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ABSTRACT 

 

ADAPTIVE OPTICS CORRECTIONS IN IMPROVING THE BEAM 

SPREAD IN UNDERWATER TURBULENT MEDIUM 

 

TÜRKYILMAZ, Melisa Nur 

M.Sc., Department of Electrical-Electronics Engineering 

Supervisor: Prof. Dr. Yahya Kemal BAYKAL 

 

August 2022, 77 pages 

 

The popularity of the underwater wireless optical communication has 

increased recently because optical systems have the advantage of providing 

transmission at high data rates with low latency. However, UWOC is challenging 

due to harsh environmental conditions and one of the main effects of in oceanic 

medium is the turbulence. Turbulence causes increase in the beam spread which 

reduces the performance of the UWOC. In this thesis, the effectiveness of adaptive 

optics correction for Gaussian beams in oceanic turbulence is studied. The beam size 

and beam spread were examined with adaptive optics method. The reductions in 

beam size and beam spread indicate that the adaptive optics correction is a very 

effective method for reducing the turbulence-caused signal degradations. When 

investigating the effect of underwater turbulence, the power spectrum in the oceanic 

medium is supposed to be isotropic and homogeneous. Using the extended Huygens 

Fresnel principle, average intensity is found. The beam size and beam spread were 

observed utilizing Carter's definition. Piston, focus, tilt and astigmatism components 

of adaptive optics corrections were utilized to find the beam size and the beam 

spread in turbulent oceanic medium. The reduction in the beam size and beam spread 

was investigated against the ratio of temperature to salinity contributions to the 

refractive index spectrum, rate of dissipation of mean squared temperature, rate of
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dissipation of kinetic energy per unit mass of fluid, inner scale, receiver aperture 

diameter, link length, source size and the wavelength. This reduction was compared 

with and without the adaptive optics method. Using the MATLAB program, graphs 

were presented and calculations were performed. In this thesis, it is aimed to provide 

the most suitable conditions for beam propagation in underwater turbulent 

environment and to increase the UWOC performance. 

 

Keywords: Underwater Wireless Optical Communication, Turbulent Oceanic 

Medium, Beam Spread, Beam Size, Adaptive Optics. 
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ÖZ 

 

TÜRBÜLANSLI SUALTI ORTAMINDA IŞIN YAYILIMINDA 

UYARLANABİLİR OPTİK DÜZELTMELER 

 

TÜRKYILMAZ, Melisa Nur 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Prof. Dr. Yahya Kemal BAYKAL 

 

Ağustos 2022, 77 sayfa 

 

Optik sistemlerin düşük gecikme ile yüksek veri hızlarında iletim sağlama 

avantajına sahip olması nedeniyle, su altı kablosuz optik iletişiminin popülaritesi son 

zamanlarda artmıştır. Bununla birlikte, UWOC sert çevre koşulları nedeniyle 

zorludur ve okyanus ortamındaki ana etkilerden biri türbülanstır. Türbülans, ışın 

yayılımında artışa neden olur ve UWOC'nin performansını düşürür. Bu tezde, 

okyanus türbülansında Gauss ışınları için uyarlanabilir optik düzeltmenin etkinliği 

incelenmiştir. Uyarlanabilir optik yöntemi ile ışın boyutu ve ışın yayılımı 

incelenmiştir. Işın boyutundaki ve ışın yayılımındaki azalmalar, uyarlanabilir optik 

düzeltmenin türbülansın neden olduğu sinyal bozulmalarını azaltmak için çok etkili 

bir yöntem olduğunu göstermektedir. Sualtı türbülansının etkisi araştırılırken, 

okyanustaki güç spektrumunun homojen ve izotropik olduğu varsayılır. Işık şiddeti 

yoğunluğu, genişletilmiş Huygens-Fresnel ilkesi uygulanarak elde edildi. Işın boyutu 

ve ışın yayılımı, Carter'ın tanımı kullanılarak gözlemlendi. Uyarlanabilir optik 

düzeltmelerinin piston, eğim, odak ve astigmatizma bileşenleri, türbülanslı okyanus 

ortamında ışın boyutuna ve ışın yayılımına uygulandı. Işın boyutundaki ve ışın 

yayılmasındaki azalma, sıcaklığın tuzluluğa oranının kırılma indisi spektrumuna 

katkılarına, ortalama kare sıcaklığın dağılma hızına, sıvının birim kütlesi başına 

kinetik enerjinin dağılma hızına, iç ölçeğe, alıcı açıklık çapına, bağlantı uzunluğuna, 

kaynak boyutuna ve dalga boyuna karşı değerlendirildi. Bu azalma adaptive optik
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metodu kullanılarak ve kullanılmayarak mukayese edildi. MATLAB programı 

kullanılarak grafikler sunulmuş ve hesaplamalar yapılmıştır. Bu tezde, sualtı 

türbülanslı ortamda ışın yayılımı için en uygun koşulların sağlanması ve UWOC 

performansının artırılması amaçlanmıştır. 

 

Anahtar Kelimeler: Sualtı Kablosuz Optik Haberleşme, Türbülanslı Okyanus 

Ortamı, Işın Yayılımı, Işın Boyutu, Uyarlanabilir Optik 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. BACKGROUND 

The underwater wireless optical communication (UWOC) systems have 

become popular in the last few years because UWOC systems provide much higher 

data bit rate and low latency in underwater media over the classical acoustical 

communication systems [1]. UWOC systems are used in applications which need 

high data transmission and high bandwidth, such as military, security harbor 

inspections, underwater monitoring and surveillance sensor networks, autonomous 

underwater vehicles (AUVs), remotely operated vehicles (ROVs) and sensor 

networks [2-14]. The reason why the underwater wireless optical communication 

(UWOC) system is more advantageous than the classical acoustic system because 

acoustic and optical waves have different effects on underwater communication 

performance. 

Due to the optical wireless communication's higher bandwith, it can provide 

higher data rates (up to hundreds of Mbps) [6,15-18] at low latency, whereas acoustic 

waves propagate slowly and this causes low data bit rates [19,20] at high latencies. 

Sound propagates in underwater at speed of approximately 1500 m/s so this causes 

high latency at long-range [5] and propagation occurs over multiple paths. The 

performance of acoustic communication is decreased by low bandwidth, high 

transmission loss, noise, multi-path propagation, doppler spread, and high latency 

[21-27]. Therefore, these limitations cannot support the use of bandwidth-hungry 

underwater applications such as image and real-time video transmission. However, 

since acoustic communication supports long-distance (up to kilometers) transmission 

[11,28], there are several studies to improve the performance of acoustic 

communication. [25,26,28,29]. Nevertheless, acoustic systems are susceptible to 

malicious attacks due to their bad performance such as high delay, low bandwidth



2 

and high bit error rate [30]. With underwater acoustic communication, it is possible 

to reach tens of kbps data rate over long distances in kilometers and hundreds of kbps 

data rate over short distances in meters [6]. However, some underwater vehicles, 

observatories and sensor networks may require data rates of tens of Mbps or even 

higher. The utilization of copper cables and fiber optics may provide to obtain high 

data rates around Mbps but they require significant engineering [6]. On the other 

hand, they have maintenance and installation issues. For these reasons, the best 

alternative to achieve the high data rate, low latency, higher bandwidth and 

overcome the difficulties of acoustic communication systems is UWOC. [5,7,31-33]. 

