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ABSTRACT

H-INFINITY MIXED SENSITIVITY OPTIMIZATION FOR A FOUR AXIS
GIMBAL PLATFORM

YALÇINKAYA, Ezel
Master of Science in Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Oğuzhan ÇİFDALÖZ
September 2022, 155 pages

Recently; gimbal systems are employed in a wide range of engineering appli-
cations, including military and commercial systems such as missiles, drones, attack
helicopters etc. These systems are commonly used for target tracking, surveillance,
mapping, image processing, and providing high resolution images with electro-optical
or infrared cameras. The main purpose of using these systems is to point the optical
system to the desired point regardless of the platform’s movement and to compensate
the disturbance effects in order to ensure that system is stabilized during the motion.
It is important to design multi axis gimbal systems for tracking the desired target and
point when it comes to precise targeting and observation.

This study addresses the detailed mathematical modelling and 𝐻∞ mixed
sensitivity control design of a four axis gimbal system. Firstly, the four-axis gimbal
system is modeled separately for each axis, and the system’s kinematic and dynamic
models are thoroughly analyzed. After determining the system dynamics, controllers
are designed with the 𝐻∞ mixed sensitivity method, which is one of the robust control
design methods for system control.

Finally, proposed system modelling and control design are simulated in MATLAB
and Simulink environments. Results are presented with figures and tables in the thesis.

Keywords: Four-Axis Gimbal System, Mathematical Modeling, Controller Design, 𝐻∞

Mixed Sensitivity, Stabilization.
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ÖZ

DÖRT EKSENLİ GİMBAL PLATFORMU İÇİN H-SONSUZ KARMA
HASSASİYET OPTİMİZASYONU

YALÇINKAYA, Ezel
Elektrik-Elektronik Mühendisliği Yüksek Lisans

Danışman: Dr. Öğr. Üyesi Oğuzhan ÇİFDALÖZ
Eylül 2022, 155 sayfa

Günümüzde gimbal sistemleri füzeler, insansız hava araçları, keşif gözlem
helikopterleri gibi askeri ve bazı ticari amaçlı olmak üzere birçok mühendislik uygula-
malarında kullanılmaktadır. Genellikle bu sistemler üzerinde taşıdıkları faydalı yük olan
elektro-optik veya kızılötesi kameralarla hedef takibi, gözetleme, haritalama, görüntü
işleme, yüksek çözünürlüğe sahip görüntü elde etmek amacıyla kullanılırlar. Bu sis-
temlerin kullanılmasındaki temel amaç, faydalı yükün; üzerinde bulunduğu platformun
hareketinden bağımsız olarak istenilen konumlara yönlenmesi ve bu yönlenme sırasında
sistemin kararlı olmasıdır. Hassas hedefleme ve gözlemleme söz konusu olduğunda
gimbal sistemlerinin çok eksenli olarak tasarlanması istenilen hedef ve noktayı takip
etme konusunda önemlidir.

Bu çalışma, dört eksenli bir gimbal sisteminin detaylı olarak matematiksel
modellenmesi ve kontrolü üzerine odaklanmıştır. İlk olarak, dört eksenli gimbal sistemi
her eksen ayrı ayrı olacak şekilde incelenmiş, kinematik ve dinamik denklemleri detaylı
olarak analiz edilmiştir. Sistem dinamiklerinin belirlenmesinden sonra sistem kontrolü
için gürbüz kontrol tasarım metotlarından biri olan 𝐻∞ karma hassasiyet yöntemi ile
kontrolcüler tasarlanmıştır.

Son olarak, önerilen sistem modellemesi ve kontrol tasarımı MATLAB/Simulink
ortamları kullanılarak simule edilmiş olup sonuçlar tezde grafik ve tablolarla sunulmuştur.

Anahtar Kelimeler: Dört Eksenli Gimbal Sistemi, Matematiksel Modelleme, Kontrolcü
Tasarımı, 𝐻∞ Karma Hassasiyet, Stabilizasyon.
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CHAPTER 1

INTRODUCTION

1.1 Background

ISPs (inertial stabilization platforms) are used in a wide range of engineering
applications, including weapon systems, telescopes, cameras, military and commercial
systems such as missiles, drones, attack helicopters etc. Gimbal systems, which are
mechanical structures used to provide inertial stabilization; they can be considered as
a combination of motor, bearings and mounted gyroscopes. In general, at least two
orthogonal gimbals are preferred in most applications [11].

When the gimbal systems are mounted on moving platforms, such as an aircraft,
ground vehicles, ships or a spacecraft, because of the base movements, inertial dynamics
and sometimes environmental disturbances the system becomes a complex system
[13, 15].

Despite, the specifications and configurations differing greatly, the main purpose
of using these systems is to point the optical system to the desired point regardless of
the platform’s motions, vibrations and to compensate the disturbance effects in order to
ensure that system is stabilized during motion [7, 11, 21]. All of these disturbances can
result in decreased pointing accuracy of the ISPs [16].

This thesis consists of two main parts: modeling of a four-axis gimbal platform
and the controller design of a four axis gimbal system. In the model analysis part, a
detailed mathematical modeling of the system was made. In the control design section,
a controller design was made with 𝐻∞ mixed sensitivity, which is one of the robust
control methods.

Also this thesis is organized as follows:
In this first chapter, background information, motivation for carrying out this

thesis work and literature survey is given together with the objectives and contributions.
In Chapter 2, firstly the gimbal mechanism is explained in detail. Secondly, notation,
preliminaries, reference coordinate frames and transformation matrices have been
determined. Thirdly, the kinematic equations are formulated in detail for each axis.
In order to better understand the system, dynamic analysis are made and kinematic
equations and dynamic equations were combined. Then, the four-axis gimbal model
was represented in a state space, and their LTI models are obtained by the Jacobian
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linearization technique. In Chapter 3, firstly, the 𝐻∞ mixed sensitivity optimization
problem is explained in general terms. Afterwards, controllers are designed with the
𝐻∞ mixed sensitivity method in different configurations as SISO and MIMO structures
for the four-axis gimbal platform. In chapter 3 includes the simulation results of the
proposed method. In chapter 4 summarizes the thesis. Then the important results
derived throughout the thesis are explained. Chapter 4 is concluded by discussing some
future applications.

1.2 Literature Survey

Since gimbal systems are basically guidance systems, they are frequently used
in civil and military applications for pointing systems as well as imaging systems. In
this part of the thesis, the gimbal mechanism and some studies on the control of the
gimbal mechanism are discussed. This section provides an overview of gimbal systems,
mathematical modeling of these systems, and controller design methods for them. When
gimbal systems are examined, it is seen that two axis, three axis and four axis system
structures are based [1, 9, 12, 14, 22, 25].

When the gimbal structures are examined, it is seen that they are handled in
different rotation configurations. A gimbal design with a yaw-pitch structure is examined
in the [27]. The designed gimbal is used as a laser and radar pointing system. Gimbal
mechanism is used with direct-drive brushless direct current motor. In this study, the
encoder is preferred as the angular position sensor. Also, PID (Proportional-Integral
Differential) and PIV (Proportional-Integral-Velocity) control methods are developed as
control methods. PIV type controller have been applied to achieve better results.

A two-axis gimbal system design and real-time control of the system are done in
[4]. For the control of the gimbal system, LQG/LTR (Linear Quadratic Gaussian/Loop
Transfer Recovery), 𝐻∞ and ` controller structures were used and compared. In this
study, it is seen that the 𝐻∞ controller has the best performance in low frequency
regions due to its high gain. While the LQG/LTR controller performs best in the
mid-frequency region, the ` controller performs better near the cut-off frequencies.
The 𝐻∞ controller shows the worst performance in the mid-frequency region. Again,
𝐻∞ controller performans better in high frequency regions. Because of its high gain,
the LQG/LTR controller is expressed as the controller with the worst performance in
this frequency range. In [4], it is suggested to use the 𝐻∞ controller in cases where
the working region represents low frequencies, and the ` controller in cases where the
working region represents the entire frequency region.

Within the scope of the literature research, it has been seen that two axis structure
are frequently used in gimbal mechanisms. The reason for this is that images are two-
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dimensional in imaging or pointig systems, and two-dimensional position information
is sufficient for target pointing or tracking operations. Gimbal mechanisms with three or
more axes are preferred to meet various requirements such as higher payload, increased
field of view, and improved operational performance. It has been understood that it
is important to design these systems as multi-axis when it comes to target tracking
[18, 19]. The gimbal frame transformations, kinematics and dynamics equations of the
considered systems have been investigated in different studies [9, 24, 26].

In [9], the equations of motion are derived using the moment equation and
Lagrange equations, and it is shown that the equations can be formulated in such a way
that natural interpretations can be given. Also that gimbals are rigid bodies, that have
inertia cross couplings and have no mass unbalance. Static and dynamic mass unbalance
dynamics of 2-DOF gimbal system in detail. The torque relationships have been derived
considering the angular motion of the base body and the dynamic unbalance. According
to the dynamic mass unbalance, the equations for the gimbals’ motion were derived and
introduced in two formulations. [23]

In [20], the impact of dynamical mass unbalance is included, but the center of
gravity offsets, rotation axes misalignments and disturbance forces/moments are not
explicitly modeled. Besides, in [3, 24, 28] researchers have simplified their gimbal
models by neglecting static and dynamic mass unbalance effects and all gimbals have
been designed as decoupled.

After the detailed mathematical model examinations in the literature, studies
for general control systems are included. Many control design methods have been
investigated on gimbal systems and successful results have been achieved in robust
control-based linear quadratic methods [5, 6, 29], 𝐻∞ method [2, 17, 30] and `-synthesis
[32] controller studies as well as classical control methods.
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CHAPTER 2

MODEL ANALYSIS

In this chapter, the four axis gimbal system is modeled in detail to create a
realistic simulation environment and describe the big picture before diving into controller
design and simulation results.

In the modeling of the four axis gimbal systems, firstly the gimbal mechanism is
explained in detail. Secondly, the notation, reference coordinate frames and transfor-
mation matrices used in four-axis gimbal modeling are described. Then, the kinematic
equations are formulated in detail for each axis. After that, physical dynamic analysis is
performed in order to better understand the friction and force effects that the gimbal
system model is exposed to, and the system motions are examined under two titles as
decoupled and coupled. As a result of these motion analysis, the effect of the friction
force in the coupled system has been correctly integrated into the dynamic models and
the full dynamic model of the four axis gimbal system has been schematized.

In the full dynamic model in which kinematic equations and dynamic block
diagrams are integrated, it is seen that the four-axis gimbal system structure is non-linear
with multiple inputs and multiple outputs (MIMO). Therefore, all the system’s nonlinear
state space equations are obtained, and the system is linearized at some equilibrium
point. Finally, the linearized system’s transfer functions are created and shown in detail.

2.1 Four-Axis Gimbal Model

The mechanism of the four-axis gimbal model shown in Fig 2.1 consists of four
interconnected revolute joints which has one degree of freedom (one axis) of rotation.
The primary mission of these systems is to rotate the payload, which could be a camera,
a gun, a telescope, or any other device on the inner frame, with respect to the base
platform. For that purpose, the mechanical design is conducted in such a way that the
outer azimuth frame (A), outer elevation frame (E), inner elevation frame (e) and inner
azimuth frame (a), respectively.
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base platformbase platformbase platform

outer elevation frameouter elevation frameouter elevation frame
(EEE)

outer azimuth frameouter azimuth frameouter azimuth frame
(AAA)

inner elevation frameinner elevation frameinner elevation frame
(eee) inner azimuth frameinner azimuth frameinner azimuth frame

(aaa)

payloadpayloadpayload

Figure 2.1: Four axis gimbal mechanism.

The four-axis gimbal system is thought to be mounted on any moving vehicle
that rotates and translates according to a chosen inertial reference frame, and it is known
that the vehicle’s angular velocity and the translational acceleration will have a direct
effect on the gimbal system.

𝑌𝑎𝑤 = ±∞◦𝑌𝑎𝑤 = ±∞◦𝑌𝑎𝑤 = ±∞◦

𝑃𝑖𝑡𝑐ℎ = ±7◦𝑃𝑖𝑡𝑐ℎ = ±7◦𝑃𝑖𝑡𝑐ℎ = ±7◦

𝑌𝑎𝑤 = ±7◦𝑌𝑎𝑤 = ±7◦𝑌𝑎𝑤 = ±7◦

𝑃𝑖𝑡𝑐ℎ = −90◦, +120◦𝑃𝑖𝑡𝑐ℎ = −90◦, +120◦𝑃𝑖𝑡𝑐ℎ = −90◦, +120◦

𝐺𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒𝐺𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒𝐺𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒

𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑃𝑎𝑦𝑙𝑜𝑎𝑑

Figure 2.2: Top view of four axis gimbal model mechanism.

When the gimbal mechanism is examined in more detail; it is seen that the
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angular motion of the outer azimuth frame effects the outer elevation frame, inner
elevation frame and inner azimuth frames. Likewise, the outer elevation frame affects
inner elevation frame and inner azimuth frames. Fig 2.2 shows the top view of the four
axis gimbal model mechanism given in Fig 2.1. In addition, the mechanical limits of
rotation of each axis are given here.

In contrast to outer axes; which have a large rotational capacity but a low
controller bandwidth, inner axes have few degrees of freedom but a large controller
bandwidth. Inner frames; which are effective for angular stabilization in the inertial
coordinate system, are used for fine tuning.

Four brushless direct current (DC) motors operate the full frame of the four-axis
gimbal system seperately. Angular position sensors are performed by four absolute
encoders mounted within the revolute joints, which are joining the outer azimuth frame,
outer elevation frame, inner elevation frame and inner azimuth frame respectively. In
this way; these sensors are measured angular position of the each frames with respect to
base platform. No relative angular rate sensor is assumed.

Moreover, the gyroscope is located on the inner azimuth frame of the four axis
gimbal to measure the angular rates of the inner azimuth frame with respect to the
inertial reference frame.

2.2 Notation and Preliminaries

The notation used in this study is based on [8, 31]. Rotational transformation of
a vector, x𝑏, in frame F𝑏 into a vector, x𝑎 in frame F𝑎 is described as

𝑥𝑎 = 𝐶𝑎𝑏𝑥
𝑏

where F𝑎 and F𝑏 are orthogonal and right handed, subscript b in𝐶𝑎
𝑏

denotes the reference
frame, superscript a in 𝐶𝑎

𝑏
denotes the target frame, and x𝑎 is the representation of the

vector x𝑏 in frame F𝑎. Since 𝐶𝑎
𝑏

is orthonormal, and (𝐶𝑎
𝑏
)−1 = (𝐶𝑎

𝑏
)𝑇 = 𝐶𝑏𝑎 from which

it follows 𝑥𝑏 = 𝐶𝑏𝑎 𝑥𝑎.
The angular velocity of the k-frame relative to the m-frame, as resolved in the

p-frame, is represented by 𝜔𝑝
𝑚𝑘

.
Roll, pitch, and yaw rotations are expressed mathematically as direction cosine

matrices as:
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𝑅1(𝜙) ≜


1 0 0

0 cos 𝜙 sin 𝜙

0 − sin 𝜙 cos 𝜙

 (2.1)

𝑅2(\) ≜


cos \ 0 − sin \

0 1 0

sin \ 0 cos \

 (2.2)

𝑅3(𝜓) ≜


cos𝜓 sin𝜓 0

− sin𝜓 cos𝜓 0

0 0 1

 (2.3)

2.3 Reference Coordinate Frames and Transformations

To describe the method presented in this thesis, the inertial frame (i-frame), the
earth frame (e-frame), the navigation frame (n-frame), and the body frame (b-frame)
need to be known. These are defined as presented in [31].

𝜓 \ 𝜙
𝑛𝜓 𝑛\Navigation frame (n) Body frame (b)

𝑅3 𝑅2 𝑅1

Figure 2.3: Sequence of Rotations.

The following is the transformation matrices from navigation to body frame:

𝐶𝑏𝑛 = 𝑅1(𝜙)𝑅2(\)𝑅3(𝜓) (2.4)

The transformation matrix from the body frame to the navigation frame is
constructed by transposing 𝐶𝑏𝑛 [31].

𝐶𝑛𝑏 = (𝐶𝑏𝑛 )𝑇 =


cos𝜓 cos \ cos𝜓 sin 𝜙 sin \ − sin𝜓 cos 𝜙 cos𝜓 sin \ cos 𝜙 + sin𝜓 sin 𝜙

cos \ sin𝜓 sin𝜓 sin \ sin 𝜙 + cos𝜓 cos 𝜙 sin𝜓 sin \ cos 𝜙 − sin 𝜙 cos𝜓

− sin \ sin 𝜙 cos \ cos 𝜙 cos \


(2.5)
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𝜙, \, and 𝜓 are known as the Euler Angles and have the following connections to
the body angular rates:


¤𝜙
¤\
¤𝜓

 =

1 sin 𝜙 tan \ cos 𝜙 tan \

0 cos 𝜙 −𝑠𝑖𝑛𝜙
0 sin 𝜙/𝑐𝑜𝑠\ cos 𝜙/𝑐𝑜𝑠\



𝑝

𝑞

𝑟

 (2.6)

where 𝑝, 𝑞, 𝑟 are the body roll, pitch, yaw rates of the platform, respectively [31].

2.4 Kinematic Equations of Four-Axis Gimbal Platform

This section describes the kinematics of the four axis gimbal system which
mechanizations are azimuth, elevation, elevation, and azimuth frames respectively from
the outside to the inside. All frames of the four-axis gimbal platform, which are divided
into inner and outer axes, have been investigated separately.

Table 2.1: Symbol Descriptions.
Symbol Description

𝐴 Outer Azimuth Frame
𝐸 Outer Elevation Frame
𝑒 Inner Elevation Frame
𝑎 Inner Azimuth Frame (gyroscope)

𝜓𝑜, \𝑜, \𝑖, 𝜓𝑖 Gimbal Angular Positions (encoders)

In the analysis that follows, 𝐴 and 𝐸 stand for the outer azimuth and outer eleva-
tion frames, respectively, 𝑒 denotes the inner elevation frame, and 𝑎 denotes the inner
azimuth frame of the four axis gimbal. 𝜓𝑜, \𝑜, \𝑖, and 𝜓𝑖 denote the outer azimuth angle,
outer elevation angle, inner elevation angle, and the inner azimuth angle, respectively.
These gimbal angular positions are measured by encoders. Thereafter, the kinematic
equations of the four axis gimbal will be derived and combined with the dynamical model.

𝜓,\,𝜙 𝜓𝑜 \𝑜 \𝑖 𝜓𝑖
𝐹𝑛 𝐹𝑏 𝐹𝐴 𝐹𝐸 𝐹𝑒 𝐹𝑎

𝐶𝑎𝑒

𝑅3(𝜓𝑖)𝑅2(\𝑖)
𝐶𝑒
𝐸

𝑅2(\𝑜)
𝐶𝐸
𝐴

𝑅3(𝜓𝑜)
𝐶𝐴
𝑏

𝑅1(𝜙)𝑅2(\)𝑅3(𝜓)
𝐶𝑏𝑛

Figure 2.4: Reference frames and their rotational relations for a four axis gimbal.
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The four axis gimbal model’s reference frames and rotation relations are shown
in Fig 2.4 above. The rotational relationship shown here is important as it provides
the basis for kinematic equations. Furthermore, 𝐹𝑛 denotes the navigation reference
frame, 𝐹𝑏 the body reference frame, 𝐹𝐴 the outer azimuth reference frame, 𝐹𝐸 the outer
elevation reference frame, 𝐹𝑒 the inner elevation reference frame, and 𝐹𝑎 the inner
azimuth reference frame.

2.4.1 Outer Azimuth Frame Kinematics
The angular rates of the outer azimuth frame with respect to the inertial frame

as resolved in the outer azimuth frame is given by

𝑑𝐴 ≜ 𝜔
𝐴
𝑖𝐴 = 𝜔𝐴𝑖𝑏 + 𝜔

𝐴
𝑏𝐴 = 𝐶𝐴

𝑏 𝜔
𝑏
𝑖𝑏 + 𝜔

𝐴
𝑏𝐴 = 𝑅3(𝜓𝑜)𝜔𝑏𝑖𝑏 + 𝜔

𝐴
𝑏𝐴 = 𝑅3(𝜓𝑜)


𝑝

𝑞

𝑟

+


0

0
¤𝜓𝑜

 .
(2.7)

Components of 𝑑𝐴 are given by

𝑑𝐴 =


𝑝𝐴

𝑞𝐴

𝑟𝐴


=


𝑝 cos𝜓𝑜 + 𝑞 sin𝜓𝑜

𝑞 cos𝜓𝑜 − 𝑝 sin𝜓𝑜

¤𝜓𝑜 + 𝑟


. (2.8)

If a virtual 3-axis rate gyro was mounted on the axis of rotation of the outer
azimuth frame, it would measure 𝑑𝐴.

2.4.2 Outer Elevation Frame Kinematics
The angular rates of the outer elevation frame with respect to the inertial frame

as resolved in the outer elevation frame is given by

𝑑𝐸 ≜ 𝜔
𝐸
𝑖𝐸 = 𝜔𝐸𝑖𝐴 + 𝜔

𝐸
𝐴𝐸 = 𝐶𝐸𝐴𝜔

𝐴
𝑖𝐴 + 𝜔

𝐸
𝐴𝐸 = 𝑅2(\𝑜)𝑑𝐴 +


0
¤\𝑜
0

 . (2.9)
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Components of 𝑑𝐸 are given by

𝑑𝐸 =


𝑝𝐸

𝑞𝐸

𝑟𝐸


=


𝑝𝐴 cos \𝑜 − 𝑟𝐴 sin \𝑜

𝑞𝐴 + ¤\𝑜

𝑝𝐴 sin \𝑜 + 𝑟𝐴 cos \𝑜


=


(𝑝 cos𝜓𝑜 + 𝑞 sin𝜓𝑜) cos \𝑜 − ( ¤𝜓𝑜 + 𝑟) sin \𝑜

𝑞 cos𝜓𝑜 − 𝑝 sin𝜓𝑜 + ¤\𝑜

(𝑝 cos𝜓𝑜 + 𝑞 sin𝜓𝑜) sin \𝑜 + ( ¤𝜓𝑜 + 𝑟) cos \𝑜


.

(2.10)

If a virtual 3-axis rate gyro was mounted on the axis of rotation of the outer
elevation axis, it would measure 𝑑𝐸 .

2.4.3 Inner Elevation Frame Kinematics
The angular rates of the inner elevation frame with respect to the inertial frame

as resolved in the inner elevation frame is given by

𝑑𝑒 ≜ 𝜔
𝑒
𝑖𝑒 = 𝜔

𝑒
𝑖𝐸 + 𝜔𝑒𝐸𝑒 = 𝐶

𝑒
𝐸𝜔

𝐸
𝑖𝐸 + 𝜔𝑒𝐸𝑒 = 𝑅2(\𝑖)𝑑𝐸 +


0
¤\𝑖
0

 . (2.11)

Components of 𝑑𝑒 are given by

𝑑𝑒 =


𝑝𝑒

𝑞𝑒

𝑟𝑒


=


𝑝𝐸 cos \𝑖 − 𝑟𝐸 sin \𝑖

𝑞𝐸 + ¤\𝑖

𝑝𝐸 sin \𝑖 + 𝑟𝐸 cos \𝑖


=


(𝑝 cos𝜓𝑜 + 𝑞 sin𝜓𝑜) cos(\𝑜 + \𝑖) − ( ¤𝜓𝑜 + 𝑟) sin(\𝑜 + \𝑖)

𝑞 cos𝜓𝑜 − 𝑝 sin𝜓𝑜 + ¤\𝑜 + ¤\𝑖

(𝑝 cos𝜓𝑜 + 𝑞 sin𝜓𝑜) sin(\𝑜 + \𝑖) + ( ¤𝜓𝑜 + 𝑟) cos(\𝑜 + \𝑖)


.

(2.12)

If a virtual 3-axis rate gyro was mounted on the axis of rotation of the inner
elevation frame, it would measure 𝑑𝑒.

2.4.4 Inner Azimuth Frame Kinematics
The angular rates of the inner azimuth frame with respect to the inertial frame

as resolved in the inner azimuth frame is given by

𝜔𝑎𝑖𝑎 = 𝜔
𝑎
𝑖𝑒 + 𝜔𝑎𝑒𝑎 = 𝐶𝑎𝑒𝜔𝑒𝑖𝑒 + 𝜔𝑎𝑒𝑎 = 𝑅3(𝜓𝑖)𝑑𝑒 +


0

0
¤𝜓𝑖

 . (2.13)
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Components of 𝜔𝑎
𝑖𝑎

are given by

𝜔𝑎𝑖𝑎 =


𝑤𝑥

𝑤𝑦

𝑤𝑧

 =

𝑝𝑒 cos 𝜓𝑖 + 𝑞𝑒 sin 𝜓𝑖

𝑞𝑒 cos 𝜓𝑖 − 𝑝𝑒 sin 𝜓𝑖

𝑟𝑒 + ¤𝜓𝑖

 (2.14)

=


(𝑝 cos 𝜓𝑜 + 𝑞 sin 𝜓𝑜 ) cos(\𝑜 + \𝑖 ) cos 𝜓𝑖 − ( ¤𝜓𝑜 + 𝑟 ) sin(\𝑜 + \𝑖 ) cos 𝜓𝑖 + (𝑞 cos 𝜓𝑜 − 𝑝 sin 𝜓𝑜 + ¤\𝑜 + ¤\𝑖 ) sin 𝜓𝑖

(𝑞 cos 𝜓𝑜 − 𝑝 sin 𝜓𝑜 + ¤\𝑜 + ¤\𝑖 ) cos 𝜓𝑖 − (𝑝 cos 𝜓𝑜 + 𝑞 sin 𝜓𝑜 ) cos(\𝑜 + \𝑖 ) sin 𝜓𝑖 + ( ¤𝜓𝑜 + 𝑟 ) sin(\𝑜 + \𝑖 ) sin 𝜓𝑖

(𝑝 cos 𝜓𝑜 + 𝑞 sin 𝜓𝑜 ) sin(\𝑜 + \𝑖 ) + ( ¤𝜓𝑜 + 𝑟 ) cos(\𝑜 + \𝑖 ) + ¤𝜓𝑖

 .
(2.15)

and are measured by an actual 3-axis rate gyro that is mounted on the axis of rotation of
the inner azimuth frame.

