scale level, ρ = 3. By this normalization, it is observed

that the time spent for reading and processing the data is independent of dataset

44

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1 2 4 8 16 32

E
x
e

c
u

ti
o

n
ti
m

e
w

it
h

I/
O

p
e

r
o

b
je

c
t

p
e

r
p

ro
c
e

s
s
o

r
(n

a
n

o
s
e

c
.)

Number of Processors

DS65 1 Gb

DS32 1 Gb

DS16 1 Gb

DS8 1 Gb

DS65 100 Mb

DS32 100 Mb

DS16 100 Mb

DS8 100 Mb

0

20

40

60

80

100

120

140

160

180

200

8 16 32

0

20

40

60

80

100

120

140

160

180

200

8 16 32

Figure 11: Execution times with I/O per object per processors for SD1

with respect to dataset sizes for 100 Mb (upper data line) and 1Gb

(lower data line) Ethernet at scale level, ρ = 3 vs number of processors

(np). Inset: That of np=8, 16, 32.

size and also indicates good load balancing feature of the developed algorithm on

SD1.

Overall, the conclusion is that the total execution time is decreased consid-

erably by parallelization of CPU-bound and/or IO-bound operations and applying

a parallel algorithm to WaveCluster approach is beneficial. This conclusion is

more convenient for the case of Gbit Ethernet since I/O times are highly depends

on the speed of network infrastructure. As the parallel WaveCluster algorithm

is executed using faster network infrastructure such as 10/100 Gbit Ethernet,

Myrinet, Quadrics etc. and/or using faster storage networks, it is expected that

this sort of shortcoming (I/O time limitation) could be surmounted to some extent.

All the timing and performance results/figures reported from now on have been

obtained by the usage of 1 Gbit Ethernet.

Although a considerable improvement with parallelization is obtained by

45

distribution of IO-bound operations, those I/O times are not considered for the

presented figures in the rest of the text. The reason for this is that the time spent

for reading of dataset and writing of result from/to the disc is highly dependent on

numerous factors including read-write speed of the disc, speed of the network,

format of the input/result file and the purpose of clustering process. Hence, there

is only focus of the parallelization behavior of the developed parallel WaveCluster

algorithm.

 1
 4
 7

 10
 13
 16
 19
 22
 25
 28
 31
 34
 37
 40

 1 2 4 8 16 32

E
x
e
c
u
ti

o
n
 t

im
e
 (

s
e
c
.)

Number of processors

DS65
DS32
DS16

DS8

(a)

 1
 3
 5
 7
 9

 11
 13
 15
 17
 19
 21
 23
 25

 1 2 4 8 16 32

E
x

e
c
u

ti
o

n
 t

im
e
 (

s
e
c
.)

Number of processors

DS65
DS32
DS16
DS8

(b)

 1
 3
 5
 7
 9

 11
 13
 15
 17
 19
 21
 23
 25

 1 2 4 8 16 32

E
x

e
c
u

ti
o

n
 t

im
e
 (

s
e
c
.)

Number of processors

DS65
DS32
DS16

DS8

(c)

Figure 12: Execution times for SD1 with varying dataset sizes (DS8,

DS16, DS32 and DS65) and number of processors (1, 2, 4, 8, 16, 32;

1 Gbit Ethernet) at different scale levels (ρ); (a) ρ = 1, (b) ρ = 3 and (c)

ρ = 5.

The behavior of execution times by increasing number of processors for data

sets DS8, DS16, DS32 and DS65 of SD1 with ρ = 1, ρ = 3 and ρ = 5 are plotted

in Figure 12. The expectation of decrease in execution time by increasing number

of processors is satisfied for almost all the cases except one specific case for

SD1. In Figure 12(a) (ρ = 1), execution time of 2-core case is found as greater

than that of single core for DS8, DS16 and DS32 datasets. This exceptional case

46

can be explained due to the additional communication time of sending clustering

border vector of feature space and time of updating cluster number of units on

local feature space and computation time of constructing merge table for each

processor. But, updating cluster numbers of feature space has the main weight

for this performance degradation. As the number of processor increases, less

time is required in the operation of updating cluster numbers of reduced feature

space per cores. Accordingly, very good timing values and linear scaling speedup

performance has been obtained. Update procedure is implemented as scanning

transformed feature space and replacing all occurrences of old labels with new

ones. This procedure is performed in a fast manner via programming language

data type of a pointer which points to cluster label of all associated units.

Speedup (Sp) is defined as the ratio of computation times of single processor

and of P processors. The obtained speedup ratios for DS8, DS16, DS32 and

DS65 of SD1 with ρ = 1, ρ = 3 and ρ = 5 are presented in Figures 13(a), (b) and

(c), respectively, for varied number of processors and dataset sizes. It is clearly

seen from these figures that the developed parallel WaveCluster algorithm scales

almost linearly. In Figure 13(a), the speedup line for DS65 is higher than the lines

for other datasets. The number of operations for that ρ = 1 scale level is more

than ρ= 3 and ρ = 5 scale levels. This elevation of the line for DS65 dataset

at most time consuming scale level value confirms the suitability of the parallel

WaveCluster algorithm for very large/huge datasets.

The speedup values for the other datasets in Figure 13(a) are almost same up

to 8 processors and for 32 processors. The separation of the lines at the processor

size 16 can be explained as the unsustainable balance between the computed

local data and communicated data. There are comparatively less amount of

communication for 8 cores while less amount of calculation for 32 cores. This

situation changes for the next scale level value (ρ = 3) as being closer at 16 and 32

47

 1
 3
 5
 7
 9

 11
 13
 15
 17
 19
 21
 23
 25
 27
 29
 31
 33
 35
 37
 39

 2 4 8 16 32

S
p
e
e
d
u
p

Number of processors

DS65
DS32
DS16
DS8

(a)

 1
 3
 5
 7
 9

 11
 13
 15
 17
 19
 21
 23
 25
 27
 29
 31
 33
 35

 2 4 8 16 32
S

p
e
e
d

u
p

Number of processors

DS65
DS32
DS16
DS8

(b)

 1
 3
 5
 7
 9

 11
 13
 15
 17
 19
 21
 23
 25
 27
 29
 31
 33
 35

 2 4 8 16 32

S
p

e
e
d

u
p

Number of processors

DS65
DS32
DS16

DS8

(c)

 1
 3
 5
 7
 9

 11
 13
 15
 17
 19
 21
 23
 25
 27
 29
 31
 33
 35

 2 4 8 16 32

S
p

e
e
d

u
p

Number of processors

DS65
DS32
DS16
DS8

(d)

 1
 3
 5
 7
 9

 11
 13
 15
 17
 19
 21
 23
 25
 27
 29
 31
 33
 35

 2 4 8 16 32

S
p

e
e
d

u
p

Number of processors

DS65
DS32
DS16
DS8

(e)

 1
 3
 5
 7
 9

 11
 13
 15
 17
 19
 21
 23
 25
 27
 29
 31
 33
 35

 2 4 8 16 32

S
p

e
e
d

u
p

Number of processors

DS65
DS32
DS16

DS8

(f)

Figure 13: Speedup plots for SD1 (upper plots) and SD2 (lower plots)

with varying dataset sizes (DS8, DS16, DS32 and DS65) and number

of processors (1, 2, 4, 8, 16, 32; 1 Gbit Ethernet) at different scale

levels; (a, d) ρ = 1, (b, e) ρ = 3 and (c, f) ρ = 5.

processors, but not matching exactly (see Figure 13(b)). The small deviations at

that processor size are simply due to the increasing communication requirements.