In addition, UWOC provides secure links and is economical due to low installation 

costs. Besides all these advantages, the optical band is not involved in the 

telecommunications regulations so it does not require payment of licensing [34-40]. 

However, UWOC is more efficient for short distances because characteristics of the 

underwater medium cause the degradation of the optical wave so UWOC systems 

can only be effective at short distances of one hundred meters. 

Propagation of the optical signal in underwater is affected by mainly three 

phenomena which are the absorbtion, scattering and oceanic turbulence [33,41-45]. 

Absorption and scattering result from the presence of sea water constituents, such as 

dissolved salts, chlorophyll, suspended particles and water molecules [46-48]. These 

two impairing effects cause power loss and deviation of light photons and highly 

attenuate the received optical signal. As a result, optical signals cannot propagate 

very far in underwater medium due to their decreased energy. In literature, the 

attenuation coefficient is expressed as the sum of the effects the absorbtion 

coefficient and scattering coefficient [49-51]. The water type is effective in changing 

these parameters. According to dissolved substances and geographical location 

(distance from ocean to shore), water has four different types. Namely, clear ocean 

water, pure seawater, turbid harbor water, and coastal ocean water [52-56]. The most 

suitable wavelength interval for UWOC systems to operate is from 450 nm to 550 

nm which corresponds to the blue and green region of the visible light spectrum 

because, this interval provides the relatively minimum attenuation. 

Turbulence is another challenge that significantly degrades the performance 

of the UWOC systems [57]. Changes in salinity, temperature, and density in ocean 

water lead to fluctuations in the refractive index and this creates turbulence in 
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underwater [58,59]. Nikishov and Nikishov introduced the power spectrum of 

refractive index fluctuations in oceanic medium and they determined the contribution 

of salinity and temperature fluctuations to the refractive index [60].  

Many studies examined the effect of turbulence on various entities such as 

normalized intensity, average intensity, average transmittance and the scintillation 

index. By the Rytov method and the extended Huygens-Fresnel method average 

intensity was obtained [61-67]. There are several studies investigating normalized 

intensity and average intensity in the oceanic environment. For example, Flat-

Topped Vortex Hollow (FTVH) [68], evolution behaviour of Gaussian-Schell model 

vortex beam [69], radial phase-locked partially coherent standard Hermite-Gaussian 

beam [70], Lorentz beam [71,72,73], Lorentz Gaussian [74], rotating elliptical 

Gaussian [75], partially coherent anomalous hollow vortex beam [76,77], radial 

phase-locked multi-Gaussian Shell-model [78], partially coherent model beams [58], 

phase-locked partially coherent radial flat-topped array laser [79], four-petal 

Gaussian model [80], radially polarized twisted Gaussian-Schell model [81], random 

electromagnetic multi-Gaussian Schell-model vortex beam [82], M N  Gaussian 

array [83], hollow Gaussian beam [84], multi-Gaussian Schell-model hollow vortex 

beams [85] and  partially coherent flat-topped [67] beams are reported. Additionally, 

the average intensity and beam quality were analyzed in oceanic turbulence [86,87]. 

The intensity has also been investigated in several mediums other than the ocean. In 

turbulent atmospheric medium, the average intensity of cosine Gaussian [88], cosine-

hyperbolic Gaussian [89] and flattened Gaussian beams [90] have beeen studied. 

Also, the intensity has also been involved in studies for turbulent biological tissues 

[91,92]. 

The average transmittance is another factor that shows the effect of 

turbulence [93,94]. In oceanic medium, by applying the transmitting probability of 

signal vortex modes, the effect of oceanic turbulence on the transmittance of the 

vortex modes carried by Mathieu-Gaussian beam [95], average transmittance for 

partially coherent flat-topped beam [67], transmittance of a finite-energy frozen 

beam [96], cos Gaussian and cosh-Gaussian beams [97] have been studied. Also, the 

effect of anisotropy on the transmittance for multi-Gaussian beam [98], the average 

transmittance in focused collimated laser beams [99] have been investigated. 
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Another difficulty in underwater turbulence which severely degrades the 

received optical signal is the intensity fluctuation (scintillation). In clear ocean, 

scintillations effects are generally more than absorption and scattering [100]. 

Scintillations have been evaluated for several beam types in oceanic medium. Some 

of these are the optical spherical and plane waves [101], Gaussian beams [102,103], 

partially coherent Gaussian [103], flat-topped beam [67], partially coherent flat-

topped laser beam [104], higher-order mode laser beam [105-108], multimode laser 

beams [105], cross-beam [109], phase-locked partially coherent flat-topped array 

laser beam [110]. Also, scintillations are examined for multiple-input single-output 

optical links [111] and LED sources [112]. 

The other important phenomena studied in the underwater are the beam 

wander [113-115] and beam spreading [113,114,116-119]. The optical beam 

emanating from a transmitter propagates in vacuum and beam spreads when it 

reaches the receiver. If the turbulence of the medium increases, the beam size 

expands more. The beam spread is obtained when the beam size at the receiver in 

free space is subtracted from the beam size at the receiver in turbulence [92]. Beam 

spread can be investigated in a variety of turbulent environments such as the ocean, 

atmosphere and biological tissue. In underwater turbulence, beam spread calculated 

for various beam types such as Gaussian array beams [118], partially coherent flat-

topped beams [67] and propagation properties of partially coherent anomalous 

hollow beams [76], Lorentz-Gauss vortex beam [119]. In atmospheric turbulence, 

beam spread is investigated for partially coherent beams [120], Lorentz-Gauss 

[121,122], elliptical Gaussian [123], partially coherent flattened  Gaussian beams 

propagating through turbulence[124] and radial Gaussian array beams [125,126]. 

Morever, beam spread has recently been studied in biological tissues [91,92]. 

Several methods are utilized to reduce the damaging effects of turbulence on 

the beam propagation and to improve the performance of wireless optical 

communication. [104-106,127,128]. Some of these are the aperture averaging 

[129,130], spatial diversity [111,131,132], use of partially coherent source [104,133], 

beam shaping [105,109] and optical modulation [134-136]. The adaptive optics 

correction is one of the most successful techniques to enhance the propagation of 

beam and the performance of wireless optical communication. Adaptive optics 

method was first introduced in astronomy and medicine, then are used also in free-
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space communication, remote sensing, directed energy and target recognition. By 

using the adaptive optics method, turbulence-caused signal distortions such as the 

scintillation and beam spread are reduced and the performance determining the 

metric Bit Error Rate (BER) is increased, thus improving the performance of the 

communication system. Adaptive optics method is addressed as a method to reduce 

the signal degradation by many researchers and is employed in several turbulent 

media. In this method, using deformable mirror to impose the opposite of the phase 

disturbance induced by turbulence, the effects of turbulence can be reversed [137]. In 

literature, applications of adaptive optics have been investigated in atmospheric 

turbulence [135,138-148], in oceanic turbulence [149–154] and in turbulent 

biological tissues [92]. The scintillation and BER performances were scrutinized 

with adaptive optics [151-154].  