2.5 Dynamic Analysis of Four-Axis Gimbal Platform

Before dealing with creating the detailed kinematic and dynamic equations of
the four axis gimbal platform, the system was first thought to be making linear motion
in order to better understand the system. In this direction, analysis is made, and the
obtained linear motion equations are converted into rotational motion equations and
integrated into the four axis gimbal platform dynamical model.

2.5.1 Analysis of a Two Block System
Two blocks with masses 𝑚1 and 𝑚2 are placed on a surface, as shown in Fig 2.5.

The friction coefficient between the ground and the block with mass 𝑚1 of these two
blocks is 𝑏1; the friction coefficient between the block with mass 𝑚1 and block with
mass 𝑚2 is 𝑏2. The forces applied to blocks with masses 𝑚1 and 𝑚2 are 𝐹1 and 𝐹2,
respectively. The reaction of the block with mass 𝑚1 against the 𝐹1 force applied to the
block with mass 𝑚1 will be in the opposite direction 𝑏1 ¤𝑥1. Similarly, in response to the
𝐹2 force applied to the block with mass 𝑚2, the response of the block with mass 𝑚2 is
in the opposite direction 𝑏2( ¤𝑥2 − ¤𝑥1), and its reaction is observed from over the relative
velocity. Furthermore, the applied force 𝐹2 will have a reaction on the block with mass
𝑚1 as shown in Fig 2.5. All force responses are shown in accordance with Newton’s
laws. [10]
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𝑏1

𝑚1

𝑏2

𝑚2

𝑥1, 𝑥2

𝑏2( ¤𝑥2 − ¤𝑥1)

𝑏2( ¤𝑥2 − ¤𝑥1)

F1

𝑏1 ¤𝑥1

F2

Figure 2.5: Dynamical analysis of a two block system.

The force equations of the system given in Fig 2.5 are expressed in Equation 2.16
below.

𝑚1 ¥𝑥1 = 𝐹1 − 𝑏1 ¤𝑥1 + 𝑏2( ¤𝑥2 − ¤𝑥1)
𝑚2 ¥𝑥2 = 𝐹2 − 𝑏2( ¤𝑥2 − ¤𝑥1) (2.16)

Decoupled System: If there is no friction between the two blocks. In other
words, if 𝑏2 = 0, these two equations become independent of each other as shown in
Equation 2.17. Hence, they become decoupled.

𝑚1 ¥𝑥1 = 𝐹1 − 𝑏1 ¤𝑥1

𝑚2 ¥𝑥2 = 𝐹2 (2.17)

Coupled System: If the friction between the two blocks is not zero, it is easier
to explain the dynamics in terms of the relative positions. These equations become
dependent of each other as shown in Equation 2.18. Hence, they become coupled.

𝑚1 ¥𝑥1 = 𝐹1 − 𝑏1 ¤𝑥1 + 𝑏2( ¤𝑥2 − ¤𝑥1)
𝑚2( ¥𝑥2 − ¥𝑥1) = 𝐹2 − 𝑏2( ¤𝑥2 − ¤𝑥1) − 𝑚2 ¥𝑥1

(2.18)
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So by setting,

𝑞1 = 𝑥1

¤𝑞1 = ¤𝑥1

¥𝑞1 = ¥𝑥1

𝑞2 = 𝑥2 − 𝑥1

¤𝑞2 = ¤𝑥2 − ¤𝑥1

¥𝑞2 = ¥𝑥2 − ¥𝑥1

The parameters are set as described above, and Equation 2.19 expresses the final
form of linear force equations.

𝑚1 ¥𝑞1 = 𝐹1 − 𝑏1 ¤𝑞1 + 𝑏2 ¤𝑞2

𝑚2 ¥𝑞2 = 𝐹2 − 𝑏2 ¤𝑞2 − 𝑚2 ¥𝑞1
(2.19)

Furthermore, the linear force equations derived in Equation 2.19 have been
verified under various conditions and are shown below.

• 𝑏1 = 0, 𝑏2 = 0 and 𝐹1 = 0

𝑚1 ¥𝑞1 = 0

𝑚2 ¥𝑞2 = 𝐹2 − 𝑚2 ¥𝑞1


¥𝑞1 = 0 ⇒ ¤𝑞1 = 0 ⇒¤𝑥1 = 0 ⇒ ¤𝑞2 = ¤𝑥2

¥𝑥1 = 0 ⇒ ¥𝑞2 = ¥𝑥2

¥𝑞2 =
1
𝑚2
𝐹2 ⇒ ¥𝑥2 =

1
𝑚2
𝐹2

(2.20)

• 𝑏1 = 0, 𝑏2 = 0 and 𝐹2 = 0

𝑚1 ¥𝑞1 = 𝐹1

𝑚2 ¥𝑞2 = −𝑚2 ¥𝑞1


¥𝑞1 =

1
𝑚1
𝐹1 ⇒ ¥𝑥1 =

1
𝑚1
𝐹1

¥𝑞2 = − ¥𝑞1 ⇒ ¥𝑥2 − ¥𝑥1 = −¥𝑥1

¥𝑥2 = 0

(2.21)

• 𝑏1 = 0, 𝑏2 → ∞⇒ ¤𝑞2 = ¥𝑞2 = 0 and 𝐹2 = 0

𝑚1 ¥𝑞1 = 𝐹1

0 = 𝐹2 − 𝑚2 ¥𝑞1


¥𝑞1(𝑚1 + 𝑚2) = 𝐹1 + 𝐹2

¥𝑞1 =
1

𝑚1 + 𝑚2
(𝐹1 + 𝐹2)

¥𝑞1=¥𝑥1−−−−→
𝐹2=0

¥𝑥1 =
1

𝑚1 + 𝑚2
𝐹1 ¥𝑥2 = ¥𝑥1

(2.22)

• 𝑏1 = 0, 𝑏2 → ∞⇒ ¤𝑞2 = ¥𝑞2 = 0 and 𝐹1 = 0

𝑚1 ¥𝑞1 = 𝐹1

0 = 𝐹2 − 𝑚2 ¥𝑞1


¥𝑞1(𝑚1 + 𝑚2) = 𝐹1 + 𝐹2

¥𝑞1 =
1

𝑚1 + 𝑚2
(𝐹1 + 𝐹2)

¥𝑞1=¥𝑥1−−−−→
𝐹1=0

¥𝑥1 =
1

𝑚1 + 𝑚2
𝐹2 ¥𝑥2 = ¥𝑥1

(2.23)
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The physical variables of the coupled linear motion equations obtained in
Equation 2.19 are converted, by analogy, to the rotational motion parameters for the
four-axis gimbal model, as shown in Table 2.2 below.

Table 2.2: Conversion of physical variables from linear to rotational motion.
Linear Motion Rotational Motion for Couple EL-el Frames

Physical Variables Physical Variables
Quantity Symbol Quantity Symbol

Mass of block 1 𝑚1

Inertia of the
outer elevation

frame
𝐽𝐸

Mass of block 2 𝑚2

Inertia of the
inner elevation

frame
𝐽𝑒

Force applied to
block 1 𝐹1

Torque applied to
the outer

elevation frame
𝜏𝐸

Force applied to
block 2 𝐹2

Torque applied to
the inner

elevation frame
𝜏𝑒

Friction between
ground and mass

1
𝑏1

Friction between
outer azimuth and

outer elevation
frames

𝑏𝐸

Friction between
mass 1 and mass

2
𝑏2

Friction between
outer elevation

and inner
elevation frames

𝑏𝑒

Velocity and
acceleration of

block 1
¤𝑞1, ¥𝑞1

Angular vel. and
acc. of the outer
elevation frame

¤\𝑜, ¥\𝑜

Velocity and
acceleration of

block 2
¤𝑞2, ¥𝑞2

Angular vel. and
acc. of the inner
elevation frame

¤\𝑖, ¥\𝑖

The Equation 2.24 is obtained after applying the variable transformations to the
Equation 2.19, as shown in table.

𝐽𝐸 ¥\𝑜 = 𝜏𝐸 − 𝑏𝐸 ¤\𝑜 + 𝑏𝑒 ¤\𝑖
𝐽𝑒 ¥\𝑖 = 𝜏𝑒 − 𝑏𝑒 ¤\𝑖 − 𝐽𝑒 ¥\𝑜

(2.24)
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The two equations mentioned before are significant because they explain the coupled
condition between the outer and inner elevation frames. In Equation 2.24, the coupled
rotational motion equations that we will use in the outer elevation and inner elevation
dynamic block diagrams of the four axis gimbal platform are obtained. Based on these
equations, the dynamic models are created.

Table 2.3: Conversion of physical variables from linear to rotational motion.
Linear Motion Rotational Motion for Decoupled AZ-az Frames

Physical Variables Physical Variables
Quantity Symbol Quantity Symbol

Mass of block
1 and 2 𝑚1, 𝑚2

Inertia of the
outer and inner
azimuth frame

𝐽𝐴, 𝐽𝑎

Force applied
to block 1 and

2
𝐹1, 𝐹2

Torque applied
to the outer
and inner

azimuth frame

𝜏𝐴, 𝜏𝑎

Friction
between

ground and
mass 1

𝑏1

Friction
between base

and outer
azimuth frame

𝑏𝐴

Friction
between mass
1 and mass 2

𝑏2

Friction
between inner
elevation and
inner azimuth

frames

𝑏𝑎

Velocity and
acceleration of
block 1 and 2

¤𝑥1, ¥𝑥1, ¤𝑥2, ¥𝜓𝑖

Angular vel.
and acc. of the
outer and inner
azimuth frame

¤𝜓𝑜, ¥𝜓𝑜, ¤𝜓𝑖, ¥𝜓𝑖

The physical variables of the decoupled linear motion equations obtained in
Equation 2.17 are converted to the rotational motion physical variables for the four-axis
gimbal model, as shown in Table 2.3 above.

Equation 2.25 is obtained after applying the variable transformations to Equa-
tion 2.17, as shown in table.

𝐽𝐴 ¥𝜓𝑜 = 𝜏𝐴 − 𝑏𝐴 ¤𝜓𝑜
𝐽𝑎 ¥𝜓𝑖 = 𝜏𝑎

(2.25)

In Equation 2.25, the decoupled rotational motion equations that we will use in the outer
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azimuth and inner azimuth dynamic block diagrams of the four axis gimbal platform are
obtained. Based on these equations, the dynamic models are created.

2.6 Dynamic Equations of 4-Axis Gimbal Platform

In this section, first, the dynamics and kinematics of the four-axis gimbal
modelare combined and dynamic block diagrams are created for each axis, and then the
dynamic equations are shown in detail. According to this model, the gimbal is perfectly
balanced and rigid, spring effects are insignificant, and the motor dynamics are rapid
enough to be ignored [9, 11].

2.6.1 Outer Azimuth Frame Dynamics
A block diagram of the outer azimuth frame dynamical model is given in Fig 2.6.

The block diagram shows, 𝐽𝐴 represents the outer azimuth frame inertia, 𝑏𝐴 stands for
the viscous friction constant, and 𝜏𝐴 is the torque exerted by the outer azimuth motor.

∫

𝜏𝐴

–– –

¤𝜓𝑜

𝜓𝑜

−−−

𝑟

1
𝑠𝐽𝐴

𝑏𝐴

cos(\𝑖 + \𝑜)

𝑟1 ≜ (𝑝 cos𝜓𝑜 + 𝑞 sin𝜓𝑜) sin(\𝑜 + \𝑖)︸                                            ︷︷                                            ︸
𝑟𝑒

𝑟𝐴 = ¤𝜓𝑜 + 𝑟

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛

𝐼𝑛𝑒𝑟𝑡𝑖𝑎

𝐸𝑛𝑐𝑜𝑑𝑒𝑟

Figure 2.6: Outer azimuth frame dynamical model.

¤𝜓𝑜 can be obtained from Line 3 of Equation 2.8 as

¤𝜓𝑜 = 𝑟𝐴 − 𝑟 (2.26)

¤𝑟𝐴 can be obtained from outer azimuth frame dynamical model in Fig 2.6.

¤𝑟𝐴 = (𝜏𝐴 − 𝑏𝐴 ¤𝜓𝑜)
1
𝐽𝐴

=
1
𝐽𝐴
𝜏𝐴 −

𝑏𝐴

𝐽𝐴
𝑟𝐴 +

𝑏𝐴

𝐽𝐴
𝑟

(2.27)

𝑟𝑒 can be obtained from Line 3 of Equation 2.12 as

𝑟𝑒 = (𝑝 cos𝜓𝑜 + 𝑞 sin𝜓𝑜) sin(\𝑜 + \𝑖) + ( ¤𝜓𝑜 + 𝑟) cos(\𝑜 + \𝑖) (2.28)
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2.6.2 Inner Azimuth Frame Dynamics
A block diagram of the inner azimuth frame dynamics are given in Fig 2.7. In

the block diagram, 𝐽𝑎 denotes the inner azimuth frame inertia. 𝑏𝑎 denotes the viscous
friction constants, and 𝜏𝑎 is the applied torque by the inner azimuth frame motor.

∫

𝜏𝑎

–– –¤𝜓𝑖

𝜓𝑖

−−− 1
𝑠𝐽𝑎

𝑏𝑎

𝜔𝑧 = 𝑟𝑒 + ¤𝜓𝑖

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛

𝐼𝑛𝑒𝑟𝑡𝑖𝑎

𝐸𝑛𝑐𝑜𝑑𝑒𝑟

𝑟𝑒

𝐺𝑦𝑟𝑜

Figure 2.7: Inner azimuth frame dynamical model.

¤𝜓𝑖 can be obtained from Line 3 of 2.15 as

¤𝜓𝑖 = 𝜔𝑧 − 𝑟𝑒

= 𝜔𝑧 − 𝑝 cos𝜓𝑜 sin(\𝑜 + \𝑖) − 𝑞 sin𝜓𝑜 sin(\𝑜 + \𝑖) − 𝑟𝐴 cos(\𝑜 + \𝑖)
(2.29)

¤𝜔𝑧 can be obtained from inner azimuth frame dynamical model in Figure 2.7.

¤𝜔𝑧 = (𝜏𝑎 − 𝑏𝑎 ¤𝜓𝑖)
1
𝐽𝑎

=
1
𝐽𝑎
𝜏𝑎 −

𝑏𝑎

𝐽𝑎
𝜔𝑧 +

𝑏𝑎 cos(\𝑜 + \𝑖)
𝐽𝑎

𝑟𝐴 +
𝑏𝑎 sin(\𝑜 + \𝑖) cos𝜓𝑜

𝐽𝑎
𝑝 + 𝑏𝑎 sin(\𝑜 + \𝑖) sin𝜓𝑜

𝐽𝑎
𝑞

(2.30)

2.6.3 Outer and Inner Elevation Frame Dynamics
A block diagram of the outer and inner elevation frame dynamics are given in

Fig 2.8. In the block diagram, 𝐽𝐸 and 𝐽𝑒 denote the outer elevation frame inertia and
the inner elevation frame inertia, respectively. 𝑏𝐸 and 𝑏𝑒 denote the viscous friction
constants. 𝜏𝐸 and 𝜏𝑒 are the applied torque by the outer elevation frame motor and the
inner elevation frame motor, respectively.
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𝑏𝐸

1
𝐽𝐸

1
𝑠

𝑏𝑒

1
𝐽𝑒

1
𝑠

𝐽𝑒

∫

∫
−−−

+++

−−−

−−−

–– –
–– –

\𝑜

𝑞𝐴 = 𝑞 cos𝜓𝑜 − 𝑝 sin𝜓𝑜

𝜏𝐸

𝜏𝑒

\𝑖

𝑞𝐸 = 𝑞 cos𝜓𝑜 − 𝑝 sin𝜓𝑜 + ¤\𝑜

𝑞𝑒 = 𝑞𝐸 + ¤\𝑖

¤\𝑜

¤\𝑖

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛

𝐼𝑛𝑒𝑟𝑡𝑖𝑎

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛

𝐼𝑛𝑒𝑟𝑡𝑖𝑎

𝐼𝑛𝑒𝑟𝑡𝑖𝑎

𝐸𝑛𝑐𝑜𝑑𝑒𝑟

𝐸𝑛𝑐𝑜𝑑𝑒𝑟

cos𝜓𝑖

𝑞1 ≜ −𝑝𝑒 sin𝜓𝑖︸             ︷︷             ︸
𝜔𝑦

Figure 2.8: Outer and inner elevation frame dynamical models.

¤\𝑜 can be obtained from Line 2 of Equation 2.10 as

¤\𝑜 = 𝑞𝐸 − 𝑞𝐴

= 𝑞𝐸 + 𝑝 sin𝜓𝑜 − 𝑞 cos𝜓𝑜 .
(2.31)

and, ¤\𝑖 can be obtained from Line 2 of Equation 2.12 as

¤\𝑖 = 𝑞𝑒 − 𝑞𝐸 . (2.32)

¤𝑞𝐸 and ¤𝑞𝑒 can be obtained from outer and inner elevation frame dynamical models in
Fig 2.8 as

¤𝑞𝐸 = (𝜏𝐸 − 𝑏𝐸 ¤\𝑜 + 𝑏𝑒 ¤\𝑖)
1
𝐽𝐸

=
1
𝐽𝐸
𝜏𝐸 +

(
−𝑏𝐸
𝐽𝐸

+ −𝑏𝑒
𝐽𝐸

)
𝑞𝐸 + 𝑏𝑒

𝐽𝐸
𝑞𝑒 +

−𝑏𝐸 sin𝜓𝑜
𝐽𝐸

𝑝 + 𝑏𝐸 cos𝜓𝑜
𝐽𝐸

𝑞

(2.33)
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¤𝑞𝑒 = (𝜏𝑒 − 𝑏𝑒 ¤\𝑖 − 𝐽𝑒 ¤𝑞𝐸 )
1
𝐽𝑒

=
1
𝐽𝑒
𝜏𝑒 +

−1
𝐽𝐸
𝜏𝐸 +

(
𝑏𝑒

𝐽𝑒
+ 𝑏𝐸
𝐽𝐸

+ 𝑏𝑒
𝐽𝐸

)
𝑞𝐸 +

(
−𝑏𝑒
𝐽𝑒

+ −𝑏𝑒
𝐽𝐸

)
𝑞𝑒 +

𝑏𝐸 sin𝜓𝑜
𝐽𝐸

𝑝 + −𝑏𝐸 cos𝜓𝑜
𝐽𝐸

𝑞.

(2.34)
𝜔𝑦 can be obtained from Line 2 of Equation 2.15 as

𝜔𝑦 = 𝑞𝑒 cos𝜓𝑖 − 𝑝𝑒 sin𝜓𝑖

= 𝑞𝑒 cos𝜓𝑖 − sin𝜓𝑖 (𝑝 cos𝜓𝑜 + 𝑞 sin𝜓𝑜) cos(\𝑜 + \𝑖) + 𝑟𝐴 sin𝜓𝑖 sin(\𝑜 + \𝑖).
(2.35)

2.6.4 Four Axis Gimbal Platform Dynamical Model
In order to demonstrate the effects of kinematic and dynamic equations, the full

dynamic model of the four axes is schematized in Fig 2.9. Thus, system inputs, outputs,
system disturbances, and inner-frame coupling and decoupling situations have became
clear. The effect of the output of the outer azimuth frame to the inner azimuth frame
as a disturbance and the effect of the output of the outer elevation frame to the inner
elevation frame as a disturbance are observed.
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1
𝑠𝐽𝐴

𝑏𝐴

cos(\𝑜 + \𝑖)

–– –

𝑟

∫
𝜓𝑜

𝑟𝐴 = ¤𝜓𝑜 + 𝑟
𝑟𝑒

1
𝑠𝐽𝑎

𝑏𝑎

–– – 𝑟𝑒

∫
𝜓𝑖

𝜔𝑧 = 𝑟𝑒 + ¤𝜓𝑖

1
𝐽𝐸

𝑏𝐸

–– –

𝑞𝐴 = 𝑞 cos𝜓𝑜 − 𝑝 sin𝜓𝑜

∫
\𝑜

𝑞𝐸 = 𝑞 cos𝜓𝑜 − 𝑝 sin𝜓𝑜 + ¤\𝑜

𝜏𝐴

𝜏𝐸

𝜏𝑎

−−− 1
𝑠

1
𝐽𝑒

𝑏𝑒

–– –

∫
\𝑖

𝑞𝑒 = 𝑞𝐸 + ¤\𝑖
𝜏𝑒 −−− 1

𝑠

𝐽𝑒

−−−

+++

¤\𝑜

¤\𝑖

cos𝜓𝑖

−−−

𝜔𝑦

𝐺𝑦𝑟𝑜

−−−

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛

𝐼𝑛𝑒𝑟𝑡𝑖𝑎

𝐸𝑛𝑐𝑜𝑑𝑒𝑟

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛

𝐼𝑛𝑒𝑟𝑡𝑖𝑎

𝐸𝑛𝑐𝑜𝑑𝑒𝑟

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛

𝐼𝑛𝑒𝑟𝑡𝑖𝑎

𝐸𝑛𝑐𝑜𝑑𝑒𝑟

𝐼𝑛𝑒𝑟𝑡𝑖𝑎

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛

𝐼𝑛𝑒𝑟𝑡𝑖𝑎

𝐸𝑛𝑐𝑜𝑑𝑒𝑟

¤𝜓𝑜

¤𝜓𝑖

𝑟1 ≜ sin(\𝑜 + \𝑖) (𝑝 cos𝜓𝑜 + 𝑞 sin𝜓𝑜)︸                                            ︷︷                                            ︸

𝑞1 ≜ −𝑝𝑒 sin𝜓𝑖︸             ︷︷             ︸

Figure 2.9: Four Axis Gimbal Platform Dynamical Model(AZ-EL-el-az).
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2.7 State Space Representation of Four Axis Gimbal Platform

When the four axis gimbal model is considered, it can be seen that it is a
multiple-input, multiple-output (MIMO) and non-linear system. In the case of MIMO
systems, as an alternative to the classical control theory, modern control theory has an
important role in the implement of high-order controller design strategies such as 𝐻∞,
linear quadratic gaussian (LQG) and linear quadratic regulator (LQR) in state space.
This section examines the four axis gimbal system’s state space representations before
moving on to the control design studies. The four axis gimbal system’s state and output
equations have been generated using the system’s kinematics and dynamics. All of
the equations derived from system kinematics and dynamics and used in state and the
output equations are detailed below.

Equation 2.36 are written from the four axis gimbal system’s kinematic equations.
(From Equation 2.8, Equation 2.10, Equation 2.12, Equation 2.15 respectively.)

¤𝜓𝑜 = 𝑟𝐴 − 𝑟
¤\𝑜 = 𝑞𝐸 + 𝑝 sin𝜓𝑜 − 𝑞 cos𝜓𝑜
¤\𝑖 = 𝑞𝑒 − 𝑞𝐸
¤𝜓𝑖 = 𝜔𝑧 − 𝑝 cos𝜓𝑜 sin(\𝑜 + \𝑖) − 𝑞 sin𝜓𝑜 sin(\𝑜 + \𝑖) − 𝑟𝐴 cos(\𝑜 + \𝑖)

(2.36)

Equation 2.37 are written from the four axis gimbal system’s dynamic equations.
(From Equation 2.27, Equation 2.33, Equation 2.34 respectively.)

¤𝑟𝐴 = (𝜏𝐴 − 𝑏𝐴 ¤𝜓𝑜)
1
𝐽𝐴

=
1
𝐽𝐴
𝜏𝐴 −

𝑏𝐴

𝐽𝐴
𝑟𝐴 +

𝑏𝐴

𝐽𝐴
𝑟

¤𝑞𝐸 = (𝜏𝐸 − 𝑏𝐸 ¤\𝑜 + 𝑏𝑒 ¤\𝑖)
1
𝐽𝐸

=

(
1
𝐽𝐸

)
𝜏𝐸 +

(
−𝑏𝐸
𝐽𝐸

+ −𝑏𝑒
𝐽𝐸

)
𝑞𝐸 +

(
𝑏𝑒

𝐽𝐸

)
𝑞𝑒 +

(
−𝑏𝐸 sin𝜓𝑜

𝐽𝐸

)
𝑝 +

(
𝑏𝐸 cos𝜓𝑜

𝐽𝐸

)
𝑞

¤𝑞𝑒 = (𝜏𝑒 − 𝑏𝑒 ¤\𝑖 − 𝐽𝑒 ¤𝑞𝐸 )
1
𝐽𝑒

=

(
1
𝐽𝑒

)
𝜏𝑒 +

(
−1
𝐽𝐸

)
𝜏𝐸 +

(
𝑏𝑒

𝐽𝑒
+ 𝑏𝐸
𝐽𝐸

+ 𝑏𝑒
𝐽𝐸

)
𝑞𝐸 +

(
−𝑏𝑒
𝐽𝑒

+ −𝑏𝑒
𝐽𝐸

)
𝑞𝑒 +

(
𝑏𝐸 sin𝜓𝑜

𝐽𝐸

)
𝑝 +

(
−𝑏𝐸 cos𝜓𝑜

𝐽𝐸

)
𝑞

(2.37)
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Equation 2.38 are written from the four axis gimbal system’s dynamic equations.
(From Equation 2.30, Equation 2.35 respectively.)