This effect is more apparent for the next scale level value (ρ = 5) at 32 processors.

Due to comparatively less amount of computations at that scale level, the time

spent for the communication becomes considerable.

48

The speedup values of SD2 are also depicted in Figure 13(d, e, f) for varying

dataset sizes with different scale levels. Obtained linear scaling level behavior for

the sample sparse dataset is not as good as evenly distributed data set. For all

scale level values, the slope for speedup values is reduced for 32 processors

regardless of the dataset size. It is expected that this shortcoming could be

compensated by decomposing the dataset based on the count of foreground

objects, where provides load balancing among processors coming with the burden

of additional operation. As it is seen from the Figure 13, the linear behavior of the

algorithm is getting improved as scale level and dataset sizes increases. Even in

the present form of the algorithm, it is promising as the speedup values of SD2

approach to the values of SD1 in higher scale levels with increased dataset sizes.

Table 5: Efficiencies for SD1 (upper) and SD2 (lower) with varying

dataset sizes (DS8, DS16, DS32 and DS65) and number of processors

(1, 2, 4, 8, 16, 32; 1 Gbit Ethernet) at scale level, ρ = 3

Dataset/np 2 4 8 16 32

DS1 65 - - - 0.91 0.80

DS1 32 0.90 0.75 0.75 0.69 0.59

DS1 16 0.89 0.74 0.70 0.68 0.68

DS1 8 0.86 0.77 0.77 0.68 0.58

DS2 65 - - - 0.84 0.66

DS2 32 0.81 0.57 0.53 0.46 0.34

DS2 16 0.81 0.58 0.54 0.46 0.36

DS2 8 0.81 0.59 0.59 0.54 0.40

Table 5 shows the obtained efficiency values for SD1 and SD2 with varying

49

dataset sizes and number of processors at scale level, ρ = 3 without I/O costs.

The reason of presenting efficiency results in this table only for ρ = 3 is that

this scale level represent the behavior of the algorithm as most conveniently.

Obtained efficiency values for SD1 are considerably high for np = 2 and np = 16,

then exhibits a steady decrease with the increasing number of processors. This

behavior is due to increasing communication requirements. Communication cost

per processors increases.

The obtained results for efficiency parallel performance metric on the sparse

dataset (having missing objects), SD2 are also tabulated in Table 5. When

efficiency values of these two datasets (SD1 and SD2) are compared, it is

observed that the efficiency values for SD2 are smaller at scale level, ρ = 3 and

shows a fast drop after the smallest number of processors, np = 2 and np = 16.

Because of the fact that processors having less objects complete their execution

before others have completed. Consequently, there occurs some idling times. Due

to this idling of the processor, the efficiency decreases for the sparse dataset.

On the other hand, better efficiency values have been obtained as scale level,

(ρ), increases. The reason is that the execution time of wavelet transform neither

depends on the cluster shape complexity nor sparsity of dataset but depends on

the performance of connected component labeling algorithm. For this reason, as

scale level value increases, finding the connected components on this smaller

local transformed feature space is rather faster operation when compared to low

scale levels. This could imply a relation between scale level and efficiency for a

sparse dataset.

The parallel implementation can be further improved such that the efficiency

trend might be better than the present situation. The present minor restriction

is due to the fact that parent processor waits all processors before starting to

create merge tables. A possible solution is broadcasting clustering border vector

50

of local feature space instead of implementing master-slave model and thus each

processor can create its own merge table.

 1
 3
 5
 7
 9

 11
 13
 15
 17
 19
 21
 23
 25
 27
 29
 31
 33
 35
 37
 39

 2.6e+08 1.07e+09 2e+09 3e+09 4.29e+09

S
p
ee

d
u
p

Number of objects in dataset

np = 2
np = 4
np = 8

np = 16
np = 32

(a)

 1
 3
 5
 7
 9

 11
 13
 15
 17
 19
 21
 23
 25
 27
 29
 31
 33
 35
 37
 39

 2.6e+08 1.07e+09 2e+09 3e+09 4.29e+09
S

p
ee

d
u
p

Number of objects in dataset

np = 2
np = 4
np = 8

np = 16
np = 32

(b)

Figure 14: Speedups with varying number of objects in dataset and

number of processors (1, 2, 4, 8, 16, 32; 1 Gbit Ethernet) at scale level

ρ = 3. (a) SD1 (b) SD2

Speedup values with respect to the number of objects for SD1 and SD2

datasets are also plotted to understand the algorithmic behavior as another point

of view, see Figure 14. Each symbols on the data line correspond to number of

objects in datasets of DS8, DS16, DS32 and DS65, respectively. The upper limits

of dataset sizes for processor sizes are apparent from the figure. Investigation

of the dataset DS65 with 4294967296 objects become possible only at size of 8

processors. Figure 14 shows that speedup values are nearly independent from

the number of objects in SD1 up to processor size 16. For processor size 32,

there is a increase in speedup values for DS16 and DS65.

When SD2 is regarded in order to make speedup analysis as shown in Figure

14(b), the speedup values remain constant for the processor sizes of 2 and 4.

51

There are subtle decreases for other processors sizes up to DS32 and then

increases in speedup for the largest dataset DS65. Obtained results from these

experiments for the datasets SD1 and SD2 confirm that the developed parallel

WaveCluster algorithm has a time complexity of O(N), where N is the number

of objects in the dataset. In general, the linear scaling behavior is observed

up to processor size 8, but then there are small deviations from the linearity for

the processor sizes of 16 and 32 mostly in positive manner. The relatively high

speedup obtained at dataset DS65 for 16 and 32 processors system also supports

the suitability of the algorithm for larger datasets.

52

CHAPTER 9

CONCLUSION

Cluster analysis has great importance for exploratory pattern analysis in

many fields to group similar objects in the dataset into classes or clusters.

WaveCluster approach is a novel unsupervised clustering algorithm based on

wavelet transform. There are two sort of problems encountered in WaveCluster

approach which studied and corresponding algorithms proposed to overcome

these problems. One problem is that WaveCluster algorithm could engender

performance problems when the input dataset is huge. The other problem is that

it is not possible to mine huge datasets due to memory scarcity. As a solution,

the parallel approach has been followed to take advantage of its simultaneous

processing ability and distributed nature. In this thesis, parallel implementation

of WaveCluster algorithms based on the message passing interface (MPI) for

distributed memory architecture and CUDA model for shared memory architecture

have been developed to study the algorithm in two distinct models.