In this study, it is aimed to increase underwater communication system 

performance by examining the beam spread of Gaussian beam using adaptive optics 

method. Filter functions of adaptive optics are introduced and the reduction of the 

beam spread is evaluated. The beam spread are observed versus the ratio of 

temperature to salinity contributions to the refractive index spectrum  , rate of 

dissipation of mean squared temperature Tχ , rate of dissipation of kinetic energy per 

unit mass of fluid  , source size, receiving aperture diameter, link length and the 

wavelength. The components of the adaptive optics method is applied to the beam 

spread in the form of piston only (P only), tilt only (T only), focus only (F only), 

astigmatism only (A only), and tilt+focus+astigmatism+piston (T+F+A+P). The 

beam spread is examined by comparison with the corrected beam spread with and 

without adaptive optical filter (no AOF) by focusing on the reduction in beam 

spreads. If scintillation was observed, the effectiveness of adaptive optics refers to 

the capability of adaptive optics to decrease the scintillation. If the BER was 

evaluated, high BER performance shows us that adaptive optics (AO) is effective. In 

this study, the performance success of the system has been interpreted by considering 

how much reduction in beam spread through the adaptive optical filtering is 

achieved. The wavelength has been chosen as 532 nm because blue–green region is 

the least absorbed and scattered wavelength in underwater medium. MATLAB 

program was used to demonstrate numerical results. 
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1.2. OBJECTIVES 

The motivation for this research is to clarify how effective the adaptive optics 

correction can be in improving underwater communication system performance and 

how it will affect optical beam propagation. 

 

1.3. THESIS OUTLINE 

In Chapter 2, the propagation of optical beam is explained. Turbulence 

formulation and effects of turbulence parameters are given. In Chapter 3, the beam 

size and beam spread in the oceanic turbulent medium analyzed and their formulas 

are given. In Chapter 4, the methodology of adaptive optics correction was explained 

and its effect on beam spread was demonstrated with its formulas. Chapter 5 focuses 

on showing the improvement in beam size and beam spread as a result of applying 

adaptive optics filters with the included graphics. In addition, the graphs in Chapter 5 

show the influence of underwater turbulence parameters on the beam size and beam 

spread. Finally, this study was completed in the conclusion part of Chapter 6, with 

the evaluations made according to the results obtained. 
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CHAPTER 2 

 

LASER BEAM PROPAGATION THROUGH OCEAN 

 

2.1. OCEANIC TURBULENCE 

Optical propagation in a turbulent ocean is challenging due to chaotic oceanic 

conditions. Turbulence is caused by the mobility and temperature of the liquid and 

the inorganic particles and dissolved organic proportions. Underwater turbulence 

causes the signal degradation and reduces wireless optical communication 

performance. Salinity, temperature, and mobility are important factors leading to 

turbulence. The salinity and temperature fluctuations cause to change the refractive 

index of water and the random variation of the index of refraction defines the optical 

turbulence. Also, variations of temperature and salinity determine the influence of 

underwater turbulence. They cause the signal degradation during the signal 

propagation in oceanic medium. Due to the complexity and chaotic conditions of the 

oceanic environment, optical beam propagation is more difficult in ocean turbulence 

than in atmospheric turbulence. Turbulence can be defined with three basic 

assumptions: stationary, homogeneous and isotropic. In this thesis the power 

spectrum of oceanic turbulence is homogeneous and isotropic. It contains diffusion 

of salt and thermal diffusivity. According to this assumption, the power spectrum is 

expressed as [60]. 

8 1/3 2 11/3 2/3

T( ) 0.388 10 1 2.35( ) ( , )                    (2.1)n ε ω χ ω               

2 2 11/3 2/3 2( ) 0.388 1 2.35( ) ( 2 )          (2.2)S TST A AA

n mC ω ω e e ωe
               

where   is the spatial frequency,   is the rate of dissipation of kinetic energy 

per unit mass of fluid,   is the Kolmogorov micro scale length in m. Energy 

transfers are an important cause of turbulence.   determines the turbulent dissipation 

which takes values in the range from 
1 2 310  m /s

to 
10 2 310  m /s

. When   is small, 

ocean turbulence is strong, when   is large, ocean turbulence is weak. Tχ  is the rate
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of dissipation of the mean-squared temperature in 2K / s . Temperature provides 

information about the existence and movement of turbulent motion, relation to heat 

energy, density and its spatial variation. Values of Tχ  vary in the ocean in the range 

from 4 210  K / s  to 10 210  K / s . Larger 
Tχ  value causes stronger turbulence and 

smaller 
Tχ  value reflects weak turbulence.   is the ratio of temperature and salinity 

contributions to the refractive index spectrum. It is a unitless parameter and takes 

values in the from -5 to 0 in underwater. If   approaches -5, temperature-induced 

optical turbulence is dominant, and if   approaches 0, salinity-induced optical 

turbulence is dominant. Temperature-induced optical turbulence is less effective than 

the salinity-induced optical turbulence. 21.863 10TA   , 41.9 10SA   , 

39.41 10TSA    are constants and 4/3 28.284( ) 12.978( )    . 

 

2.2. GAUSSIAN BEAM WAVE   

Gaussian beam can be defined as the solution of the paraxial Helmholtz 

equation. The lowest-order transverse electro-magnetic (TEM) Gaussian-beam wave 

is also called a 00TEM  wave. The output from the ideal coherent laser source is 

assumed to be a Gaussian field profile and it corresponds to transverse 

electromagnetic field ( 00TEM  mode). Gaussian beam wave function at the transverse 

plane z  0, also called the source plane, is given by 

   2
, 0 ,                                               (2.3)expu z A kα  s s  

where 

2

s

1
,                                                      (2.4)

2 2α

i
α

k F
   

  is the wavelength in m , k = 2 /  is the wavenumber in 1m , sα  is the 

source size in m, α  is the complex parameter and it is related to the phase front 

radius of curvature and source size, r  is the transverse coordinate at the receiver, 

 ,x ys ss  is transverse source coordinates A  is the field amplitude in 2 1/2(W/m )   

and F  is the radius of curvature in m and also called as the focal length or phase 

front of curvature. 
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2.3. EXTENDED HUYGENS FRESNEL PRINCIPLE 

In turbulent medium, laser beam field spreads and the extended Huygens-

Fresnel principle is used to obtain the theoretical results of beam spread and beam 

size. The extended Huygens Fresnel principle is defined in Eq. (2.5) and it is a 

solution of the paraxial wave equation (in other words the parabolic equation). The 

extended Huygens Fresnel principle leads to obtain the optical field (also called as 

the beam footprint) in the receiver plane at a distance L  from the source in a 

turbulent medium. The optical field  , u Lr  is perpendicular to the propagation axis 

at z L  km and is calculated with Huygens Fresnel integral as follows [63]. 