¤𝜔𝑧 = (𝜏𝑎 − 𝑏𝑎 ¤𝜓𝑖)
1
𝐽𝑎

=
1
𝐽𝑎
𝜏𝑎 −

𝑏𝑎

𝐽𝑎
𝜔𝑧 + 𝑝

(
𝑏𝑎

𝐽𝑎
cos𝜓𝑜 sin(\𝑜 + \𝑖)

)
+ 𝑞

(
𝑏𝑎

𝐽𝑎
sin𝜓𝑜 sin(\𝑜 + \𝑖)

)
+ 𝑟𝐴

(
𝑏𝑎

𝐽𝑎
cos(\𝑜 + \𝑖)

)
𝜔𝑦 = 𝑞𝑒 cos𝜓𝑖 − 𝑝𝑒 sin𝜓𝑖

= 𝑞𝑒 cos𝜓𝑖 − sin𝜓𝑖 (𝑝 cos𝜓𝑜 + 𝑞 sin𝜓𝑜) cos(\𝑜 + \𝑖) + 𝑟𝐴 sin𝜓𝑖 sin(\𝑜 + \𝑖)
(2.38)

State variables are crucial in describing the system’s behavior. Hence, the state
variables of the four axis gimbal model are chosen as the outer azimuth angular position
(𝜓𝑜), the outer elevation angular position (\𝑜), the inner elevation angular position (\𝑖),
and the inner azimuth angular position (𝜓𝑖), respectively. Also, chosen state variables
are 𝑟𝐴, 𝑞𝐸 , and 𝑞𝑒 measured from virtual gyros in outer azimuth, outer elevation, and
inner elevation frames, respectively and 𝜔𝑧 angular velocity terms measured from inner
azimuth gyro.

Output variables must be chosen as measurable quantities, but state variables are
not required to be measurable. Therefore, the output variables are selected as the angular
positions (𝜓𝑜, \𝑜, \𝑖, 𝜓𝑖) measured by encoders on each axis and velocity responses (𝜔𝑦
and 𝜔𝑧) measured by the gyroscope in the inner azimuth frame. Motor torques refer to
the control input variables (𝜏𝐴, 𝜏𝐸 , 𝜏𝑒, 𝜏𝑎). 𝑝, 𝑞 and 𝑟 are the platform motion’s body
roll, pitch, yaw rates, which are used to describe disturbance effects on the system.

The four axis gimbal system’s nonlinear state space representation is in the
following form:

¤𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)) 𝑥(0) = 𝑥𝑜
𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡))

(2.39)

𝑥(𝑡) ∈ R𝑛; 𝑥𝑜 ∈ R𝑛; 𝑢(𝑡) ∈ R𝑚; 𝑦(𝑡) ∈ R𝑝; 𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)) ∈ R𝑛;
𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)) ∈ R𝑝; where the disturbance vector, the control input vector and
the state vector, denoting platform motion applied to gimbal base, is represented by
the symbols 𝑤(𝑡), 𝑢(𝑡), and 𝑥(𝑡), respectively. 𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)) is the state equation
consisting of dynamic and kinematic equations of the four axis gimbal system. ¤𝑥(𝑡) is
the first order derivative of the state vector, 𝑦(𝑡) is the output vector, 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡))
is the output equation which indicate the system responses.
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2.8 Linearization

State space representation of a linear time invariant (LTI) system is:

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐸𝑤(𝑡) 𝑥(0) = 𝑥𝑜
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝐹𝑤(𝑡)

(2.40)

where ¤𝑥 is differential state vector, x is state vector, u is control input vector, y is output
vector, w is disturbance input vector, A is state matrix, B is control input matrix, C is
output matrix, D is feed-forward matrix, E is disturbance state matrix, F is disturbance
output matrix.

State equation of the LTI system is written by Jacobian linearization method as
follows:

¤𝛿𝑥 (𝑡) = 𝐴𝛿𝑥 (𝑡) + 𝐵𝛿𝑢 (𝑡) + 𝐸𝛿𝑤 (𝑡) 𝛿𝑥 (0) = 𝛿𝑥𝑜

where 𝐴 is the state matrix, 𝐵 is the control input matrix, and 𝐸 is the disturbance state
matrix.

𝐴 =
𝜕 𝑓

𝜕𝑥

����
𝑥𝑒,𝑢𝑒,𝑤𝑒

=



𝜕 𝑓1
𝜕𝑥1

𝜕 𝑓1
𝜕𝑥2

· · · 𝜕 𝑓1
𝜕𝑥𝑛

𝜕 𝑓2
𝜕𝑥1

𝜕 𝑓2
𝜕𝑥2

· · · 𝜕 𝑓2
𝜕𝑥𝑛

...
...

. . .
...

𝜕 𝑓𝑛
𝜕𝑥1

𝜕 𝑓𝑛
𝜕𝑥2

· · · 𝜕 𝑓𝑛
𝜕𝑥𝑛

 (𝑥𝑒,𝑢𝑒,𝑤𝑒)

𝐵 =
𝜕 𝑓

𝜕𝑢

����
𝑥𝑒,𝑢𝑒,𝑤𝑒

=



𝜕 𝑓1
𝜕𝑢1

𝜕 𝑓1
𝜕𝑢2

· · · 𝜕 𝑓1
𝜕𝑢𝑚

𝜕 𝑓2
𝜕𝑢1

𝜕 𝑓2
𝜕𝑢2

· · · 𝜕 𝑓2
𝜕𝑢𝑚

...
...

. . .
...

𝜕 𝑓𝑛
𝜕𝑢1

𝜕 𝑓𝑛
𝜕𝑢2

· · · 𝜕 𝑓𝑛
𝜕𝑢𝑚

 (𝑥𝑒,𝑢𝑒,𝑤𝑒)

𝐸 =
𝜕 𝑓

𝜕𝑤

����
𝑥𝑒,𝑢𝑒,𝑤𝑒

=



𝜕 𝑓1
𝜕𝑤1

𝜕 𝑓1
𝜕𝑤2

· · · 𝜕 𝑓1
𝜕𝑤𝑘

𝜕 𝑓2
𝜕𝑤1

𝜕 𝑓2
𝜕𝑤2

· · · 𝜕 𝑓2
𝜕𝑤𝑘

...
...

. . .
...

𝜕 𝑓𝑛
𝜕𝑤1

𝜕 𝑓𝑛
𝜕𝑤2

· · · 𝜕 𝑓𝑛
𝜕𝑤𝑘

 (𝑥𝑒,𝑢𝑒,𝑤𝑒)
where 𝑛 is the number of the state variables, 𝑚 is the number of the control input

variables and k is the number of the disturbance input variables.
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The output equation is also linearized using the Jacobian method, as shown
below:

¤𝛿𝑦 (𝑡) = 𝐶𝛿𝑥 (𝑡) + 𝐷𝛿𝑢 (𝑡) + 𝐹𝛿𝑤 (𝑡)

where 𝐶 is the output matrix, 𝐷 is the feed forward matrix, 𝐹 is the disturbance output
matrix

𝐶 =
𝜕𝑔

𝜕𝑥

����
𝑥𝑒,𝑢𝑒,𝑤𝑒

=



𝜕𝑔1
𝜕𝑥1

𝜕𝑔1
𝜕𝑥2

· · · 𝜕𝑔1
𝜕𝑥𝑛

𝜕𝑔2
𝜕𝑥1

𝜕𝑔2
𝜕𝑥2

· · · 𝜕𝑔2
𝜕𝑥𝑛

...
...

. . .
...

𝜕𝑔𝑝
𝜕𝑥1

𝜕𝑔𝑝
𝜕𝑥2

· · · 𝜕𝑔𝑝
𝜕𝑥𝑛

 (𝑥𝑒,𝑢𝑒,𝑤𝑒)

𝐷 =
𝜕𝑔

𝜕𝑢

����
𝑥𝑒,𝑢𝑒,𝑤𝑒

=



𝜕𝑔1
𝜕𝑢1

𝜕𝑔1
𝜕𝑢2

· · · 𝜕𝑔1
𝜕𝑢𝑚

𝜕𝑔2
𝜕𝑢1

𝜕𝑔2
𝜕𝑢2

· · · 𝜕𝑔2
𝜕𝑢𝑚

...
...

. . .
...

𝜕𝑔𝑝
𝜕𝑢1

𝜕𝑔𝑝
𝜕𝑢2

· · · 𝜕𝑔𝑝
𝜕𝑢𝑚

 (𝑥𝑒,𝑢𝑒,𝑤𝑒)

𝐹 =
𝜕𝑔

𝜕𝑤

����
𝑥𝑒,𝑢𝑒,𝑤𝑒

=



𝜕𝑔1
𝜕𝑤1

𝜕𝑔1
𝜕𝑤2

· · · 𝜕𝑔1
𝜕𝑤𝑘

𝜕𝑔2
𝜕𝑤1

𝜕𝑔2
𝜕𝑤2

· · · 𝜕𝑔2
𝜕𝑤𝑘

...
...

. . .
...

𝜕𝑔𝑝
𝜕𝑤1

𝜕𝑔𝑝
𝜕𝑤2

· · · 𝜕𝑔𝑝
𝜕𝑤𝑘

 (𝑥𝑒,𝑢𝑒,𝑤𝑒)
where 𝑝 is the number of output variables, 𝑛 is the number of state variables, 𝑚 is the
number of control input variables, 𝑘 is the number of disturbance input variables.

There are eight states, four control inputs, three disturbances and six outputs
for the four axis gimbal model. The state vector contains the four angular positions
measured in the outer azimuth (𝜓𝑜), outer elevation (\𝑜), inner elevation (\𝑖), and inner
azimuth (𝜓𝑖) frames, as well as the relative angular velocities read from the virtual
gyroscopes at the outer azimuth (𝑟𝐴), outer elevation (𝑞𝐸 ), and inner elevation (𝑞𝑒)
frames. It also includes the gyroscope’s relative angular velocity in the inner azimuth
(𝜔𝑧) frame. Control input vector involves four motor torques (𝜏𝐴, 𝜏𝐸 , 𝜏𝑒, 𝜏𝑎) and
disturbance vector contains the 𝑝, 𝑞 and 𝑟 are the platform motion’s body roll, pitch,
yaw rates, which are used to describe disturbance effects on the system. Output vector
includes four measurable angular positions (𝜓𝑜, \𝑜, \𝑖, 𝜓𝑖) and two measurable relative
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angular velocities (𝜔𝑧, 𝜔𝑦). The state vector, control input vector, disturbance input
vector, and output vector are all shown below respectively.

𝑥(𝑡) =
[
𝜓𝑜 \𝑜 \𝑖 𝜓𝑖 𝑟𝐴 𝑞𝐸 𝑞𝑒 𝜔𝑧

]𝑇
𝑢(𝑡) =

[
𝜏𝐴 𝜏𝐸 𝜏𝑒 𝜏𝑎

]𝑇
𝑤(𝑡) =

[
𝑝 𝑞 𝑟

]𝑇
𝑦(𝑡) =

[
𝜓𝑜 \𝑜 \𝑖 𝜓𝑖 𝜔𝑧 𝜔𝑦

]𝑇
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States are: 𝜓𝑜, \𝑜, \𝑖, 𝜓𝑖, 𝑟𝐴, 𝑞𝐸 , 𝑞𝑒, 𝜔𝑧 Inputs are: 𝜏𝐴, 𝜏𝐸 , 𝜏𝑒, 𝜏𝑎, 𝑝, 𝑞, 𝑟 Outputs are: 𝜓𝑜, \𝑜, \𝑖, 𝜓𝑖, 𝜔𝑧, 𝜔𝑦

State equation is given by



¤𝜓𝑜

¤\𝑜

¤\𝑖

¤𝜓𝑖

¤𝑟𝐴

¤𝑞𝐸

¤𝑞𝑒

¤𝜔𝑧



=



0 0 0 0 1 0 0 0

𝑝 cos𝜓𝑜 + 𝑞 sin𝜓𝑜 0 0 0 0 1 0 0

0 0 0 0 0 −1 1 0

𝑝 sin (\𝑖 + \𝑜) sin𝜓𝑜 − 𝑞 sin (\𝑖 + \𝑜) cos𝜓𝑜 𝑟𝐴 sin (\𝑖 + \𝑜) − 𝑝 cos (\𝑖 + \𝑜) cos𝜓𝑜 − 𝑞 cos (\𝑖 + \𝑜) sin𝜓𝑜 𝑟𝐴 sin (\𝑖 + \𝑜) − 𝑝 cos (\𝑖 + \𝑜) cos𝜓𝑜 − 𝑞 cos (\𝑖 + \𝑜) sin𝜓𝑜 0 − cos (\𝑖 + \𝑜) 0 0 1

0 0 0 0 − 𝑏𝐴
𝐽𝐴

0 0 0

− 𝑏𝐸 𝑝 cos𝜓𝑜
𝐽𝐸

− 𝑏𝐸 𝑞 sin𝜓𝑜
𝐽𝐸

0 0 0 0 − 𝑏𝐸
𝐽𝐸

− 𝑏𝑒
𝐽𝐸

𝑏𝑒
𝐽𝐸

0

𝑏𝐸 𝑝 cos𝜓𝑜
𝐽𝐸

+ 𝑏𝐸 𝑞 sin𝜓𝑜
𝐽𝐸

0 0 0 0 𝑏𝐸
𝐽𝐸

+ 𝑏𝑒
𝐽𝐸

+ 𝑏𝑒
𝐽𝑒

− 𝑏𝑒
𝐽𝐸

− 𝑏𝑒
𝐽𝑒

0

𝑏𝑎 𝑞 sin(\𝑖+\𝑜) cos𝜓𝑜
𝐽𝑎

− 𝑏𝑎 𝑝 sin(\𝑖+\𝑜) sin𝜓𝑜
𝐽𝑎

𝑏𝑎 𝑝 cos(\𝑖+\𝑜) cos𝜓𝑜
𝐽𝑎

− 𝑏𝑎 𝑟𝐴 sin(\𝑖+\𝑜)
𝐽𝑎

+ 𝑏𝑎 𝑞 cos(\𝑖+\𝑜) sin𝜓𝑜
𝐽𝑎

𝑏𝑎 𝑝 cos(\𝑖+\𝑜) cos𝜓𝑜
𝐽𝑎

− 𝑏𝑎 𝑟𝐴 sin(\𝑖+\𝑜)
𝐽𝑎

+ 𝑏𝑎 𝑞 cos(\𝑖+\𝑜) sin𝜓𝑜
𝐽𝑎

0 𝑏𝑎 cos(\𝑖+\𝑜)
𝐽𝑎

0 0 − 𝑏𝑎
𝐽𝑎





𝜓𝑜

\𝑜

\𝑖

𝜓𝑖

𝑟𝐴

𝑞𝐸

𝑞𝑒

𝜔𝑧



+



0 0 0 0 0 0 −1

0 0 0 0 sin𝜓𝑜 − cos𝜓𝑜 0

0 0 0 0 0 0 0

0 0 0 0 − sin (\𝑖 + \𝑜) cos𝜓𝑜 − sin (\𝑖 + \𝑜) sin𝜓𝑜 0

1
𝐽𝐴

0 0 0 0 0 𝑏𝐴
𝐽𝐴

0 1
𝐽𝐸

0 0 − 𝑏𝐸 sin𝜓𝑜
𝐽𝐸

𝑏𝐸 cos𝜓𝑜
𝐽𝐸

0

0 − 1
𝐽𝐸

1
𝐽𝑒

0 𝑏𝐸 sin𝜓𝑜
𝐽𝐸

− 𝑏𝐸 cos𝜓𝑜
𝐽𝐸

0

0 0 0 1
𝐽𝑎

𝑏𝑎 sin(\𝑖+\𝑜) cos𝜓𝑜
𝐽𝑎

𝑏𝑎 sin(\𝑖+\𝑜) sin𝜓𝑜
𝐽𝑎

0





𝜏𝐴

𝜏𝐸

𝜏𝑒

𝜏𝑎

𝑝

𝑞

𝑟
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The output equation can be written as



𝜓𝑜

\𝑜

\𝑖

𝜓𝑖

𝜔𝑧

𝜔𝑦



=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

− cos (\𝑖 + \𝑜) sin𝜓𝑖 (𝑞 cos𝜓𝑜 − 𝑝 sin𝜓𝑜) 𝑟𝐴 cos (\𝑖 + \𝑜) sin𝜓𝑖 + sin (\𝑖 + \𝑜) sin𝜓𝑖 (𝑝 cos𝜓𝑜 + 𝑞 sin𝜓𝑜) 𝑟𝐴 cos (\𝑖 + \𝑜) sin𝜓𝑖 + sin (\𝑖 + \𝑜) sin𝜓𝑖 (𝑝 cos𝜓𝑜 + 𝑞 sin𝜓𝑜) 𝑟𝐴 sin (\𝑖 + \𝑜) cos𝜓𝑖 − 𝑞𝑒 sin𝜓𝑖 − cos (\𝑖 + \𝑜) cos𝜓𝑖 (𝑝 cos𝜓𝑜 + 𝑞 sin𝜓𝑜) sin (\𝑖 + \𝑜) sin𝜓𝑖 0 cos𝜓𝑖 0





𝜓𝑜

\𝑜

\𝑖

𝜓𝑖

𝑟𝐴

𝑞𝐸

𝑞𝑒

𝜔𝑧



+



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 − cos (\𝑖 + \𝑜) cos𝜓𝑜 sin𝜓𝑖 − cos (\𝑖 + \𝑜) sin𝜓𝑖 sin𝜓𝑜 0





𝜏𝐴

𝜏𝐸

𝜏𝑒

𝜏𝑎

𝑝

𝑞

𝑟



27



The four-axis gimbal system mechanical structure within the scope of this thesis
was assumed to be a sphere made of the same material, with a radius of 25 cm, 24
cm, 23 cm and 22 cm, respectively, from the outside to the inside. Accordingly, the
density values are integrated into the four axes. In addition, by considering that the
outer azimuth, outer elevation and inner elevation axes are spheres(shell), and the inner
azimuth axis is sphere(ball), inertia values are calculated accordingly and indicated in
the table. Furthermore, friction values for each axis were included as one-tenth of the
inertia values to the design processes.

Table 2.4: Parameter Description and Values.
Parameter Description Value

𝐽𝐴 Outer azimuth frame inertia value 2.6180
𝐽𝐸 Outer elevation frame inertia value 2.1346
𝐽𝑒 Inner elevation frame inertia value 1.7255
𝐽𝑎 Inner azimuth frame inertia value 0.9498
𝑏𝐴 Friction between base and outer azimuth frame 0.2618
𝑏𝐸 Friction between outer frame and outer elevation Frames 0.2135
𝑏𝑒 Friction between outer elevation and inner elevation Frames 0.1725
𝑏𝑎 Friction between inner elevation and inner azimuth Frames 0.0950

𝜓𝑜, \𝑜, \𝑖, 𝜓𝑖 Gimbal angular position 0
𝑟𝐴, 𝑞𝑒 Angular rates in outer azimuth and inner elevation 0
𝑝, 𝑞 Disturbances from platform motion 0

Since the system has nonlinear equations, it was linearized around the values in
the table. A state space model for the four axis gimbal system dynamics at the above
condition is as follows.

¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑤
𝑦 = 𝐶𝑥 + 𝐷𝑢

(2.41)
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where

𝐴 =



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 −1 1 0

0 0 0 0 −1 0 0 1

0 0 0 0 −0.1 0 0 0

0 0 0 0 0 −0.1808 0.0808 0

0 0 0 0 0 0.2808 −0.1808 0

0 0 0 0 0.1 0 0 −0.1



(2.42)

𝐵 =



0 0 0 0 0 0 −1

0 0 0 0 0 −1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.3820 0 0 0 0 0 0.1

0 0.4685 0 0 0 0.1 0

0 −0.4685 0.5796 0 0 −0.1 0

0 0 0 1.0528 0 0 0



(2.43)

𝐶 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


𝐷 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(2.44)

𝑢 =



𝜏𝐴 − Torque applied to the outer azimuth frame (N.m)

𝜏𝐸 − Torque applied to the outer elevation frame (N.m)

𝜏𝑒 − Torque applied to the inner elevation frame (N.m)

𝜏𝑎 − Torque applied to the inner azimuth frame (N.m)


(2.45)
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𝑤 =


𝑝 − Disturbance from platform motion roll rates (rad/sec)

𝑞 − Disturbance from platform motion pitch rates (rad/sec)

𝑟 − Disturbance from platform motion yaw rates (rad/sec)

 (2.46)

𝑥 =



𝜓𝑜− Outer azimuth frame angular position (rad)

\𝑜− Outer elevation frame angular position (rad)

\𝑖− Inner elevation frame angular position (rad)

𝜓𝑖− Inner azimuth frame angular position (rad)

𝑟𝐴− Angular velocity from the virtual gyro at outer azimuth frame (rad/sec)

𝑞𝐸− Angular velocity from the virtual gyro at outer elevation frame (rad/sec)

𝑞𝑒− Angular velocity from the virtual gyro at inner azimuth frame (rad/sec)

𝜔𝑧− Relative angular velocity in the inner azimuth frame (rad/sec)


(2.47)

𝑦 =



𝜓𝑜− Outer azimuth frame angular position (rad)

\𝑜− Outer elevation frame angular position (rad)

\𝑖− Inner elevation frame angular position (rad)

𝜓𝑖− Inner azimuth frame angular position (rad)

𝜔𝑧− Relative angular velocity in the inner azimuth frame (rad/sec)

𝜔𝑦− Relative angular velocity in the inner azimuth frame (rad/sec)


(2.48)

2.9 Transfer Function Matrix

The four axis gimbal system transfer function matrix from u to y is given by:

𝐺 (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1𝐵

=



𝐺𝜏𝐴𝜓𝑜 𝐺𝜏𝐸𝜓𝑜 𝐺𝜏𝑒𝜓𝑜 𝐺𝜏𝑎𝜓𝑜

𝐺𝜏𝐴\𝑜 𝐺𝜏𝐸\𝑜 𝐺𝜏𝑒\𝑜 𝐺𝜏𝑎\𝑜

𝐺𝜏𝐴\𝑖 𝐺𝜏𝐸\𝑖 𝐺𝜏𝑒\𝑖 𝐺𝜏𝑎\𝑖

𝐺𝜏𝐴𝜓𝑖 𝐺𝜏𝐸𝜓𝑖 𝐺𝜏𝑒𝜓𝑖 𝐺𝜏𝑎𝜓𝑖

𝐺𝜏𝐴𝜔𝑧 𝐺𝜏𝐸𝜔𝑧 𝐺𝜏𝑒𝜔𝑧 𝐺𝜏𝑎𝜔𝑧

𝐺𝜏𝐴𝜔𝑦 𝐺𝜏𝐸𝜔𝑦 𝐺𝜏𝑒𝜔𝑦 𝐺𝜏𝑎𝜔𝑦



(2.49)
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where

𝐺𝜏𝐴𝜓𝑜 =
0.38197
𝑠(𝑠 + 0.1) 𝐺𝜏𝐴𝜓𝑖 =

−0.38197𝑠
𝑠(𝑠 + 0.1)2 𝐺𝜏𝐴𝜔𝑧 =

0.038197
(𝑠 + 0.1)2 (2.50)

𝐺𝜏𝐸\𝑜 =
0.46846(𝑠 + 0.1)

𝑠(𝑠 + 0.3315) (𝑠 + 0.03017)

𝐺𝜏𝐸\𝑖 =
−0.93693𝑠

𝑠(𝑠 + 0.3315) (𝑠 + 0.03017)

𝐺𝜏𝐸𝜔𝑦 =
−0.46846(𝑠 − 0.1)

(𝑠 + 0.3315) (𝑠 + 0.03017)

(2.51)

𝐺𝜏𝑒\𝑜 =
0.046846

𝑠(𝑠 + 0.3315) (𝑠 + 0.03017)

𝐺𝜏𝑒\𝑖 =
0.57955(𝑠 + 0.1)

𝑠(𝑠 + 0.3315) (𝑠 + 0.03017)

𝐺𝜏𝑒𝜔𝑦 =
0.57955(𝑠 + 0.1808)

(𝑠 + 0.3315) (𝑠 + 0.03017)

(2.52)

𝐺𝜏𝑎𝜓𝑖 =
1.0528
𝑠(𝑠 + 0.1) 𝐺𝜏𝑎𝜔𝑧 =

1.0528
(𝑠 + 0.1) (2.53)

Different transfer function matrices (TFM’s) will be obtained if a different
equlibrium point is assumed. The above is for 𝜓𝑜 = \𝑜 = \𝑖 = 𝜓𝑖 = 0 and ¤𝜓𝑜 = ¤\𝑜 =
¤\𝑜 = ¤𝜓𝑖 = 0.
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CHAPTER 3

CONTROLLER DESIGN

In this section, the 𝐻∞ mixed-sensitivity control design method, which is one of
the robust control variants used for the four-axis gimbal model, is considered. Control
system designs are obtained as solutions to weighted 𝐻∞ mixed-sensitivity optimization
problems possessing the form:

• Weighted 𝐻∞ Mixed Sensitivity Optimization Problem: Find a stabilizing com-
pensator K such that

∥𝑇𝑤𝑧∥𝐻∞ =



𝑊1𝑆

𝑊2𝐾𝑆

𝑊3𝑇



𝐻∞

< 𝛾 (3.1)

where𝑊1,𝑊2 and𝑊3 are weighting functions and 𝛾 > 0 is parameter to be minimized.

3.1 Selection of Weighting Functions for Design Shaping

General rules (guidelines) for selecting the weighting functions𝑊1,𝑊2 and𝑊3

are now developed. Weighting functions are selected this way: [33]

• Sensitivity Weighting. In many applications, the weighting function 𝑊1 on the
sensitivity 𝑆 is selected to have the form:

𝑊1(𝑠) =
1
𝑀𝑠

[
𝑠 + 𝑀𝑠𝜔𝑏

𝑠 + 𝜖𝜔𝑏

]
(3.2)

where 𝜖 > 0, 𝜔𝑏 > 0 and 𝑀𝑠 > 0 are design parameters used to shape the sensitivity
function.
Typically we have 0 < 𝜖 << 1 < 𝑀𝑠 < ∞.