In the MPI algorithm; obtained execution times with and without I/O times,

speed-up and efficiency results have been presented for varied number of objects

on a dense (evenly distributed) dataset and sparse (unevenly) dataset for different

scale levels (ρ = 1, 2, 3) to reveal the performance of developed algorithm. Studied

datasets are scaled linearly to obtain very large/huge datasets to adapt for the

performance analysis aims. The highest value obtained for efficiency value

(without I/O times) is 0.91 for dense dataset (DS65) containing 4294967296

objects at 1 Gbit Ethernet case.

53

Experiments are performed on a PC cluster of 8 compute nodes with 32

processors at total and having fast and gigabit Ethernets as underlying com-

munication hardware. Results have shown that the parallel clustering algorithm

exposes superior speed-up and linear scaling behavior (time complexity) and can

be employed to overcome space complexity constraint as well due to low memory

consumption.

As a parallel implementation strategy, master/slave model is adopted and

replicated approach is followed to increase the performance and to reduce the

amount of memory consumed at each processor for holding local datasets. This

approach also brought us a considerable improvement in execution time when I/O

time is considered. The communications among processors are kept as minimum

to achieve high efficiency, such that each processor accesses its subset of large

dataset directly in a shared manner. A minor restriction is due to the fact that

parent processor waits all processors before starting to create merge tables.

When this minor restriction is addressed, the presented parallel implementation

can be further improved. An proposed solution is to broadcast clustering border

vector of local feature space instead of implementing master-slave model and

thus each processor can create its own merge table. The proposed parallel

algorithm can also be applied feasibly on a shared memory architecture using

thread programming technique.

In the CUDA algorithm of WaveCluster approach; the CUDA implementations

of extraction of low-frequency component and connected component labeling al-

gorithms have been presented which are essential sub-algorithms in WaveCluster

algorithm. Together with these sub-algorithms, the lookup phase can be easily

implemented using constant memory which is fast and cached on the device.

The reported results demonstrate that kernel algorithms expose good speedup

values as dataset size increase (107.10x speedup in the kernel of low-frequency

54

component extraction and 5.56x in the kernel of connected component labeling).

Besides, as a time complexity of the algorithms, the execution times of CCL CUDA

algorithms scales nearly linear with the number of points in the used dataset. It is

also observed that the data transfer time between CPU and GPU may introduce

a considerable latency delay which is known as the main bottleneck on GPU

computation. Spectacular increasing amount of data and high demand to process

this data in a fast and efficient way makes the GPU computation as a good

promised solution due to its tremendous computational power.

To sum up, promising results have been obtained in both parallel algorithms

of WaveCluster approach. The results also show the usefulness of parallel

computation approach to cope with algorithmic problems.

55

R1

REFERENCES

[1] Adil, S., and Qamar, S. (2009). Implementation of Association Rule
 Mining Using CUDA. In International Conference on Emerging
 Technologies (ICET 2009), Pages 332–336.

[2] Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining Association
 Rules Between Sets of Items in Large Databases. In SIGMOD ’93:
 Proceedings of the 1993 ACM SIGMOD International Conference on
 Management of Data, Pages 207–216. ACM.

[3] Arlia, D., and Coppola, M. (2001). Experiments in Parallel Clustering
 with Dbscan. In Euro-Par ’01: Proceedings of the 7th International Euro-
 Par Conference Manchester on Parallel Processing, Pages 326–331,
 London, UK. Springer-Verlag.

[4] Blaise Barney, L. L. N. L. (2010).
 https://computing.llnl.gov/tutorials/mpi/.

[5] Boron, (2010). http://siber.cankaya.edu.tr/boron-ganglia/.

[6] Boutsinas, B., and Gnardellis, T. (2002). On Distributing the
 Clustering Process. Pattern Recogn. Lett., 23(8):999–1008.

[7] Brause, R., Langsdorf, T., and Hepp, M. (1999). Neural Data Mining
 for Credit Card Fraud Detection. In ICTAI ’99: Proceedings of the 11th
 IEEE International Conference on Tools with Artificial Intelligence,
 page 103. IEEE Computer Society.

[8] Chapman, B., Jost, G., and Pas, R. V. D. (2007). Using OpenMP:
 Portable Shared Memory Parallel Programming (Scientific and
 Engineering Computation). The MIT Press.

[9] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., and
 Skadron, K. (2008). A Performance Study of General-Purpose
 Applications on Graphics Processors Using CUDA. J. Parallel
 Distrib. Comput., 68(10):1370–1380.

http://siber.cankaya.edu.tr/boron-ganglia/

R2

[10] Duncan, R. (1990). A Survey of Parallel Computer Architectures.
 Computer, 23(2):5 –16.

[11] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A Density
 Based Algorithm for Discovering Clusters in Large Spatial Databases
 with Noise. In Proc. of 2nd International Conference on Knowledge
 Discovery and, Pages 226–231.

[12] Fayyad, U., Piatetsky-shapiro, G., and Smyth, P. (1996). From Data
 Mining to Knowledge Discovery in Databases. AI Magazine, 17:37–54.

 [13] Fischer, C. C., Tibbetts, K. J., Morgan, D., and Ceder, G. (2006).
 Predicting Crystal Structure by Merging Data Mining with Quantum
 Mechanics. Nature Materials, 51:641–646.

[14] Flynn, M. J. (1972). Some Computer Organizations and Their
 Effectiveness. Computers, IEEE Transactions on, C-21(9):948 –960.

[15] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J.,
 Squyres, J. M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A.,
 Castain, R. H., Daniel, D. J., Graham, R. L., and Woodall, T. S.
 (2004). Open MPI: Goals, Concept, and Design of a Next Generation
 MPI Implementation. In Proceedings, 11th European PVM/MPI Users’
 Group Meeting, Pages 97–104, Budapest, Hungary.

[16] Gonzalez, R. C., and Woods, R. E. (1992). Digital Image Processing.
 Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd
 Edition.

[17] Graepel, T. (1998). Statistical Physics of Clustering Algorithms. In
 Diplomarbeit, Technique Universitt, FB Physik, Institut fr Theoretishe
 Physik.

[18] Gropp, W., Lusk, E., and Skjellum, A. (1994). Using MPI: Portable
 Parallel Programming with the Message-passing Interface. MIT Press,
 Cambridge, MA, USA.

[19] Han, J., and Kamber, M. (2006). Data Mining Concept and
 Techniques. Morgan Kaufman, San Francisco, USA.

[20] Hedberg, S. R. (1995). Parallelism Speeds Data Mining. IEEE Parallel
 Distrib. Technol., 3(4):3–6.

[21] Huffmire, T., and Sherwood, T. (2006). Wavelet-based Phase
 Classification. In PACT ’06: Proceedings of the 15th International

R3

 Conference on Parallel Architectures and Compilation Techniques,
 Pages 95–104, New York, NY, USA. ACM.