     
22exp( )

, d , 0 exp exp , ,            (2.5)
2

ikL ik
u L u z

iL L




 

 

 
       

 
 r s s s r s r   

where L  is the path length, 1i   ,  denotes the propagation axis, 

 , 0u z s is the optical wave at the source plane and  , u Lr  is the optical field at 

the receiver plane,  , s r  is the solution to Rytov method representing random part 

of the complex phase of a spherical wave propagating in the turbulence from the 

source point  , 0z s  to the receiver point  , Lr ,  ,x ys ss  is transverse source 

coordinates and  ,x yr rr  is transverse receiver coordinates. It should be noted that 

Eq. (2.5) is utilized in the determination of many significant evaluations such as 

average intensity, mean field, scintillation, aperture averaging factor and <BER>. r  

coordinate at the receiver plane is transverse to the propagation axis. 

 

2.4. BEAM INTENSITY AT RECEIVER PLANE IN UNDERWATER 

The beam intensity at the receiver plane generated by the laser beam 

propagating in a turbulent environment is given by  

     *, , ,                                                                  (2.6 )I L u L u Lr r r  

where * is the complex conjugate, thus  * ,u Lr  is the conjugate of the field. 

Beam intensity is calculated by applying the extended Huygens Fresnel method. 

Using Eq. (2.5) and Eq. (2.6), instantaneous intensity at the receiver plane is found to 

be 

 

z L
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 
 

   

   

2*

2

2 *

1
, , 0 , 0 exp

2

              exp exp , exp , ,                           (2.7)
2

ik
I L u z u z -

LL

ik

L



 

   

   

 
    

 

 
          

 

   
2 2

1 2 1 2 1

2 1 2

r d s d s s s s r

s r s r s r

 

where 

         

   

   

2 2* * *

2 2 2*

2 2 2*

, 0 , 0 , 0

                                     

                                     .                       (2.8)

exp exp

exp exp

exp exp

ru z u z A u z A

A

A

kα kα

kα kα

kα kα

   





 

 

 

1 2 1 1 2

1 2

1 2

s s s s s

s s

s s
 

According to Eq. (2.7) and Eq. (2.8), the instantaneous intensity is  

 
 

   

   

2 2 2*

2

2 2 *

1
, 

              exp exp exp , exp , ,          (2.9)
2 2

exp expI L A
L

ik ik
-

L L

kα kα


 

   

   



   
            

   

    
2 2

1 2 1 2

1 2 1 2

r d s d s s s

s r s r s r s r

 

 

2.4.1. Average Intensity at the Receiver 

The average intensity can be expressed as 

     *, , , .                                        (2.10)I L u L u L    r r r  

This equation also corresponds to the MCF or second order moment and the 

receiver coordinate is taken as 1 2 r r r  (identical observation points). Here     

represents the ensemble average over the turbulence statistics. The ensemble average 

is also called the mean or the expected value of the random process. Inserting Eq. 

(2.9) into Eq. (2.10), the average intensity becomes 

 
 

   

   

2 2 2*

2

2 2

*

1
, 

                   exp exp
2 2

                   exp , exp , .                                     

exp expI L A
L

ik ik
-

L L

kα kα


 

   

   

  

   
     

   

       

    
2 2

1 2 1 2

1 2

1 2

r d s d s s s

s r s r

s r s r

 

          (2.11)

 

 

The term    *exp , exp , >       1 2
s r s r  denotes the turbulence effect on 

the average intensity. Ensemble averaging over the turbulence statistics [69,158] 
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     *

2

2

0

1
exp , exp , > exp ,

2

                                                     exp ,                          (2.12)

D 



 
         

 

 
  

 
 

1 2 1 2

1 2

s r s r s s

s s
 

where  ,D 1 2
s s  is the wave structure function, 0  is the coherence length 

of a spherical wave propagating in the turbulent medium. In oceanic medium 
0  is 

known which is defined in Eq. (4.5) within the context of adaptive optics.  

Inserting Eq. (2.12) in Eq. (2.11), the average intensity becomes 

 

 
 

   2 2 2*

2

2

2 2

2

0

1
, 

                   exp exp exp ,              (2.13)
2 2

exp expI L A
L

ik ik
-

L L

kα kα




   

   

  

    
              

    
2 2

1 2 1 2

1 2

1 2

r d s d s s s

s s
s r s r

 

 

Expanding transverse coordinates into its components, 

 
 

   

   

   

 

2 2 2

1 1 2 2 1 12

* 2 * 2

2 2

22

1 2 1 22

0

2

1

1
, d d d d

                   

1
                   exp

                   exp
2

exp exp

exp exp

x y x y x y

x y

x x y y

x x

I L s s s s A
L

s s s s

ik
s r

L

kαs kαs

kα s kα s





   

   

  



          

 

 

 

   r  

 

   

2

1

22

2 2                   exp ,                                     (2.14)
2

y y

x x y y

s r

ik
s r s r

L

       

          

 

Rearranging 

 
 

   

     

2 2 2

1 1 2 2 1 12

* 2 * 2 2 2 2 2

2 2 1 1 2 2 1 1 2 22

0

2 2

1 1

1
, d d d d

1
                   exp 2 2

                   exp 2
2

exp exp

exp exp

x y x y x y

x y x x x x y y y y

x x x x

I L s s s s A
L

s s s s s s s s

ik
s s r r

L

kαs kαs

kα s kα s





   

   

  

 
       

 

  

 

 

   r  

 

 

2 2

1 1

2 2 2 2

2 2 2 2

2

                   exp 2 2 .                             (2.15)
2

y y y y

x x x x y y y y

s s r r

ik
s s r r s s r r

L

 
   

 

 
       

 
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Applying of the integration from Ref. [157] 

2 2 0.5 2 2exp / exp / 4 ,  2.16           t >0                     dx t x qx t q t  

Expressing the part of  Eq. (2.11) for 
1xs  as 

2

1 2

0

1

2
x

ik
t kα

L
, 1 22

0

2
x x x

ik
q s r

L
 

Eq. (2.11) is converted to 

 
 

     

     

 

20.5 2 2 2

1 1 2 2 1 1 12

* 2 * 2 2 2 2

2 2 2 1 1 2 22

0

2 2 2

1 1

1
, / d d d exp / 4

1
                   exp 2

                   exp 2
2

exp

exp exp

x y x y x x y

x y x y y y y

x y y y y

I L t s s s A q t
L

s s s s s

ik
r s s r r

L

kαs

kα s kα s






  

  

   
 

 
     

 


   





 

  r  

 2 2 2 2

2 2 2 2                   exp 2 2 .                     (2.17)
2

x x x x y y y y

ik
s s r r s s r r

L


 



 
       

 

 

Substituting 1xq  in Eq. (2.17) 

 
 

   

     

