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Monitoring construction activities with artificial intelligence is a substantial 

mission for efficiency of construction site application. Therefore, this subject has 

attracted considerable attention in the literature. In construction sites that are observed 

and optimized with artificial intelligence supported computer vision technologies, the 

size of the construction site affects the efficiency and success of the work. This 

situation determines the type of methods and tools to be used in the study. Construction 

site monitoring studies in large construction sites can be carried out with image 

classification algorithms trained with construction machinery images. The use of drone 

footage may be insufficient in construction site monitoring applications performed for 

large areas. In this thesis, satellite image classification has been performed for 

construction machinery detection. A dataset that contains construction machinery 

images created from scratch using Google Earth was used to train convolutional neural 

networks. A total of 23 different pre-trained convolutional neural network models were 

modified with the transfer learning method and their performance was evaluated. 

 

Keywords: Deep Learning, Convolutional Neural Networks, Transfer Learning, 

Object Detection, Satellite Imagery, Image Classification.
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ÖZ 

 

İNŞAAT MAKİNESİ TESPİTİ İÇİN EVRİŞİMLİ SİNİR AĞLARI (ESA) 

TABANLI İKİLİ SINIFLANDIRICILAR 

TATAR, Bahadır 

İnşaat Mühendisliği Yüksek Lisans 

 

 Danışman: Dr. Öğr. Üyesi Seda YEŞİLMEN 

Ortak Danışman: Dr. Öğr. Görevlisi Halil Fırat ÖZEL 

Eylül 2022, 107 sayfa 

 

İnşaat faaliyetlerinin yapay zeka ile izlenmesi şantiye operasyonlarındaki 

verimlilik için önemli bir vazifedir. Bu nedenle işlenen konu literatürde oldukça ilgi 

görmüştür. Farklı çeşitlilikteki görevleri izleyerek ve tespit ederek inşaat alanlarındaki 

operasyonları başarılı bir şekilde eniyileştirmek, şantiye işlerinde kullanılabilen 

araçları belirlemede önemli bir rolü olan şantiye alanının boyutuna bağlıdır. Yapay 

zeka algoritmalarının inşaat makinelerini algılaması için eğitilerek, görüntü 

sınıflandırma algoritmaları aracılığıyla geniş alanları kapsayan bir izleme görevi 

yüksek verimlilikle gerçekleştirilebilir. İnsansız hava araçlarından alınan görüntülerin 

kullanılması çok geniş bir bölgedeki inşaat operasyonlarını tespit etme açısından 

verimsiz kalabilir. Dolayısıyla bu tezde, iş makinelerinin tespit edilmesi için uydu 

görüntüsü sınıflandırılması yapılmıştır. Evrişimli sinir ağlarını eğitmek için Google 

Earth kullanılarak sıfırdan oluşturulan ve inşaat makineleri görüntüleri içeren bir veri 

seti oluşturulmuştur. Toplamda 23 adet önceden eğitilmiş evrişimli sinir ağı modeli 

öğrenme aktarımı yöntemi kullanılarak modifiye edilmiştir ve performansları 

değerlendirilmiştir. 

 

Anahtar Kelimeler: Derin Öğrenme, Evrişimli Sinir Ağları, Öğrenme Aktarımı, 

Nesne Algılama, Uydu Görüntüsü, Görüntü Sınıflandırma 
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CHAPTER I 

 

INTRODUCTION 

 

1.1 BACKGROUND 

The increasingly popular term deep learning is essentially a machine learning 

technique. Many artificial neurons are brought together and artificial neural networks 

are created. This network, which has a similar structure to the human brain, analyzes 

the data and makes its own inferences. A neural network needs a sufficient amount of 

data to work efficiently and properly. This data can be numerical values, images, or 

sounds. With these datasets, artificial neural networks are trained and an artificial mind 

is created that can respond to input data to obtain an output. 

Studies in convolutional neural networks are always taking artificial 

intelligence one step further. While the world is in great global digitalization, civil 

engineers living in the 21st century should also contribute to artificial intelligence 

studies. As the power of artificial neural networks increases, the potential research 

topics that will arise in civil engineering increase. Computer vision is a system that 

enables to develop real-world applications with artificial intelligence supported 

software. Visual data such as city surveillance camera records, digital camera images, 

satellite images, and video recordings are used to train artificial intelligence. In other 

words, computer vision aims to experience seeing and sensing like a real human eye. 

Figure 1.1 shows an artificial neural network architecture. 
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Figure 1.1: An Artificial Neural Network Architecture. 

 

Artificial neural networks are deep learning algorithms consisting of digital 

neurons connected to each other. The neural network consisting of input, hidden, and 

output layers is processed with algebraic calculations called forward propagation and 

backward propagation. In addition, convolutional neural networks are a subset of 

artificial neural networks. Just like artificial neural networks, it consists of input, 

hidden, and output layers. The biggest advantage of convolutional neural networks is 

the convolutional layers. Convolutional layers produce a feature map of each image 

entering the network. Thus, specific details of the images are processed to be learned. 

Developing and implementing civil engineering applications with artificial 

intelligence become important in different professions in the literature. Some of these 

studies include predicting the diameters of jet grouted columns [1], predicting the 

residual flexural strength of fiber-reinforced concrete [2], and predicting the drying 

shrinkage of alkali-activated blast furnace-fly ash mortars [3].  

When the research topic is construction sites, different priorities need to be 

examined. While it is undeniable that artificial intelligence will contribute to the 

construction industry technologies, this important power can also be used to make 

construction sites safer. Construction sites are very prone to major accident risks and 
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unfortunately, these accidents can also be fatal. 20% of all fatal accidents in the USA 

are caused by accidents on construction sites [4]. 

It has always been a well-known fact that construction machinery has always 

created a great risk environment on construction sites. To avoid accidents during 

work on the construction site, there must be perfect harmony between the 

construction machinery operators and the workers in the field [5]. 

 

1.2 PROBLEM STATEMENT 

In the time period from the past to the present, humanity has tended to build or 

demolish a structure in different areas, especially the need for shelter. Primitive 

equipment used for drilling, cutting and shaping in the first ages of humanity has left 

its place to technological machines over time. Larger living spaces have been created 

with larger construction sites to meet the needs arising from the increase in the human 

population. 

In construction sites, there must be perfect harmony between managers, design 

engineers, field engineers, workers, and construction machine operators. Especially 

with the increase in the number of equipment used in construction sites belonging to 

large infrastructure projects, a detailed examination of the types of construction 

machines and their location in the region can be a factor that increases the efficiency 

of the project. In addition, construction site monitoring applications performed with 

drones have brought a different perspective to this issue. 

Today, construction machines are not only used in legal construction but also 

operate in many areas such as illegal sand mining. Considering both the legal and 

illegal use of construction machinery, approaches such as camera systems and drone 

applications may be insufficient for detecting and tracking construction machinery. 

Considering the global impact of satellite images, it is seen that satellite images 

have access to points that cameras and drones cannot reach. This thesis aimed to save 

manpower and time by aiming to eliminate the inadequacies and problems in real-

world applications of construction machine detection with the contribution of using 

satellite images. 
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1.3 OBJECTIVE 

Construction site monitoring applications supported by artificial intelligence 

are one of the most important ways to safely analyze the process from the very 

beginning to the end of a project. Although today's applications are generally carried 

out by drones, it is a very possible scenario that drones can be insufficient at some 

point. Some of these inadequacies may be due to the fact that drones, unlike satellite 

imagery, require a pilot and there is a limit to their hovering capacity caused by 

refueling. A solution that eliminates the manpower factor, such as using satellite 

imagery, could make construction site monitoring faster and cheaper. 

The ultimate objective of this thesis is to detect construction machines in 

different locations with artificial intelligence using satellite images. In this thesis, two 

classes, 'construction-machine' and 'non-construction-machine', were determined for 

the classification of satellite imageries. Thus, satellite imageries that were fed to 

artificial neural network algorithms as input were classified into two separate classes 

'construction-machine' or 'non-construction-machine' as output.  

 

1.4 CONTRIBUTIONS TO THE LITERATURE 

The contributions of this thesis to the literature are listed below. 

• Detection of construction machinery using satellite images for the first 

time in the literature. 