[22] Kaufman, L., and Rousseeuw, P. J. (2005). Finding Groups in Data:
 An Introduction to Cluster Analysis (Wiley Series in Probability and
 Statistics). Wiley-Interscience.

[23] Kumar, N., Satoor, S., and Buck, I. (2009). Fast Parallel Expectation
 Maximazation for Gaussian Mixture Models on GPU using CUDA. In
 11th IEEE International Conference on High Performance Computing
 and Communications (HPCC 09), Pages 103–109.

[24] MacQueen, J. B. (1967). Some Methods for Classification and Analysis
 of Multivariate Observations. In Proc. of the fifth Berkeley Symposium
 on Mathematical Statistics and Probability, Volume 1, Pages 281–297.
 University of California Press.

[25] Madeira, S. C., and Oliveira, A. L. (2004). Biclustering Algorithms for
 Biological Data Analysis: A Survey. IEEE/ACM Transactions on
 Computational Biology and Bioinformatics, 1:24–45.

[26] Mukhopadhyay, A., and Maulik, U. (2009). Unsupervised Satellite
 Image Segmentation by Combining SA Based Fuzzy Clustering with
 Support Vector Machine. Advances in Pattern Recognition, International
 Conference on, 0:381–384.

[27] Ng, R. T., and Han, J. (2002). Clarans: A Method for Clustering Objects
 for Spatial Data Mining. IEEE Trans. on Knowl. and Data Eng.,
 14(5):1003–1016.

[28] Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008). Scalable
 Parallel Programming with CUDA. Queue, 6:40–53.

[29] NVIDIA. (2010). NVIDIA CUDA Programming Guide 3.0.

[30] Odewahn, S., Stockwell, E., Penning-ton, R., Humphreys, R., and
 Zumach, W. (1992). Automated Star/Galaxy Discrimination with Neural
 Networks. Astronomical Journal, 103(1):318–331.

[31] Pacheco, P. S. (1996). Parallel Programming with MPI. Morgan
 Kaufmann Publishers Inc., San Francisco, CA, USA.

[32] Quammen, C. (2005). Introduction to Programming Shared-Memory
 and Distributed-Memory Parallel Computers. Crossroads, 12(1):2–2.

R4

[33] Shapiro, L., and Stockman, G. (2001). Computer Vision. Prentice Hall.

[34] Sheikholeslami, G., Chatterjee, S., and Zhang, A. (2000).
 Wavecluster: A Wavelet-based Clustering Approach for Spatial Data in
 Very Large Databases. The VLDB Journal, 8(3-4):289–304.

[35] Skillicorn, D. (1999). Strategies for Parallel Data Mining. IEEE
 Concurrency, 7(4):26–35.

[36] Stollnitz, E. J., DeRose, T. D., and Salesin, D. H. (1995). Wavelets for
 Computer Graphics: A Primer, Part 1. IEEE Comput. Graph. Appl.,
 15(3):76–84.

[37] Surdeanu, M., Turmo, J., and Ageno, A. (2005). A Hybrid
 Unsupervised Approach for Document Clustering. In KDD ’05:
 Proceedings of the eleventh ACM SIGKDD international conference on
 Knowledge Discovery in Data Mining, Pages 685–690, New York, NY,
 USA. ACM.

[38] TOP500, (2010). Top 500 Supercomputing Site. http://www.top500.org.

[39] Wang, W., Yang, J., and Muntz, R. R. (1997). Sting: A Statistical
 Information Grid Approach to Spatial Data Mining. In VLDB ’97:
 Proceedings of the 23rd International Conference on Very Large Data
 Bases, Pages 186–195, San Francisco, CA, USA. Morgan Kaufmann
 Publishers Inc.

[40] Yıldırım, A. A., and Özdoğan, C. (2011). Parallel Wavecluster: A
 Linear Scaling Parallel Clustering Algorithm Implementation with
 Application to Very Large Datasets. Journal of Parallel and Distributed
 Computing, Elsevier.

[41] Yıldırım, A. A., and Özdoğan, C. (2010). Parallel Wavelet-based
 Clustering Algorithm on GPUs Using CUDA. In World Conference on
 Information Technology (WCIT 10). Procedia-Computer Science
 Journal, Elsevier.

[42] Zamir, O., and Etzioni, O. (1998). Web Document Clustering: A
 Feasibility Demonstration. In Research and Development in Information
 Retrieval, Pages 46–54.

[43] Zhang, T., Ramakrishnan, R., and Livny, M. (1996). BIRCH: An
 Efficient Data Clustering Method for Very Large Databases. In
 Proceedings of the 1996 ACM SIGMOD International Conference on
 Management of Data (SIGMOD’96), Pages 103–114.

http://www.top500.org/

R5

[44] Zhang, Y., Xiong, Z., Mao, J., and Ou, L. (2006). The Study of Parallel
 K-means Algorithm. In Proceedings of the 6th World Congress on
 Intelligent Control and Automation, Volume 2, Pages 5868–5871. IEEE
 Transaction on Intelligent Control and Automation.

A1

APPENDIX A

MPI CODE OF PARALLEL WAVECLUSTER

ALGORITHM

/*

The source code is only distributed to demonstrate the logic and the phases

of the algorithm. If you wish to modify or distribute source code of the

program, It is required to write to the author to ask for permission. The author

is not responsible for damages, including any general, special, incidental or

consequential damages or any data loss arising out when the full or part of

the source code has been included in your software.

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <glib.h>

#include <math.h>

#include <glib/gprintf.h>

#include <glib/gstring.h>

#include <glib/gslist.h>

#include <glib/gmem.h>

#include <mpi.h>

#define MAX_CLUSTER_ID 200000

#define MAX_BORDER_LUP 1000

#define LOW_R 0.7071

A2

#define THRESHOLD 125

typedef enum _bordertype

{

 LEFT = 1, RIGHT = 2, TOP = 3, BOTTOM = 4

} bordertype;

typedef struct _border

{

 bordertype type;

 gint lefttop;

 gint rightbottom;

} border;

typedef struct _clusterborder

{

 guchar clusterid;

 GSList ∗borders;

} clusterborder;

typedef struct _node

{

 gint id;

 gint index_x;

 gint index_y;

 gint ∗borders;

 gint borderlu[MAX_BORDER_LUP][2];

 gint borderluindex;

} node;

static gint ∗mergetable;

static gint ∗borders = NULL;

static gint ∗connectedbufferresult = NULL;

static gint ∗datasetbuffer = NULL;

static GSList ∗nodelist = NULL;

static gint datalength;

static gint gridwidth;

static gint gridheight;

static gint basegridwidth;