Using Bode approximation ideas, it follows the model

𝑊1 ≈


1
𝜖

0 ≤ |𝑠 | << 𝜖𝜔𝑏

𝜔𝑏
𝑠

𝜖𝜔𝑏 << |𝑠 | << 𝑀𝑠𝜔𝑏

1
𝑀𝑠

𝑀𝑠𝜔𝑏 << |𝑠 | < ∞

(3.3)

Sensitivity Design Parameter Interpretations. From this, we have the following
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interpretations for the design parameters 𝜖 , 𝜔𝑏, 𝑀𝑠, and 𝛾:

1. Low Frequency Sensitivity Reduction.
𝜖 is an upperbound for the desired low frequency sensitivity reduction; this
sensitivity reduction is to take place for 𝜔 ≤ 𝜖𝜔𝑏;

2. Sensitivity Unity Gain Crossover Frequency.
𝜔𝑏 is an upperbound for the desired sensitivity unity gain crossover frequency;

3. Sensitivity High Frequency Upper Bound. 𝑀𝑠 is an upper bound for the sensitivity
at frequencies 𝜔 ≥ 𝑀𝑠𝜔𝑏.

By making 𝛾 smaller, the above upper bounds are improved; i.e. the effective
sensitivity reduction is reduced, the effective sensitivity gain crossover frequency is
increased, and the effective upper bound for the sensitivity at low frequencies is reduced.
We therefore wish to make 𝛾 as small as possible.

• Control Sensitivity Weighting. The weighting function 𝑊2 on 𝐾𝑆 imposes a
penalty on the resulting controls. In this sense,𝑊2 is a control weighting function.
In many applications,𝑊2 is selected to be a constant:

𝑊2(𝑠) = 𝑀𝑢 . (3.4)

Since |𝑊2𝐾𝑆 | < 𝛾 for all frequencies, it follows that

|𝐾𝑆 | < 𝛾 1
𝑀𝑢

. (3.5)

Given this, it follows that
we increase (decrease) 𝑀𝑢 in order to reduce (increase) the peak of |𝐾𝑆 |.

Typically, 0 < 𝑀𝑢 < 1 so that 1 < 1
𝑀𝑢

< ∞ represents a nominal desired upper
bound on |𝐾𝑆 |. Given this, the parameter 𝑀𝑢 is henceforth referred to as the control
sensitivity peaking parameter or control penalty parameter. By making 𝛾 small, we
make the peak even smaller than 1

𝑀𝑢
. This is typically very desirable because it translates

into less control action.
Dynamic Control Sensitivity Weighting. For some applications, it is important

to control the bandwidth associated with 𝐾𝑆 as well as the peak. For such application,
the following dynamic weighting function may be more appropriate:

1
𝜖

[
𝑠 + 𝜔𝑏𝑢𝑀𝑢

𝑠 + 𝜔𝑏𝑢
𝜖

]
(3.6)
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where 𝑀𝑢 > 0, 𝜔𝑏𝑢 > 0, and 𝜖 > 0 are design parameters used to shape
the control sensitivity |𝐾𝑆 |. The important parameters are 𝑀𝑢 and 𝜔𝑏𝑢 . Typically,
0 < 𝜖 << 𝑀𝑢 < 1. Here, 𝜖 > 0 is typically very small - non-zero so that𝑊2 is proper.

Using Bode approximation ideas, it follows that

𝑊2 ≈


𝑀𝑢 0 ≤ |𝑠 | << 𝜔𝑏𝑢𝑀𝑢

𝑠
𝜔𝑏𝑢

𝜔𝑏𝑢𝑀𝑢 << |𝑠 | <<
𝜔𝑏𝑢
𝜖

1
𝜖

𝜔𝑏𝑢
𝜖

<< |𝑠 | < ∞

(3.7)

Control Sensitivity Design Parameter Interpretations. From this, we have the
following interpretations for the design parameters 𝑀𝑢, 𝜔𝑏𝑢 , 𝜖 and 𝛾:

1. Bound on Peak Control Sensitivity.
1
𝑀𝑢

is an upperbound for the desired peak control sensitivity |𝐾𝑆 | at low frequen-
cies;

2. Control Sensitivity Bandwidth and Roll-Off.
𝜔𝑏𝑢 is an upperbound for the desired control sensitivity |𝐾𝑆 | bandwidth; i.e. high
frequency unity gain crossover frequency;

3. Control Sensitivity High Frequency Upper Bound.
𝜖 is an upper bound for the control sensitivity |𝐾𝑆 | at frequencies 𝜔 ≥ 𝜔𝑏𝑢

𝜖

By making 𝛾 smaller, the above upper bounds are all made smaller. We therefore wish
to make 𝛾 as small as possible.

• Complementary Sensitivity Weighting. In many applications, the weighting
function𝑊3 on the complementary sensitivity 𝑇 is selected to have the following
form:

𝑊3(𝑠) =
𝑠 + 𝜔𝑏𝑐

𝑀𝑦

𝜔𝑏𝑐
(3.8)

where 𝑀𝑦 > 0 and 𝜔𝑏𝑐 > 0 are design parameters used to shape the |𝑇 |. (Note that if
the denominator is replaced by 𝜖 𝑠 + 𝜔𝑏𝑐small, then the function 𝑊3 becomes proper.
This is sometimes required.)

Using Bode approximation ideas, it follows that

𝑊3 ≈


1
𝑀𝑦

0 ≤ |𝑠 | <<
𝜔𝑏𝑐
𝑀𝑦

𝑠
𝜔𝑏𝑐

𝜔𝑏𝑐
𝑀𝑦

<< |𝑠 | < ∞
(3.9)
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Complementary Sensitivity Design Parameter Interpretations. From this, we
have the following interpretations for the design parameters 𝑀𝑦, 𝜔𝑏𝑐 , 𝛾 and 𝛾:

1. Bound on Peak Complementary Sensitivity.
𝑀𝑦 is an upperbound for the desired peak complementary sensitivity |𝑇 | at low
frequencies;

2. Complementary Sensitivity Bandwidth and Roll-Off.
𝜔𝑏𝑐 is an upperbound for the desired complementary sensitivity |𝑇 | bandwidth;
i.e. high frequency unity gain crossover frequency.

Typically, we have 1 < 𝑀𝑦 << ∞. By making 𝛾 smaller, the above upper bounds are
made smaller. We therefore wish to make 𝛾 as small as possible.

Significance of 𝛾 Vis-a-Vis Design Specifications. One might use MATLAB’s
"hinfopt" command to find the minimum 𝛾 and a near-optimal controller 𝐾 . (Caution:
The command uses 1

𝛾
instead of 𝛾.) Given this, there are three cases worth noting.

• Non-demanding Design Specifications. A 𝛾 less than unity, implies that

|𝑆( 𝑗𝜔) | < |𝑊−1
1 ( 𝑗𝜔) | (3.10)

|𝐾 ( 𝑗𝜔)𝑆( 𝑗𝜔) | < |𝑊−1
2 ( 𝑗𝜔) | (3.11)

|𝑇 ( 𝑗𝜔) | < |𝑊−1
3 ( 𝑗𝜔) | (3.12)

for all 𝜔. This suggests that weighting functions (design specifications) reflecting not
very demanding (i.e. relaxed) were used. In such a case, one might then try to tighten
the specifications by selecting more aggressive design parameters.

• Demanding Design Specifications. A 𝛾 greater than unity, suggests that weighting
functions reflecting very demanding (i.e. aggressive) design specifications were
used. In such a case, one might then try to loosen the specifications by selecting
less aggressive design parameters.

• Unrealistic Design Specifications. If a controller does not exist (i.e. any one of the
necessary and sufficient conditions for existence are violated), then this implies
that the weighting functions (and the associated design specifications) used were
unrealistic; i.e. far too aggressive. As a general rule, the design problem becomes
more difficult as low and high frequency design specifications (reflected in the
weighting functions) overlap.

Why is this? Low frequency specifications typically call for a minimum
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bandwidth. High frequency specifications typically call for a maximum bandwidth. If
the specifications are too demanding, a very high order (possibly infinite-dimensional)
controller may be required to achieve the overlapping specifications. In such a case, a
near optimal controller possessing dimension equal to that of the generalized plant may
not exist.

3.2 H∞ Mixed Sensitivity Control System Design Structure: Four-Axis Gimbal
Platform

In this section, the control system design structures for the four axis gimbal
platform are explained. The gimbal platform’s position and rate control structures have
been investigated and schematized under separate titles. Furthermore, detailed analyses
of controllers designed using the H∞ mixed sensitivity structure are presented.

3.3 Position Controller Design

The position control structure of the closed loop system is described in Fig 3.1.
The models developed in Fig 2.9 are part of the four axis gimbal block. When the
gimbal model is combined, it becomes a 5-input 4-output system. 𝜏𝐴, 𝜏𝐸 , 𝜏𝑒, and 𝜏𝑎
denote the torque inputs applied to the outer azimuth frame, outer elevation frame, inner
elevation frame, and inner azimuth frame, respectively. [𝑝, 𝑞, 𝑟] is treated as a source of
disturbance. 𝐾𝜓𝑜 , 𝐾\𝑜 , 𝐾\𝑖 and 𝐾𝜓𝑖 refers to SISO (1×1) position controllers designed
to control 𝜓𝑜, \𝑜, \𝑖 and 𝜓𝑖. Also, 𝜓𝑜𝑐, \𝑜𝑐, \𝑖𝑐 and 𝜓𝑖𝑐 are the command signal applied
to the system.
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Figure 3.1: Gimbal Position Control (SISO) - Closed Loop Structure.
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3.3.1 Outer Azimuth Position Controller Design (SISO)
The plant that was used in the design of the outer azimuth position controller

was found in Equation 2.50 and is shown below.

𝑃𝑙𝑎𝑛𝑡 = 𝑃𝜓𝑜 = 𝐺𝜏𝐴𝜓𝑜 =
0.38197
𝑠(𝑠 + 0.1) (3.13)

Each design was created by solving a standard weighted 𝐻∞ mixed-sensitivity
control problem using the weighting functions and design parameters shown in Table 3.1.
It should be noted that little time was spent tuning the parameters.

Table 3.1: Weighting Functions and Design Parameters for 𝜓𝑜.
𝑊1𝜓𝑜 𝑊2𝜓𝑜 𝑊3𝜓𝑜

𝑀𝑠𝜓𝑜 = 10
𝜔𝑏𝜓𝑜 = 2 ∗ 𝜋 ∗ 0.5
𝜖𝜓𝑜 = 0.001

𝑀𝑢𝜓𝑜 = 0.01 []

𝑊1
−1
𝜓𝑜

=
𝑠 + 𝜖𝜔𝑏𝜓𝑜
𝑠

𝑀𝑠𝜓𝑜
+ 𝜔𝑏𝜓𝑜

=
𝑠 + 0.003142
0.1𝑠 + 3.142

𝑊2
−1
𝜓𝑜

=
1

𝑀𝑢𝜓𝑜

= 100

𝑊3
−1
𝜓𝑜

=
𝜔𝑏𝑐𝜓𝑜

𝑠 + 𝜔𝑏𝑐𝜓𝑜
𝑀𝑦𝜓𝑜

= []

The outer azimuth position controller was designed using bilinear transformation.
The following shows how the bilinear transformation is done.

𝑠 =
𝑠 + 𝑝1
𝑠
𝑝2

+ 1
𝑠 =

𝑠 − 𝑝1
1 − 𝑠

𝑝2
(3.14)

where 𝑝1, 𝑝2 ∈ R may be used to influence the final control system design.
Bilinear Transformation Parameters Used. The bilinear transformation parame-

ters were selected as follows:

𝑝1𝜓𝑜 = −0.01

𝑝2𝜓𝑜 = −108.
(3.15)
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This selection yields

𝑠 =
𝑠 + 𝑝1𝜓𝑜
𝑠

𝑝2𝜓𝑜
+ 1

=
𝑠 − 0.01
𝑠

−108 + 1
≈ 𝑠 − 0.01 (inverse transformation)

𝑠 ≈ 𝑠 + 0.01 (transformation)

(3.16)

This selection of parameters results in a rightward shifting transformation 𝑠 ≈ 𝑠 + 0.01
and a leftward shifting transformation 𝑠 ≈ 𝑠 − 0.01. The selection thus shifts all plant
poles and zeros 0.01 units to the right. The transformed plant is combined with the
weighting functions to form the generalized plant G. (Note that the transformation is
NOT applied to the weighting functions!). Designs are based on the resulting generalized
plant G. After a design �̂� is obtained, the inverse transform is applied to �̂� - shifting
its poles and zeros in the 𝑠 plane toward the left to get poles and zeros in the s-plane.
Since �̂� internally stabilized �̂�, the resulting controller 𝐾 is guaranteed to stabilize the
original plant 𝑃.

The outer azimuth position controller design is obtained using

𝑃𝜓𝑜 =
0.38197
𝑠(𝑠 + 0.1) (3.17)

as the plant model. The design process is initiated by transforming the generalized plant
into the 𝑠-plane using the above bilinear transformation. After this is done, a design is
obtained. The resulting 𝑠-plane design is then transformed back into the s-plane. The
resulting minimum 𝛾 was found to be

𝛾 = 0.8650 (3.18)

The resulting s-domain controller is given by

𝐾𝜓𝑜 =
0.0005128(𝑠 + 108) (𝑠 + 0.1) (𝑠 + 0.01996)

(𝑠 + 0.01314) (𝑠 + 9.005) (𝑠 + 596.8)

≈ 0.0005128(𝑠 + 108) (𝑠 + 0.1) (𝑠 + 0.01996)
𝑠(𝑠 + 596.8) (𝑠 + 9.005)

(3.19)

The associated complementary sensitivity is given by

𝑇𝜓𝑜 =
0.00039175𝑠(𝑠 + 108) (𝑠 + 596.8) (𝑠 + 9.005) (𝑠 + 0.1)2(𝑠 + 0.01996) (𝑠 + 0.01314)

𝑠2(𝑠 + 0.1)2(𝑠 + 0.01314)2(𝑠 + 9.005)2(𝑠 + 596.8)2

≈ 0.00039175(𝑠 + 108) (𝑠 + 596.8) (𝑠 + 9.005) (𝑠 + 0.1)2(𝑠 + 0.01996) (𝑠 + 10−7) (𝑠 − 10−7)
𝑠4(𝑠 + 0.1)2(𝑠 + 9.005)2(𝑠 + 596.8)2

(3.20)
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Frequency Responses. Figures 3.2-3.8 contain relevant frequency responses for
outer azimuth position controller.

The frequency response of the plant is given in Fig 3.2.
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Figure 3.2: Plant Frequency Response - 𝑃𝜓𝑜 = 0.38197
𝑠 (𝑠+0.1) .

The frequency response of the controller is given in Fig 3.3.
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Figure 3.3: Controller Frequency Response - 𝐾𝜓𝑜 .

The open loop transfer function is given in Fig 3.4. As can be seen from the
figure the open loop bandwidth is about 3.5 rad/sec.
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Figure 3.4: Open Loop Frequency Response - 𝐿𝜓𝑜 = 𝑃𝜓𝑜𝐾𝜓𝑜 .

The frequency response of the sensitivity is given in Fig 3.5. Sensitivity
frequency response is |𝑆 |∞ < |𝑊−1

1 |∞. The frequency response of sensitivity transfer
function is as expected, i.e. small at low frequencies, and near unity (0 dB) at high
frequencies.
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Figure 3.5: Sensitivity Frequency Response - 𝑆𝜓𝑜 = 1
1+𝑃𝜓𝑜𝐾𝜓𝑜

= (𝑇𝑑𝑜𝑦)𝜓𝑜 .

The complementary sensitivity transfer function is given in Fig 3.6. As can be
seen from the figure the complementary sensitivity bandwidth is approximately about 5
rad/sec. The frequency response of complementary sensitivity transfer function is as
expected, i.e. small at high frequencies, and near unity (0 dB) at low frequencies.
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Figure 3.6: Complementary Sensitivity Frequency Response - (𝑇𝑜)𝜓𝑜 =
𝑃𝜓𝑜𝐾𝜓𝑜

1+𝑃𝜓𝑜𝐾𝜓𝑜
.

Control frequency response is given in Fig 3.7.
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Figure 3.7: Reference to Control Frequency Response - (𝑇𝑟𝑢)𝜓𝑜 = 𝐾𝜓𝑜𝑆𝜓𝑜 .

Input disturbance to output frequency response is given in Fig 3.8. At very
low frequencies, and high frequencies 𝑇𝑑𝑖𝑦 (Input disturbance singular value transfer
function) is small as expected. For frequencies between 10−2 rad/sec and 0.3 rad/sec the
disturbance rejection is poor.
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Figure 3.8: Input Disturbance to Output Frequency Response - (𝑇𝑑𝑖𝑦)𝜓𝑜 = 𝑆𝜓𝑜𝑃𝜓𝑜 .

Time Response Data: Step Command Following. We now address step command
following for outer azimuth position controller.

Figure 3.9: Control Response to Step Reference Command (𝑇𝑟𝑢)𝜓𝑜 .

Figure 3.10: Output Response to Step Reference Command (𝑇𝑟 𝑦)𝜓𝑜 .
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Closed Loop Poles for Outer Azimuth Position Controller Design. The closed
loop poles that result from our BLT (bilinear transformation) approach are as follows.

Table 3.2: Closed Loop Poles for Outer Azimuth Position Controller Design.
Poles Damping Frequency(rad/sec)

−5.97𝑒 + 02 1.00𝑒 + 00 5.97𝑒 + 02
−4.46𝑒 + 00 + 3.56𝑒 + 00𝑖 7.81𝑒 − 01 5.71𝑒 + 00
−4.46𝑒 + 00 − 3.56𝑒 + 00𝑖 7.81𝑒 − 01 5.71𝑒 + 00

−2.01𝑒 − 02 1.00𝑒 + 00 2.01𝑒 − 02
−1.00𝑒 − 01 1.00𝑒 + 00 1.00𝑒 − 01

As expected, all closed loop poles associated with outer azimuth position
controller design are at desirable locations - with damping Z > 0.7. Also it should be
noted that, since 𝛾 < 1, this implies that our outer azimuth position controller design
specifications (reflected within our weighting functions) were not too aggressive.

The output graph for 𝜓𝑜 in the simulink block diagram after designing the outer
azimuth position controller is shown below. When the system is given a 100◦ position
input, the response of the system with the designed controller is as in the Fig 3.11.

Figure 3.11: 𝜓𝑜 - Output Response (SISO System).

3.3.2 Inner Azimuth Position Controller Design (SISO)
The plant that was used in the design of the inner azimuth position controller

was found in Equation 2.53 and is shown below.

𝑃𝑙𝑎𝑛𝑡 = 𝑃𝜓𝑖 = 𝐺𝜏𝑎𝜓𝑖 =
1.0528
𝑠(𝑠 + 0.1) (3.21)
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Weighting Functions and Design Parameters. Weighting function parameters
and weighting functions were selected as follows:

𝑀𝑠𝜓𝑖 = 10

𝜔𝑏𝜓𝑖 = 2 ∗ 𝜋 ∗ 1.2

𝜖𝜓𝑖 = 0.001

𝑀𝑢𝜓𝑖 = 10−4

𝜔𝑏𝑐𝜓𝑖 = []
𝑀𝑦𝜓𝑖 = []

(3.22)

Table 3.3: Weighting Functions and Design Parameters for 𝜓𝑖 .
𝑊1𝜓𝑖 𝑊2𝜓𝑖 𝑊3𝜓𝑖

𝑀𝑠𝜓𝑖 = 10
𝜔𝑏𝜓𝑖 = 2 ∗ 𝜋 ∗ 1.2
𝜖𝜓𝑖 = 0.001

𝑀𝑢𝜓𝑖 = 10−4 []

𝑊1
−1
𝜓𝑖

=
𝑠 + 𝜖𝜔𝑏𝜓𝑖
𝑠

𝑀𝑠𝜓𝑖
+ 𝜔𝑏𝜓𝑖

=
𝑠 + 0.00754
0.1𝑠 + 7.54

𝑊2
−1
𝜓𝑖

=
1

𝑀𝑢𝜓𝑖

= 104

𝑊3
−1
𝜓𝑖

=
𝜔𝑏𝑐𝜓𝑖

𝑠 + 𝜔𝑏𝑐𝜓𝑖
𝑀𝑦𝜓𝑖

= []

Very lightly damped closed loop poles, which are unacceptable in some design,
have been observed. To prevent this undesirable plant pole inversion, we use the bilinear
transformation.

Bilinear Transformation Parameters. The bilinear transformation (BLT) parame-
ters selected were as follows:

𝑝1𝜓𝑖 = −1

𝑝2𝜓𝑖 = −108
(3.23)
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This selection results in

𝑠 =
𝑠 + 𝑝1𝜓𝑖
𝑠

𝑝2𝜓𝑖
+ 1

=
𝑠 − 1
𝑠

−108 + 1
≈ 𝑠 − 1 (inverse transformation)

𝑠 ≈ 𝑠 + 1 (transformation)

(3.24)

The transform performans a rightward ("destabilizing") shift. The inverse transform
performs a leftward ("stabilizing") shift. The resulting minimum 𝛾 was found to be

𝛾 = 0.2723 (3.25)

Since 𝛾 < 1, this implies that our design specification were not too aggressive.
The resulting s-domain controller is given by

𝐾𝜓𝑖 =
0.075388(𝑠 + 108) (𝑠2 + 3.675𝑠 + 3.468)

(𝑠 + 1.008) (𝑠 + 86) (𝑠 + 2976)

≈ 0.075388(𝑠 + 108) (𝑠2 + 3.675𝑠 + 3.468)
𝑠(𝑠 + 86) (𝑠 + 2976)

(3.26)

Frequency Responses. Figures 3.12-3.18 contain relevant frequency responses for inner
azimuth position controller.

The frequency response of the plant is given in Fig 3.12.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency (rad/s)

-200

-150

-100

-50

0

50

100

M
a
g
n
it
u
d
e
 (

d
B

)

Plant Singular Values

Figure 3.12: Plant Frequency Response - 𝑃𝜓𝑖 = 1.0528
𝑠 (𝑠+0.1) .
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The frequency response of the controller is given in Fig 3.13.
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Figure 3.13: Controller Frequency Response - 𝐾𝜓𝑖 .

The open loop transfer function is given in Fig 3.14. As can be seen from the
figure the open loop bandwidth is about 32 rad/sec.
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Figure 3.14: Open Loop Frequency Response - 𝐿𝜓𝑖 = 𝑃𝜓𝑖𝐾𝜓𝑖 .

The frequency response of the sensitivity is given in Fig 3.15. Sensitivity
frequency response is |𝑆 |∞ < |𝑊−1

1 |∞. The frequency response of sensitivity transfer
function is as expected, i.e. small at low frequencies, and near unity (0 dB) at high
frequencies.
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Figure 3.15: Sensitivity Frequency Response - 𝑆𝜓𝑖 = 1
1+𝑃𝜓𝑖

𝐾𝜓𝑖

= (𝑇𝑑𝑜𝑦)𝜓𝑖 .

The complementary sensitivity transfer function is given in Fig 3.16. As can be
seen from the figure the complementary sensitivity bandwidth is approximately about
47 rad/sec. The frequency response of complementary sensitivity transfer function is as
expected, i.e. small at high frequencies, and near unity (0 dB) at low frequencies.
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Control frequency response is given in Fig 3.17.
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Figure 3.17: Reference to Control Frequency Response - (𝑇𝑟𝑢)𝜓𝑖 = 𝐾𝜓𝑖𝑆𝜓𝑖 .

Input disturbance to output frequency response is given in Fig 3.18. At very
low frequencies, and high frequencies 𝑇𝑑𝑖𝑦 (Input disturbance singular value transfer
function) is small as expected. For frequencies between 0.1 rad/sec and 10 rad/sec the
disturbance rejection is poor.
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Figure 3.18: Input Disturbance to Output Frequency Response - (𝑇𝑑𝑖𝑦)𝜓𝑖 = 𝑆𝜓𝑖𝑃𝜓𝑖 .
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Time Response Data: Step Command Following. We now address step command
following for inner azimuth position controller.

Figure 3.19: Control Response to Step Reference Command (𝑇𝑟𝑢)𝜓𝑖 .

Figure 3.20: Output Response to Step Reference Command (𝑇𝑟 𝑦)𝜓𝑖 .

Closed Loop Poles for Inner Azimuth Position Controller Design. The closed loop poles
that result from our BLT (bilinear transformation) approach are as follows.

Table 3.4: Closed Loop Poles for Inner Azimuth Position Controller Design.
Poles Damping Frequency(rad/sec)

−2.98𝑒 + 03 1.00𝑒 + 00 2.98𝑒 + 03
−4.06𝑒 + 01 + 2.63𝑒 + 01𝑖 8.39𝑒 − 01 4.84𝑒 + 01
−4.06𝑒 + 01 − 2.63𝑒 + 01𝑖 8.39𝑒 − 01 4.84𝑒 + 01

−2.41𝑒 + 00 1.00𝑒 + 00 2.41𝑒 + 00
−1.64𝑒 + 00 1.00𝑒 + 00 1.64𝑒 + 00
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As expected, all closed loop poles associated with inner azimuth position
controller design are at desirable locations - with damping Z > 0.7. Also it should be
noted that, since 𝛾 < 1, this implies that our inner azimuth position controller design
specifications (reflected within our weighting functions) were not too aggressive.

The output graph for 𝜓𝑖 in the simulink block diagram after designing the inner
azimuth position controller is shown below Fig 3.21. Given 100◦ to the outer azimuth
axis, it is desired that the inner azimuth axis stays at or around 1◦ - 2◦ . It is seen that
this situation is achieved with the designed SISO position controller.
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Figure 3.21: 𝜓𝑖 - Output Response (SISO System).

3.3.3 Outer Elevation Position Controller Design(SISO)
The plant that was used in the design of the outer elevation position controller

was found in Equation 2.51 and is shown below.