• Creating the Construction Machinery Dataset from scratch, which was 

collected only from satellite imagery. 

• Comparison of the performances of different open source deep learning 

models. 

 

1.5 THESIS STRUCTURE 

Chapter II includes a literature review that flows from general studies to 

specific studies. In this chapter, firstly, general artificial intelligence studies are 

explained in chronological order. Afterward, image classification and computer vision 

studies, which are more detailed subjects, are examined. Finally, a review was made 

about the most special concept, the construction vehicle detection studies. 
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In Chapter III, after giving detailed information about the dataset used in this 

thesis and giving the models, general evaluation metrics are shown. Finally, this 

chapter is concluded with hardware and software information. 

In the Chapter IV, detailed training results are given in both tables and graphs, 

along with general explanations of each artificial intelligence model trained for this 

thesis.  

In the Chapter V, six satellite images of different difficulty levels were shown 

to the models for the first time and the responses of the models were examined. 

 Finally, in chapter VI, a conclusion has been prepared in which all the lines 

of this thesis are explained. In addition, after discussing how the obtained results in 

this study can be improved, information about potential future works is given. 
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CHAPTER II 

 

LITERATURE REVIEW OF ARTIFICIAL INTELLIGENCE STUDIES 

 

2.1 STATE-OF-THE-ART STUDIES 

Computer vision technology has been in great development and rise in recent 

years. It is used in almost every field, from the prevention of fatal accidents in the 

construction industry to self-driving cars in the automobile industry, from space 

missions to diagnostics in the medical field, from finding the traffic speed in the 

transportation industry to quality control in manufacturing [6]. Although the methods, 

datasets, and purposes change, the only thing that does not change is that computer 

vision automates many works and industries rather than being manual. The 

development of computer vision studies that has started with the leadership of SIFT + 

FVs, continue with AlexNet, ZFNet, Five Base + Five HiRes, SPPNet, VGG-19, 

Inception V2, ResNeXt-101, Dual Path Network, NASNet-A (6), PNASNet-5, 

AmoebaNet- A, ResNeXt-101 32x48d, FixResNeXt-101 32x48d, EfficientNet-B7, 

BiT-L (ResNet), EfficientNet-L2, ViT-H / 14, EfficientNet-L2-475 and Meta Pseudo 

Labels (EfficientNet-L2), respectively. 

When computer vision and deep learning are included as research topics, a 

strong dataset must be used. ImageNet is one of the most popular datasets and makes 

a great contribution to the training and evaluation of artificial intelligence models. 

ImageNet is a quite large dataset with approximately 1000 categories of data created 

for image processing and composed of more than 1 million labeled high-resolution 

images collected from the internet. Human taggers were preferred to label each image 

on ImageNet. Amazon's Mechanical Turk crowd-sourcing tool which is named after 

The Turk, the first Automation Chess Player in history, was used for the labeling 

process [7] [8]. ImageNet is one of the most important sources for the global evaluation 

of image classification models. The state-of-the-art models participate in the ImageNet 
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Large Scale Visual Recognition Challenge (ILSVRC) since 2012 and 

demonstrate their strength to be the most powerful image classification model ever 

created. 

The magnificent era of ImageNet in computer vision and image processing 

began with Fisher Vector and Scale Invariant Feature Transform (SIFT + FVs) in 2011 

[9]. SIFT, Scale Invariant Feature Transform, detects distinctive features in images 

and can offer reliable matching to images in very large-scale datasets. SIFT, also 

defined as an identifier, is used for object recognition applications [10]. The Fisher 

Vector used in the image classification splits images into parts and performs the 

algorithm for each part. Square-rooting and L2-normalizing the Fisher Vector provide 

high classification accuracy. Bag-of-visual-words (BOVW) is a feature extraction 

method used in image classification algorithms [11]. A significant advantage 

concerning the bag-of-visual-words is that high-dimensional discriminative signatures 

can be obtained even with small vocabularies, and therefore at a low CPU cost [12].  

The current state-of-the-art model changed when the AlexNet model was 

announced in 2012. The importance of deep convolutional neural networks for the 

future of image processing technology was seen with AlexNet. The recently developed 

dropout regularization method was used to reduce overfitting in this fully supervised 

learning model. Another important achievement of AlexNet is its first place in the 

ILSVRC-2012, ImageNet Large Scale Visual Recognition Challenge, competition 

with a top-5 test error rate of 15.3% [7]. 

The ZFNet model was published in 2013 and it was examined why 

convolutional neural networks are such an effective method. Thanks to their novel 

techniques that visualize the activity within the model, they obtained a model that 

performed better than Krizhevsky et al.’s AlexNet model. Moreover, this study 

introduced how existing models can be made more efficient [13]. 

When Andrew G. Howard published their article in 2013, Some Improvements 

on Deep Convolutional Neural Network Based Image Classification, they presented 

three methods that will improve the existing state-of-the-art structure. First, the short 

edge of the images was adjusted to 256 pixels with the method of adding more image 

transformations to the training data. 224x224 pixels images were randomly cut from 

these images for later use in the training dataset. Secondly, they emphasized the 
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efficiency of three different scaling operations on predicting by adding more 

transformations at the test time method. The last method is the higher resolution 

models method. With this method, for higher resolution models, they cut 128x128 

pixels sized patches from the images with the short edge of 256 pixels instead of 

adjusting the short edges of the images to 448 pixels and cutting patches of 224x224 

pixels. They then rescaled the 128x128 pixels sized images to 224x224 pixels. Thus, 

the Five Base + Five HiRes model became the new state-of-the-art [14]. 

SPPNet convolutional neural network model, which took the first state-of-the-

art throne in 2014, uses a new pooling layer, unlike other CNN models. This method, 

called Spatial Pyramid Pooling, creates a fixed-size model without focusing on the 

input image size. SPPNet extracts feature maps of any image once and saves large 

processing times. SPPNet's incredible approach to pooling layers contributed to all 

convolutional neural network-based image classification methods. This approach 

greatly increased the accuracy of CNN models [15]. 

According to Simonyan et al., the depth of an algorithm is a fact that positively 

affects large-scale image classification accuracy. This great approach made the VGG-

19 the new state-of-the-art model with its success in ImageNet Challenge 2014 [16]. 

The deepening of a deep learning network causes a snowball effect in the 

parameters of the neural networks. The reason is that each layer in neural networks is 

fed by the previous layers. Due to this fact, the change of input distribution directly 

affects all connected layers and makes it difficult to train a deep neural network. It has 

been stated that the results found on mini-batches based on a group logic are more 

efficient than individual calculations. Main focus of Inception V2 architecture is the 

normalization of activations for use directly in the network structure. Thus, Inception 

V2 became the state-of-the-art model of 2015 with the acceleration created by the idea 

of batch normalization [17]. 

ResNeXt-101 is constructed by repeating a building block that aggregates a set 

of transformations with the same topology. In addition to the depth and width 

dimensions, another dimension called cardinality, which is the size of the set of 

transformations, was revealed in this study. It has been observed that if cardinality 

increases while model complexity is constant, classification accuracy increases. In the 

experiments conducted in this study, it was observed that the accuracy does not only 
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increases when the model complexity is constant but also increases when the number 

of parameters is constant. In the light of all these results, the ResNeXt-101 model will 

inevitably be a state-of-the-art model in 2016 [18]. 

Dual Path Network (DPN) is an architecture designed for image classification. 

In that study takes advantage of residual neural networks and densely connected 

networks. Dual Path Network performs high accuracy with low computational cost, 

has a small model size, and low GPU memory consumption. Thanks to these advanced 

features, the Dual Path Network has become the state-of-the-art model of 2017 [19]. 

In the study in which NASNet-A (6), Neural Architecture Search Networks, is 

introduced, an architecture that learns the required model structure in its own dataset 

is presented and showed how insignificant the human factor is in building neural 

networks. An architecture was introduced that creates its own neural networks by 

focusing on the main point in the dataset instead of manually created neural networks 

as a result of human manipulation. Instead of starting this learning process directly in 

the ImageNet dataset, first, the best convolutional layer for the CIFAR-10 dataset is 

searched and then transferred to ImageNet. The space named NASNet Search Space 

is the most important point that performs this transfer procedure. As a result of the 

experiments, it was seen that the created architectures gave better results than all 

human-designed structures and became a state-of-the-art model [20]. 