 

2

20.5 2

1 1 2 2 2 12 2

0

2 * 2 * 2

1 2 2

2 2 2

2 1 1 2 22

0

1 2
, / d d d exp / 4

                   

1
                   exp 2

       

exp exp exp

x y x y x x x

y x y

x y y y y

ik
I L t s s s A s r t

LL

s s s s s

kαs kα s kα s






  

  

   
     

   



 
     

 

  

  r

 

 

2 2 2

1 1

2 2 2 2

2 2 2 2

            exp 2
2

                   exp 2 2 ,                                         (2.18)
2

x y y y y

x x x x y y y y

ik
r s s r r

L

ik
s s r r s s r r

L

 
    

 

 
       

 

 

By expanding the Eq.(2.18),  Eq.(2.19) is obtained. 
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 
 

 

     

2
2

20.5 2 2

1 1 2 2 2 22 2 2 2 2 2 2

1 0 1 0 1

2 * 2 * 2

1 2 2

2 2

2 12

0

1 1 1 1
, / d d d exp

4

                   

1
                   exp 2

exp exp exp

x y x y x x x x

x x x

y x y

x y

ik k
I L t s s s A s s r r

t t L t LL

s s

kαs kα s kα s


 



  

  

   
      

   



   

  

  r

 

 

 

2

1 2 2

2 2 2

1 1

2 2 2 2

2 2 2 2

                   exp 2
2

                   exp 2 2 .                                      (2.19)
2

y y y

x y y y y

x x x x y y y y

s s s

ik
r s s r r

L

ik
s s r r s s r r

L

 
 

 

 
    

 

 
       

 

 

For 
2xs , defining   

2

2 *

2 2 2 2

0 1 0

1 1 1

2
x

x

ik
t kα

L t
, 2 2 2

1 0

1
x x x

x

ik ik
q r r

L t L
 and integrating over 

2xs  

 
 

  

 

     

0.5 0.5

1 22

2
22 2 2

2 2 1 2 2 2

1

2 * 2 2 2

1 2 1 1 2 22

0

2 2

1

1
, / /

              exp / 4 d d exp
4

1
              exp 2

              exp 2
2

exp exp

x x

x x y y x

x

y y y y y y

x y

I L t t
L

k
q t s s A r

t L

s s s s

ik
r s s

L

kαs kα s

 




 

 

  

 
    

 

 
    

 

  

 

 

r

   2 2 2 2

1 2 2exp 2 ,             (2.20)
2

y y y x y y y y

ik
r r r s s r r

L

   
       

   

 

Since the integration for y components of the integral is exactly the same as 

the integration for x components, except rx  is replaced by  ry  , when integrated over 

1ys  and 2 ys , Eq. (2.20) becomes  

 
 

 

 

2 2

2 2

2 22 2 2

1 2

2 2
2 2 2 2

2 2 2 2 2 2

1 1

, exp 0.25 /

               exp 0.25 / exp exp ,                                (2.21)
4 4

x x

x x

y y x y

x y

A
I L q t

L t t

k k
q t r r

t L t L




  

  
      

   

r

 

 

where, 
2 2

1 1 2

0

1

2
y x

ik
t t kα

L
, 

2

2 2 *

2 2 2 2 2

0 1 0

1 1 1

2
y x

x

ik
t t kα

L t
, and

2 2 2

1 0

1
y y y

y

ik ik
q r r

L t L
 



14 

2

1xt  and 
2

1yt can be denoted as 2

1t  , 2

2 xt  and 
2

2 yt  as  2

2t . 

2 2 2 2 2 2

1 1 1 2 2 22 2 2 4

0 0 1 0

1 1 1
,  

2 2
x y x y

ik ik
t t t ka t t t ka

L L t  

            

The conjugate of Eq. (2.4) is 

*

2

s

1
                                                   (2.22)

2 2α

i
α

k F
   

Focal length is set to F  (collimated beam) so, 

*

2

s

1
,                                                         (2.23)

2 α
α α

k
   

 

where, 2 2

1 22 2 2 2 2 4

s 0 s 0 1 0

1 1 1 1 1
,  , 

2 2 2 2α α

ik ik
t k t k

k L k L t  

   
         

   
 

2 22 2 2 2

1 0 1 0

1 1
,  .x x x y y y

ik ik ik ik
q r r q r r

L t L L t L 
     

 

Finally, Eq. (2.24) is found to be  

2 2

2 2 2
1 2

2 2 2
2 2 2 2| |

2 2 2( )
2 1

( , ) exp exp ( )                  (2.24)
4 4

x yA

x yL t t

q q k
I L r r

t t L





   
        

  
r  

 

Substituting 2

1t , 2

2t , 2 xq  and 
2 yq  in Eq.(2.24) and showing in the complete 

form 

  2 2 2
22

2

2

2 2 2 2
4 40 0 0 0
0 02 2

0 0

| |

( )

1 1 1 1 1 1
4

2 2 2 21 1

2 2

( , ) exp
x yk kα kα r rA

L

ik ik ik ik
kα kα L kα kα

L L L Lik ik
kα kα

L L

I L 



   
 

 



 

  

   
   

      
                                       

      

 
 
 
 
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To see Eq. (2.27) more clearly, defining 
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then the average intensity was obtained 
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CHAPTER 3 

 

BEAM SIZE AND BEAM SPREAD 

 

3.1. METHODOLOGY OF THE BEAM SIZE AND BEAM SPREAD 

In this thesis, the effect of adaptive optic filters on the beam size and the 

beam spread has been studied. The main purpose of this thesis is to obtain beam 

spread and the beam size values for each adaptive optics filtered and unfiltered cases 

and to demonstrate the beneficial effect of AOF method in communication systems. 

This part starts with Carter’s formula that provides the definition of the beam size in 

the xr direction.  

The beam size or the effective beam spot was expressed through Carter’s 

formula as [68] 

22 ( , , )

( , , )
,                                            (3.1)

x x y x y

x y x y

r I r r L dr dr

xL
I r r L dr dr
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 

 

 


 
 

22 ( , , )

( , , )
,                                    (3.2)

x x y x y

x y x y

r I r r L dr dr

xL
I r r L dr dr
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B


 

 

 

 

 

 

 
 

 
 

where ( , , )x yI r r L  is the average intensity and xr and 
,yr is the transverse 

coordinate at the receiver. When the variable is changed to solve in two parts, Eq. 

(3.1) can be written as Eq. (3.2) by defining A and B as  

22 ( , , )                                               (3.3)x x y x yA r I r r L dr dr
 

 
     

( , , )                                                    (3.4)x y x yB I r r L dr dr
 

 
     

Using Eq. (2.30), Eq. (3.3) and Eq. (3.4) are converted to Eq. (3.5) and Eq. 

(3.6), respectively as 
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With the application of the integration from Ref. [157], the integrals for B 

and second part of the integral for A can be solved. Applying the integral in [157] to 

the second integral of A and both integrals of B. 