𝑃𝑙𝑎𝑛𝑡 = 𝑃\𝑜 = 𝐺𝜏𝐸\𝑜 =
0.46846(𝑠 + 0.1)

𝑠(𝑠 + 0.3315) (𝑠 + 0.03017) (3.27)

Weighting Functions and Design Parameters. Weighting function parameters
and weighting functions were selected as follows:

𝑀𝑠\𝑜 = 10

𝜔𝑏\𝑜 = 2 ∗ 𝜋 ∗ 0.5

𝜖\𝑜 = 0.001

𝑀𝑢\𝑜 = 10−2

𝜔𝑏𝑐\𝑜 = []
𝑀𝑦\𝑜 = []

(3.28)
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Table 3.5: Weighting Functions and Design Parameters for \𝑜.
𝑊1\𝑜 𝑊2\𝑜 𝑊3\𝑜

𝑀𝑠\𝑜 = 10
𝜔𝑏\𝑜 = 2 ∗ 𝜋 ∗ 0.5
𝜖\𝑜 = 0.001

𝑀𝑢\𝑜 = 10−2 []

𝑊1
−1
\𝑜

=
𝑠 + 𝜖𝜔𝑏\𝑜
𝑠

𝑀𝑠\𝑜
+ 𝜔𝑏\𝑜

=
𝑠 + 0.003142
0.1𝑠 + 3.142

𝑊2
−1
\𝑜

=
1

𝑀𝑢\𝑜

= 102

𝑊3
−1
\𝑜

=
𝜔𝑏𝑐\𝑜

𝑠 + 𝜔𝑏𝑐 \𝑜
𝑀𝑦\𝑜

= []

Very lightly damped closed loop poles, which are unacceptable in some design,
have been observed. To prevent this undesirable plant pole inversion, we use the bilinear
transformation.

Bilinear Transformation Parameters. The bilinear transformation (BLT) parame-
ters were selected as follows:

𝑝1\𝑜 = −0.01

𝑝2\𝑜 = −108
(3.29)

This selection results in

𝑠 =
𝑠 + 𝑝1\𝑜
𝑠

𝑝2 \𝑜
+ 1

=
𝑠 − 0.01
𝑠

−108 + 1
≈ 𝑠 − 0.01 (inverse transformation)

𝑠 ≈ 𝑠 + 0.01 (transformation)

(3.30)

The transform performance shifts a rightward ("destabilizing"). The inverse transform
performance shifts a leftward ("stabilizing"). The resulting minimum 𝛾 was found to be

𝛾 = 0.8072 (3.31)

Since 𝛾 < 1, this implies that our design specification were not too aggressive.
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The resulting s-domain controller is given by

𝐾\𝑜 =
0.00041252(𝑠 + 108) (𝑠 + 0.3415) (𝑠 + 0.04017) (𝑠 + 0.01)

(𝑠 + 514.9) (𝑠 + 9.661) (𝑠 + 0.11) (𝑠 + 0.01314)

≈ 0.00041252(𝑠 + 108) (𝑠 + 0.3415) (𝑠 + 0.04017) (𝑠 + 0.01)
𝑠(𝑠 + 514.9) (𝑠 + 9.661) (𝑠 + 0.11)

(3.32)

Frequency Responses. Figures 3.22-3.28 contain relevant frequency responses for outer
elevation position controller.

The frequency response of the plant is given in Fig 3.22.
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Figure 3.22: Plant Frequency Response - 𝑃\𝑜 =
0.46846(𝑠+0.1)

𝑠 (𝑠+0.3315) (𝑠+0.03017) .

The frequency response of the controller is given in Fig 3.23.
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Figure 3.23: Controller Frequency Response - 𝐾\𝑜 .
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The open loop transfer function is given in Fig 3.24. As can be seen from the
figure the open loop bandwidth is about 3.7 rad/sec.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency (rad/s)

-200

-150

-100

-50

0

50

100

M
a
g
n
it
u
d
e
 (

d
B

)

Open Loop Singular Values at Plant Output

X 3.65595

Y -0.0527052

Figure 3.24: Open Loop Frequency Response - 𝐿 \𝑜 = 𝑃\𝑜𝐾\𝑜 .

The frequency response of the sensitivity is given in Fig 3.25. Sensitivity
frequency response is |𝑆 |∞ < |𝑊−1

1 |∞. The frequency response of sensitivity transfer
function is as expected, i.e. small at low frequencies, and near unity (0 dB) at high
frequencies.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency (rad/s)

-100

-80

-60

-40

-20

0

20

M
a
g
n
it
u
d
e
 (

d
B

)

Sensitivity Singular Values at Plant Output

Figure 3.25: Sensitivity Frequency Response - 𝑆\𝑜 = 1
1+𝑃\𝑜𝐾\𝑜

= (𝑇𝑑𝑜𝑦)\𝑜 .
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The complementary sensitivity transfer function is given in Fig 3.26. As can be
seen from the figure the complementary sensitivity bandwidth is approximately about
5.5 rad/sec. The frequency response of complementary sensitivity transfer function is
as expected, i.e. small at high frequencies, and near unity (0 dB) at low frequencies.
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Figure 3.26: Complementary Sensitivity Frequency Response - (𝑇𝑜)\𝑜 =
𝑃\𝑜𝐾\𝑜

1+𝑃\𝑜𝐾\𝑜
.

Control frequency response is given in Fig 3.27.
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Figure 3.27: Reference to Control Frequency Response - (𝑇𝑟𝑢)\𝑜 = 𝐾\𝑜𝑆\𝑜 .

Input disturbance to output frequency response is given in Fig 3.28. At very
low frequencies, and high frequencies 𝑇𝑑𝑖𝑦 (Input disturbance singular value transfer
function) is small as expected. For frequencies between 0.04 rad/sec and 0.2 rad/sec the
disturbance rejection is poor.
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Figure 3.28: Input Disturbance to Output Frequency Response - (𝑇𝑑𝑖𝑦)\𝑜 = 𝑆\𝑜𝑃\𝑜 .

Time Response Data: Step Command Following. We now address step command
following for outer elevation position controller.

Figure 3.29: Control Response to Step Reference Command (𝑇𝑟𝑢)\𝑜 .

Figure 3.30: Output Response to Step Reference Command (𝑇𝑟 𝑦)\𝑜 .
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Closed Loop Poles for Outer Elevation Position Controller Design. The closed loop
poles that result from our BLT (bilinear transformation) approach are as follows.

Table 3.6: Closed Loop Poles for Outer Elevation Position Controller Design.
Poles Damping Frequency(rad/sec)

−5.15𝑒 + 02 1.00𝑒 + 00 5.15𝑒 + 02
−4.78𝑒 + 00 + 3.80𝑒 + 00𝑖 7.83𝑒 − 01 6.11𝑒 + 00
−4.78𝑒 + 00 − 3.80𝑒 + 00𝑖 7.83𝑒 − 01 6.11𝑒 + 00

−3.42𝑒 − 01 1.00𝑒 + 00 3.42𝑒 − 01
−9.97𝑒 − 02 1.00𝑒 + 00 9.97𝑒 − 02
−4.03𝑒 − 02 1.00𝑒 + 00 4.03𝑒 − 02
−1.00𝑒 − 02 1.00𝑒 + 00 1.00𝑒 − 02

As expected, all closed loop poles associated with outer elevation position
controller design are at desirable locations - with damping Z > 0.7. Also it should be
noted that, since 𝛾 < 1, this implies that our outer elevation position controller design
specifications (reflected within our weighting functions) were not too aggressive.

The output graph for \𝑜 in the simulink block diagram after designing the outer
elevation position controller is shown below. When the system is given a 100◦ position
input, the response of the system with the designed controller is as in the Fig 3.31.

Figure 3.31: \𝑜 - Output Response (SISO System).
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3.3.4 Inner Elevation Position Controller Design (SISO)
The plant that was used in the design of the inner elevation position controller

was found in Equation 2.52 and is shown below.

𝑃𝑙𝑎𝑛𝑡 = 𝑃\𝑖 = 𝐺𝜏𝑒\𝑖 =
0.57955(𝑠 + 0.1)

𝑠(𝑠 + 0.3315) (𝑠 + 0.03017) (3.33)

Weighting Functions and Design Parameters. Weighting function parameters and
weighting functions were selected as follows:

𝑀𝑠\𝑖 = 10

𝜔𝑏\𝑖 = 2 ∗ 𝜋 ∗ 0.7

𝜖\𝑖 = 0.001

𝑀𝑢\𝑖 = 10−6

𝜔𝑏𝑐\𝑖 = []
𝑀𝑦\𝑖 = []

(3.34)

Table 3.7: Weighting Functions and Design Parameters for \𝑖 .
𝑊1\𝑖 𝑊2\𝑖 𝑊3\𝑖

𝑀𝑠\𝑖 = 10
𝜔𝑏\𝑖 = 2 ∗ 𝜋 ∗ 0.7
𝜖\𝑖 = 0.001

𝑀𝑢\𝑖 = 10−6 []

𝑊1
−1
\𝑖

=
𝑠 + 𝜖𝜔𝑏\𝑖
𝑠

𝑀𝑠\𝑖
+ 𝜔𝑏\𝑖

=
𝑠 + 0.004398
0.1𝑠 + 4.398

𝑊2
−1
\𝑖

=
1

𝑀𝑢\𝑖

= 106

𝑊3
−1
\𝑖

=
𝜔𝑏𝑐\𝑖

𝑠 + 𝜔𝑏𝑐 \𝑖
𝑀𝑦\𝑖

= []

Very lightly damped closed loop poles, which are unacceptable in some design,
have been observed. To prevent this undesirable plant pole inversion, we use the bilinear
transformation.

Bilinear Transformation Parameters. The bilinear transformation (BLT) parame-
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ters were selected as follows:

𝑝1\𝑖 = −2

𝑝2\𝑖 = −108
(3.35)

This selection results in

𝑠 =
𝑠 + 𝑝1\𝑖
𝑠

𝑝2 \𝑖
+ 1

=
𝑠 − 2
𝑠

−108 + 1
≈ 𝑠 − 2 (inverse transformation)

𝑠 ≈ 𝑠 + 2 (transformation)

(3.36)

The transform performans a rightward ("destabilizing") shift. The inverse transform
performs a leftward ("stabilizing") shift. The resulting minimum 𝛾 was found to be

𝛾 = 0.1284 (3.37)

Since 𝛾 < 1, this implies that our design specification were not too aggressive.
The resulting s-domain controller is given by

𝐾\𝑖 =
0.60836(𝑠 + 108) (𝑠 + 2.331) (𝑠 + 2.03) (𝑠 + 2)

(𝑠 + 5253) (𝑠 + 198) (𝑠 + 2.1) (𝑠 + 2.004)

≈ 0.60836(𝑠 + 108) (𝑠 + 2.331) (𝑠 + 2.03) (𝑠 + 2)
𝑠(𝑠 + 5253) (𝑠 + 198) (𝑠 + 2.1)

(3.38)

Frequency Responses. Figures 3.32-3.38 contain relevant frequency responses for inner
elevation position controller.

The frequency response of the plant is given in Fig 3.32.
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Figure 3.32: Plant Frequency Response - 𝑃\𝑖 =
0.57955(𝑠+0.1)

𝑠 (𝑠+0.3315) (𝑠+0.03017) .
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The frequency response of the controller is given in Fig 3.33.
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Figure 3.33: Controller Frequency Response - 𝐾\𝑖 .

The open loop transfer function is given in Fig 3.34. As can be seen from the
figure the open loop bandwidth is about 34 rad/sec.
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Figure 3.34: Open Loop Frequency Response - 𝐿 \𝑖 = 𝑃\𝑖𝐾\𝑖 .

The frequency response of the sensitivity is given in Fig 3.35. Sensitivity
frequency response is |𝑆 |∞ < |𝑊−1

1 |∞. The frequency response of sensitivity transfer
function is as expected, i.e. small at low frequencies, and near unity (0 dB) at high
frequencies.
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Figure 3.35: Sensitivity Frequency Response - 𝑆\𝑖 = 1
1+𝑃\𝑖

𝐾\𝑖

= (𝑇𝑑𝑜𝑦)\𝑖 .

The complementary sensitivity transfer function is given in Fig 3.36. As can be
seen from the figure the complementary sensitivity bandwidth is approximately about
46 rad/sec. The frequency response of complementary sensitivity transfer function is as
expected, i.e. small at high frequencies, and near unity (0 dB) at low frequencies.
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Control frequency response is given in Fig 3.37.
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Figure 3.37: Reference to Control Frequency Response - (𝑇𝑟𝑢)\𝑖 = 𝐾\𝑖𝑆\𝑖 .

Input disturbance to output frequency response is given in Fig 3.38. At very
low frequencies, and high frequencies 𝑇𝑑𝑖𝑦 (Input disturbance singular value transfer
function) is small as expected. For frequencies between 0.2 rad/sec and 18 rad/sec the
disturbance rejection is poor.
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Figure 3.38: Input Disturbance to Output Frequency Response - (𝑇𝑑𝑖𝑦)\𝑖 = 𝑆\𝑖𝑃\𝑖 .
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Time Response Data: Step Command Following. We now address step command
following for inner elevation position controller.

Figure 3.39: Control Response to Step Reference Command (𝑇𝑟𝑢)\𝑖 .

Figure 3.40: Output Response to Step Reference Command (𝑇𝑟 𝑦)\𝑖 .

Closed Loop Poles for Inner Elevation Position Controller Design. The closed loop
poles that result from our BLT (bilinear transformation) approach are as follows.

Table 3.8: Closed Loop Poles for Inner Elevation Position Controller Design.
Poles Damping Frequency(rad/sec)

−5.25𝑒 + 03 1.00𝑒 + 00 5.25𝑒 + 03
−1.54𝑒 + 02 1.00𝑒 + 00 1.54𝑒 + 02
−3.77𝑒 + 01 1.00𝑒 + 00 3.77𝑒 + 01
−1.00𝑒 − 01 1.00𝑒 + 00 1.00𝑒 − 01
−3.07𝑒 + 00 1.00𝑒 + 00 3.07𝑒 + 00
−1.78𝑒 + 00 1.00𝑒 + 00 1.78𝑒 + 00
−2.00𝑒 + 00 1.00𝑒 + 00 2.00𝑒 + 00
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As expected, all closed loop poles associated with inner elevation position
controller design are at desirable locations - with damping Z > 0.7. Also it should be
noted that, since 𝛾 < 1, this implies that our inner elevation position controller design
specifications (reflected within our weighting functions) were not too aggressive.

The output graph for \𝑖 in the simulink block diagram after designing the inner
elevation position controller is shown below Fig 3.41. Given 100◦ to the outer elevation
axis, it is expected that the inner elevation axis stays at or around 1◦ - 2 ◦. It is seen that
this situation is achieved with the designed SISO position controller.

Figure 3.41: \𝑖 - Output Response (SISO System).

3.3.5 Outer-Inner Elevation Position Controller Design (MIMO)
The MIMO structure was created and analyzed only for the outer elevation and

inner elevation frames.
Weighting Function Parameters. Weighting function parameters were selected

as follows:

(𝜔𝑏1)\𝑜\𝑖 = 2 ∗ 𝜋 ∗ 0.1 (𝜔𝑏2)\𝑜\𝑖 = 2 ∗ 𝜋 ∗ 0.5

(𝑀𝑠1)\𝑜\𝑖 = 10 (𝑀𝑠2)\𝑜\𝑖 = 10

(𝑀𝑢1)\𝑜\𝑖 = 10−3 (𝑀𝑢2)\𝑜\𝑖 = 10−6

(𝜔𝑏𝑐1)\𝑜\𝑖 = [] (𝜔𝑏𝑐2)\𝑜\𝑖 = []
(𝑀𝑦1)\𝑜\𝑖 = [] (𝑀𝑦2)\𝑜\𝑖 = []

𝜖\𝑜\𝑖 = 0.001

(3.39)
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Figure 3.42: Gimbal Position Control (MIMO) - Closed Loop Structure.

Weighting Functions. Weighting functions were selected as follows:

𝑊1
−1 =


𝑠/(𝑀𝑠1 )\𝑜 \𝑖+(𝜔𝑏1 )\𝑜 \𝑖
𝑠+(𝜔𝑏1 )\𝑜 \𝑖 𝜖\𝑜 \𝑖

0

0 𝑠/(𝑀𝑠2 )\𝑜 \𝑖+(𝜔𝑏2 )\𝑜 \𝑖
𝑠+(𝜔𝑏2 )\𝑜 \𝑖 𝜖\𝑜 \𝑖


−1

=


𝑠+0.0006283
0.1𝑠+0.6283 0

0 𝑠+0.003142
0.1𝑠+3.142


(3.40)

𝑊2
−1 =


1

(𝑀𝑢1 )\𝑜 \𝑖
0

0 1
(𝑀𝑢2 )\𝑜 \𝑖


−1

=


103 0

0 106


(3.41)

𝑊3
−1 =


[] []
[] []


−1

= [] (3.42)

Very lightly damped closed loop poles, which are unacceptable in some design,
have been observed. To prevent this undesirable plant pole inversion, we use the bilinear
transformation.

Bilinear Transformation Parameters. The bilinear transformation (BLT) parame-

64



ters were selected as follows:

𝑝1\𝑜\𝑖 = −0.8

𝑝2\𝑜\𝑖 = −108
(3.43)

This selection results in

𝑠 =
𝑠 + 𝑝1\𝑜\𝑖

𝑠
𝑝2 \𝑜 \𝑖

+ 1
=
𝑠 − 0.8
𝑠

−108 + 1
≈ 𝑠 − 1.8 (inverse transformation)

𝑠 ≈ 𝑠 + 0.8 (transformation)

(3.44)

The plant was transformed using the above bilinear transformation. The transformation
essentially moves all poles and zeros to the right 0.8 unit. A design was obtained using
the generalized plant (including the transformed plant and weighting functions).The
resulting minimum 𝛾 was found to be

𝛾 = 0.1602 (3.45)

Since 𝛾 < 1, this implies that our design specification were not too aggressive.
Frequency Responses. Figures 3.43-3.49 contain relevant frequency responses

for outer elevation- inner elevation (MIMO) position controller.
The frequency response of the plant is given in Fig 3.43.
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Figure 3.43: Plant Singular Values - 𝑃\𝑜 \𝑖 .

The frequency response of the controller is given in Fig 3.44.
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Figure 3.44: Controller Singular Values - 𝐾\𝑜 \𝑖 .

The open loop transfer function is given in Fig 3.45. As can be seen from the
figure the open loop bandwidts are about 3.4 rad/sec and 30.2 rad/sec.
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Figure 3.45: Open Loop Singular Values at Plant Output - (𝐿𝑜)\𝑜 \𝑖 = 𝑃\𝑜 \𝑖𝐾\𝑜 \𝑖 .

The frequency response of the sensitivity is given in Fig 3.46. Sensitivity
frequency response is |𝑆 |∞ < |𝑊−1

1 |∞. The frequency response of sensitivity transfer
function is as expected, i.e. small at low frequencies, and near unity (0 dB) at high
frequencies.
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Figure 3.46: Sensitivity Singular Values at Plant Output - (𝑆𝑜)\𝑜 \𝑖 = [𝐼 + 𝑃\𝑜 \𝑖𝐾\𝑜 \𝑖 ]−1.

The complementary sensitivity transfer function is given in Fig 3.47. As can
be seen from the figure the complementary sensitivity bandwidths are approximately
about 6 rad/sec and 33 rad/sec. The frequency response of complementary sensitivity
transfer function is as expected, i.e. small at high frequencies, and near unity (0 dB) at
low frequencies.
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Figure 3.47: Complementary Sensitivity Singular Values at Plant Output
(𝑇𝑜)\𝑜 \𝑖 = 𝑃\𝑜 \𝑖𝐾\𝑜 \𝑖 [𝐼 + 𝑃\𝑜 \𝑖𝐾\𝑜 \𝑖 ]−1.
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Control frequency response is given in Fig 3.48.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency (rad/s)

-100

-50

0

50

100

150

M
a
g
n
it
u
d
e
 (

d
B

)

Reference to Control Singular Values

Figure 3.48: Reference to Control Frequency Response - (𝑇𝑟𝑢)\𝑜 \𝑖 = 𝐾\𝑜 \𝑖𝑆\𝑜 \𝑖 .

Input disturbance to output frequency response is given in Fig 3.49. At very
low frequencies, and high frequencies 𝑇𝑑𝑖𝑦 (Input disturbance singular value transfer
function) is small as expected. For frequencies between 10−3 and 1 the disturbance
rejection is poor.
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Figure 3.49: Input Disturbance to Output Frequency Response - (𝑇𝑑𝑖𝑦)\𝑜 \𝑖 = 𝑆\𝑜 \𝑖𝑃\𝑜 \𝑖 .
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Time Response Data: Step Command Following. We now address step command
following for outer elevation-inner elevation (MIMO) position controller.

Figure 3.50: Control Response to Step Reference Command (𝑇𝑟𝑢)\𝑜 \𝑖 .

Figure 3.51: Output Response to Step Reference Command (𝑇𝑟 𝑦)\𝑜 \𝑖 .

Closed Loop Poles for Outer Elevation Inner Elevation (MIMO) Position Con-
troller Design. The closed loop poles that result from our BLT (bilinear transformation)
approach are as follows.
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Table 3.9: Closed Loop Poles for Outer Elevation-Inner Elevation (MIMO)
Position Controller Design.

Poles Damping Frequency(rad/sec)
−4.57𝑒 + 02 1.00𝑒 + 00 4.57𝑒 + 02

−2.06𝑒 + 02 + 2.04𝑒 + 02𝑖 7.09𝑒 − 01 2.90𝑒 + 02
−2.06𝑒 + 02 − 2.04𝑒 + 02𝑖 7.09𝑒 − 01 2.90𝑒 + 02

−3.03𝑒 + 01 1.00𝑒 + 00 3.03𝑒 + 01
−1.05𝑒 + 01 1.00𝑒 + 00 1.05𝑒 + 01
−3.98𝑒 + 00 1.00𝑒 + 00 3.98𝑒 + 00
−3.02𝑒 − 02 1.00𝑒 + 00 3.02𝑒 − 02
−3.31𝑒 − 01 1.00𝑒 + 00 3.31𝑒 − 01
−1.36𝑒 + 00 1.00𝑒 + 00 1.36𝑒 + 00
−1.13𝑒 + 00 1.00𝑒 + 00 1.13𝑒 + 00
−9.96𝑒 − 01 1.00𝑒 + 00 9.96𝑒 − 01
−8.30𝑒 − 01 1.00𝑒 + 00 8.30𝑒 − 01
−8.01𝑒 − 01 1.00𝑒 + 00 8.01𝑒 − 01
−8.00𝑒 − 01 1.00𝑒 + 00 8.00𝑒 − 01

The output graphs for \𝑜 and \𝑖 in the simulink block diagram after designing
the outer and inner elevation position controller (MIMO) is shown below Fig 3.52 and
Fig 3.53. Given 100◦ to the outer elevation axis, it is expected that the inner elevation
axis stays at or around 0◦ It is seen that this situation is achieved with the designed
MIMO position controller.

Figure 3.52: \𝑜 - Output Response (MIMO System).
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Figure 3.53: \𝑖 - Output Response (MIMO System).

The system responses against the position controllers designed for the four axis
gimbal model are shown in a single figure below, with each axis seperately. In Fig 3.54
SISO controllers are designed for all axes and their responses are given.

Figure 3.54: Four Axis Gimbal Model Position Controllers.
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In Fig 3.55, the MIMO controllers were designed only for the outer and inner
elevation frames, and the other frames remained as SISO controllers.

Figure 3.55: Four Axis Gimbal Model Position Controllers .

When Fig 3.54 and Fig 3.55 are compared, it is clear that the responses in
Fig 3.55 are better. Because it has been seen that at a position of 100◦ given to the outer
elevation, the inner elevation moves much closer to 0◦. In other words, it is understood
that the performance of 𝐻∞ MIMO controllers designed for outer elevation and inner
elevation is better.

3.4 Rate Controller Design

The rate control structure of the closed loop system is described in Fig 3.56. Four
axis gimbal block includes the models developed in Fig 2.9. When the gimbal model is
combined, it becomes a 5-input 6-output system. 𝜏𝐴, 𝜏𝐸 , 𝜏𝑒, and 𝜏𝑎 denote to the torque
inputs applied to the outer azimuth frame, outer elevation frame, inner elevation frame,
and inner azimuth frame, respectively. As previously stated, the platform’s angular rate
vector, [𝑝𝑞𝑟]𝑇 , is regarded as a source of disturbance. 𝐾𝜔𝑧 and 𝐾𝜔𝑦 are rate controllers
to control 𝜔𝑧 and 𝜔𝑦. 𝜔𝑧𝑐, 𝜔𝑦𝑐 are the command signal applied to the system.

The first of the important points in the rate controller is that the system is
following the reference signal. The other is the values of 𝜓𝑜, \𝑜, \𝑖 and 𝜓𝑖 angles
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measured at the output after 𝜔𝑧𝑐 and 𝜔𝑦𝑐 given to the system. It is critical that the inner
axis angle values ( \𝑖 and 𝜓𝑖) are not too large in here.

Four
Axis

Gimbal
(A-E-e-a)

𝑝, 𝑞, 𝑟

𝜏𝐴

𝜏𝑎

𝜏𝐸

𝜏𝑒

𝐾𝜔𝑧

𝐾𝜔𝑦

𝜔𝑐𝑧

𝜔𝑐𝑦

− 𝜔𝑦

−

𝜔𝑧

𝜓𝑖

\𝑖

\𝑜

𝜓𝑜

Figure 3.56: Gimbal Rate Control - Closed Loop Structure.

3.4.1 𝜔𝑧 Rate Controller Design
The internal structure of the 𝐾𝜔𝑧 rate controller is depicted in Fig 3.57. The goal

here is to ensure that the outer axis makes low-frequency movements and the inner axis
makes high-frequency movements. A low pass filter is placed on the outer axis in the
upper channel and a high pass filter is placed on the inner axis in the lower channel for
this purpose. The parameters, frequency, and time responses of the controllers designed
in MATLAB with this structure are detailed below.

𝜔𝑐
𝑠+𝜔𝑐 𝐾𝑜

𝜔𝑐
𝑠+𝜔𝑐

𝑠
𝑠+𝜔𝑐 𝐾𝑖

𝑠
𝑠+𝜔𝑐

𝜔𝑐𝑧 𝜏𝐴

𝜏𝑎

𝜔𝑧

−

−

𝐿𝑃𝐹

𝐻𝑃𝐹

Figure 3.57: Controller 𝐾𝜔𝑧
’s Internal Structure.