PNASNet-5 (Progressive Neural Architecture Search) uses a method called 

sequential model-based optimization. This method speeds up the process of finding 

the best Convolutional Neural Network in the search space. This new approach makes 

PNASNet-5 much faster and much more efficient in terms of classification accuracy. 

PNASNet-5 becomes the state-of-the-art model by surpassing all of the latest models 

[21]. 

An Evolutionary Algorithm architecture that surpasses human-designed 

models was developed with AmoebaNet-A. Aging evolution which simulates the 

evolutionary logic of living beings has been suggested for AmoebaNet-A. During this 

period, a tournament selection environment was created. The process in which older 

genotypes died and younger ones survived was initiated. It was found that the 

Evolutionary Algorithm gave better results as a result of the search speed experiments 

conducted on the Evolutionary Algorithm, Reinforcement Learning Algorithm, and 
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Random Search Algorithm. Inevitably, AmoebaNet-A became the state-of-the-art 

model of 2018 [22].  

Facebook AI team conducted a study with transfer learning to predict the 

hashtags of 3.5 billion Instagram photos. In the study, it was seen how high the large-

scale hashtag prediction results were. It was emphasized that, unlike traditional 

methods, data cleaning is not a required procedure for the success of this study. It has 

been verified that selecting a logical label space rather than increasing the size of the 

dataset affects the success of the model, too. Thus, the image classification and object 

detection level of the ResNeXt-101 32x48d model surpassed the previous state-of-the-

art model [23].  

With the FixResNeXt-101 32x48d model proposed by Facebook AI, a way to 

significantly reduce the training time is presented. The proposed fast and cheap 

strategy is based on data augmentation. Since the importance of data augmentation for 

convolutional neural networks is known, it has been shown that classification accuracy 

will increase with correct parameter adaptation. Thus, the FixResNeXt-101 32x48d 

model became a state-of-the-art model in 2019 due to its superior performance and 

increased efficiency [24]. 

Which came first the chicken or the egg? Or, which came first a teacher or a 

student? These two questions, the answers of each are hidden within themselves, 

created the state-of-the-art model of 2019. With a semi-supervised learning approach 

named as NoisyStudent (EfficientNet-B7), the EfficientNet model is trained as a 

teacher on labeled images and creates pseudo labels for unlabeled images. Then, with 

these outputs, a stronger EfficientNet model is trained as a student. This figurative 

student, who is stronger than the teacher, is put in a loop again as a teacher. Thus, 

stronger students turn into stronger teachers. Thanks to this approach, the 

NoisyStudent (EfficientNet-B7) model has become a state-of-the-art model [25]. 

The two most important phenomena that affect the success of the BiT-L 

(ResNet) model are supervised pre-training and fine-tuning of the target tasks. The 

components of these phenomena for transfer learning efficiency are upstream and 

downstream, respectively. Due to the high performance not only in ImageNet but in 

more than 20 datasets, the BiT-L (ResNet) model became the state-of-the-art model 

[26]. 



 
 

11 

 

With the combination of EfficientNet and Fixing Resolution, a new model 

called FixEfficientNet-L2 has been developed. Thus, higher performance was 

achieved without changing the number of parameters. Due to the nature of Fixing 

Resolution, it can work with any convolutional neural network structure to classify. 

Therefore, the EfficientNet-L2 model, optimized with FixRes, became the state-of-

the-art model by eliminating all other models [27]. 

One of the biggest contributions of the ViT-H / 14 (Vision Transformer) model 

on computer vision applications is that Transformer Architecture has shown that it is 

not only a method for natural language processing but also a productive solution for 

computer vision. It has been observed that a series of images processed by the Standard 

Transformer Encoder give much more successful results on large datasets compared 

to previously interpreted images. This holistic approach has made the ViT-H / 14 the 

state-of-the-art model of the year 2020 [28]. 

The EfficientNet-L2-475 (SAM / Sharpness-Aware Minimization) model 

minimizes loss value and loss sharpness and improves generalization. SAM searches 

for parameters lying in neighborhoods. In the resulting case, the neighborhoods have 

low loss values and the parameters increase the success of the gradient descent. The 

success of SAM has been empirically evaluated on large datasets, and successful 

results have made SAM a state-of-the-art model [29]. 

Semi-supervised learning-based Meta Pseudo Labels (EfficientNet-L2) model 

includes a teacher and a student network. The purpose of the teacher in logarithms is 

to generate pseudo labels using unlabeled data. Then the teacher teaches this data to 

the student. Differently, the student's performance in labeled data is given to the 

teacher as feedback and the teacher is constantly updated. Due to its progressive 

approach, the Meta Pseudo Labels (EfficientNet-L2) model has become the state-of-

the-art model as the best image classification algorithm ever for the ImageNet dataset 

[30]. 

 

2.2 IMAGE CLASSIFICATION AND COMPUTER VISION STUDIES 

One of the most popular applications of computer vision studies is image 

classification and it can be used in almost every industry. Thus, image classification 

with satellite imageries has become a large research area. Satellite imagery 
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classification is commonly used for land classification [31], image scene classification 

[32], vehicle detection [33] and tree species classification [34]. 

In the study by Castelluccio et al. [31], land-use classification was made with 

satellite images. UC-Merced Land Use Dataset and Brazilian Coffee Scenes Dataset 

were used as the dataset, while GoogLeNet and CaffeNet were used as convolutional 

neural network models. According to UC-Merced, the GoogLeNet model with fine-

tuning design method has the highest accuracy at 97.10%. This proposed method also 

has the highest accuracy among other articles published in its area. According to the 

Brazilian Coffee Scenes, the GoogLeNet model with the from-scratch design method 

has the highest accuracy with 91.83%. This proposed method also has the highest 

accuracy among other articles published in this area. 

In another study [35] conducted in 2015, satellite image classification methods 

are explained. The classification methods are divided into three parts. These are 

automated, manual, and hybrid methods. The automated method is divided into two 

supervised and unsupervised. It is stated that artificial neural networks, binary decision 

trees, and image segmentation are used in major supervised classification methods. 

They created a detailed table comparing the satellite image classification studies 

performed by nine different researchers. In that table, the classification methods, 

datasets, and which of the methods work more successfully are shown. 

The aim of the study [36], published by Sharma et al. in 2017, is remote sensing 

image classification using the convolutional neural networks. The land cover 

classification was performed with Landsat 8 satellite images. Compared to the other 

four networks used for area classification, the deep patch-based convolutional neural 

network achieved 85.60% accuracy, while pixel-based network achieves 62.34%, 

pixel-based convolutional neural network achieves 63.01% and a patch-based neural 

network achieves 73.17%. According to the number of iterations, the accuracy is as 

follows, 9999 iterations: 72.93%, 49999 iterations: 79.12%, 89999 iterations: 83.06%, 

129999 iterations: 84.67%, 149999 iterations: 85.60%. 

According to the study of Nogueira et al. in 2017, they focused on three 

strategies for exploiting existing convolutional neural networks in different scenarios 

which are full training, fine tuning, and using as feature extractors. They experimented 

on six popular convolutional neural networks (OverFeat Networks, AlexNet, 
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CaffeNet, GoogLeNet, VGG-16, and PatreoNet) and three widely used datasets (UC 

Merced Land Use, RS19, and Brazilian Coffee Scenes). Their objective was to 

understand the best way to obtain the most benefits from these state-of-the-art deep 

learning approaches to problems. According to the UC Merced dataset, CaffeNet, 

AlexNet, and VGG-16 achieved highest average accuracy values of over 93% 

compared to other global descriptors. According to the RS19 dataset, Convolutional 

Neural Networks gave the highest average accuracy values of above 90% compared to 

other global descriptors. According to the Brazilian Coffee Scenes dataset, BIC and 

ACC global descriptors gave the highest average accuracy values with 87.03% 

compared to convolutional neural networks. According to the experimental results, the 

fine-tuning method tends to be the best strategy under different scenarios [37]. 