A3

static gint basegridheight;

static gint griddimensionwidth;

static gint griddimensionheight;

static gint wavelettranformationcount = 1;

static int rank = 0;

static int size = 1;

static void writepgm (gchar ∗ path,

 gint ∗ buffer);

static void haartransform (gint ∗ input,

 gint ∗∗ lowoutput,

 gboolean th);

static void detectclusters (gint ∗ data);

static int

getneighbourlabel (gint ∗ conbuffer,

 gint index_x,

 gint index_y,

 gint ∗ biggerlabel);

static gboolean hasneighbourlabel (gint ∗

 data,

 gint

 index_x,

 gint

 index_y);

static void saveoutput ();

static gint ∗createborders ();

static node ∗getslavenode (int id);

static void mergeclusters ();

static void changebordervalue (gint ∗ buf,

 gint oldvalue,

 gint

 newvalue);

static void updateclusters (gint ∗ mergedata,

 gint

 mergedatalength);

static void makelookup ();

int

main (int argc, char ∗argv[])

A4

{

 MPI_Init (&argc, &argv);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 int i, j;

 /∗ initialize merge table ∗/

 mergetable =

 (gint ∗) malloc (sizeof (gint) ∗

 MAX_CLUSTER_ID);

 int maxcls = MAX_CLUSTER_ID;

 while (maxcls)

 {

 maxcls−−;

 mergetable[maxcls] = −1;

 }

 MPI_Status status;

 gint ∗lowoutput = NULL;

 gboolean isparallel = TRUE;

 if (size == 1)

 {

 isparallel = FALSE;

 }

 if (rank == 0 && argc >= 2)

 wavelettranformationcount =

 g_ascii_strtod (argv[1], NULL);

 if (isparallel)

 MPI_Bcast (&wavelettranformationcount, 1,

 MPI_INT, 0, MPI_COMM_WORLD);

 /∗ dataset dimension size should be multiple of 2 ∗/

 struct stat stats;

 stat (”dataset”, &stats);

 datalength = sqrt (stats.st_size / 2);

A5

 if (size == 2)

 {

 griddimensionwidth = 2;

 griddimensionheight = 1;

 }

 else if (size == 8)

 {

 griddimensionwidth = 4;

 griddimensionheight = 2;

 }

 else if (size == 32)

 {

 griddimensionwidth = 8;

 griddimensionheight = 4;

 }

 else

 {

 griddimensionwidth = sqrt (size);

 griddimensionheight =

 griddimensionwidth;

 }

 basegridwidth = gridwidth =

 datalength / griddimensionwidth;

 basegridheight = gridheight =

 datalength / griddimensionheight;

 if (isparallel)

 {

 if (rank == 0)

 {

 /∗ create node structures ∗/

 int nodeindex = 0;

 for (i = 0;

 i < griddimensionheight; i++)

 {

A6

 for (j = 0;

 j < griddimensionwidth;

 j++)

 {

 /∗ create node ∗/

 node ∗slavenode =

 (node ∗)

 malloc (sizeof (node));

 slavenode−>id = nodeindex;

 slavenode−>index_x = j;

 slavenode−>index_y = i;

 slavenode−>borders = NULL;

 slavenode−>borderluindex =

 0;

 nodelist =

 g_slist_append (nodelist,

 slavenode);

 nodeindex++;

 }

 }

 }

 gint64 gridbuffersize =

 gridwidth ∗ gridheight;

 datasetbuffer =

 (gint ∗) malloc (gridbuffersize ∗

 sizeof (gint));

 gint gridindex_y = 0;

 gint gridindex_x = 0;

 /∗ send grid indexes to each slave node ∗/

 if (rank == 0)

 {

A7

 gint ∗tmpgridbuf =

 (gint ∗) malloc (sizeof (gint) ∗

 2);

 for (i = 1; i < size; i++)

 {

 gint tmpgridindex_y =

 i / griddimensionwidth;

 gint tmpgridindex_x =

 i −

 (tmpgridindex_y ∗

 griddimensionwidth);

 tmpgridbuf[0] = tmpgridindex_y;

 tmpgridbuf[1] = tmpgridindex_x;

 MPI_Send (tmpgridbuf, 2,

 MPI_INT, i, 0,

 MPI_COMM_WORLD);

 }

 g_free (tmpgridbuf);

 }

 else

 {

 gint ∗tmpgridbuf =

 (gint ∗) malloc (sizeof (gint) ∗

 2);

 MPI_Recv (tmpgridbuf, 2, MPI_INT,

 0, 0, MPI_COMM_WORLD,

 &status);

 gridindex_y = tmpgridbuf[0];

 gridindex_x = tmpgridbuf[1];

 g_free (tmpgridbuf);

 }

 /∗ load each buffer for node ∗/

 GIOChannel ∗datafile =

 g_io_channel_new_file (”dataset”,

A8

 ”r”, NULL);

 if (datafile == NULL)

 {

 g_printf

 (”error while reading file rank:%d∖n”,

 rank);

 return (1);

 }

 gint64 bufferindex = 0;

 gint64 bufindex =

 ((gridindex_y ∗ griddimensionwidth ∗

 gridbuffersize) +

 (gridindex_x ∗ gridwidth)) ∗ 2;

 for (j = 0; j < gridheight; j++)

 {

 g_io_channel_seek (datafile,

 bufindex,

 G_SEEK_SET);

 for (i = 0; i < gridwidth; i++)

 {

 gchar ∗line = NULL;

 g_io_channel_read_line

 (datafile, &line, NULL, NULL,

 NULL);

 /∗ read point and scale it to 255

 because bitmap has 1 bit palette! ∗/

 datasetbuffer[bufferindex++] =

 255 ∗

 (gint) g_ascii_strtod (line,

 NULL);

 g_free (line);

 }

 bufindex += datalength ∗ 2;

A9

 }

 gint ∗lowpartbuffer = datasetbuffer;

 for (i = 0;

 i < wavelettranformationcount;

 i++)

 {

 gboolean th = FALSE;

 if (i ==

 wavelettranformationcount − 1)

 th = TRUE;

 haartransform (lowpartbuffer,

 &lowoutput, th);

 if (i != 0)

 g_free (lowpartbuffer);

 lowpartbuffer = lowoutput;

 }

 detectclusters (lowpartbuffer);

 g_free (lowpartbuffer);

 borders = createborders ();

 gint borderlength =

 2 ∗ (gridwidth + gridheight);

 if (rank == 0)

 {

 node ∗slavenode = getslavenode (0);

 slavenode−>borders = borders;

 gint slavecount = size − 1;

 for (i = 0; i < slavecount; i++)

 {

 gint ∗nodeborders =

 (gint ∗)

 malloc (sizeof (gint) ∗

 borderlength);

 MPI_Recv (nodeborders,

 borderlength,

A10

 MPI_INT,

 MPI_ANY_SOURCE, 0,

 MPI_COMM_WORLD,

 &status);

 /∗ get slave node pointer to

 assign cluster and border list ∗/

 slavenode =

 getslavenode (status.