  
     

2

1 1

1

2 2

1 1 4

1

exp  and exp exp ,

0 0                                                                         (3.7)
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 Also the other integration is the first integral of A in Eq. (3.5) which is 

 2 2

1   exp .                                        (3.8)x x x xr t r qr dr


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   

To solve Eq. (3.8) we apply Ryzhik [157] and obtain 
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If A and B are inserted in Eq. (3.2), the beam size throughout the propagation 

axis is obtained to be 

  

  

22 | | 1
22 21 1 1 1( ) 11

22 | | 1
112 1 1 1( )

2
1                                       (3.10)

A

x t t t x tL

A
x t

x t tL

xL t

  




  



     

To observe the beam spread that shows the turbulence effect on the beam 

size, beam size in the absence of turbulence (i.e., free space) is subtracted from the 

beam size in the presence of turbulence, which is expressed as  

   _ _ ,                                    (3.11)xL xL oc xL fsz L z L       

When beam size in xr  direction at receiver plane after the beam propagates in 

underwater turbulent medium it is expressed as  _xL oc z L  , and when beam size 

in xr  direction at receiver plane after the beam propagates in the absence of 

turbulence (namely in free space) it is expressed as  _xL fs z L  . 
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CHAPTER 4 

 

ADAPTIVE OPTICS CORRECTIONS 

 

4.1. METHODOLOGY OF THE ADAPTIVE OPTICS CORRECTIONS 

AO corrections were applied to mitigate the detrimental effects of turbulence 

on light beam propagation. There are a variety of different designs of AO systems, 

but they all have similar logic to reduce the detrimental effect of turbulence. In this 

thesis, useful effects of the AO method on the system were investigated. Adaptive 

optics corrections such as piston, focus, tilt, astigmatism impacts, and the sum of 

they are analyzed against the underwater turbulence parameters for different 

wavelengths, link lengths and source sizes. AO techniques are among the best 

methods to reduce the turbulence-caused optical degradation of the beam [149]. 

The adaptive optics filter function is used in adaptive optics method 

[155,156]. 

1

1 ( , , )                                                  (4.1)
N

l

l

F D 


  

where ( , , )lF D   is the filter function consisting of sinusoidal functions and 

Bessel. It was expressed for 0m   by 
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where ( , )    is the spatial frequency vector in polar coordinates and

 = | |   represents the amplitude of the spatial frequency, D  is the receiver aperture 

diameter, J  is the Bessel function of the first kind and. (m=0, n=0), (m=1, n=1), 

(m=2, n=2) and (m=0, n=2) denote the piston, tilt, astigmatism and focus (defocus), 

respectively. In Eq. (4.1), N represents the number of correction terms taken in the 

overall AO correction. N = 1 is expressed when only the tilt component or only the 

piston component is used, N = 2 when both the piston and tilt components are used, 

and N = 3 when the piston, tilt, and astigmatism components are used. 0  is the 

spatial coherence length of a spherical wave propagating in the turbulent medium 

and 0  in Eq. (2.12) when   integration is executed, is expressed as [158] 

0.5

2 2 3

0

0

1
( ) .                                  (4.5)

3
nk z d    


 
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 

  

In polar coordinates Eq. (4.5) is expressed as 

0.5
2
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0 0
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( )                                 (4.6)
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     
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  
 

   

is found with numerical integration using MATLAB. Kappa integral is from 

zero to infinity but we took it from 
2

25 m


to 

2

1 mm


because outer scale is 25 m and 

the inner scale is 1 mm. 

When adaptive optics is not considerd, the coherence length of the 

underwater medium is given as [158]  
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To find the coherence length in Eq. (4.6), spectrum of the oceanic turbulence 

should be rearrangered according to the applied AO corrections. ( )n   given in Eq. 

(2.2) is modified by the adaptive optics filter function given by Eq. (4.1) to obtain the 

modified spectrum of the oceanic turbulence to be 

2 2 11/3 2/3 2
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Eq. (4.8) is used in Eq. (4.6) to find 
0  which in turn is employed in Eq. 

(3.10) and Eq. (3.11) to find the beam spread.  
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CHAPTER 5 

 

NUMERICAL RESULTS 

 

In Figure 1, the graphs show the beam size with no adaptive optics, only 

focus corrected (F only), only astigmatism corrected (A only), only tilt corrected (T 

only), only piston corrected (P only), and the sum of tilt, focus, astigmatism and 

piston corrected (T+F+A+P). When Tχ  increases, effects of oceanic turbulence 

increase. This increase in turbulence strength makes the beam size bigger. It is also 

depicted from Figure 1 that for all Tχ , the beam size is the largest for with no AO, 

and the beam size becomes smaller is for A only, F only (the same as A only), T 

only, P only and it gets the smallest for the sum of corrections (T+F+A+P).  

 
Figure 1: The beam size against Tχ  at various adaptive optics and with no adaptive optics. 

 

It is seen in Figure 2 that if   is close to zero (i.e. salinity-based turbulence), 

the effect of the turbulence increases and the beam size increases. Also, for a fixed 

 , the beam size at the receiver plane is the smallest when the sum of all the 

corrections is applied. 
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Figure 2: The The beam size against    at various adaptive optics and with no adaptive 

optics. 

      

Figure 3 has the opposite trend when compared to Figure 1 and Figure 2. 

Namely, as   increases, the beam size decreases. As   increases, the strength of the 

oceanic turbulence decreases. In terms of applying AOF, the same trend as in Figures 

1 and 3 is observed. It is also seen from Figure 3 that when   is kept at a fixed value, 

the beam size is the largest for without AO correction, and the value of the beam size 

becoming smaller is for A only, F only (the same as A only), T only, P only and the 

smallest beam size value is obtained for the sum of all corrections (T+F+A+P ).  

 

Figure 3: The beam size against   at various adaptive optics and with no adaptive optics. 

In Figure 4, we can make the same inferences as in Figure 2. It can be seen 

that as the   value increases, the beam size becomes larger and the sum of the AOF 
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decreases the beam size. Figure 4 also shows that at fixed 
Tχ  value, as   increases 

the difference between the beam size values for the sum of the adaptive optical filters 

and without adaptive optical correction become larger. Also in Figure 4, the 

difference between the beam size for adaptive optics and the beam size for the 

correction sum increases as 
Tχ  increases. 

Figure 4: The beam size against Tχ  at various   that use adaptive optics and use with no 

adaptive optics. 

 

 Figure 5 shows that as the source size increases, beam size increases. Also, it 

can be said that the turbulence effect increases when Tχ  increases and the adaptive 

optics correction becomes more effective for large Tχ  value. If we compare the 

curves without AO correction with the curves with the sum of the AO correction for 

sα = 0.01 and for sα = 0.15,  we can deduce that adaptive optics correction is more 

effective at small sα  values. 
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Figure 5: The beam size against Tχ  at various sα  values that use adaptive optics and use 

with no adaptive optics. 