Li et al. created a binary classification system as Cloud and Non-Cloud by 

modifying the VGG-16 network according to their own subjects in 2020. Among the 

different methods, the proposed WDCD method based on CAM with GCP + LPP gave 

the best overall accuracy and F1 Score with 0.9666 and 0.8855 [38]. 

CNN-Relief-SVM, a new hybrid feature extractor, has been developed for the 

recognition of satellite images. UC-Merced Land Use Dataset was used for the 

operations. The last fully connected layers of pre-trained architectures such as 

AlexNet, VGG16, VGG19, GoogLeNet, ResNet, and SqueezeNet were used to create 

this model. The features obtained from the last layers were given to the support vector 

machine separately and their classification performances were measured. Accuracy 

was measured as 99.29% for 80% training ratio and 98.76% for 50% training ratio 

[39]. 

Khan et al. modified the ResNet-50 in 2020 to process large-scale images at 

once, instead of processing images in small-scale patches. They replaced ResNet-50's 

prediction layer classifier with a 1x1 convolutional layer classifier to process satellite 

images of any size. They trained the model with satellite images collected from Google 

Earth. The proposed model reduces the processing time by 99.9% by keeping the 

accuracy at the same level. For example, while ResNet-50 in a sliding window manner 

processes an image with an image size of 14882x14848 in 11.9 hours, the proposed 

model processes in 39 seconds [40]. 
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This [32] review article discusses papers with more than 160 deep learning 

methods for remote sensing image scene classification. They discussed different 

methods under three headings. These are Autoencoder-Based Remote Sensing Image 

Scene Classification, CNN-Based Remote Sensing Image Scene Classification, GAN-

Based Remote Sensing Image Scene Classification. They give brief information about 

13 datasets. These are UC Merced, WHU-RS19, RSSCN7, Brazilian Coffee Scene, 

SAT-4 / -6, SIRI-WHU, RSC11, AID, NWPU-RESISC45, RSI-CB 128 / -CB256, 

OPTIMAL-31, EuroSAT, BigEarthNet. Then, detailed information about UC Merced, 

AID, NWPU-RESISC45, and overall accuracy values are given. CNN-based CNN-

CapsNet method gives the highest accuracy with 97.59% at 50% training ratio in UC 

Merced Dataset, while the convolutional neural network-based ADSSM method gives 

the highest accuracy with 99.76% at 80% training ratio. The CNN-CapsNet method 

gives the highest accuracy with 93.79% at a 20% training ratio in AID Dataset, while 

the CNNs-WD method gives the highest accuracy with 97.24% at a 50% training ratio. 

Hydra method gives the highest accuracy with 92.44% at a 10% training ratio in 

NWPU-RESISC45 Dataset, while the DNE method gives the highest accuracy with 

96.01% at a 20% training ratio. 

In the study [41], a new convolutional neural network based on single shot 

multi-box detector (SSD), to detect vehicles on high-resolution images is proposed in 

2020. They compared the proposed model with the Faster R-CNN, SSD300, SSD512, 

and YOLOv3. The proposed model achieved an average precision of 90.40%, higher 

than other models. They used UCAS-High Resolution Aerial Object Detection Dataset 

in this study. They added a batch normalization layer to the detection layers in the 

detection module to prevent overfitting and increase system speed. 

A deep learning algorithm is used by Tan et al. to detect vehicles in high-

resolution satellite remote sensing images. They used the AlexNet model to classify 

satellite images. Then Faster R-CNN algorithm is tested and optimized by the method 

of model pruning and quantization. After these actions, the model is applied to the 

practical application of vehicle detection at an intersection. According to the study 

results, the rate of missed detection and false detection was 0%. The highest values are 

4.5% and 2.7%. The values show that vehicle detection based on deep learning has 

high accuracy [42]. 
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Advanced deep learning techniques, multilevel feature fusion, and sample 

mining are investigated in 2020 to realize vehicle detection in remote sensing images. 

They presented CycleGAN-like to realize simultaneous super-resolution and object 

detection for low-resolution images. They used four datasets which are Potsdam, 

VEDAI, DLR Munich, and UCAS-AOD. According to VEDAI Dataset, the VDM 

method has the highest average precision with 0.458, the highest average precision of 

0.856 with 0.5 IoU (Intersection over Union) threshold, the highest average precision 

of 0.457 with 0.75 IoU threshold, and the highest mean recall rate (mRecall) with 

0.573. According to Potsdam Dataset, the VDM method has the highest average 

precision with 0.668, the highest average precision of 0.793 with a 0.75 IoU threshold, 

and the highest mean recall rate with 0.740. YOLOv3 has an average precision value 

of 0.904 with the highest threshold of 0.5 IoU. According to Munich Dataset, the 

CVDM method has the highest average precision with 0.599, the highest average 

precision of 0.889 with 0.5 IoU threshold, the highest average precision of 0.684 with 

0.75 IoU threshold, and the highest mean recall rate with 0.648. According to UCAS-

AOD Dataset, the CVDM method has highest average precision with 0.572, the 

highest average precision of 0.885 with 0.5 IoU threshold, the highest average 

precision of 0.637 with 0.75 IoU threshold, and the highest mean recall rate with 0.653. 

Their study showed that their system surpasses state-of-the-art methods [43]. 

In the study [44] conducted in 2020, a multi-source active fine-tuning vehicle 

detection (Ms-AFt) framework is proposed. Ms-AFt contains transfer learning, 

segmentation, and active classification. The proposed model employs fine-tuning 

network to generate a vehicle training set from the unlabeled dataset. Then, a multi-

source-based segmentation branch is designed to construct additional candidate object 

sets. Open ISPRS datasets were used for this study. VGG-19, GoogLeNet, 

Cascadenet18, and ResNet18 were used to compare classification performances. 

According to ISPRS Vaihingen Dataset, ResNet18 gave the best precision, recall, and 

F1-Score values with 0.96, 0.86, and 0.91. According to ISPRS Potsdam Dataset, 

ResNet18 gave the best precision, recall, and F1-Score values with 0.99, 0.90, and 

0.92. According to DLR SAI-LCS Dataset, ResNet18 gave the best precision, recall, 

and F1-Score values with 0.97, 0.76, and 0.86. When SSD-Ms-AFt, YOLO1-Ms-AFt, 

YOLO2-Ms-AFt, FRCNN-A-Ms-AFt, FRCNN-B-Ms-AFt, and R-FCN-Ms-AFt 
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methods are compared according to the threshold value of 0.6, R-FCN-Ms-AFt gave 

the best precision, recall, and F1-Score values of 0.4759, 0.8012, and 0.5971 in ISPRS 

Vaihingen Dataset, 0.5779, 0.9106, and 0.7071 in ISPRS Potsdam Dataset, 0.8313, 

0.8612, and 0.8463 in DLR SAI-LCS Dataset. According to the performance values, 

it is seen that the Ms-AFt method gives the best results compared to Fine-Tuning, 

Segmentation & Attention, and VIS-AFt methods in all three datasets. 

The process of counting plants and detection of plantation-rows operations 

were performed by using Cornfield and Citrus Orchard datasets with the VGG19 

model in 2021. In the corn plantation dataset, their mean absolute error (MAE) is 

6.224, mean relative error (MRE) is 0.1038, precision and recall values are 0.856 and 

0.905, and F-Score is 0.876. For the plantation-row detection, their precision, recall, 

and F-Score scores are 0.913, 0.941, and 0.925. In the Citrus Orchard dataset, their 

MAE is 1.409 citrus trees, MRE is 0.0615, precision is 0.922, recall is 0.911 and F-

measure is 0.965. For the citrus plantation-row detection, their precision, recall, and 

F-Score are 0. 965, 0.970 and 0.964. Compared to HRNet, Faster R-CNN, and 

RetinaNet networks, the proposed approach in this study provides superiority over all 

of them [45]. 