In the system expressed by Fig 3.57 the upper canal plant from 𝜏𝐴 to 𝜔𝑧 is the

𝑃𝑜 = 𝐺𝜏𝐴𝜔𝑧 =
0.038197
(𝑠 + 0.1)2 . (3.46)
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The controller designed using the 𝐻∞ methodology for this plant is 𝐾𝑜. LPF (low pass
filter) and HPF (high pass filter) are designed to be complementary with each other. 𝜔𝑐
is the system’s cut off frequency, which was set to 0.5 Hz.

𝑃𝑖 = 𝐺𝜏𝑎𝜔𝑧 =
1.0528
(𝑠 + 0.1) (3.47)

is the lower channel plant from 𝜏𝑎 to 𝜔𝑧. 𝐾𝑖 is the controller designed to the plant. The
designed controllers’ frequency responses are shown below.

Frequency Responses. Figures 3.58-3.64 contain relevant frequency responses
for 𝑤𝑧 outer rate controller. (𝐾𝑜)

The frequency response of the plant is given in Fig 3.58.
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Figure 3.58: Plant Frequency Response - 𝑃𝜏𝐴𝜔𝑧
= 0.038197

(𝑠+0.1)2 .

The frequency response of the controller is given in Fig 3.59.
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Figure 3.59: Controller Frequency Response - 𝐾𝜏𝐴𝜔𝑧
= 𝐾𝑜.
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The open loop transfer function is given in Fig 3.60. As can be seen from the
figure the open loop bandwidth is about 33 rad/sec.
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Figure 3.60: Open Loop Frequency Response - 𝐿 = 𝑃𝐾 .

The frequency response of the sensitivity is given in Fig 3.61. Sensitivity
frequency response is |𝑆 |∞ < |𝑊−1

1 |∞. The frequency response of sensitivity transfer
function is as expected, i.e. small at low frequencies, and near unity (0 dB) at high
frequencies.
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Figure 3.61: Sensitivity Frequency Response - 𝑆 = 1
1+𝑃𝐾 = 𝑇𝑑𝑜𝑦 .

The complementary sensitivity transfer function is given in Fig 3.62. As can be
seen from the figure the complementary sensitivity bandwidth is approximately about
43 rad/sec. The frequency response of complementary sensitivity transfer function is as
expected, i.e. small at high frequencies, and near unity (0dB) at low frequencies.
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Figure 3.62: Complementary Sensitivity Frequency Response - 𝑇𝑜 = 𝑃𝐾
1+𝑃𝐾 .

Control frequency response is given in Fig 3.63.
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Figure 3.63: Reference to Control Frequency Response - 𝑇𝑟𝑢 = 𝐾𝑆.

Input disturbance to output frequency response is given in Fig 3.64. At very
low frequencies, and high frequencies 𝑇𝑑𝑖𝑦 (Input disturbance singular value transfer
function) is small as expected. For frequencies between 0.5 rad/sec and 13 rad/sec the
disturbance rejection is poor.
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Figure 3.64: Input Disturbance to Output Frequency Response - 𝑇𝑑𝑖𝑦 = 𝑆𝑃.

Frequency Responses. Figures 3.65-3.71 contain relevant frequency responses
for 𝑤𝑧 inner rate controller. (𝐾𝑖)

The frequency response of the plant is given in Fig 3.65.
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Figure 3.65: Plant Frequency Response - 𝑃𝜏𝑎𝜔𝑧
= 1.0528

(𝑠+0.1) .
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The frequency response of the controller is given in Fig 3.66.
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Figure 3.66: Controller Frequency Response - 𝐾𝜏𝑎𝜔𝑧
= 𝐾𝑖 .

The open loop transfer function is given in Fig 3.67. As can be seen from the
figure the open loop bandwidth is about 300 rad/sec.
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Figure 3.67: Open Loop Frequency Response - 𝐿 = 𝑃𝐾 .

The frequency response of the sensitivity is given in Fig 3.68. Sensitivity
frequency response is |𝑆 |∞ < |𝑊−1

1 |∞. The frequency response of sensitivity transfer
function is as expected, i.e. small at low frequencies, and near unity (0 dB) at high
frequencies.
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Figure 3.68: Sensitivity Frequency Response - 𝑆 = 1
1+𝑃𝐾 = 𝑇𝑑𝑜𝑦 .

The complementary sensitivity transfer function is given in Fig 3.69. As can be
seen from the figure the complementary sensitivity bandwidth is approximately about
420 rad/sec. The frequency response of complementary sensitivity transfer function is
as expected, i.e. small at high frequencies, and near unity (0 dB) at low frequencies.
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Figure 3.69: Complementary Sensitivity Frequency Response - 𝑇𝑜 = 𝑃𝐾
1+𝑃𝐾 .
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Control frequency response is given in Fig 3.70.
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Figure 3.70: Reference to Control Frequency Response - 𝑇𝑟𝑢 = 𝐾𝑆.

Input disturbance to output frequency response is given in Fig 3.71. At very
low frequencies, and high frequencies 𝑇𝑑𝑖𝑦 (Input disturbance singular value transfer
function) is small as expected. For frequencies between 2 rad/sec and 400 rad/sec the
disturbance rejection is poor.
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Figure 3.71: Input Disturbance to Output Frequency Response - 𝑇𝑑𝑖𝑦 = 𝑆𝑃.

When the disturbance movements from the platform are 0 (𝑝𝑞𝑟 = 0), the effects
of the𝜔𝑧 rate controller designed for the four-axis gimbal system on command following,
outer azimuth frame, and inner azimuth frame position are as Fig 3.72. While the rate
command given to 𝜔𝑧 rotates the outer axis to any position, its effect on the inner axis is
small.
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Figure 3.72: 𝜔𝑧 Rate Control Design .

When the disturbance from the platform is 100 deg/sec, the response of outer
azimuth frame position and inner azimuth frame position is as follows. Inner azimuth
frame movement of 1-2 degrees is acceptable.

Figure 3.73: 𝜔𝑧 Rate Control Design via Platform Movement.

3.4.2 𝜔𝑦 Rate Controller Design
The same structure in 𝜔𝑧 was used in the design of the 𝜔𝑦 rate controller.
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Figure 3.74: Controller 𝐾𝜔𝑦
’s Internal Structure.

In the system illustrated by Fig 3.74 the upper canal plant from 𝜏𝐸 to 𝜔𝑦 is

𝑃𝑜 = 𝐺𝜏𝐸𝜔𝑦 =
−0.46846(𝑠 − 0.1)

(𝑠 + 0.3315) (𝑠 + 0.03017) . (3.48)

The controller designed using the 𝐻∞ methodology for this plant is 𝐾𝑜. LPF (low pass
filter) and HPF (high pass filter) are designed to be complementary with each other. 𝜔𝑐
is the system’s cut off frequency, which was set to 0.5 Hz.

𝑃𝑖 = 𝐺𝜏𝑒𝜔𝑦 =
0.57955(𝑠 + 0.1808)

(𝑠 + 0.3315) (𝑠 + 0.03017) (3.49)

is the lower channel plant from 𝜏𝑒 to 𝜔𝑦. 𝐾𝑖 is the controller designed to the plant. The
designed controllers’ frequency responses are shown below.

Frequency Responses. Figures 3.75-3.81 contain relevant frequency responses
for 𝑤𝑦 inner rate controller. (𝐾𝑖)

The frequency response of the plant is given in Fig 3.75.
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Figure 3.75: Plant Frequency Response - 𝑃𝜏𝐴𝜔𝑧
=

0.57955(𝑠+0.1808)
(𝑠+0.3315) (𝑠+0.03017) .
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The frequency response of the controller is given in Fig 3.76.
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Figure 3.76: Controller Frequency Response - 𝐾𝜏𝑒𝜔𝑦
= 𝐾𝑖 .

The open loop transfer function is given in Fig 3.77. As can be seen from the
figure the open loop bandwidth is about 300 rad/sec.
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Figure 3.77: Open Loop Frequency Response - 𝐿 = 𝑃𝐾 .

The frequency response of the sensitivity is given in Fig 3.78. Sensitivity
frequency response is |𝑆 |∞ < |𝑊−1

1 |∞. The frequency response of sensitivity transfer
function is as expected, i.e. small at low frequencies, and near unity (0dB) at high
frequencies.
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Figure 3.78: Sensitivity Frequency Response - 𝑆 = 1
1+𝑃𝐾 = 𝑇𝑑𝑜𝑦 .

The complementary sensitivity transfer function is given in Fig 3.79. As can be
seen from the figure the complementary sensitivity bandwidth is approximately about
450 rad/sec. The frequency response of complementary sensitivity transfer function is
as expected, i.e. small at high frequencies, and near unity (0 dB) at low frequencies.
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Figure 3.79: Complementary Sensitivity Frequency Response - 𝑇𝑜 = 𝑃𝐾
1+𝑃𝐾 .

Control frequency response is given in Fig 3.80.
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Figure 3.80: Reference to Control Frequency Response - 𝑇𝑟𝑢 = 𝐾𝑆.

Input disturbance to output frequency response is given in Fig 3.81. At very
low frequencies, and high frequencies 𝑇𝑑𝑖𝑦 (Input disturbance singular value transfer
function) is small as expected. For frequencies between 0.2 rad/sec and 300 rad/sec the
disturbance rejection is poor.
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Figure 3.81: Input Disturbance to Output Frequency Response - 𝑇𝑑𝑖𝑦 = 𝑆𝑃.
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When the disturbance from the platform is 100 deg/sec, the response of outer
elevation frame position (\𝑜) and inner elevation frame position (\𝑖) is as follows. The
movement in inner elevation frame is at an acceptable level as it is within the limit limits.

Figure 3.82: 𝜔𝑦 Rate Control Design via Platform Movement.
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CHAPTER 4

CONCLUSION AND FUTURE WORKS

Within the scope of this thesis, a detailed mathematical modeling of the four
axis gimbal system was made and controllers in different configurations were designed
for each axis with the 𝐻∞ mixed sensitivity method, which is one of the robust control
methods.

The designed controllers are discussed under two titles as position and rate
controllers. In position and rate controllers, outer axes are selected in low bandwidth,
and inner axes are selected in high bandwidth. In addition, the designed position
controllers are examined in two ways: SISO and MIMO. We have found that the MIMO
configuration gives better results since the two inner axes of the four axis gimbal system
are coupled to each other.

Generally, it is clear that the 𝐻∞ mixed sensitivity controllers designed for the
four axis gimbal system, which has been mathematically modeled in explicit detail, give
good performance results. We aim to compare the results that were found in this thesis
with the different robust controller types of the four axis gimbal system in future studies.
Moreover, simulating these results with a target tracking scenario is also one of the
goals of future.
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APPENDIX A

MATLAB MACROS

psi-o-position-controller.m (SISO)

1 % % % % % % % % % % % % %

2 % designed by @ezelyalcinkaya %

3 % % % % % % % % % % % % %

4 % % 2022 A p r i l 29 % %

5 % % % % % % % % % % % % %

6
7 clc

8 clearvars

9 close all

10
11 equilibrium_point

12
13 bode_plot_opts = bodeoptions;

14 bode_plot_opts.FreqUnits = 'rad/s';

15 bode_plot_opts.Title.FontSize = 14;

16 bode_plot_opts.XLabel.FontSize = 14;

17 bode_plot_opts.YLabel.FontSize = 14;

18 bode_plot_opts.TickLabel.FontSize = 14;

19 bode_plot_opts.Grid = 'on';

20
21
22 wvec = logspace(-3, 4, 1001);

23
24 %% Outer Azimuth Axis Position Controller Design (

psi_o_position_controller)

25 %% 1) psi_o_position_controller (1*1 SISO System)

26 %%%%% The position controllers are designed with

H_infinity controller methodology
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27 disp('Plant from tA to psi_o = P_psi_o')

28 P_psi_o = zpk(H(1,1))

29
30 %%

31
32 n_y_psi_o = size(P_psi_o ,1); % Number of Outputs

for Plant tA to psi_o

33 n_u_psi_o = size(P_psi_o ,2); % Number of Inputs

for Plant tA to psi_o

34 n_s_psi_o = size(P_psi_o,'order'); % Number of States

for Plant tA to psi_o

35
36
37 %% Weighting Functions for psi_o_position controller

38 %% W1 (sensitivity)

39 Ms_psi_o = 10; %% 'Ms' helps adjust

overshoot in sensitivity graph.

40 wb_psi_o = 2*pi*0.5 ; %% 'wb' helps adjust bandwith

range.

41 Eps_psi_o = 0.001; %% Eps is a minimum value in

sensitivity function.

42 k_psi_o = 1; %% 'k' provides steeper

transition .

43 W1_psi_o = tf([1/(Ms_psi_o)^(1/k_psi_o) wb_psi_o], [1

wb_psi_o*(Eps_psi_o)^(1/k_psi_o)])^k_psi_o; %%general

form.

44
45 %% W2 (control sensitivity)

46 Eps_psi_o = 0.01;

47 wbu_psi_o = 1e4;

48 Mu_psi_o = 10^-2;

49 k_psi_o=1;

50 % W2_psi_o = tf([1 wbu_psi_o/(Mu_psi_o^(1/k_psi_o))],[

Eps_psi_o^(1/k_psi_o) wbu_psi_o])^k_psi_o %% general

form.

51 % W2_psi_o = tf([1 wbu_psi_o/Mu_psi_o], [Eps_psi_o

wbu_psi_o]);
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52 W2_psi_o = tf(Mu_psi_o , 1); %% any fixed

function.

53 %%%W2_psi_o = tf(1/Mu_psi_o, 1); %%inverse W2_psi_o

54 %% W3 (complemantary sensitivity)

55 %My_psi_o = 10^(20/20) ;

56 %wbc_psi_o= 2*pi*50;

57 %Eps_psi_o = 0.01;

58 %W3_psi_o = tf([1 wbc_psi_o/My_psi_o], [Eps_psi_o

wbc_psi_o]);

59 W3_psi_o=[];

60
61 %%

62 aug = false;

63 blt = true;

64
65 %% Augment with Integrators at the Input for

psi_o_position_controller

66
67 if aug

68 Paug_psi_o = f_Augment_at_Input(P_psi_o);

69 else

70 Paug_psi_o =ss(P_psi_o);

71 end

72
73 %% Bilinear Transformation for psi_o_position_controller

74
75 if blt

76 p2_psi_o = -1e8; p1_psi_o = -0.01;

77 Pt_psi_o=bilin(Paug_psi_o , 1,'Sft_jw',[p2_psi_o

p1_psi_o]);

78 else

79 Pt_psi_o=Paug_psi_o;

80 end

81
82 %% Augmented Plant for psi_o_position_controller

83 G_psi_o = augw(Pt_psi_o,W1_psi_o,W2_psi_o,W3_psi_o); %%

augmented plant

A3



84
85 %% Hinf Controller Design Methodology for

psi_o_position_controller

86 design_opts = hinfsynOptions;

87 design_opts.Method='RIC';%'LMI';%'MAXE';

88 design_opts.Display='on';

89 [Kt_psi_o,CL,GAM,INFO] = hinfsyn(G_psi_o,n_y_psi_o ,

n_u_psi_o ,design_opts);

90
91 %% Inverse Bilinear Transformation for

psi_o_position_controller

92 if blt

93 K_psi_o=bilin(Kt_psi_o ,-1,'Sft_jw',[p2_psi_o p1_psi_o

]);

94 else

95 K_psi_o = Kt_psi_o;

96 end

97 n_k_psi_o = size(K_psi_o,'order'); % Number of States

98
99 %% Augment with Integrators for psi_o_position_controller

100 if aug

101 K_psi_o = f_Augment_at_Output(K_psi_o);

102 end

103 disp('Outer Azimuth Position Controller = K_psi_o')

104 zpk(K_psi_o)

105
106 %% Controller Design (rule of thumb) for

psi_o_position_controller

107 figure(1)

108 bode(K_psi_o, 'r', bode_plot_opts)

109 hold on

110
111 [zz, pp, kk] = zpkdata(K_psi_o,'v')

112
113 K_psi_o_rot=zpk(zz,[pp([2 3]);0 ],kk);%choose zz, pp, kk

114
115 zpk(K_psi_o_rot)
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116 clearvars zz pp kk

117
118 disp('Rule of Thumb Outer Azimuth Position Controller =

K_psi_o_rot')

119 bode (K_psi_o_rot ,'b',bode_plot_opts)

120 set(findall(gcf, 'Type', 'line'), 'LineWidth', 2)

121 set(gcf, 'Position', [100 100 800 600])

122
123 % K_psi_o_rot=K_psi_o;

124 [num den] = tfdata(K_psi_o_rot , 'v');

125
126 % str = ['test_pdf.pdf']

127 % set(gcf,'PaperPosition ', [0 0 800 600])

128 % set(gcf,'PaperPositionMode ','Auto',...

129 % 'PaperUnits ','centimeters ',...

130 % 'PaperSize ',[10 10])

131 % print(gcf,str,'-dpdf','-r600', '-loose', '-fillpage ')

132 % disp('DONE')

133
134 %% Model Reduction for psi_o_position_controller

135 % % [Kb_psi_o,gg_psi_o] = balreal(K_psi_o);gg_psi_o

136 % % K_psi_o = modred(Kb_psi_o ,[3],'MatchDC ');%

137 % % disp('Reduced Order Controller Kb_psi_o ')

138 % % zpk(K_psi_o)

139
140 %% Design Analysis for psi_o_position_controller

141 AA = f_Maps_PKW(P_psi_o, K_psi_o_rot);

142 AA.W1 = W1_psi_o;

143 AA.W2 = W2_psi_o;

144 AA.W3 = W3_psi_o;

145 %%%

146 f_Plot_Sigma_Resp(AA, wvec, 'b', '-')

147 damp(pole(AA.To)) %% closed loop poles

148 %%%

149 figure(100)

150 step(AA.Try, 'b',linspace(0, 3, 1001)) %% time response

%%linspace(0, 1, 1001)
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151 grid on; hold on

152 title('Try for psi_o_position_controller',...

153 'Interpreter','none','FontSize',13,'FontName','Times

New Roman')

154 %%%

155 figure(101)

156 step(AA.Tru, 'b', linspace(0, 3, 1001)) %%control

response

157 grid on; hold on

158 title('Tru for psi_o_position_controller',...

159 'Interpreter','none','FontSize',13,'FontName','Times

New Roman')

160 %%%

161 figure(200)

162 rlocus(AA.Lo)

163
164 %% UPDATE SIMULINK BLOCK

165 load_system('PositionController');

166
167 %%%% Set controller paramaters

168 %%

169 %%%%Position Controller paramater

170 set_param('PositionController/Outer Azimuth Position

Controller/K_psi_o_rot', 'Numerator', mat2str(num),...

171 'Denominator', mat2str(den));

172
173
174 disp('SBD UPDATED (PositionController.slx K_psi_o_rot

value is updated)')

psi-i-position-controller.m (SISO)

1 clc

2 clearvars

3 close all

4
5 equilibrium_point

6
7 bode_plot_opts = bodeoptions;
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8 bode_plot_opts.FreqUnits = 'rad/s';

9 bode_plot_opts.Title.FontSize = 14;

10 bode_plot_opts.XLabel.FontSize = 14;

11 bode_plot_opts.YLabel.FontSize = 14;

12 bode_plot_opts.TickLabel.FontSize = 14;

13 bode_plot_opts.Grid = 'on';

14
15
16 wvec = logspace(-3, 4, 1001);

17
18 %% Outer Azimuth Axis Position Controller Design (

psi_i_position_controller)

19 %% 1) psi_i_position_controller (1*1 SISO System)

20 %%%%% The position controllers were designed with

H_infinity controller methodology

21
22 disp('Plant from ta to psi_i = P_psi_i')

23 P_psi_i = zpk(H(4,4))

24
25 %%

26
27 n_y_psi_i = size(P_psi_i ,1); % Number of Outputs

for Plant ta to psi_i

28 n_u_psi_i = size(P_psi_i ,2); % Number of Inputs

for Plant ta to psi_i

29 n_s_psi_i = size(P_psi_i,'order'); % Number of States

for Plant ta to psi_i

30
31
32 %% Weighting Functions for psi_i_position controller

33 %% W1 (sensitivity)

34 Ms_psi_i = 10; %% 'Ms' helps adjust overshoot in

sensitivity graph.

35 wb_psi_i = 2*pi*1.2; %% 'wb' helps adjust bandwith

range.

36 Eps_psi_i = 0.001; %% Eps is a minimum value in

sensitivity function.
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37 k_psi_i = 1; %% 'k' provides steeper

transition .

38 W1_psi_i = tf([1/(Ms_psi_i)^(1/k_psi_i) wb_psi_i], [1

wb_psi_i*(Eps_psi_i)^(1/k_psi_i)])^k_psi_i; %%general

form.

39
40 %% W2 (control sensitivity)

41 Eps_psi_i = 0.01;

42 wbu_psi_i = 1e4;

43 Mu_psi_i = 1e-4;

44 k_psi_i=1;

45 % W2_psi_i = tf([1 wbu_psi_i/(Mu_psi_i^(1/k_psi_i))],[

Eps_psi_i^(1/k_psi_i) wbu_psi_i])^k_psi_i %% general

form.

46 % W2_psi_i = tf([1 wbu_psi_i/Mu_psi_i], [Eps_psi_i

wbu_psi_i]);

47 W2_psi_i = tf(Mu_psi_i , 1) %% any fixed function. %

W2_psi_i = tf([0 Mu_psi_i], [0 1])

48 %W2_psi_i = tf(1/Mu_psi_i, 1);%% inverse Mu_psi_i

49
50
51 %% W3 (complemantary sensitivity)

52 % My_psi_i = 10^(20/20) ;

53 % wbc_psi_i= 2*pi*50;

54 % Eps_psi_i = 0.01;

55 % W3_psi_i = tf([1 wbc_psi_i/My_psi_i], [Eps_psi_i

wbc_psi_i]);

56 W3_psi_i=[];

57
58 %%

59 aug = false;

60 blt = true;

61
62 %% Augment with Integrators at the Input for

psi_i_position_controller

63
64 if aug
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65 Paug_psi_i = f_Augment_at_Input(P_psi_i);

66 else

67 Paug_psi_i = ss(P_psi_i);

68 end

69
70 %% Bilinear Transformation for psi_i_position_controller

71
72 if blt

73 p2_psi_i = -1e8; p1_psi_i = -1;

74 Pt_psi_i=bilin(Paug_psi_i , 1,'Sft_jw',[p2_psi_i

p1_psi_i]);

75 else

76 Pt_psi_i=Paug_psi_i;

77 end

78
79 %% Augmented Plant for psi_i_position_controller

80 G_psi_i = augw(Pt_psi_i,W1_psi_i,W2_psi_i,W3_psi_i); %%

augmented plant

81
82 %% Hinf Controller Design Methodology for

psi_i_position_controller

83 design_opts = hinfsynOptions;

84 design_opts.Method='RIC';%'LMI';%'MAXE';

85 design_opts.Display='on';

86 [Kt_psi_i,CL,GAM,INFO] = hinfsyn(G_psi_i,n_y_psi_i ,

n_u_psi_i ,design_opts);

87
88 %% Inverse Bilinear Transformation for

psi_i_position_controller

89 if blt

90 K_psi_i=bilin(Kt_psi_i ,-1,'Sft_jw',[p2_psi_i p1_psi_i

]);

91 else

92 K_psi_i = Kt_psi_i;

93 end

94 n_k_psi_i = size(K_psi_i,'order'); % Number of States

95
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96 %% Augment with Integrators for psi_i_position_controller

97 if aug

98 K_psi_i = f_Augment_at_Output(K_psi_i);

99 end

100 disp('Outer Azimuth Position Controller = K_psi_i')

101 zpk(K_psi_i)

102
103 %% Controller Design (rule of thumb) for

psi_i_position_controller

104 figure(1)

105 bode(K_psi_i, 'r',bode_plot_opts)

106 hold on

107
108 [zz, pp, kk] = zpkdata(K_psi_i,'v')

109
110 K_psi_i_rot=zpk(zz,[pp([2 3]);0 ],kk);

111
112 zpk(K_psi_i_rot)

113 clearvars zz pp kk

114
115 disp('Rule of Thumb Outer Azimuth Position Controller =

K_psi_i_rot')

116 bode (K_psi_i_rot ,'b',bode_plot_opts)

117 set(findall(gcf, 'Type', 'line'), 'LineWidth', 2)

118 set(gcf, 'Position', [100 100 800 600])

119
120 %K_psi_i_rot=K_psi_i

121 [num,den] = tfdata(K_psi_i_rot , 'v');

122
123 % str = ['test_pdf.pdf']

124 % set(gcf,'PaperPosition ', [0 0 800 600])

125 % set(gcf,'PaperPositionMode ','Auto',...

126 % 'PaperUnits ','centimeters ',...

127 % 'PaperSize ',[10 7.5])

128 % print(gcf,str,'-dpdf','-r600', '-loose', '-fillpage ')

129 % disp('DONE')

130
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131 %% Model Reduction for psi_i_position_controller

132 % [Kb_psi_i,gg_psi_i] = balreal(K_psi_i);gg_psi_i

133 % K_psi_i = modred(Kb_psi_i ,[],'MatchDC ');%

134 % disp('Reduced Order Controller Kb_psi_i ')

135 % zpk(K_psi_i)

136
137 %% Design Analysis for psi_i_position_controller

138 aa = f_Maps_PKW(P_psi_i, K_psi_i_rot);

139 aa.W1 = W1_psi_i;

140 aa.W2 = W2_psi_i;

141 aa.W3 = W3_psi_i;

142 %%%

143 f_Plot_Sigma_Resp(aa, wvec, 'b', '-')

144 damp(pole(aa.To)) %% closed loop poles

145 %%%

146 figure(100)

147 step(aa.Try, 'b', linspace(0, 1, 1001)) %% time response

linspace(0, 1, 1001)

148 grid on; hold on

149 title('Try for psi_i_position_controller',...

150 'Interpreter','none','FontSize',13,'FontName','Times

New Roman')

151 %%%

152 figure(101)

153 step(aa.Tru, 'b', linspace(0, 0.1, 1001)) %%control

response

154 grid on; hold on

155 title('Tru for psi_i_position_controller',...