 

Figure 6 trend is similar to Figure 5 because as Tχ  and   increase, beam size 

value increases. As in Figure 5, the difference between without adaptive optics curve 

and sum of adaptive optics curve for sα = 0.01 is greater than the difference for sα = 

0.15 in Figure 6, so it can be deduced that the effectiveness of adaptive optics 

correction increases as sα  decreases. Another inference is that with increasing 

salinity, in other words, with more turbulence, the effect of the adaptive optical filter 

increases. 

Figure 6: The beam size against   at various sα  values that use adaptive optics and use 

with no adaptive optics. 
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Since the turbulence strength and   are inversely proportional, the increase in 

  causes the beam size to decrease, so the curves in Figure 7 show the opposite 

trend of the curves in Figures 5 and 6. The adaptive optics filter can show its effect 

more when turbulence strength is high, so the effect of the filter increases with 

decreasing   in Figure 7. The common deduction of Figures 5-7 is that with 

decreasing 
sα , beam size decreases, and for small 

sα  the sum adaptive optics filter 

becomes more effective. 

Figure 7: The beam size against   at various sα  values that use adaptive optics and use 

with no adaptive optics. 

 

     Figure 8 shows that the beam size against Tχ  at various receiver aperture 

diameter values that use T+F+A+P and use with no adaptive optics. Figure 8 shows 

that for a fixed D , larger Tχ  results in larger beam size. Figure 8 shows that at any 

Tχ , smaller receiver aperture diameter ends up with smaller beam size and 

T+F+A+P correction at smaller receiver diameter is more effective for all value of 

Tχ . 
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Figure 8: The beam size against Tχ  at various D  values that use adaptive optics and use 

with no adaptive optics. 

 

Figure 9 reflects the beam size at T+F+A+P AO correction against   at 

various D  values. Figure 9 shows that for all the D  values, larger   causes larger 

beam size. Another result is that for a constant  , smaller D  value yields smaller 

beam size and T+F+A+P correction at smaller receiver diameter is most effective. 

Figure 9: The beam size against   at various D  values that use adaptive optics and use 

with no adaptive optics. 
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larger beam size and T+F+A+P correction for smaller D  is most effective at every 

value. 

Figure 10: The beam size against   at various D  values that use adaptive optics and use 

with no adaptive optics. 

 

Figure 11 shows the beam size at T+F+A+P adaptive optics correction versus 
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causes an increase in the beam size value. In Figure 11, it is observed that at any Tχ , 

larger inner scale yields a decrease in the beam size, so it can be deduced that the 

effect of T+F+A+P correction increases with the increase of the inner scale value. 

 

Figure 11: The beam size against Tχ  at various inner scale values that use adaptive optics 

and use with no adaptive optics. 
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In can be seen in Figure 12 that T+F+A+P correction is more effective for 

larger inner scale value. Also, with increasing  , beam size increases and the 

effectiveness of T+F+A+P correction also increases. 

Figure 12: The beam size against   at various inner scale values that use adaptive optics 

and use with no adaptive optics. 
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Figure 14 is shows the beam size using without and with AO correction 

against Tχ  at various link length values. Also, for all Tχ  values, larger link length 

results in larger beam size, namely at a fixed 
Tχ , the AO corrected beam size value 

is also larger at larger link lengths. Other result in Figure 14 is that the reduction 

percentages of the beam sizes at various link lengths are the same at all 
Tχ . The 

reduction of the beam size is larger at the larger link length. 

 

Figure 14: The beam size against Tχ  at various link lengths that use adaptive optics and use 

with no adaptive optics. 
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Figure 15: The beam size against   at various link lengths that use adaptive optics and use 

with no adaptive optics. 

 

The adaptive optics filter can show its effect more when turbulence is high, so 

the effect of the filter increases with decreasing   in Figure 16. The common 

deduction of Figures 14-16 is that with increasing link length, beam size increases. 

Also, for larger link length, the sum adaptive optics filter becomes more effective. 

Figure 16: The beam size against   at various link lengths that use adaptive optics and use 

with no adaptive optics. 
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is. For a fixed 
Tχ , array beam with larger wavelengths expands but both in the case 

of no AOF and in the case of T+F+A+P the wavelength effect is negligible. 

Figure 17: The beam size against Tχ  at various wavelengths that use adaptive optics and 

use with no adaptive optics. 
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Figure 18: The beam size against   at various wavelengths that use adaptive optics and use 
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In Figure 19, beam size increases with decreasing   value and adaptive 

optical filter decreases the beam size. Larger wavelength results in larger beam size, 

but the curves in Figure 17-19 are not indicating this very clearly because for fixed 

,  wavelength effect is slight and difference is very small. Also, Figure 17-19 reveal 

that the reductions of the beam sizes with adaptive optics filter at different 

wavelengths are almost the same value for any 
Tχ ,   and   values. 

Figure 19: The beam size against   at various wavelengths that use adaptive optics and use 

with no adaptive optics. 
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F only (the same as A only), T only, P only and for the sum of corrections 

(T+F+A+P).  

Figure 20: The beam spread against Tχ  at various adaptive optics and with no adaptive 

optics. 
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Figure 21: The beam spread against   at various adaptive optics and with no adaptive 

optics. 
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In Figure 22, if   becomes larger, the beam spread decreases. It is depicted 

from Figure 22 that for all  , the beam spread is the largest for without AO 

correction, and the sequence of the beam spread the beam spread is getting smaller 

respectively, for A only, F only (the same as A only), T only, P only and for the sum 

of corrections (T+F+A+P).  

Figure 22: The beam spread against   at various adaptive optics and with no adaptive 

optics. 
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Figure 23: The beam spread against Tχ  at various   that use adaptive optics and use with 

no adaptive optics. 

 

Figure 24 shows that as the source size increases, beam spread increases. 

Also, it can be said that the turbulence strength increases when Tχ  becomes larger 

and the effect of adaptive optics correction increases. If we compare the without AO 
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Figure 24: The beam spread against Tχ  at various sα  values that use adaptive optics and 

use with no adaptive optics. 
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Figure 25 trend is similar to Figure 24 because as 
Tχ  and   increase, beam 

spread value increases. As in Figure 24, the difference between no adaptive optics 

corrected curve and sum of adaptive optics corrected curve for 
sα = 0.01 is greater 

than the difference for 
sα = 0.15 in Figure 25, so it can be deduced that the 

effectiveness of adaptive optics correction increases as 
sα  decreases.  

Figure 25: The beam spread against   at various sα  values that use adaptive optics and use 

with no adaptive optics. 
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Figure 26: The beam spread against   at various sα  values that use adaptive optics and use 

with no adaptive optics. 
  

Figure 27 shows that the beam spread at T+F+A+P against Tχ  at various D . 

Figure 27 shows that for a fixed receiver aperture diameter, larger Tχ  causes the 

larger beam spread. Figure 27 also exhibits that for a constant Tχ , smaller D  results 

in smaller beam spread, namely T+F+A+P for smaller D  is most effective at all Tχ
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Figure 27: The beam spread against Tχ  at various D  values that use adaptive optics and 

use with no adaptive optics. 
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Figure 28 reflects the beam spread against   at various D  values that use 

T+F+A+P and use with no adaptive optics. Figure 28 shows that at all D  values, 

larger   results in larger beam spread. If  is fixed, smaller receiver aperture 

diameter yields smaller beam spread and T+F+A+P correction at smaller D  value is 

more effective. 