Remote sensing scene classification still struggles to overcome some difficult 

tasks. Bi et al. proposed a multiple scale staking attention pooling called MS2AP to 

solve these difficulties and classification of satellite images in 2021. Three datasets, 

UC-Merced, AID, and NWPU, were used in this study. They used 50% and 80% 

training ratios in the UCM dataset, 20% and 50% training ratios in the AID dataset, 

10% and 20% training ratios in the NWPU dataset. They verified their MS2AP with 

AlexNet and VGG-16 CNN models. The overall accuracy values in the UCM dataset 

are 98.38% at a 50% training ratio and 99.01% at an 80% training ratio for 

Alex_MS2AP. For VGG_MS2AP, 99.09% at 50% training ratio and 99.45% at 80% 

training ratio. The overall accuracy values in the AID dataset are 92.19% at a 20% 

training ratio and 94.82% at a 50% training ratio for Alex_MS2AP. For 

VGG_MS2AP, 95.42% at 20% training ratio and 96.86% at 50% training ratio. The 

overall accuracy values in the NWPU dataset are 87.91% at a 10% training ratio and 

90.98% at a 20% training ratio for Alex_MS2AP. For VGG_MS2AP, 92.27% at 10% 

training ratio and 93.91% at 20% training ratio [46]. 



 
 

17 

 

A new RS-DCNN method [47] is introduced for processing large satellite 

images in 2021. The proposed approach consists of two main parts. First, to create a 

training set by dividing large satellite images into small pieces, and then to process a 

supervised classification algorithm called Maximum Likelihood. The second is to use 

RS-DCNN to classify large satellite images. To achieve parallelism, they used 

asynchronous distributed stochastic gradient descent. They obtained large satellite 

images from SPOT-6/7 sensors. Compared to generative adversarial networks (GAN), 

random forests (RF), artificial neural networks (ANN), and decision tree (DT), RS-

DCNN gives the highest overall classification accuracy with 92.06%. Kappa value of 

RS-DCNN is 0.883. 

In this article [48] conducted in 2021, SceneNet is proposed. The proposed 

SceneNet is an evolutionary algorithm-based neural architecture search approach for 

the remote sensing image scene classification task. The most efficient network is 

automatically determined based on the dataset. No human manipulation is required in 

this process. SceneNet was compared to AlexNet, VGG16, ResNet34, and 

GoogLeNet, designed by human experts, to prove its design approach. UC Merced, 

NWPU45, and AID were used as a dataset in the experiments. SceneNet_UCM 

achieved the highest overall accuracy with 99.10% in the UC Merced dataset. The 

Kappa value of SceneNet_UCM is 0.9905. SceneNet_NWPU45 achieved the highest 

overall accuracy in the NWPU45 dataset with 95.219%. The Kappa value of 

SceneNet_NWPU45 is 0.9511. SceneNet_AID achieved the highest overall accuracy 

in the AID dataset with 89.58%. The Kappa value of SceneNet_AID is 0.8927. 

The purpose of the study [34] conducted in 2021 is the classification of the 

major tree species scats pine, Norway spruce, birch, and European aspen. They 

compared the performance of 3D-CNNs with the support vector machine, random 

forest, gradient boosting machine, and artificial neural network in individual tree 

species classification. They collected hyperspectral and LiDAR data from the study 

area located in the southern boreal zone in Finland. The best-performing 3D-CNN 

achieved an F1-Score of 0.91 for aspen, an overall F1-Score of 0.86, and overall 

accuracy of 87%, while the lowest-performing 3D-CNN achieved an F1-Score of 0.83 

and accuracy of 85%. The support vector machine achieved an F1-Score of 0.82 and 
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an accuracy of 82.4%. The artificial neural network achieved an F1-Score of 0.82 and 

an accuracy of 81.7%. According to these results, 3D-CNN is the most efficient option. 

In the study [49], the main fact is vehicle detection in aerial images based on 

deep neural networks and 3D feature maps. They also investigated the effect of 3D 

feature maps in increasing the performance of DNN structures. They used YOLOv3, 

which they modified with different structures such as Darknet-53, SqueezeNet, 

MobileNet-v2, and DenseNet-201, to detect trucks, semi-trailers, and trailers. For this 

study, they used the dataset they obtained using UAV. According to the results, 

Darknet-53 gave the most successful result with 93.4% precision. It is shown that 3D 

features improve the performance of vision-based deep neural networks and its F1-

Score is 95.72%. 3D features improved the precision of DNNs from 88.23% to 96.43% 

and from 97.10% to 100%. 

 

2.3 CONSTRUCTION VEHICLE DETECTION STUDIES 

Few articles conduct construction vehicle detection research [50] [51] [52]. 

Mainly drone images were used and high accuracy was achieved in these articles [33]. 

None of these studies perform construction vehicle detection using satellite imagery. 

Arabi et al. proposed the SSD MobileNet object detection model, which is suitable for 

embedded devices, to detect construction vehicles in 2020. ImageNet, Common 

Objects in Context (COCO), and Open Image are used as large-scale datasets. AIM 

dataset, which is a subset of ImageNet, is also used for its construction machine 

images. AIM dataset contains street view of excavators, loaders, rollers, concrete 

mixer trucks, and dump trucks images. The average precision values of the model are 

92.31% for dump truck, 83.70% for excavator, 93.86% for grader, 93.77% for loader, 

96.94% for mixer truck, and 86.65% for roles. The mAP value is 91.20% [50]. 

The purpose of this study [51] conducted in 2018 is to detect excavators and 

workers on construction sites using Improved Faster Regions with Convolutional 

Neural Network Features. The proposed model’s accuracy for workers and excavators 

is 91% and 95%, respectively. Precision and recall values for workers are 98% and 

79%. 99% and 81% for excavators. A custom dataset created by authors with images 

collected from construction sites to train CNN model is used in the study. The 

proposed method can also detect unsafe actions and unsafe conditions. 
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Although computer vision technologies have been developed to automate the 

investigation of construction sites or building environments, using computer vision 

technologies in real construction projects remains a major challenge. 119 articles have 

been reviewed by Kim et al. According to the table of existing object detection and 

tracking algorithms given in the study, the best construction equipment detection 

performance belongs to single shot multi-box detector with 98.8% accuracy [52]. 

Fixed-placed cameras with a certain angle that can monitor the construction 

site perform construction vehicle classification and environmental risk analysis 

cheaper and more practical. Hence, orientation-aware feature fusion single-stage 

detection (OAFF-SSD) is created by Guo et al. In the study, VGG-16 was used as a 

feature extraction module. The modified version of VGG-16 was used instead of the 

original version. First, the kernel size and stride of the fifth max pool layer are 

transformed from (2×2, 2) to (3×3, 1). The sixth and seventh fully connected layers 

are transformed into convolutional layers with 3×3 and 1×1 kernels. Two more 

convolutional parts were added to the five convolutional parts of the original VGG-

16, the sixth, and the seventh convolutional parts. These two parts are using 1×1 and 

3×3 kernels for the first and second layers. The stride in the second layer of the sixth 

convolutional part is set to 1 so that the feature map size in the second layer of the 

seventh convolutional part is 10×10. The third layer of the fourth convolutional part, 

the seventh fully connected layer, and the second layer of the seventh convolutional 

part are used as the fusion base layers. Only layers larger than 10×10 sizes are selected 

because feature maps smaller than 10×10 have a negligible effect on fusion effects. 

Batch normalization has a great contribution because its effect reduces training time 

and improves prediction accuracy. Two important hyperparameters, β, and δ were used 

to measure the success of the model. β is the threshold of OA-IOU and δ is the 

threshold of intersection over union. Intersection over Union (IOU) is a common 

evaluation method for object detection models. To get the maximum benefit from the 

model, β and δ values were found to be 0.25-0.35 and 0.2-0.3, respectively. In the light 

of this information, the average precision value was found as 98.8% [33]. 
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CHAPTER III 

 

MATERIALS AND METHODS 

 

In this thesis, construction machinery detection is performed using satellite 

image classification. The custom dataset consists of different kind of construction 

machinery placed on different ground types is created from scratch using Google 

Earth. The types of construction machinery present in the dataset are excavator, 

backhoe, boom lift, articulated hauler, dumper, bulldozer, grader, mobile crane, wheel 

loader, and skid steer loader. Satellite images from various states of The United States 

of America were used to train convolutional neural networks with various 

architectures. 

 

Table 3.1: Detailed Information of Construction Machinery Dataset. 