 MPI_SOURCE);

 slavenode−>borders =

 nodeborders;

 }

 mergeclusters ();

 makelookup ();

 }

 else

 {

 /∗ send border data ∗/

 MPI_Send (borders, borderlength,

 MPI_INT, 0, 0,

 MPI_COMM_WORLD);

 /∗ get merge result ∗/

 gint mergedatalength = 0;

 MPI_Recv (&mergedatalength, 1,

 MPI_INT, 0, 0,

 MPI_COMM_WORLD, &status);

 if (mergedatalength != −1)

 {

 gint ∗mergedata =

 (gint ∗)

 malloc (sizeof (gint) ∗

 mergedatalength);

 MPI_Recv (mergedata,

A11

 mergedatalength,

 MPI_INT, 0, 0,

 MPI_COMM_WORLD,

 &status);

 updateclusters (mergedata,

 mergedatalength);

 }

 makelookup ();

 }

 }

 else/∗ sequential execution ∗/

 {

 /∗ read database into memory ∗/

 GIOChannel ∗datafile =

 g_io_channel_new_file (”dataset”,

 ”r”, NULL);

 if (datafile == NULL)

 {

 g_printf

 (”error while reading file∖n”);

 return (1);

 }

 gchar ∗line;

 /∗ allocate buffer to fill ∗/

 datasetbuffer =

 (gint ∗) malloc (gridwidth ∗

 gridheight ∗

 sizeof (gint));

 gint64 bufferindex = 0;

 do

 {

 g_io_channel_read_line (datafile,

 &line,

 NULL, NULL,

 NULL);

 if (line != NULL)

A12

 {

 /∗ read point and scale it to

 255 because bitmap has 1 bit palette! ∗/

 datasetbuffer[bufferindex++] =

 255 ∗

 (guchar)

 g_ascii_strtod (line, NULL);

 g_free (line);

 }

 }

 while (line != NULL);

 g_io_channel_shutdown (datafile, FALSE,

 NULL);

 g_io_channel_unref (datafile);

 gint ∗lowpartbuffer = datasetbuffer;

 for (i = 0;

 i < wavelettranformationcount;

 i++)

 {

 gboolean th = FALSE;

 if (i ==

 wavelettranformationcount − 1)

 th = TRUE;

 haartransform (lowpartbuffer,

 &lowoutput, th);

 if (i != 0)

 g_free (lowpartbuffer);

 lowpartbuffer = lowoutput;

 }

 detectclusters (lowpartbuffer);

 g_free (lowpartbuffer);

 makelookup ();

 saveoutput ();

A13

 }

 if (isparallel)

 {

 saveoutput ();

 MPI_Finalize ();

 return (0);

 }

static void

updateclusters (gint ∗ mergedata,

 gint mergedatalength)

{

 gint64 i, j;

 gint64 buflength = gridwidth ∗ gridheight;

 for (j = 0; j < buflength; j++)

 {

 for (i = 0; i < mergedatalength / 2;

 i++)

 {

 gint oldclusterid =

 mergedata[i ∗ 2];

 gint newclusterid =

 mergedata[i ∗ 2 + 1];

 if (connectedbufferresult[j] ==

 oldclusterid)

 connectedbufferresult[j] =

 newclusterid;

 }

 }

}

A14

void

changebordervalue (gint ∗ buf, gint oldvalue,

 gint newvalue)

{

 gint borderlength =

 2 ∗ (gridwidth + gridheight);

 gint i;

 for (i = 0; i < borderlength; i++)

 {

 if (buf[i] == oldvalue)

 buf[i] = newvalue;

 }

}

void

mergeclusters ()

{

 gint i, j, y, k = 0;

 /∗ check horizontal border neighbors ∗/

 for (y = 0; y < griddimensionheight; y++)

 {

 for (i = 0; i < griddimensionwidth − 1;

 i++)

 {

 node ∗nodeleft =

 getslavenode (i + k);

 node ∗noderight =

 getslavenode (i + k + 1);

 for (j = 0; j < gridheight; j++)

 {

 gint leftborderindex =

 gridwidth + j;

 gint rightborderindex =

 (2 ∗ gridwidth +

 gridheight) + j;

 gint leftvalue =

 nodeleft−>

 borders[leftborderindex];

A15

 gint rightvalue =

 noderight−>

 borders[rightborderindex];

 if (leftvalue != 0

 && rightvalue != 0

 && leftvalue != rightvalue)

 {

 /∗ merge cluster ∗/

 if (leftvalue < rightvalue)

 {

 changebordervalue

 (noderight−>borders,

 rightvalue,

 leftvalue);

 noderight−>

 borderlu[noderight−>

 borderluindex]

 [0] = rightvalue;

 noderight−>

 borderlu[noderight−>

 borderluindex]

 [1] = leftvalue;

 noderight−>

 borderluindex++;

 }

 else

 {

 changebordervalue

 (nodeleft−>borders,

 leftvalue,

 rightvalue);

 nodeleft−>

 borderlu[nodeleft−>

 borderluindex]

 [0] = leftvalue;

 nodeleft−>

 borderlu[nodeleft−>

 borderluindex]

 [1] = rightvalue;

A16

 nodeleft−>

 borderluindex++;

 }

 }

 }

 }

 k += griddimensionwidth;

 }

 k = 0;

 for (y = 0; y < griddimensionheight − 1;

 y++)

 {

 for (i = 0; i < griddimensionwidth;

 i++)

 {

 node ∗nodetop =

 getslavenode (i + k);

 node ∗nodebottom =

 getslavenode (i + k +

 griddimensionwidth);

 for (j = 0; j < gridwidth; j++)

 {

 gint topborderindex =

 gridwidth + gridheight + j;

 gint bottomborderindex = j;

 gint topvalue =

 nodetop−>

 borders[topborderindex];

 gint bottomvalue =

 nodebottom−>

 borders[bottomborderindex];

 if (topvalue != 0

 && bottomvalue != 0

 && topvalue != bottomvalue)

 {

 /∗ merge cluster ∗/

 if (topvalue < bottomvalue)

 {

A17

 changebordervalue

 (nodebottom−>borders,

 bottomvalue,

 topvalue);

 nodebottom−>

 borderlu[nodebottom−>

 borderluindex]

 [0] = bottomvalue;

 nodebottom−>

 borderlu[nodebottom−>

 borderluindex]

 [1] = topvalue;

 nodebottom−>

 borderluindex++;

 }

 else

 {

 changebordervalue

 (nodetop−>borders,

 topvalue,

 bottomvalue);

 nodetop−>

 borderlu[nodetop−>

 borderluindex]

 [0] = topvalue;

 nodetop−>

 borderlu[nodetop−>

 borderluindex]

 [1] = bottomvalue;

 nodetop−>

 borderluindex++;

 }

 }

 }

 }

 k += griddimensionwidth;

 }

 node ∗node = NULL;

A18

 /∗ send merge result to slave nodes ∗/

 for (i = 1; i < size; i++)

 {

 node = getslavenode (i);

 if (node−>borderluindex == 0)

 {

 gint datalength = −1;

 MPI_Send (&datalength, 1, MPI_INT,

 i, 0, MPI_COMM_WORLD);