156 'Interpreter','none','FontSize',13,'FontName','Times

New Roman')

157 %%%

158 figure(200)

159 rlocus(aa.Lo)

160
161 %% UPDATE SIMULINK BLOCK

162 load_system('PositionController');

163
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164 %%%% Set controller paramaters

165 %%

166 %%%%Position Controller paramater

167 set_param('PositionController/Inner Azimuth Position

Controller/K_psi_i_rot', 'Numerator', mat2str(num),...

168 'Denominator', mat2str(den));

169
170
171 disp('SBD UPDATED (PositionController.slx K_psi_i_rot

value is updated)')

theta-o-position-controller.m (SISO)

1 clc

2 clearvars

3 close all

4
5 equilibrium_point

6
7
8 bode_plot_opts = bodeoptions;

9 bode_plot_opts.FreqUnits = 'rad/s';

10 bode_plot_opts.Title.FontSize = 14;

11 bode_plot_opts.XLabel.FontSize = 14;

12 bode_plot_opts.YLabel.FontSize = 14;

13 bode_plot_opts.TickLabel.FontSize = 14;

14 bode_plot_opts.Grid = 'on';

15
16
17 wvec = logspace(-3, 4, 1001);

18
19 %% 2) theta_o_position_controller (1*1 SISO System)

20 %%% From t_E to theta_o (Position Controller Design)

21
22
23 disp('Plants from t_E to theta_o = P_theta_o')%%%% 1*1

SISO Plant

24 P_theta_o = zpk(H(2,2))

25
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26 return

27 %%

28
29 n_y_theta_o = size(P_theta_o ,1); % Number of

Outputs for plant t_E to theta_o

30 n_u_theta_o = size(P_theta_o ,2); % Number of Inputs

for plant t_E to theta_o

31 n_s_theta_o = size(P_theta_o ,'order'); % Number of States

for plant t_E to theta_o

32
33
34 %% Weighting Functions for theta_o position controller

35 %% W1 (sensitivity)

36 %%%Parameters

37 Ms_theta_o = 10;

38 wb_theta_o = 2*pi*0.5;

39 Eps_theta_o = 0.001;

40 k_theta_o = 1;

41 W1_theta_o = tf([1/(Ms_theta_o)^(1/k_theta_o) wb_theta_o

], [1 wb_theta_o*(Eps_theta_o)^(1/k_theta_o)])^

k_theta_o; %%general form.

42
43
44 %zpk(W1_theta_o)

45
46 %% W2 (control sensitivity) for theta_o position

controller

47 %%%Parameters

48 Eps_theta_o = 250;

49 wbu_theta_o = 1000;

50 Mu_theta_o = 1e-2;

51 k_theta_o=1;

52
53 W2_theta_o = tf(Mu_theta_o , 1); %% any fixed function.

54 %%%W2_theta_o = tf(1/Mu_theta_o , 1); %%inverse W2_theta_o

55 zpk(W2_theta_o)

56
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57
58 %% W3 (complemantary sensitivity) for theta_o position

controller

59 % My_theta_o = 10^(20/20) ;

60 % wbc_theta_o= 2*pi*50;

61 % Eps_theta_o = 0.01;

62 % W3_theta_o = tf([1 wbc_theta_o/My_theta_o], [

Eps_theta_o wbc_theta_o]);

63 W3_theta_o=[];

64
65 %%

66 aug = false;

67 blt = true;

68
69 %% Augment with Integrators at the Input for theta_o

position controller

70 if aug

71 Paug_theta_o = f_Augment_at_Input(P_theta_o);

72 else

73 Paug_theta_o =ss(P_theta_o);

74 end

75
76 %% Bilinear Transformation for theta_o position

controller

77 if blt

78 p2_theta_o = -1e8; p1_theta_o =-0.01; %-0.2 -0.55

-0.09

79 Pt_theta_o=bilin(Paug_theta_o , 1,'Sft_jw',[p2_theta_o

p1_theta_o]);

80 else

81 Pt_theta_o=Paug_theta_o;

82 end

83
84 %% Augmented Plant for theta_o position controller

85 G_theta_o = augw(Paug_theta_o ,W1_theta_o ,W2_theta_o ,

W3_theta_o); %%augmented plant

86
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87 %% Hinf Design for theta_o position controller

88 design_opts = hinfsynOptions;

89 design_opts.Method='RIC';%'LMI';%'MAXE';

90 design_opts.Display='on';

91 [Kt_theta_o ,CL,GAM,INFO] = hinfsyn(G_theta_o ,n_y_theta_o ,

n_u_theta_o ,design_opts);

92
93 %% Inverse Bilinear Transformation for theta_o position

controller

94 if blt

95 K_theta_o=bilin(Kt_theta_o ,-1,'Sft_jw',[p2_theta_o

p1_theta_o]);

96 else

97 K_theta_o = Kt_theta_o;

98 end

99 n_k = size(K_theta_o ,'order'); % Number of States

100
101
102 %% Augment with Integrators at the Output for theta_o

position controller

103 if aug

104 K_theta_o= f_Augment_at_Output(K_theta_o);

105 end

106 disp('Outer_Inner Elevation Position Controller =

K_theta_o')

107 zpk(K_theta_o)

108
109
110 %% Controller Design (rule of thumb) for

theta_o_position_controller

111 figure(1)

112 bode(K_theta_o , 'r',bode_plot_opts)

113 hold on

114
115 [zz, pp, kk] = zpkdata(K_theta_o ,'v')

116
117 K_theta_o_rot=zpk(zz,[pp([1 2 4]);0],kk);
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118
119 zpk(K_theta_o_rot)

120 clearvars zz pp kk

121
122 disp('Rule of Thumb Outer Elevation Position Controller =

K_theta_o_rot')

123 bode (K_theta_o_rot ,'b',bode_plot_opts)

124 set(findall(gcf, 'Type', 'line'), 'LineWidth', 2)

125 set(gcf, 'Position', [100 100 800 600])

126
127 %K_theta_o_rot=K_theta_o

128 [num, den] = tfdata(K_theta_o_rot , 'v');

129
130 %% Model Reduction for theta_o position controller

131 % % [Kb_theta_o ,gg_theta_o] = balreal(K_theta_o);

gg_theta_o

132 % % K_theta_o_rot = modred(Kb_theta_o ,[4],'MatchDC ');

133 % % disp('Reduced Order Controller Kb_theta_o ')

134
135 %% Design Analysis

136 EE = f_Maps_PKW(P_theta_o , K_theta_o_rot);

137 EE.W1 = W1_theta_o;

138 EE.W2 = W2_theta_o;

139 EE.W3 = W3_theta_o;

140 %%%

141 f_Plot_Sigma_Resp(EE, wvec, 'b', '-')

142 damp(pole(EE.To)) %% closed loop poles

143 %%%

144 figure(100)

145 step(EE.Try, 'b', linspace(0, 1, 1001)) %% time response

146 grid on; hold on

147 title('Try for theta_o_position_controller',...

148 'Interpreter','none','FontSize',13,'FontName','Times New

Roman')

149 %%%

150 figure(101)

151 step(EE.Tru, 'b', linspace(0, 1, 1001)) %%control
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response

152 grid on; hold on

153 title('Tru for theta_o_position_controller',...

154 'Interpreter','none','FontSize',13,'FontName','Times New

Roman')

155
156 %% UPDATE SIMULINK BLOCK

157 load_system('PositionController');

158
159 %%%% Set controller paramaters

160 %%

161 %%%%Position Controller paramater

162 set_param('PositionController/Outer Elevation Position

Controller/K_theta_o_rot', 'Numerator', mat2str(num),

...

163 'Denominator', mat2str(den));

164
165
166
167 disp('SBD UPDATED (PositionController.slx K_theta_o_rot

value is updated)')

theta-i-position-controller.m (SISO)

1 clc

2 clearvars

3 close all

4
5 equilibrium_point

6
7
8 bode_plot_opts = bodeoptions;

9 bode_plot_opts.FreqUnits = 'rad/s';

10 bode_plot_opts.Title.FontSize = 14;

11 bode_plot_opts.XLabel.FontSize = 14;

12 bode_plot_opts.YLabel.FontSize = 14;

13 bode_plot_opts.TickLabel.FontSize = 14;

14 bode_plot_opts.Grid = 'on';

15
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16
17 wvec = logspace(-3, 4, 1001);

18
19 %% 3) theta_i_position_controller (1*1 SISO System)

20 %%% From t_e to theta_i (Position Controller Design)

21
22 disp('Plants from t_e to theta_i = P_theta_i')%%%% 1*1

SISO Plant

23 P_theta_i = zpk(H(3,3))

24 return

25 %%

26
27 n_y_theta_i = size(P_theta_i ,1); % Number of

Outputs for plant t_e to theta_i

28 n_u_theta_i = size(P_theta_i ,2); % Number of Inputs

for plant t_e to theta_i

29 n_s_theta_i = size(P_theta_i ,'order'); % Number of States

for plant t_e to theta_i

30
31
32 %% Weighting Functions for theta_i position controller

33 %% W1 (sensitivity)

34 %%%Parameters

35 Ms_theta_i = 10;

36 wb_theta_i = 2*pi*0.7;

37 Eps_theta_i = 0.001;

38 k_theta_i = 1;

39 W1_theta_i = tf([1/(Ms_theta_i)^(1/k_theta_i) wb_theta_i

], [1 wb_theta_i*(Eps_theta_i)^(1/k_theta_i)])^

k_theta_i; %%general form.

40
41
42 %zpk(W1_theta_i)

43
44 %% W2 (control sensitivity) for theta_i position

controller

45 %%%Parameters
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46 Eps_theta_i = 0.01;

47 wbu_theta_i = 1000;

48 Mu_theta_i = 1e-6;

49 k_theta_i=1;

50
51 W2_theta_i = tf(Mu_theta_i , 1); %% any fixed function.

52 % % W2_theta_i = tf(1/Mu_theta_i , 1); %% inverse

W2_theta_i

53 %zpk(W2_theta_i)

54
55
56 %% W3 (complemantary sensitivity) for theta_i position

controller

57 % My_theta_i = 10^(20/20) ;

58 % wbc_theta_i= 2*pi*50;

59 % Eps_theta_i = 0.01;

60 % W3_theta_i = tf([1 wbc_theta_i/My_theta_i], [

Eps_theta_i wbc_theta_i]);

61 W3_theta_i=[];

62
63 %%

64 aug = false;

65 blt = true;

66
67 %% Augment with Integrators at the Input for theta_i

position controller

68 if aug

69 Paug_theta_i = f_Augment_at_Input(P_theta_i);

70 else

71 Paug_theta_i = ss(P_theta_i);

72 end

73
74 %% Bilinear Transformation for theta_i position

controller

75 if blt

76 p2_theta_i = -1e8; p1_theta_i = -2;

77 Pt_theta_i=bilin(Paug_theta_i , 1,'Sft_jw',[p2_theta_i
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p1_theta_i]);

78 else

79 Pt_theta_i=Paug_theta_i;

80 end

81
82 %% Augmented Plant for theta_i position controller

83 G_theta_i = augw(Paug_theta_i ,W1_theta_i ,W2_theta_i ,

W3_theta_i); %%augmented plant

84
85 %% Hinf Design for theta_i position controller

86 design_opts = hinfsynOptions;

87 design_opts.Method='RIC';%'LMI';%'MAXE';

88 design_opts.Display='on';

89 [Kt_theta_i ,CL,GAM,INFO] = hinfsyn(G_theta_i ,n_y_theta_i ,

n_u_theta_i ,design_opts);

90
91 %% Inverse Bilinear Transformation for theta_i position

controller

92 if blt

93 K_theta_i=bilin(Kt_theta_i ,-1,'Sft_jw',[p2_theta_i

p1_theta_i]);

94 else

95 K_theta_i = Kt_theta_i;

96 end

97 n_k = size(K_theta_i ,'order'); % Number of States

98
99

100 %% Augment with Integrators at the Output for theta_i

position controller

101 if aug

102 K_theta_i= f_Augment_at_Output(K_theta_i);

103 end

104 disp('Inner Elevation Position Controller = K_theta_i')

105 zpk(K_theta_i)

106
107
108 %% Controller Design (rule of thumb) for
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theta_i_position_controller

109 figure(1)

110 bode(K_theta_i , 'r',bode_plot_opts)

111 hold on

112
113
114 [zz, pp, kk] = zpkdata(K_theta_i ,'v')

115
116 K_theta_i_rot=zpk(zz,[pp([1 2 3]);0],kk);

117
118 zpk(K_theta_i_rot)

119 clearvars zz pp kk

120
121
122 disp('Rule of Thumb Outer Elevation Position Controller =

K_theta_i_rot')

123 bode (K_theta_i_rot ,'b',bode_plot_opts)

124 set(findall(gcf, 'Type', 'line'), 'LineWidth', 2)

125 set(gcf, 'Position', [100 100 800 600])

126
127 %K_theta_i_rot=K_theta_i

128 [num, den] = tfdata(K_theta_i_rot , 'v');

129
130
131 % %% Model Reduction for theta_i position controller

132 % [Kb_theta_i ,gg_theta_i] = balreal(K_theta_i);gg_theta_i

133 % K_theta_i = modred(Kb_theta_i ,[],'MatchDC ');

134 % disp('Reduced Order Controller Kb_theta_i ')

135 % zpk(K_theta_i)

136
137 %% Design Analysis

138 ee = f_Maps_PKW(P_theta_i , K_theta_i_rot);

139 ee.W1 = W1_theta_i;

140 ee.W2 = W2_theta_i;

141 ee.W3 = W3_theta_i;

142 %%%

143 f_Plot_Sigma_Resp(ee, wvec, 'b', '-')
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144 damp(pole(ee.To)) %% closed loop poles

145 %%%

146 figure(100)

147 step(ee.Try, 'b') %% time response

148 grid on; hold on

149 title('Try for theta_i_position_controller',...

150 'Interpreter','none','FontSize',13,'FontName','Times New

Roman')

151 %%%

152 figure(101)

153 step(ee.Tru, 'b') %%control response

154 grid on; hold on

155 title('Tru for theta_i_position_controller',...

156 'Interpreter','none','FontSize',13,'FontName','Times New

Roman')

157
158 %% UPDATE SIMULINK BLOCK

159 load_system('PositionController');

160
161 %%%% Set controller paramaters

162 %%

163 %%%%Position Controller paramater

164 set_param('PositionController/Inner Elevation Position

Controller/K_theta_i_rot', 'Numerator', mat2str(num),

...

165 'Denominator', mat2str(den));

166
167
168
169 disp('SBD UPDATED (PositionController.slx K_theta_i_rot

value is updated)')

theta-o-theta-i-position-controller.m (MIMO)

1 clc

2 clearvars

3 close all

4
5 equilibrium_point
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6
7
8 bode_plot_opts = bodeoptions;

9 bode_plot_opts.FreqUnits = 'rad/s';

10 bode_plot_opts.Title.FontSize = 14;

11 bode_plot_opts.XLabel.FontSize = 14;

12 bode_plot_opts.YLabel.FontSize = 14;

13 bode_plot_opts.TickLabel.FontSize = 14;

14 bode_plot_opts.Grid = 'on';

15
16
17 wvec = logspace(-3, 4, 1001);

18
19
20 %% 2) theta_o_theta_i_position_controller (2*2 MIMO

System)

21 %%% From t_E and t_e to theta_o and theta_i (Position

Controller Design)

22
23 disp('Plants from t_E and t_e to theta_o and theta_i =

P_theta_o_theta_i')%%%% 2*2 MIMO Plant

24 P_theta_o_theta_i = zpk(H(2:3,2:3))

25
26
27 %%

28
29 n_y_theta_o_theta_i = size(P_theta_o_theta_i ,1); %

Number of Outputs for plant t_E and t_e to theta_o and

theta_i

30 n_u_theta_o_theta_i = size(P_theta_o_theta_i ,2); %

Number of Inputs for plant t_E and t_e to theta_o and

theta_i

31 n_s_theta_o_theta_i = size(P_theta_o_theta_i ,'order'); %

Number of States for plant t_E and t_e to theta_o and

theta_i

32
33
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34 %% Weighting Functions for theta_o_theta_i position

controller

35 %% W1 (sensitivity)

36 %%%Parameters

37 Eps_theta_o_theta_i = 0.001%0.00001;

38 Ms1_theta_o_theta_i = 1e1; wb1_theta_o_theta_i = 2*pi

*0.1;

39 Ms2_theta_o_theta_i = 1e1; wb2_theta_o_theta_i = 2*pi

*0.5;

40 q = 1; p =1;

41 %%%%Weighting function 1

42 W1_theta_o_theta_i = [tf([1/(Ms1_theta_o_theta_i^(1/q))

wb1_theta_o_theta_i], [1 wb1_theta_o_theta_i*(

Eps_theta_o_theta_i^(1/q))])^q 0;

43 0 tf([1/(Ms2_theta_o_theta_i^(1/p))

wb2_theta_o_theta_i], [1 wb2_theta_o_theta_i*(

Eps_theta_o_theta_i^(1/p))])^p];

44
45 %zpk(W1_theta_o_theta_i)

46
47 %% W2 (control sensitivity) for theta_o_theta_i position

controller

48 %%%Parameters

49 wbu1_theta_o_theta_i = 2*pi*100; Mu1_theta_o_theta_i =1e

-3;

50 wbu2_theta_o_theta_i = 2*pi*100; Mu2_theta_o_theta_i =1e

-6;

51 %%%%Weighting function 2

52 W2_theta_o_theta_i = [tf([1 wbu1_theta_o_theta_i/

Mu1_theta_o_theta_i], [Eps_theta_o_theta_i

wbu1_theta_o_theta_i]) 0;

53 0 tf([1 wbu2_theta_o_theta_i/Mu2_theta_o_theta_i],

[Eps_theta_o_theta_i wbu2_theta_o_theta_i])];

54 %zpk(W2_theta_o_theta_i)

55
56 % % W2_theta_o_theta_i = [tf(1/Mu1_theta_o_theta_i , 1) 0;

0 tf(1/Mu2_theta_o_theta_i , 1)]; %%inverse %% any
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fixed function.

57 W2_theta_o_theta_i = [tf(Mu1_theta_o_theta_i , 1) 0; 0 tf(

Mu2_theta_o_theta_i , 1)];

58 %% W3 (complemantary sensitivity) for theta_o_theta_i

position controller

59 %%%Parameters

60 My1_theta_o_theta_i = 10^(20/20); wbc1_theta_o_theta_i=

2*pi*5;

61 My2_theta_o_theta_i = 10^(20/20); wbc2_theta_o_theta_i=

2*pi*75;

62 v = 1; w = 1;

63 %%%%Weighting function 3

64 W3_theta_o_theta_i = [tf([1 wbc1_theta_o_theta_i/(

My1_theta_o_theta_i^(1/v))], [(Eps_theta_o_theta_i^(1/

v)) wbc1_theta_o_theta_i])^v 0;

65 0 tf([1 wbc2_theta_o_theta_i/(My2_theta_o_theta_i^(1/

w))], [(Eps_theta_o_theta_i^(1/w))

wbc2_theta_o_theta_i])^w];

66 W3_theta_o_theta_i=[];

67 %zpk(W3_theta_o_theta_i)

68
69 %%

70 aug = false;

71 blt = true;

72
73 %% Augment with Integrators at the Input for

theta_o_theta_i position controller

74 if aug

75 Paug_theta_o_theta_i = f_Augment_at_Input(

P_theta_o_theta_i);

76 else

77 Paug_theta_o_theta_i = ss(P_theta_o_theta_i);

78 end

79
80 %% Bilinear Transformation for theta_o_theta_i position

controller

81 if blt

A25



82 p2_theta_o_theta_i = -1e8; p1_theta_o_theta_i = -0.8;

83 Pt_theta_o_theta_i=bilin(Paug_theta_o_theta_i , 1,'

Sft_jw',[p2_theta_o_theta_i p1_theta_o_theta_i]);

84 else

85 Pt_theta_o_theta_i=Paug_theta_o_theta_i;

86 end

87
88 %% Augmented Plant for theta_o_theta_i position

controller

89 G_theta_o_theta_i = augw(Paug_theta_o_theta_i ,

W1_theta_o_theta_i ,W2_theta_o_theta_i ,

W3_theta_o_theta_i); %%augmented plant

90
91 %% Hinf Design for theta_o_theta_i position controller

92 design_opts = hinfsynOptions;

93 design_opts.Method='RIC';%'LMI';%'MAXE';

94 design_opts.Display='on';

95 [Kt_theta_o_theta_i ,CL,GAM,INFO] = hinfsyn(

G_theta_o_theta_i ,n_y_theta_o_theta_i ,

n_u_theta_o_theta_i ,design_opts);

96
97 %% Inverse Bilinear Transformation for theta_o_theta_i

position controller

98 if blt

99 K_theta_o_theta_i=bilin(Kt_theta_o_theta_i ,-1,'Sft_jw

',[p2_theta_o_theta_i p1_theta_o_theta_i]);

100 else

101 K_theta_o_theta_i = Kt_theta_o_theta_i;

102 end

103 n_k = size(K_theta_o_theta_i ,'order'); % Number of States

104
105
106 %% Augment with Integrators at the Output for

theta_o_theta_i position controller

107 if aug

108 K_theta_o_theta_i= f_Augment_at_Output(

K_theta_o_theta_i);
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109 end

110 disp('Outer_Inner Elevation Position Controller =

K_theta_o_theta_i')

111 zpk(K_theta_o_theta_i)

112
113 %% Model Reduction for theta_o_theta_i position

controller

114 [Kb_theta_o_theta_i ,gg_theta_o_theta_i] = balreal(

K_theta_o_theta_i);gg_theta_o_theta_i

115 K_theta_o_theta_i = modred(Kb_theta_o_theta_i ,[],'MatchDC

');

116 disp('Reduced Order Controller Kb_theta_o_theta_i')

117 zpk(K_theta_o_theta_i)

118
119
120
121 %% Design Analysis

122 EE = f_Maps_PKW(P_theta_o_theta_i , K_theta_o_theta_i);

123 EE.W1 = W1_theta_o_theta_i;

124 EE.W2 = W2_theta_o_theta_i;

125 EE.W3 = W3_theta_o_theta_i;

126 %%%

127 f_Plot_Sigma_Resp(EE, wvec, 'b', '-')

128 damp(pole(EE.To)) %% closed loop poles

129 %%%

130 figure(100)

131 step(EE.Try, 'b') %% time response

132 grid on; hold on

133 title('Try for theta_o_theta_i_position_controller',...

134 'Interpreter','none','FontSize',13,'FontName','Times New

Roman')

135 %%%

136 figure(101)

137 step(EE.Tru, 'b') %%control response

138 grid on; hold on

139 title('Tru for theta_o_theta_i_position_controller',...

140 'Interpreter','none','FontSize',13,'FontName','Times New
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Roman')

141
142
143
144
145 %% UPDATE SIMULINK BLOCK

146 load_system('PositionController');

147
148 %%%% Set controller paramaters

149 %%

150 %%%%Position Controller paramater

151 % % set_param('PositionController/Outer_Inner Elevation

Position Controller/K_theta_o_theta_i ','A',...

152 % % 'K_theta_o_theta_i.A','B','K_theta_o_theta_i.B','

C','K_theta_o_theta_i.C','D','K_theta_o_theta_i.D');

153
154 set_param('PositionController/Outer_Inner Elevation

Position Controller/K_theta_o_theta_i',...

155 'A',mat2str(K_theta_o_theta_i.A),...

156 'B',mat2str(K_theta_o_theta_i.B),...

157 'C',mat2str(K_theta_o_theta_i.C),...

158 'D',mat2str(K_theta_o_theta_i.D));

159
160 disp('SBD UPDATED (PositionController.slx

K_theta_o_theta_i value is updated)')

wz-outer-rate-controller.m

1 clc

2 clearvars

3 close all

4 equilibrium_point

5
6 bode_plot_opts = bodeoptions;

7 bode_plot_opts.FreqUnits = 'rad/s';

8 bode_plot_opts.Title.FontSize = 14;

9 bode_plot_opts.XLabel.FontSize = 14;

10 bode_plot_opts.YLabel.FontSize = 14;

11 bode_plot_opts.TickLabel.FontSize = 14;
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12 bode_plot_opts.Grid = 'on';

13
14
15 wvec = logspace(-3, 4, 1001);

16
17
18 %%

19 wc = 2*pi*0.5;

20 F1 = tf(wc,[1 wc]); %%%low pass filter

21 [num1,den1] = tfdata(F1,'v');

22
23
24 %% 1) gyro_z_axis_rate_controller (1*1 SISO System)

25
26 %%% From t_A to w_z (Rate Controller Design)

27
28 disp('Plants from t_A to w_z= P_w_z')%%%% 1*1 SISO Plant

29 P_w_z = zpk(H(5,1))

30
31
32 %%

33 n_y_w_z = size(P_w_z ,1); %Number of Outputs for

plant from t_A to w_z

34 n_u_w_z = size(P_w_z ,2); %Number of Inputs for

plant from t_A to w_z

35 n_s_w_z = size(P_w_z,'order'); %Number of States for

plant from t_A to w_z

36
37
38
39 %% Weighting Functions for w_z controller

40 %% W1 (sensitivity)

41
42 Ms_w_z =10; %% 'Ms' helps adjust overshoot in

sensitivity graph.

43 wb_w_z = 2*pi*0.5; %% 'wb' helps adjust bandwith

range.
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44 Eps_w_z = 0.001; %% Eps is a minimum value in

sensitivity function.

45 k_w_z =1; %% 'k' provides steeper transition

.

46 %W1_w_z = tf([1/(Ms_w_z ^(1/k_w_z)) wb_w_z], [1 wb_w_z*(

Eps_w_z ^(1/k_w_z))])^k_w_z;%%general form.(1*2)

47
48 W1_w_z = tf([1/Ms_w_z wb_w_z], [1 wb_w_z*Eps_w_z])

49
50 %% W2 (control sensitivity)

51 % Eps_w_z =0.001; Eps1_w_z = 0.001;

52 % wbu_w_z = 2*pi*100; wbu1_w_z = 2*pi*100;

53 % k_w_z=1; k1_w_z=1;

54
55 % Mu_w_z = 1e7; Mu1_w_z = 10^(0.00001/20);

56 Mu1_w_z = 1e-10; Mu2_w_z =1e-2;

57 % W2_w_z = tf([1 wbu_w_z/(Mu_w_z^(1/k_w_z))],[Eps_w_z^(1/

k_w_z) wbu_w_z])^k_w_z %% general form.