Class Training Validation Testing Total 

Construction Machine 1494 186 186 1866 

Non Construction Machine 1012 186 186 1384 

 

In the dataset, there are 3250 satellite images in total, 1866 of which belong to 

the 'construction-machine' class and the rest 1384 belong to the 'non-construction-

machine' class. The Construction Machinery Dataset (CMD) was split into training, 

validation, and testing dataset. 80% of the total dataset was dedicated to training. The 

validation and testing datasets were equally divided into two groups. The remaining 

20% was dedicated to validation as 10% and testing as 10%. Figure 3.1 is an example 

of construction machinery class, while Figure 3.2 is an example of non construction 

machinery class. Table 3.1 summarizes the overall data-splitting details. In addition, 

the maximum and minimum dimensions of the satellite images in the dataset were 

examined in Table 3.2. 
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Figure 3.1: An example satellite image of construction machinery class in the dataset. 

 

 
Figure 3.2: An example satellite image of non construction machinery class in the dataset. 

 

Table 3.2: Detailed Image Properties of Construction Machinery Dataset. 

Class 
Maximum 

Height (Pixel) 

Minimum 

Height (Pixel) 

Maximum 

Width 

(Pixel) 

Minimum 

Width 

(Pixel) 

Construction Machine 810 77 1846 69 

Non Construction 

Machine 
807 60 1821 83 

 

Python, a popular programming language, is often preferred for training and 

testing deep learning algorithms. PyTorch, an open-source deep learning framework, 

was used in this thesis. The coding processes were performed with the PyTorch library 
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and PyTorch's built-in functions. In addition, the following models were prepared 

using the PyTorch library. Open-source pre-trained artificial intelligence models 

provide advantages in terms of both time and efficiency. For this reason, 23 different 

open-source pre-trained models are used in this thesis. These models are AlexNet, 

VGG16, VGG19, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, 

MobileNetV2, MobileNetV3 Large, MobileNetV3 Small, DenseNet121, 

DenseNet161, DenseNet169, DenseNet201, EfficientNetB0, EfficientNetB1, 

EfficientNetB2, EfficientNetB3, EfficientNetB4, EfficientNetB5, EfficientNetB6 and 

EfficientNetB7. Therefore, this thesis focused on these popular models. The number 

of parameters of each model used in this thesis is available in Table 3.3. Figure 3.3 

shows a neural network architecture to perform construction machinery classification. 

 

 
Figure 3.3: A Neural Network Architecture of Construction Machinery Classification. 

 

23 different pre-trained deep learning models have been utilized. The weights 

of the models come directly from ImageNet. When working with pre-trained models, 

a common method used in the literature is transfer learning. Transfer learning is the 

reuse of pre-trained models on a new dataset by modifying them according to the 

purpose of the study. Figure 3.6 shows the transfer learning scheme. 

The stochastic gradient descent optimizer was used to update the weights. In 

addition, early stopping was used in this study. Early stopping is a regularization 

method that ends the training at an efficient point by following the validation data and 

realizing that the model does not improve during the training. 
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AlexNet architecture consists of 8 layers, 5 convolutional and 3 fully connected 

layers. In addition, AlexNet uses ReLU as activation function. The numbers at the end 

of the VGG16 and VGG19 models indicate the number of layers in the relevant model. 

VGG16 has 13 convolutional layers and 3 dense layers, while VGG19 has 16 

convolutional layers and 3 dense layers. ResNet architectures have residual blocks that 

allow one layer to be connected to more than one other layer. There are 5 different 

variants of the ResNet architecture in this thesis, namely ResNet18, ResNet34, 

ResNet50, ResNet101, and ResNet152. The numbers at the end of each ResNet 

architecture indicate the total number of layers in the model. 

There are linear bottlenecks between the layers in the MobileNetV2 model. 

Bottlenecks are connected to each other by shortcuts. This collaborative architecture 

enables MobileNetV2 to train faster and generate successful accuracy values. The 

difference of MobileNetV3 architectures from MobileNetV2 is that MobileNetV3 uses 

fewer layers and reaches the accuracy values that MobileNetV2 reaches. 

The feature that distinguishes DenseNet architectures from traditional CNN 

architectures is the number of layers. In a traditional CNN model, there is one 

connection between each layer. This means that there are the same number of 

connections as the number of layers. However, this situation is different in DenseNet 

architectures. Each layer in DenseNet architectures is connected to all subsequent 

layers. 

Until EfficientNet architectures emerged, scaling image width, image depth 

and image resolution on classical CNN models was not an automatic process. Thanks 

to the compound scaling method used in EfficientNet architectures, not every input 

image is treated the same. Instead, scaling is made to reveal the efficiency of the model 

in the best way. 

Transfer learning applications in image classification studies is quite popular. 

Transfer learning methods are increasing the performance of models, easy to 

implement, and fast to work with pre-trained models [53]. Transfer learning is 

commonly applied in the literature. K. Nogueira et al. [37], S. N. Khan et al. [40], and 

S. Javadi et al. [49] are examples of transfer learning studies in the literature. At the 

end of this thesis, the performances of each pre-trained model are compared. 
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The detailed detection of objects that are the target of a study in neural network 

algorithms is specialized in the last layer of the network. This means that in order to 

apply transfer learning in a new study, it is necessary to change the last layers of a 

model. 

Since all of the pre-trained models in this thesis were pre-trained with the 

ImageNet dataset with 1000 classes, the classifier layers were not suitable for binary 

classification for the new classes. One of the most important reasons for using pre-

trained models is to take advantage of the weights of the models trained with the 

ImageNet dataset. 

In order to perform the transfer learning process, the classifier layers of all 

models were removed and the layers in Figure 3.5 were added instead. The classifier 

layer structure of all models in this thesis is not the same. While the classifier layers 

of ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, DenseNet121, 

DenseNet161, DenseNet169, and DenseNet201 models are linear layers, all other 

models are sequential layers. The same layers were added to each architecture in this 

thesis because it is valuable for this study to evaluate the response of different models 

to the same transfer learning method. 

The nn.Linear module creates a layer with a certain number of inputs and 

outputs. Thus, the number of features belonging to the previous layer from nn.Linear 

can be transferred to new layers. ReLU, with its long name, Rectified Linear Unit is 

an activation function. The biggest feature of ReLU is that it converts negative values 

to zero. Thus, ReLU's computational cost will be less than other activation functions, 

so it works faster. Dropout is a regularization method used to prevent overfitting, 

which is very common in artificial neural network applications. Logarithmic softmax 

is another activation function. The biggest advantage of the logarithmic softmax used 

in the classifier layer over softmax is that it penalizes the model due to its mathematical 

nature when the model makes an incorrect class prediction. The purpose of using these 

layers is to make predictions for the new dataset using features from ImageNet. 

For example, in the last classifier layer of the MobileNetV2 model, the part 

with 1000 classes of output specialized for ImageNet is shown with a red rectangle in 

Figure 3.4. 
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Figure 3.4: Last classifier layer of the original MobileNetV2. 

 

 
Figure 3.5: Last classifier layer of the modified MobileNetV2. 

 

Since there are 2 classes in the Construction Machinery Dataset, the value 

representing 1000 classes in the last layers of the pre-trained models is coded as 2 to 

perform binary classification as seen in Figure 3.5. 

 

 
Figure 3.6: Transfer Learning Scheme. 

 

Common metrics such as precision, recall, F1-Score, and accuracy were used 

to evaluate the success of the models. These metrics can be presented as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                                     (3.1) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                            (3.2) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                           (3.3) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
                                                                               (3.4) 

where TP is True Positive, FP is False Positive, TN is True Negative, and FN 

is False Negative. 

 

Table 3.3: Number of Total Parameters and Trainable Parameters of Each Model. 