 }

 else

 {

 gint datalength =

 node−>borderluindex ∗ 2;

 gint ∗mergedata =

 (gint ∗) malloc (sizeof (gint) ∗

 datalength);

 for (j = 0;

 j < node−>borderluindex; j++)

 {

 mergedata[j ∗ 2] =

 node−>borderlu[j][0];

 mergedata[j ∗ 2 + 1] =

 node−>borderlu[j][1];

 }

 MPI_Send (&datalength, 1, MPI_INT,

 i, 0, MPI_COMM_WORLD);

 MPI_Send (mergedata, datalength,

 MPI_INT, i, 0,

 MPI_COMM_WORLD);

 }

 }

 /∗ update cluster numbers for master node ∗/

 node = getslavenode (0);

 if (node−>borderluindex != 0)

 {

 gint datalength =

 node−>borderluindex ∗ 2;

A19

 gint ∗mergedata =

 (gint ∗) malloc (sizeof (gint) ∗

 datalength);

 for (j = 0; j < node−>borderluindex;

 j++)

 {

 mergedata[j ∗ 2] =

 node−>borderlu[j][0];

 mergedata[j ∗ 2 + 1] =

 node−>borderlu[j][1];

 }

 updateclusters (mergedata, datalength);

 }

}

node ∗

getslavenode (int id)

{

 gint nodelength =

 g_slist_length (nodelist);

 int i;

 for (i = 0; i < nodelength; i++)

 {

 node ∗slavenode =

 (node ∗) g_slist_nth_data (nodelist,

 i);

 if (slavenode−>id)

 return slavenode;

 }

 return NULL;

}

gint ∗

createborders ()

{

 gint bordersize =

 2 ∗ (gridwidth + gridheight);

 gint ∗border =

A20

 (gint ∗) malloc (sizeof (gint) ∗

 bordersize);

 memset (border, 0,

 sizeof (gint) ∗ bordersize);

 /∗ top and bottom border ∗/

 gint i, j = 0;

 for (i = 0; i < gridwidth; i++)

 {

 border[j] = connectedbufferresult[i];

 border[j + gridwidth + gridheight] =

 connectedbufferresult[(gridwidth ∗

 (gridheight −

 1)) + i];

 j++;

 }

 /∗ right and left border ∗/

 j = 0;

 for (i = 0; i < gridheight; i++)

 {

 border[j + gridwidth] =

 connectedbufferresult[i ∗ gridwidth +

 (gridwidth −

 1)];

 border[j + gridwidth + gridheight +

 gridwidth] =

 connectedbufferresult[i ∗ gridwidth];

 j++;

 }

 return border;

}

void

makelookup ()

{

 gint scalex = basegridwidth / gridwidth;

 gint scaley = basegridheight / gridheight;

A21

 gint64 i, j;

 for (j = 0; j < basegridheight; j++)

 {

 for (i = 0; i < basegridwidth; i++)

 {

 gint pointval =

 datasetbuffer[j ∗ basegridwidth +

 i];

 if (pointval != 255)

 {

 gint clusterval =

 connectedbufferresult[(j /

 scaley)

 ∗

 gridwidth

 +

 (i /

 scalex)];

 /∗ nocluster defined ∗/

 if (clusterval == MAX_CLUSTER_ID)

 datasetbuffer[j ∗ basegridwidth + i] = −1;

 else

 datasetbuffer[j ∗

 basegridwidth +

 i] =

 clusterval;

 }

 else

 {

 datasetbuffer[j ∗

 basegridwidth +

 i] = −1;

 }

 }

 }

}

void

A22

saveoutput ()

{

 gint64 i, j;

 char buf[40];

 g_sprintf (buf, ”%d_output”, rank);

 GIOChannel ∗channel =

 g_io_channel_new_file (buf, ”w”, NULL);

 g_sprintf (buf, ”%d %d∖n”, basegridwidth,

 basegridheight);

 g_io_channel_write_chars (channel, buf,

 strlen (buf),

 NULL, NULL);

 for (i = 0; i < basegridheight; i++)

 {

 for (j = 0; j < basegridwidth; j++)

 {

 gint value =

 datasetbuffer[i ∗ basegridwidth +

 j];

 if (value != −1)

 {

 g_sprintf (buf,

 ”x:%lld y:%lld c:%d∖n”,

 j, i, value);

 g_io_channel_write_chars

 (channel, buf, strlen (buf),

 NULL, NULL);

 }

 }

 }

 g_io_channel_shutdown (channel, TRUE,

 NULL);

 g_io_channel_unref (channel);

}

gboolean

hasneighbourlabel (gint ∗ data, gint index_x,

A23

 gint index_y)

{

 int i, j;

 for (i = −1; i < 2; i++)

 {

 for (j = −1; j < 2; j++)

 {

 if (i == 0 && j == 0)

 continue;

 if (index_y + i == −1

 || index_y + i == gridheight)

 continue;

 if (index_x + j == −1

 || index_x + j == gridwidth)

 continue;

 gint neighbour =

 data[((index_y +

 i) ∗ gridwidth) +

 index_x + j];

 if (neighbour != 255)

 return TRUE;

 }

 }

 return FALSE;

}

gint

getneighbourlabel (gint ∗ conbuffer,

 gint index_x,

 gint index_y,

 gint ∗ biggerlabel)

{

 gint i, j, result = MAX_CLUSTER_ID;

 if (biggerlabel)

 ∗biggerlabel = MAX_CLUSTER_ID;

 for (i = −1; i < 2; i++)

 {

A24

 for (j = −1; j < 2; j++)

 {

 if (i == 0 && j == 0)

 continue;

 if (index_y + i == −1

 || index_y + i == gridheight)

 continue;

 if (index_x + j == −1

 || index_x + j == gridwidth)

 continue;

 gint neighbour =

 conbuffer[((index_y +

 i) ∗ gridwidth) +

 index_x + j];

 if (neighbour != MAX_CLUSTER_ID

 && result == MAX_CLUSTER_ID)

 {

 result = neighbour;

 }

 else if (neighbour !=

 MAX_CLUSTER_ID

 && result != neighbour)

 {

 if (neighbour < result)

 {

 if (biggerlabel)

 ∗biggerlabel = result;

 result = neighbour;

 }

 else

 {

 if (biggerlabel)

 ∗biggerlabel = neighbour;

 }

 return result;

 }

 }

 }

A25

 return result;

}

void

detectclusters (gint ∗ data)

{

 connectedbufferresult =

 (gint ∗) malloc (gridwidth ∗ gridheight ∗

 sizeof (gint));

 gint j = 0, i = gridwidth ∗ gridheight;

 while (i)

 {

 i−−;

 connectedbufferresult[i] =

 MAX_CLUSTER_ID;

 }

 const gint baselabel =

 MAX_CLUSTER_ID ∗ rank + 1;

 gint labelindex = 1;

 gint biggerlabel;

 /∗ first pass ∗/

 for (j = 0; j < gridheight; j++)