58 % W2_w_z = tf([1 wbu_w_z/Mu_w_z], [Eps_w_z wbu_w_z]);

59 %W2_w_z = tf(1/Mu_w_z, 1); %% any fixed

function.

60 % W2_w_z = [tf([1 wbu_w_z/(Mu1_w_z^(1/k_w_z))],[Eps_w_z

^(1/k_w_z) wbu_w_z])^k_w_z 0;

61 % 0 tf([1 wbu1_w_z/(Mu2_w_z^(1/k1_w_z))],[Eps1_w_z

^(1/k1_w_z) wbu1_w_z])^k1_w_z]; %% general form.

62
63 % W2_w_z= [tf(1/Mu1_w_z, 1) 0;

64 % 0 tf(1/Mu2_w_z, 1)]; %% any fixed

function(2*2)

65
66
67 W2_w_z = tf(Mu1_w_z, 1);

68
69
70 %% W3 (complemantary sensitivity)

71 My_w_z = 10^(0.01/20) ;

72 wbc_w_z= 2*pi*5;
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73 Eps_w_z = 0.0001;

74 v=1;

75
76 % W3_w_z = tf([1 wbc_w_z/My_w_z], [Eps_w_z wbc_w_z]);

77 W3_w_z = tf([1 wbc_w_z/(My_w_z^(1/v))], [(Eps_w_z^(1/v))

wbc_w_z])^v;

78 W3_w_z=[];

79
80 %%

81 aug =true;

82 blt = true;

83
84
85 %% Augment with Integrators at the Input for w_z

controller(outer controller)

86
87 if aug

88 Paug_w_z = f_Augment_at_Input(P_w_z);

89 else

90 Paug_w_z =ss(P_w_z);

91 end

92
93
94 %% Bilinear Transformation for w_z controller (outer

controller)

95
96 if blt

97 p2_w_z = -1e8; p1_w_z = -1;

98 Pt_w_z=bilin(Paug_w_z, 1,'Sft_jw',[p2_w_z p1_w_z]);

99 else

100 Pt_w_z=Paug_w_z;

101 end

102
103 %% Augmented Plant for w_z controller

104 G_w_z = augw(Pt_w_z,W1_w_z,W2_w_z,W3_w_z); %%augmented

plant

105
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106 %% Hinf Controller Design Methodology for w_z controller

107 design_opts = hinfsynOptions;

108 design_opts.Method='RIC';%'LMI';%'MAXE';

109 design_opts.Display='on';

110 [Kt_w_z,CL,GAM,INFO] = hinfsyn(G_w_z,n_y_w_z,n_u_w_z,

design_opts);

111
112 %% Inverse Bilinear Transformation for w_z controller

113 if blt

114 K_w_z=bilin(Kt_w_z,-1,'Sft_jw',[p2_w_z p1_w_z]);

115 else

116 K_w_z = Kt_w_z;

117 end

118 n_k_w_z = size(K_w_z,'order'); % Number of States

119
120 %% Augment with Integrators for w_z controller

121 if aug

122 K_w_z = f_Augment_at_Output(K_w_z);

123 end

124 disp('Outer Azimuth Position Controller = K_w_z')

125 zpk(K_w_z)

126
127
128 %% Controller Design (rule of thumb) for w_z controller

129 % figure(1)

130 % bode(K_w_z, 'r', bode_plot_opts)

131 % hold on

132
133 [zz, pp, kk] = zpkdata(K_w_z,'v')

134
135 % K_w_z_rot=zpk(zz,[pp([1 3]); 0],kk);%choose zz, pp, kk

136 % K_w_z_rot=zpk(zz,[pp([2 4 5]);0],kk);%choose zz, pp,

kk

137
138 % zpk(K_w_z_rot)

139 clearvars zz pp kk

140
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141 % disp('Rule of Thumb Outer Azimuth Rate Controller =

K_w_z_rot ')

142 % bode (K_w_z_rot ,'b',bode_plot_opts)

143 % set(findall(gcf, 'Type', 'line'), 'LineWidth ', 2)

144 % set(gcf, 'Position ', [100 100 800 600])

145
146 K_w_z_rot=K_w_z;

147 [num den] = tfdata(K_w_z_rot , 'v');

148
149 % str = ['test_pdf.pdf']

150 % set(gcf,'PaperPosition ', [0 0 800 600])

151 % set(gcf,'PaperPositionMode ','Auto',...

152 % 'PaperUnits ','centimeters ',...

153 % 'PaperSize ',[10 7.5])

154 % print(gcf,str,'-dpdf','-r600', '-loose', '-fillpage ')

155 % disp('DONE')

156
157
158 %% Model Reduction for w_z controller

159 % % [Kb_w_z,gg_w_z] = balreal(K_w_z_rot);gg_w_z

160 % % K_w_z = modred(Kb_w_z ,[],'MatchDC ');%

161 % % disp('Reduced Order Controller Kb_w_z ')

162 % % zpk(K_w_z)

163
164
165 %% Design Analysis for w_z controller

166 HH = f_Maps_PKW(P_w_z, K_w_z_rot);

167 HH.W1 = W1_w_z;

168 HH.W2 = W2_w_z;

169 HH.W3 = W3_w_z;

170 %%%

171 f_Plot_Sigma_Resp(HH, wvec, 'b', '-')

172 damp(pole(HH.To)) %% closed loop poles

173 %%%

174 figure(100)

175 step(HH.Try, 'b', linspace(0, 5, 1001)) %% time response

176 grid on; hold on
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177 title('Try for psi_o_position_controller',...

178 'Interpreter','none','FontSize',13,'FontName','Times

New Roman')

179 %%%

180 figure(101)

181 step(HH.Tru, 'b', linspace(0, 5, 1001)) %%control

response

182 grid on; hold on

183 title('Tru for psi_o_position_controller',...

184 'Interpreter','none','FontSize',13,'FontName','Times

New Roman')

185 %%%

186 figure(200)

187 rlocus(HH.Lo)

188
189
190
191 %% UPDATE SIMULINK BLOCK

192 load_system('Ratecontroller');

193
194 %%%% Set controller paramaters

195 %%

196 %%%%%%% Rate Controller paramater

197
198
199 set_param('Ratecontroller/wz/K_d', 'Numerator', mat2str(

num),...

200 'Denominator', mat2str(den));

201 %% High pass and low pass filter parameter

202 set_param('Ratecontroller/wz/LPF', 'Numerator', mat2str(

num1),...

203 'Denominator', mat2str(den1));

204
205 set_param('Ratecontroller/wz/lpf', 'Numerator', mat2str(

num1),...

206 'Denominator', mat2str(den1));

207
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208 disp('SBD UPDATED (Ratecontroller.slx K_w_z value is

updated)')

wz-inner-rate-controller.m

1 clc

2 clearvars

3 close all

4 equilibrium_point

5
6 bode_plot_opts = bodeoptions;

7 bode_plot_opts.FreqUnits = 'rad/s';

8 bode_plot_opts.Title.FontSize = 14;

9 bode_plot_opts.XLabel.FontSize = 14;

10 bode_plot_opts.YLabel.FontSize = 14;

11 bode_plot_opts.TickLabel.FontSize = 14;

12 bode_plot_opts.Grid = 'on';

13
14
15 wvec = logspace(-3, 4, 1001);

16
17
18 %% Cut-off frequency for high pass filter

19 wc = 2*pi*0.5;

20 F2 = tf([1 0],[1 wc]); %%% high pass filter

21 [num2,den2] = tfdata(F2,'v'); %%% for set_param

22
23 %% 1) gyro_z_axis_rate_controller (1*1 SISO System)

24 %%% From t_a to w_z (Rate Controller Design)

25
26
27 disp('Plants from t_A to w_z= P_w_z')%%%% 1*1 SISO Plant

28 P_w_z = zpk(H(5,4))

29
30 %%

31 n_y_w_z = size(P_w_z ,1); %Number of Outputs for

plant from t_a to w_z

32 n_u_w_z = size(P_w_z ,2); %Number of Inputs for

plant from t_a to w_z
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33 n_s_w_z = size(P_w_z,'order'); %Number of States for

plant from t_a to w_z

34
35
36 %% Weighting Functions for w_z controller

37 %% W1 (sensitivity)

38
39 Ms_w_z =10; %% 'Ms' helps adjust overshoot in

sensitivity graph.

40 wb_w_z = 2*pi*100; %% 'wb' helps adjust bandwith

range.

41 Eps_w_z = 0.001; %% Eps is a minimum value in

sensitivity function.

42 k_w_z =1; %% 'k' provides steeper transition

.

43 %W1_w_z = tf([1/(Ms_w_z ^(1/k_w_z)) wb_w_z], [1 wb_w_z*(

Eps_w_z ^(1/k_w_z))])^k_w_z;%%general form.(1*2)

44
45 W1_w_z = tf([1/Ms_w_z wb_w_z], [1 wb_w_z*Eps_w_z])

46
47 %% W2 (control sensitivity)

48 % Eps_w_z =0.001; Eps1_w_z = 0.001;

49 % wbu_w_z = 2*pi*100; wbu1_w_z = 2*pi*100;

50 % k_w_z=1; k1_w_z=1;

51
52 % Mu_w_z = 1e7; Mu1_w_z = 10^(0.00001/20);

53 Mu1_w_z = 1e-6; Mu2_w_z =1e-2;

54 % W2_w_z = tf([1 wbu_w_z/(Mu_w_z^(1/k_w_z))],[Eps_w_z^(1/

k_w_z) wbu_w_z])^k_w_z %% general form.

55 % W2_w_z = tf([1 wbu_w_z/Mu_w_z], [Eps_w_z wbu_w_z]);

56 %W2_w_z = tf(1/Mu_w_z, 1); %% any fixed

function.

57 % W2_w_z = [tf([1 wbu_w_z/(Mu1_w_z^(1/k_w_z))],[Eps_w_z

^(1/k_w_z) wbu_w_z])^k_w_z 0;

58 % 0 tf([1 wbu1_w_z/(Mu2_w_z^(1/k1_w_z))],[Eps1_w_z

^(1/k1_w_z) wbu1_w_z])^k1_w_z]; %% general form.

59
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60 % W2_w_z= [tf(1/Mu1_w_z, 1) 0;

61 % 0 tf(1/Mu2_w_z, 1)]; %% any fixed

function(2*2)

62
63 W2_w_z = tf(Mu1_w_z, 1);

64 % % W2_w_z = tf(1/Mu1_w_z, 1);

65
66
67 %% W3 (complemantary sensitivity)

68 My_w_z = 10^(0.01/20) ;

69 wbc_w_z= 2*pi*5;

70 Eps_w_z = 0.0001;

71 v=1;

72
73 % W3_w_z = tf([1 wbc_w_z/My_w_z], [Eps_w_z wbc_w_z]);

74 W3_w_z = tf([1 wbc_w_z/(My_w_z^(1/v))], [(Eps_w_z^(1/v))

wbc_w_z])^v;

75 W3_w_z=[];

76
77 %%

78 aug = true;

79 blt = true;

80
81
82 %% Augment with Integrators at the Input for w_z

controller(inner controller)

83
84 if aug

85 Paug_w_z = f_Augment_at_Input(P_w_z);

86 else

87 Paug_w_z =ss(P_w_z);

88 end

89
90
91 %% Bilinear Transformation for w_z controller (inner

controller)

92
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93 if blt

94 p2_w_z = -1e8; p1_w_z = -1;

95 Pt_w_z=bilin(Paug_w_z, 1,'Sft_jw',[p2_w_z p1_w_z]);

96 else

97 Pt_w_z=Paug_w_z;

98 end

99
100 %% Augmented Plant for w_z controller

101 G_w_z = augw(Pt_w_z,W1_w_z,W2_w_z,W3_w_z); %%augmented

plant

102
103 %% Hinf Controller Design Methodology for w_z controller

104 design_opts = hinfsynOptions;

105 design_opts.Method='RIC';%'LMI';%'MAXE';

106 design_opts.Display='on';

107 [Kt_w_z,CL,GAM,INFO] = hinfsyn(G_w_z,n_y_w_z,n_u_w_z,

design_opts);

108
109 %% Inverse Bilinear Transformation for w_z controller

110 if blt

111 K_w_z=bilin(Kt_w_z,-1,'Sft_jw',[p2_w_z p1_w_z]);

112 else

113 K_w_z = Kt_w_z;

114 end

115 n_k_w_z = size(K_w_z,'order'); % Number of States

116
117 %% Augment with Integrators for w_z controller

118 if aug

119 K_w_z = f_Augment_at_Output(K_w_z);

120 end

121 disp('Outer Azimuth Position Controller = K_w_z')

122 zpk(K_w_z)

123
124
125 %% Controller Design (rule of thumb) for w_z controller

126 % figure(1)

127 % bode(K_w_z, 'r', bode_plot_opts)
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128 % hold on

129
130 [zz, pp, kk] = zpkdata(K_w_z,'v')

131
132 % K_w_z_rot=zpk(zz,[pp([1 3]); 0],kk);%choose zz, pp, kk

133 % K_w_z_rot=zpk(zz,[pp([2]);0],kk);%choose zz, pp, kk

134
135 % zpk(K_w_z_rot)

136 % clearvars zz pp kk

137 %

138 % disp('Rule of Thumb Outer Azimuth Rate Controller =

K_w_z_rot ')

139 % bode (K_w_z_rot ,'b',bode_plot_opts)

140 % set(findall(gcf, 'Type', 'line'), 'LineWidth ', 2)

141 % set(gcf, 'Position ', [100 100 800 600])

142
143 K_w_z_rot=K_w_z;

144 [num den] = tfdata(K_w_z_rot , 'v'); %%%% for set_param

145
146 % str = ['test_pdf.pdf']

147 % set(gcf,'PaperPosition ', [0 0 800 600])

148 % set(gcf,'PaperPositionMode ','Auto',...

149 % 'PaperUnits ','centimeters ',...

150 % 'PaperSize ',[10 7.5])

151 % print(gcf,str,'-dpdf','-r600', '-loose', '-fillpage ')

152 % disp('DONE')

153
154
155 %% Model Reduction for w_z controller

156 % % [Kb_w_z,gg_w_z] = balreal(K_w_z);gg_w_z

157 % % K_w_z = modred(Kb_w_z ,[3],'MatchDC ');%

158 % % disp('Reduced Order Controller Kb_w_z ')

159 % % zpk(K_w_z)

160
161
162 %% Design Analysis for w_z controller

163 UU = f_Maps_PKW(P_w_z, K_w_z_rot);
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164 UU.W1 = W1_w_z;

165 UU.W2 = W2_w_z;

166 UU.W3 = W3_w_z;

167 %%%

168 f_Plot_Sigma_Resp(UU, wvec, 'b', '-')

169 damp(pole(UU.To)) %% closed loop poles

170 %%%

171 figure(100)

172 step(UU.Try, 'b', linspace(0, 1, 1001)) %% time response

173 grid on; hold on

174 title('Try for psi_o_position_controller',...

175 'Interpreter','none','FontSize',13,'FontName','Times

New Roman')

176 %%%

177 figure(101)

178 step(UU.Tru, 'b', linspace(0, 1, 1001)) %%control

response

179 grid on; hold on

180 title('Tru for psi_o_position_controller',...

181 'Interpreter','none','FontSize',13,'FontName','Times

New Roman')

182 %%%

183 figure(200)

184 rlocus(UU.Lo)

185
186
187
188 %% UPDATE SIMULINK BLOCK

189 load_system('Ratecontroller');

190
191 %%%% Set controller paramaters

192 %%

193 %%%%%%% Rate Controller paramater

194
195
196 set_param('Ratecontroller/wz/K_i', 'Numerator', mat2str(

num),...

A40



197 'Denominator', mat2str(den));

198 %% High pass and low pass filter parameter

199
200 set_param('Ratecontroller/wz/HPF', 'Numerator', mat2str(

num2),...

201 'Denominator', mat2str(den2));

202
203 set_param('Ratecontroller/wz/hpf', 'Numerator', mat2str(

num2),...

204 'Denominator', mat2str(den2));

205 disp('SBD UPDATED (Ratecontroller.slx K_w_z value is

updated)')

wy-inner-rate-controller.m

1 clc

2 clearvars

3 close all

4 equilibrium_point

5
6 bode_plot_opts = bodeoptions;

7 bode_plot_opts.FreqUnits = 'rad/s';

8 bode_plot_opts.Title.FontSize = 14;

9 bode_plot_opts.XLabel.FontSize = 14;

10 bode_plot_opts.YLabel.FontSize = 14;

11 bode_plot_opts.TickLabel.FontSize = 14;

12 bode_plot_opts.Grid = 'on';

13
14
15 wvec = logspace(-3, 4, 1001);

16
17
18 %% Cut-off frequency for high pass filter

19 wc = 2*pi*0.5;

20 F2 = tf([1 0],[1 wc]); %%% high pass filter

21 [num2,den2] = tfdata(F2,'v'); %%% for set_param

22
23 %% 1) gyro_y_axis_rate_controller (1*1 SISO System)

24 %%% From t_e to w_y (Rate Controller Design)
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25
26
27 disp('Plants from t_e to w_y= P_w_y')%%%% 1*1 SISO Plant

28 P_w_y = zpk(H(6,3))

29
30 %%

31 n_y_w_y = size(P_w_y ,1); %Number of Outputs for

plant from t_e to w_y

32 n_u_w_y = size(P_w_y ,2); %Number of Inputs for

plant from t_e to w_y

33 n_s_w_y = size(P_w_y,'order'); %Number of States for

plant from t_e to w_y

34
35
36 %% Weighting Functions for w_y controller

37 %% W1 (sensitivity)

38
39 Ms_w_y =5; %% 'Ms' helps adjust overshoot in

sensitivity graph.

40 wb_w_y = 2*pi*80; %% 'wb' helps adjust bandwith

range.

41 Eps_w_y = 0.001; %% Eps is a minimum value in

sensitivity function.

42 k_w_y =1; %% 'k' provides steeper transition

.

43 %W1_w_y = tf([1/(Ms_w_y ^(1/k_w_y)) wb_w_y], [1 wb_w_y*(

Eps_w_y ^(1/k_w_y))])^k_w_y;%%general form.(1*2)

44
45 W1_w_y = tf([1/Ms_w_y wb_w_y], [1 wb_w_y*Eps_w_y])

46
47 %% W2 (control sensitivity)

48 % Eps_w_y =0.001; Eps1_w_y = 0.001;

49 % wbu_w_y = 2*pi*100; wbu1_w_y = 2*pi*100;

50 % k_w_y=1; k1_w_y=1;

51
52 % Mu_w_y = 1e7; Mu1_w_y = 10^(0.00001/20);

53 Mu1_w_y = 1e7; Mu2_w_y =1e2;
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54 % W2_w_y = tf([1 wbu_w_y/(Mu_w_y^(1/k_w_y))],[Eps_w_y^(1/

k_w_y) wbu_w_y])^k_w_y %% general form.

55 % W2_w_y = tf([1 wbu_w_y/Mu_w_y], [Eps_w_y wbu_w_y]);

56 %W2_w_y = tf(1/Mu_w_y, 1); %% any fixed

function.

57 % W2_w_y = [tf([1 wbu_w_y/(Mu1_w_y^(1/k_w_y))],[Eps_w_y

^(1/k_w_y) wbu_w_y])^k_w_y 0;

58 % 0 tf([1 wbu1_w_y/(Mu2_w_y^(1/k1_w_y))],[Eps1_w_y

^(1/k1_w_y) wbu1_w_y])^k1_w_y]; %% general form.

59
60 % W2_w_y= [tf(1/Mu1_w_y, 1) 0;

61 % 0 tf(1/Mu2_w_y, 1)]; %% any fixed

function(2*2)

62
63
64 W2_w_y = tf(1/Mu1_w_y, 1);

65
66
67 %% W3 (complemantary sensitivity)

68 My_w_y = 10^(0.01/20) ;

69 wbc_w_y= 2*pi*5;

70 Eps_w_y = 0.0001;

71 v=1;

72
73 % W3_w_y = tf([1 wbc_w_y/My_w_y], [Eps_w_y wbc_w_y]);

74 W3_w_y = tf([1 wbc_w_y/(My_w_y^(1/v))], [(Eps_w_y^(1/v))

wbc_w_y])^v;

75 W3_w_y=[];

76
77 %%

78 aug = true;

79 blt = true;

80
81
82 %% Augment with Integrators at the Input for w_y

controller(inner controller)

83
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84 if aug

85 Paug_w_y = f_Augment_at_Input(P_w_y);

86 else

87 Paug_w_y =ss(P_w_y);

88 end

89
90
91 %% Bilinear Transformation for w_y controller (inner

controller)

92
93 if blt

94 p2_w_y = -1e20; p1_w_y = -0.08;

95 Pt_w_y=bilin(Paug_w_y, 1,'Sft_jw',[p2_w_y p1_w_y]);

96 else

97 Pt_w_y=Paug_w_y;

98 end

99
100 %% Augmented Plant for w_y controller

101 G_w_y = augw(Pt_w_y,W1_w_y,W2_w_y,W3_w_y); %%augmented

plant

102
103 %% Hinf Controller Design Methodology for w_y controller

104 design_opts = hinfsynOptions;

105 design_opts.Method='RIC';%'LMI';%'MAXE';

106 design_opts.Display='on';

107 [Kt_w_y,CL,GAM,INFO] = hinfsyn(G_w_y,n_y_w_y,n_u_w_y,

design_opts);

108
109 %% Inverse Bilinear Transformation for w_y controller

110 if blt

111 K_w_y=bilin(Kt_w_y,-1,'Sft_jw',[p2_w_y p1_w_y]);

112 else

113 K_w_y = Kt_w_y;

114 end

115 n_k_w_y = size(K_w_y,'order'); % Number of States

116
117 %% Augment with Integrators for w_y controller
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118 if aug

119 K_w_y = f_Augment_at_Output(K_w_y);

120 end

121 disp('Inner Elevation Position Controller = K_w_y')

122 zpk(K_w_y)

123
124 %% Controller Design (rule of thumb) for w_y controller

125 % figure(1)

126 % bode(K_w_y, 'r', bode_plot_opts)

127 % hold on

128
129 [zz, pp, kk] = zpkdata(K_w_y,'v')

130
131 % K_w_y_rot=zpk(zz,[pp([1 3]); 0],kk);%choose zz, pp, kk

132 % K_w_y_rot=zpk(zz,[pp([2]);0],kk);%choose zz, pp, kk

133
134 % zpk(K_w_y_rot)

135 % clearvars zz pp kk

136 %

137 % disp('Rule of Thumb Outer Azimuth Rate Controller =

K_w_y_rot ')

138 % bode (K_w_y_rot ,'b',bode_plot_opts)

139 % set(findall(gcf, 'Type', 'line'), 'LineWidth ', 2)

140 % set(gcf, 'Position ', [100 100 800 600])

141
142 K_w_y_rot=K_w_y;

143 [num den] = tfdata(K_w_y_rot , 'v'); %%%% for set_param

144
145 % str = ['test_pdf.pdf']

146 % set(gcf,'PaperPosition ', [0 0 800 600])

147 % set(gcf,'PaperPositionMode ','Auto',...

148 % 'PaperUnits ','centimeters ',...

149 % 'PaperSize ',[10 7.5])

150 % print(gcf,str,'-dpdf','-r600', '-loose', '-fillpage ')

151 % disp('DONE')

152
153
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154 %% Model Reduction for w_y controller

155 % % [Kb_w_y,gg_w_y] = balreal(K_w_y);gg_w_y

156 % % K_w_z = modred(Kb_w_y ,[3],'MatchDC ');%

157 % % disp('Reduced Order Controller Kb_w_y ')

158 % % zpk(K_w_y)

159
160
161 %% Design Analysis for w_y controller

162 UU = f_Maps_PKW(P_w_y, K_w_y_rot);

163 UU.W1 = W1_w_y;

164 UU.W2 = W2_w_y;

165 UU.W3 = W3_w_y;

166 %%%

167 f_Plot_Sigma_Resp(UU, wvec, 'b', '-')

168 damp(pole(UU.To)) %% closed loop poles

169 %%%

170 figure(100)

171 step(UU.Try, 'b', linspace(0, 1, 1001)) %% time response

172 grid on; hold on

173 title('Try for psi_o_position_controller',...

174 'Interpreter','none','FontSize',13,'FontName','Times

New Roman')

175 %%%

176 figure(101)

177 step(UU.Tru, 'b', linspace(0, 1, 1001)) %%control

response

178 grid on; hold on

179 title('Tru for psi_o_position_controller',...

180 'Interpreter','none','FontSize',13,'FontName','Times

New Roman')

181 %%%

182 figure(200)

183 rlocus(UU.Lo)

184
185
186
187 %% UPDATE SIMULINK BLOCK
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188 load_system('Ratecontroller');

189
190 %%%% Set controller paramaters

191 %%

192 %%%%%%% Rate Controller paramater

193
194
195 set_param('Ratecontroller/wy/K_i', 'Numerator', mat2str(

num),...

196 'Denominator', mat2str(den));

197 %% High pass and low pass filter parameter

198
199 set_param('Ratecontroller/wy/HPF', 'Numerator', mat2str(

num2),...

200 'Denominator', mat2str(den2));

201
202 set_param('Ratecontroller/wy/hpf', 'Numerator', mat2str(

num2),...

203 'Denominator', mat2str(den2));

204 disp('SBD UPDATED (Ratecontroller.slx K_w_y value is

updated)')

================================================
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APPENDIX B

SIMULINK BLOCKS

Figure B.1: Four Axis Gimbal(AZ-EL-el-az).

Figure B.2: Four Axis Gimbal Block Inside.
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Figure B.3: Position Controller Design.
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Figure B.4: Rate Controller Design.
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