Models Total Parameters Trainable Parameters 

AlexNet 8,267,942 5,798,246 

VGG16 30,226,598 15,511,910 

VGG19 35,536,294 15,511,910 

ResNet-18 11,647,910 471,398 

ResNet-34 21,756,070 471,398 

ResNet-50 24,919,462 1,411,430 

ResNet-101 43,911,590 1,411,430 

ResNet-152 59,555,238 1,411,430 

MobileNet V2 3,165,286 941,414 

MobileNet V3 Large 3,717,526 745,574 

MobileNet V3 Small 1,437,574 510,566 

DenseNet-121 7,738,598 784,742 

DenseNet-161 27,981,350 1,509,350 

DenseNet-169 13,660,902 1,176,422 

DenseNet-201 19,426,022 1,333,094 

EfficientNet B0 4,948,962 941,414 

EfficientNet B1 7,454,598 941,414 

EfficientNet B2 8,720,744 1,019,750 

EfficientNet B3 11,794,318 1,098,086 

EfficientNet B4 18,803,374 1,254,758 

EfficientNet B5 29,752,214 1,411,430 

EfficientNet B6 42,303,806 1,568,102 

EfficientNet B7 65,511,734 1,724,774 

 

Grid search tables were created to clearly observe the working conditions of 

each model under different circumstances. Examining the graphics of the models 

trained with a learning rate of 0.01 in 19 of the 23 models in this thesis, excluding 

EfficientNetB3, EfficientNetB4, EfficientNetB5 and EfficientNetB6, it was seen that 

the models were easily trained. When the graphs of the models under other conditions 
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are examined, the fact that the models could not be trained most of the time has made 

this situation important. Therefore, the 0.01 learning rate value led to future 

investigations. 

In the trainings performed according to 32 batch size values, validation 

accuracy value gave the best results in all models except ResNet18, ResNet50, 

ResNet101, DenseNet121, and EfficientNetB2. That's why a batch size of 32 was 

selected as the best option for grid search. 

Early stopping patience was taken as 5 in the examinations for the learning rate 

and batch size. It was seen that in architectures other than AlexNet, VGG16, VGG19, 

ResNet18, EfficientNetB4, and EfficientNetB7 models, having early stopping patience 

of 5 did not terminate the training process early. In order to better understand the 

effects of early stopping patience value, early stopping patience values of 3, 4, 6, and 

7 were examined. Training was terminated early when early stopping patience value 

was 3 in ResNet34, ResNet101, ResNet152, MobileNetV2, DenseNet121, 

DenseNet161, DenseNet169, and EfficientNetB4 models. Early stopping occurred 

when early stopping patience value was 4 in ResNet34, ResNet50, ResNet101, 

ResNet152, MobileNetV2, DenseNet121, DenseNet169, DenseNet201, and 

EfficientNetB4 models. In ResNet50, ResNet152, DenseNet201, EfficientNetB4 

models, early stopping was experienced when the patience value was 6. When the early 

stopping patience value was 7 in MobileNetV2 and EfficientNetB4 models, early 

stopping occurred. Thus, the reactions of 23 different models in this thesis under 15 

different situations were examined and the corresponding training loss and training 

accuracy values were also examined. While creating grid search tables with 345 runs 

in total, the importance of having a high GPU was revealed. 

Jupyter Notebook is a web-based application that provides fast and practical 

data visualization by showing the inputs and outputs of the codes in a user-friendly 

way. All models used in this thesis were trained and tested using the Python 

programming language and Jupyter Notebook. Intel(R) Core(TM) i7-10700F CPU 

2.90GHz 32.0 GB RAM and NVIDIA GEFORCE RTX 3060 12 GB GPU were used 

in the training and testing phase of all models. The pseudocode of the functions used 

in this thesis is as follows: 
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Figure 3.7: Pseudocode of The Study. 
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CHAPTER IV 

 

RESULTS 

 

The training efficiency of artificial neural networks is calculated by successive 

iterations. However, it is not possible to make an inference that running a model with 

too many iterations increases the accuracy of that model. This may result in a deep 

learning model being overfitted. If a model has very high accuracy at the end of 

training, but results in very weak predictions, it is overfit. The opposite situation is the 

use of very few iterations. This situation may cause the model to have learning 

difficulties. As a clear solution to these two scenarios, the early stopping method was 

used in this thesis. Early stopping is a deep learning method that understands that there 

is no improvement in the iteration calculations of the model during the training and 

terminates the training of the model. It is not a healthy method to carry out a study 

based only on the training accuracy value in grid search optimizations. If validation 

accuracy is not taken into account, it is difficult to see whether the trained model is 

overfit or not. In the tables reviewed in this chapter, the rows highlighted in light green 

show that the relevant conditions are the best working condition compared to the others 

in the table during training optimization. 

 

4.1 GENERAL MODEL TRAINING RESULTS 

4.1.1. AlexNet Architecture 

Despite being one of the oldest models that pioneered deep learning studies in 

the literature, AlexNet can still compete with the most up-to-date models. One of the 

reasons why AlexNet is still used is that it uses Rectified Linear Units (ReLU) as its 

activation function. ReLU provides faster training of AlexNet compared to other 

activation functions. Another factor in reducing training time is the parallelization 

scheme that AlexNet uses. AlexNet can be trained using multiple GPUs. It reduces 
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training time by using half of the neurons in a model on one GPU and the 

remaining half on another GPU. Especially when the training loss values are examined, 

AlexNet is one of the two models with the lowest loss among all models in this thesis 

with a loss of 0.1. 

AlexNet was one of the models with the most difficult training process in this 

thesis. Although AlexNet had a good loss and accuracy value as a result of the training, 

the graph results said the opposite. Accuracy is expected to increase gradually as the 

number of epochs increases in the Accuracy vs Epoch chart. Conversely, as the number 

of epochs increases in the Loss vs Epoch chart, the loss is expected to decrease 

gradually. As the epoch progressed, the loss and accuracy values in the graphs were 

constantly parallel to the X-axis and AlexNet refused to train. This was especially 

observed at 16 and 32 conditions of batch size. As a result of these processes, AlexNet 

gave the healthiest graph with a 0.01 learning rate, 128 batch size, and 5 early stopping 

patience values. Looking at Table 4.2, AlexNet analyzed the images in the test dataset 

in a total of 7.10 seconds and reached the fastest test speed value among all models. 

 

Table 4.1: Grid Search Performances of AlexNet. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 8 0.13 95.37 85.67 

0.015 32 5 9 0.1 96.49 83.29 

0.02 32 5 7 0.13 95.33 85.07 

0.03 32 5 7 0.13 95.45 87.02 

0.04 32 5 5 0.35 83.72 86.08 

0.05 32 5 7 0.14 94.73 84.77 

0.01 8 5 7 0.12 95.45 84.12 

0.01 16 5 6 0.16 93.85 80.58 

0.01 64 5 8 0.14 94.53 80.58 

0.01 128 5 10 0.13 95.41 81.12 

0.01 256 5 15 0.35 83.06 84.53 

0.01 32 3 5 0.13 95.09 84.57 

0.01 32 4 5 0.18 92.74 81.35 

0.01 32 6 7 0.09 96.69 83.39 

0.01 32 7 8 0.19 92.82 86.87 

 

Table 4.2: Test Results of AlexNet on Construction Machinery Images. 

Model Accuracy (%) 
Total Time 

(sec) 
Loss Precision Recall  

F1 

Score 

AlexNet 82.25 7.10 0.34 0.83 0.93 0.87 
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Figure 4.1: Accuracy vs. Epoch Graph of AlexNet. 

 

 
Figure 4.2: Loss vs. Epoch Graph of AlexNet. 

 

4.1.2. VGG Architectures 

In this section, training and test results of VGG16 and VGG19 models are 

examined. The idea that makes VGGs a popular model frequently used by researchers 

is to understand the effect of the depth of convolutional neural networks on accuracy. 
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Using very deep convolutional neural networks, high accuracy values were achieved. 

In the literature, it has been stated that the accuracy value increases as the model depth 

increases with the VGG models.  

The power of the GPU used during the training determines the speed of the 

training as well as the amount of the batch size. Thanks to the powerful GPU used in 

this thesis, 256 batch size calculations could be made. 

As can be seen in Table 4.3, early stopping was not activated in 128 and 256 

batch size values of VGG16 model. Although all the accuracy values at the end of the 

training were above 90%, unfortunately, the graphics in all cases did not appear as in 

Figure 4.3 and Figure 4.4. In some cases, the graphs progressed parallel to the X-axis, 

while in some cases, the graphs showed very sudden uptrends and downtrends. VGG16 

gave the most successful graphics at a 0.01 learning rate, 256 batch size, and 5 early 

stopping patience values. 