            

Figure 28: The beam spread against   at various D  values that use adaptive optics and use 

with no adaptive optics. 

 

Figure 29 shows the beam spread against   at various D  values that use 

T+F+A+P and use with no adaptive optics.. Figure 29 shows that for a fixed D , 

smaller   yields larger beam size and T+F+A+P correction at smaller D  is most 

effective, for every  .  
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Figure 29: The beam spread against   at various D  values that use adaptive optics and use 

with no adaptive optics.. 

 

Figure 30 shows the beam spread at T+F+A+P adaptive optics correction 

versus Tχ  for different inner scale of the turbulence in oceanic turbulence. Increasing 

Tχ  leads to increase in the beam size value. In Figure 30, it is observed that at any 

Tχ , larger inner scale yields a decrease in the beam spread so it can be deduced that 

the effect of T+F+A+P correction increases with the increase of the inner scale value. 

 

Figure 30: The beam spread against Tχ  at various inner scale values that use adaptive optics 

and use with no adaptive optics. 
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In Figure 31, T+F+A+P correction is more effective for larger inner scale 

value. Also, with increasing  , beam spread increases and the effectiveness of 

T+F+A+P correction also increases. 

 

Figure 31: The beam spread against   at various inner scale values that use adaptive 

optics and use with no adaptive optics. 
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correction increases with the increase of the inner scale value. 
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Figure 32: The beam spread against   at various inner scale values that use adaptive optics 

and use with no adaptive optics. 
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Figure 33: The beam spread against Tχ  at various link lengths that use adaptive optics and 

use with no adaptive optics. 

 

Figure 34 shows the beam spread at T+F+A+P adaptive optics correction 

versus   for different link lengths. Increasing   causes larger beam spread value. 

In Figure 34, it is observed that at any  , larger link length yields an increase in the 

beam spread so it can be deduced that the effect of T+F+A+P correction increases 

with increasing the link length. 

 

Figure 34: The beam spread against   at various link lengths that use adaptive optics and 

use with no adaptive optics. 
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The adaptive optics filter can show its effect more when turbulence is high, so 

the effect of the filter increases with decreasing   in Figure 35. The common 

deduction of Figures 33-35 is that with increasing link length, beam spread increases. 

Also, for larger link length, the sum adaptive optics filter becomes more effective. 

 

Figure 35: The beam spread against   at various link lengths that use adaptive optics and 

use with no adaptive optics. 

 

Figure 36 exhibits that as Tχ  increases, beam spread increases, and beam 
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Figure 36: The beam spread against Tχ  at various wavelengths that use adaptive optics and 

use with no adaptive optics. 

      

Figure 37 shows that as   increases, beam spread increases and the beam 

spread value can be reduced with adaptive optical filter, whatever the value of 

wavelength is. In Figure 37, larger beam spread is observed at the smaller 

wavelength but this difference is very small. Namely, the change in wavelength had a 

slight effect on the beam spread.  

 

Figure 37: The beam spread against   at various wavelengths that use adaptive optics and 

use with no adaptive optics. 
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In Figure 38, beam spread increases with decreasing   value and adaptive 

optical filter decreases the beam spread. Larger wavelength results in smaller beam 

spread but the curves in Figure 36-38 are not indicating this very clearly because for 

fixed ,  wavelength effect is slight and difference is very small. Also, Figure 36-38 

reveal that the reductions of the beam spread with adaptive optics filter for different 

wavelengths are almost at the same level at any 
Tχ ,   and   values.  

Figure 38: The beam spread against   at various wavelengths that use adaptive optics and 

use with no adaptive optics. 
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CHAPTER 6 

 

CONCLUSION 

 

Underwater turbulence causes the increase in the beam spread which reduces 

the performance of the UWOC systems. In this thesis, the effectiveness of adaptive 

optics correction for Gaussian beams in oceanic turbulence is analyzed. The beam 

size and the beam spread were examined with adaptive optics filters. The reductions 

in the beam size and the beam spread were achieved with the application of these 

filters. To investigate the underwater turbulence effect, the power spectrum in the 

underwater medium is supposed to be isotropic and homogeneous. Using the 

extended Huygens Fresnel principle, the average intensity is calculated. The beam 

size and the beam spread were found by the Carter's definition. Piston, tilt, focus, 

astigmatism and sum of these components of adaptive optics corrections were 

applied to the beam size and the beam spread in turbulent oceanic medium. The 

reduction in the beam size and the beam spread was analyzed versus the rate of 

dissipation of mean squared temperature Tχ , ratio of temperature to salinity 

contributions to the refractive index spectrum  , rate of dissipation of kinetic energy 

per unit mass of fluid  , inner scale, receiver aperture diameter, link length, source 

size and the wavelength. This reduction was analysed by comparing the beam 

spreads that used AO corrections and used with no AO corrections. In this study, it is 

aimed to provide the most effective conditions during the beam propagation in 

underwater turbulent environment and to increase the UWOC performance by 

examining beam spreads using adaptive optics method. Through the employed filter 

functions of adaptive optics, the reduction of the beam size and the beam spread of 

the Gaussian beam are evaluated. Adaptive optics correction is utilized in the the 

beam size and the beam spread with piston only (P only), tilt only (T only), focus 

only (F only), astigmatism only (A only) and the sum of the T+F+A+P. The 

influence of the parameters on all the beam spreads was found to be similar. Namely,
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as 
Tχ  and   increase, the strength of oceanic turbulence also increases, but the 

opposite trend is observed for  . Therefore, it was seen that only P corrected, only T 

corrected, only F corrected, only A corrected and the sum of T+F+A+P corrected the 

beam sizes and the beam spreads, all increase as 
Tχ  and/or   increase and/or   

decreases. For any underwater turbulence parameters, the reduction in the beam size 

and the beam spread was analyzed with AO method and with no AO method and this 

reduction is larger with P only, T only, A only and F only (the same as astigmatism 

only) corrections, respectively. For this reason, it can be said that the largest 

reduction in the beam sizes and the beam spreads is achieved if the T+F+A+P 

correction is utilized. If other link parameters and oceanic turbulence parameters are 

constant, the reduction in the beam size and the beam spread is observed to be the 

same whatever  , Tχ  and   value. Also, for constant oceanic turbulence 

parameters, smaller D  (receiver aperture diameter) provides more effective AO 

correction. If the effectivenesss of the AO method is compared with the without AO 

corrected beam size and beam spread, against  , Tχ  and  , it is observed that at 

larger link length and at smaller source size and at larger inner scale, AO method 

becomes more efficient.  

The main consequence deduced is that using AO method in underwater 

optical wireless systems provides reduction in the beam size and beam spread, which 

will improve the system performance. 
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