 {

 for (i = 0; i < gridwidth; i++)

 {

 guchar point =

 data[j ∗ gridwidth + i];

 /∗ element is not background ∗/

 if (point != 255)

 {

 gboolean hasneighbour =

 hasneighbourlabel (data, i,

 j);

 if (hasneighbour == TRUE)

 {

 gint neighbourlabel =

A26

 getneighbourlabel

 (connectedbufferresult,

 i, j,

 &biggerlabel);

 if (neighbourlabel ==

 MAX_CLUSTER_ID)

 {

 /∗ create new cluster and add

 point to this cluster ∗/

 connectedbufferresult[j

 ∗

 gridwidth

 +

 i]

 = labelindex;

 labelindex++;

 }

 else

 {

 /∗ assign min label to point and

 set other cluster with this label ∗/

 connectedbufferresult[j

 ∗

 gridwidth

 +

 i]

 = neighbourlabel;

 if (biggerlabel !=

 MAX_CLUSTER_ID)

 {

 if (mergetable

 [biggerlabel]

 == −1)

 mergetable

 [biggerlabel] =

 neighbourlabel;

A27

 }

 }

 }

 else

 {

 /∗ create new cluster and add

 point to this cluster ∗/

 connectedbufferresult[j ∗

 gridwidth

 +

 i] =

 labelindex;

 labelindex++;

 }

 }

 }

 }

 /∗ second pass ∗/

 gint sizeofconbuf = gridwidth ∗ gridheight;

 for (i = 0; i < sizeofconbuf; i++)

 {

 if (connectedbufferresult[i] ==

 MAX_CLUSTER_ID)

 continue;

 int clsresult =

 connectedbufferresult[i];

 while (clsresult != −1)

 {

 if (mergetable[clsresult] == −1)

 break;

 connectedbufferresult[i] =

 mergetable[clsresult];

 clsresult = mergetable[clsresult];

 }

A28

 connectedbufferresult[i] += baselabel;

 }

}

void

writepgm (gchar ∗ path, gint ∗ buffer)

{

 GIOChannel ∗channel =

 g_io_channel_new_file (path, ”w”, NULL);

 char buf[10];

 g_sprintf (buf, ”%d %d∖n”, gridwidth,

 gridheight);

 g_io_channel_write_chars (channel, ”P2∖n”,

 3, NULL, NULL);

 g_io_channel_write_chars (channel,

 ”# wavelet output∖n”,

 17, NULL, NULL);

 g_io_channel_write_chars (channel, buf,

 strlen (buf),

 NULL, NULL);

 g_io_channel_write_chars (channel, ”255∖n”,

 4, NULL, NULL);

 int i, j;

 for (i = 0; i < gridheight; i++)

 {

 for (j = 0; j < gridwidth; j++)

 {

 gint value =

 buffer[i ∗ gridwidth + j];

 if (value == MAX_CLUSTER_ID)

 value = 255;

 else

 value = (value + 20) % 200;

 g_sprintf (buf, ”%d∖n”, value);

 g_io_channel_write_chars (channel,

 buf,

 strlen

 (buf),

A29

 NULL,

 NULL);

 }

 g_io_channel_write_chars (channel,

 ”∖n”, 1,

 NULL, NULL);

 }

 g_io_channel_shutdown (channel, TRUE,

 NULL);

 g_io_channel_unref (channel);

}

void

haartransform (gint ∗ input,

 gint ∗∗ lowoutput,

 gboolean th)

{

 gint halfresx = gridwidth / 2;

 gint halfresy = gridheight / 2;

 gint ∗lowdata =

 (gint ∗) malloc (halfresx ∗ halfresy ∗

 sizeof (gint));

 int i, j, k, t;

 gint ∗tmplowodd =

 (gint ∗) malloc (halfresx ∗

 sizeof (gint));

 gint ∗tmploweven =

 (gint ∗) malloc (halfresx ∗

 sizeof (gint));

 gint ∗tmplow = NULL;

 t = 0;

 for (i = 0; i < halfresy ∗ 2; i++)

 {

 if (i % 2 == 1)

 {

 tmplow = tmplowodd;

 }

 else

A30

 {

 tmplow = tmploweven;

 }

 for (j = 0; j < halfresx; j++)

 {

 gint ind =

 i ∗ 2 ∗ halfresx + j ∗ 2;

 gint indnext =

 i ∗ 2 ∗ halfresx + j ∗ 2 + 1;

 gint sum =

 (input[ind] +

 input[indnext]) ∗ LOW_R;

 tmplow[j] = sum;

 }

 if (i % 2 == 1)

 {

 for (k = 0; k < halfresx; k++)

 {

 int sum =

 (tmploweven[k] +

 tmplowodd[k]) ∗ LOW_R;

 if (th)

 {

 if (sum > THRESHOLD)

 sum = 255;

 else

 sum = 0;

 }

 lowdata[t] = sum;

 t++;

 }

 }

 }

 g_free (tmplowodd);

 g_free (tmploweven);

 gridwidth = halfresx;

 gridheight = halfresy;

A31

 ∗lowoutput = lowdata;

}

A32

APPENDIX B

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Yıldırım, Ahmet Artu

Nationality: Turkish (TC)

Date and Place of Birth: 23 July 1980 , Ankara

Marital Status: Married

Phone: +90 505 5881163

email: artu@computer.org

EDUCATION

Degree Institution Year of Graduation

MS Çankaya University

Computer Engineering

 2011

BS Çankaya University

Industrial Engineering

 2003

High School İzzettin Çalışlar High

School, Uşak

 1998

WORK EXPERIENCE

Year Place Enrollment

2006-2009 Polar Information

Technologies

Lead Software Developer

A33

2004-2006 Polar Information

Technologies

Software Developer

PUBLICATIONS

1. Ahmet Artu Yıldırım, Cem Özdoğan. Parallel WaveCluster: A Linear

Scaling Parallel Clustering Algorithm Implementation with Application to Very

Large Datasets, Journal Of Parallel and Distributed Computing, Elsevier,

2011.

2. Ahmet Artu Yıldırım, Cem Özdoğan. Parallel Wavelet-Based Clustering

Algorithm using CUDA, Published in Procedia-Computer Science Journal,

Elsevier, 2010; Presented at World Conference on Information Technology,

Bahçeşehir University, 2010.

3. Ahmet Artu Yıldırım, Cem Özdoğan. Geniş Veri Kümeleri Üzerinde Paralel

Öbekleme Uygulaması: Paralel WaveCluster, II. Ulusal Yüksek Başarımlı ve

Grid Hesaplama Konferansı, İstanbul Technical University, 2010.

4. Ahmet Artu Yıldırım, Cem Özdoğan. Geniş Veri Kümeleri Üzerinde Paralel

Veri Madenciliği Yaklaşımları: WaveCluster Yöntemi ile Öbekleme

Uygulaması, 3. Mühendislik ve Teknoloji Sempozyumu, Çankaya University,

2010.