 

Table 4.3: Grid Search Performances of VGG16. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 7 0.15 94.69 88.56 

0.015 32 5 7 0.13 94.89 85.08 

0.02 32 5 7 0.13 94.85 83.25 

0.03 32 5 6 0.17 93.77 83 

0.04 32 5 8 0.09 96.65 84.47 

0.05 32 5 6 0.18 92.66 82.09 

0.01 8 5 6 0.16 93.42 84.11 

0.01 16 5 7 0.13 94.61 81.17 

0.01 64 5 12 0.09 97.09 80.56 

0.01 128 5 15 0.22 90.59 88.41 

0.01 256 5 15 0.18 94.98 87.13 

0.01 32 3 5 0.14 94.41 86 

0.01 32 4 6 0.15 94.57 85.51 

0.01 32 6 12 0.06 97.96 84.7 

0.01 32 7 8 0.2 93.46 86.22 

 

Table 4.5 shows that VGG16 analyzed the test dataset in 7.88 seconds. 

Although the test accuracy value of 86.55% is an average value compared to other 

models, the recall value reaching 92% is enough to say that the VGG16 is a successful 

model. 
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VGG19 has a deeper architecture than VGG16. Therefore, it is expected to give 

better results than VGG16. Looking at the VGG19 test criteria, it outperformed 

VGG16 in all test accuracy, test loss, precision, recall, and F1 Score values. The only 

test criterion where VGG16 surpasses VGG19 is total test time. According to the 

results of the training time, VGG16 completed the training in 664.83 seconds, while 

VGG19 completed it in 549.16 seconds, despite having a deeper architecture. 

 

Table 4.4: Grid Search Performances of VGG19. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 7 0.15 94.49 85.26 

0.015 32 5 7 0.15 94.61 84.43 

0.02 32 5 5 0.35 84.52 88.3 

0.03 32 5 6 0.18 93.26 81.14 

0.04 32 5 10 0.08 97.09 83.82 

0.05 32 5 5 0.34 85.28 88.44 

0.01 8 5 6 0.17 93.26 81.15 

0.01 16 5 7 0.12 95.57 82.01 

0.01 64 5 8 0.12 95.33 83.38 

0.01 128 5 12 0.11 95.53 81.73 

0.01 256 5 15 0.16 95.59 87.19 

0.01 32 3 5 0.15 94.13 88.72 

0.01 32 4 7 0.13 94.89 87.19 

0.01 32 6 8 0.15 94.45 82.19 

0.01 32 7 11 0.1 96.33 90.02 

 

Table 4.5: Test Results of VGG16 and VGG19 on Construction Machinery Images. 

Model Accuracy (%) Total Time (sec) Loss Precision Recall  
F1 

Score 

VGG16 86.55 7.88 0.26 0.87 0.92 0.89 

VGG19 90.86 9.55 0.22 0.89 0.95 0.92 
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Figure 4.3: Accuracy vs. Epoch Graph of VGG16. 

 

 
Figure 4.4: Loss vs. Epoch Graph of VGG16. 
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Figure 4.5: Accuracy vs. Epoch Graph of VGG19. 

 

 
Figure 4.6: Loss vs. Epoch Graph of VGG19. 

 

 4.1.3. ResNet Architectures 

In this section, training and test results of ResNet-18, ResNet-34, ResNet-50, 

ResNet-101, and ResNet-152 models are examined. It is an undeniable fact that the 

training phase of neural networks is the part that takes the most time for researchers. 

As the depth and complexity of the network increase, the training time inevitably gets 

longer. ResNets have lower complexity compared to other deep learning models and 
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they are easy to optimize. Hence, deeper models can be trained with lower training 

loss value. As such, with deep residual networks, it is aimed to shorten the training 

times of models even if the model complexity is high [54].  

Model depth is increasing in ResNet architectures from ResNet18 to 

ResNet152. This situation naturally creates an expectation for good results as the 

model depth increases in the training and test results. When Table 4.6, which is 

ResNet18's grid search table, is examined, it is seen that the model gives the most 

efficient graph in 128 batch size. While the epoch 15 and early stopping patience value 

were 5, the training of the model took 15 epochs. This means that there was no early 

stopping during model training. When the test loss value of ResNet18 is examined, it 

is seen that it has the lowest test loss value compared to all other ResNet architectures. 

When Table 4.11 is examined, it is seen that the test values of ResNet18 have many 

variations. While ResNet18 has the lowest test accuracy and test loss values with 

80.10% and 0.46, respectively, among all other ResNet architectures, its recall value 

has the highest value with 0.95. 

 

Table 4.6: Grid Search Performances of ResNet-18. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 11 0.25 89.78 80.03 

0.015 32 5 8 0.23 90.9 86.8 

0.02 32 5 6 0.31 86.95 85.6 

0.03 32 5 10 0.19 93.22 81.14 

0.04 32 5 8 0.2 91.98 81.49 

0.05 32 5 10 0.17 93.1 85.45 

0.01 8 5 15 0.22 91.4 86.98 

0.01 16 5 13 0.16 93.26 82.47 

0.01 64 5 13 0.17 93.06 86.87 

0.01 128 5 15 0.18 91.25 87.25 

0.01 256 5 15 0.3 87.9 83.97 

0.01 32 3 5 0.31 88.15 88.9 

0.01 32 4 15 0.26 88.98 85.04 

0.01 32 6 15 0.26 88.71 80.53 

0.01 32 7 15 0.25 89.52 80.93 

 

According to Table 4.7, the most successful graphics of the ResNet-34 model 

came with a learning rate of 0.01 and a batch size of 32. Early stopping patience value 

is 7, but model training did not stop until the maximum epoch value of 15. When the 
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training loss value of ResNet-34 is examined, it is seen that it has the highest value 

with 0.22 among other ResNet architectures. A similar situation applies to training 

accuracy. But this time, ResNet-34's 90.17% training accuracy is the lowest not only 

among the ResNet architectures, but among all other models. Looking at Table 4.11 

for the test values of ResNet-34, ResNet-34 has the fastest total test time of 7.37 

seconds among other ResNet architectures. When the F1 score values are examined, 

ResNet-34 has the best value with 0.89. 

 

Table 4.7: Grid Search Performances of ResNet-34. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 12 0.26 88.44 88.89 

0.015 32 5 15 0.25 88.71 81.92 

0.02 32 5 15 0.24 88.44 85.15 

0.03 32 5 15 0.24 89.52 86.81 

0.04 32 5 15 0.22 90.32 81.68 

0.05 32 5 15 0.22 89.25 81.97 

0.01 8 5 15 0.28 89.25 82.79 

0.01 16 5 15 0.22 89.25 84.33 

0.01 64 5 13 0.18 93.18 87.26 

0.01 128 5 15 0.26 88.44 80.25 

0.01 256 5 15 0.32 86.29 88.71 

0.01 32 3 11 0.19 92.62 85.2 

0.01 32 4 14 0.17 93.42 86.13 

0.01 32 6 15 0.26 88.17 84.02 

0.01 32 7 15 0.22 90.17 86.3 

 

When the grid search results of ResNet-50 in Table 4.8 are examined, it is seen 

that ResNet-50 gives the best graphics under the same conditions as ResNet-18. Under 

the same conditions, ResNet-18's training loss is lower than ResNet-50, while ResNet-

50's training accuracy is higher. ResNet-34's training time is lower than ResNet-18, 

while ResNet50's training time is higher than ResNet-34. When the test results of 

ResNet-50 are examined in Table 4.11, it is seen that the F1 score value is the best 

value in ResNet architectures with 0.89 like ResNet-34. 

Table 4.9 provides information about ResNet-101's grid search. According to 

this information, ResNet-101 gave its best graphics in 64 batch size. According to 

these results, when the training accuracy values of ResNet architectures are examined, 

it is seen that ResNet-101 has the highest training accuracy value among other ResNet 
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models with 93.17%. When Table 4.11 is examined for the test values of ResNet-101, 

ResNet-101 has the second worst value with 9.14 seconds in total test time. On the 

other hand, ResNet-101's test accuracy, test loss, and precision are the second best 

among other ResNet models. 

 

Table 4.8: Grid Search Performances of ResNet-50. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 13 0.21 91.54 84.84 

0.015 32 5 15 0.23 90.32 86.77 

0.02 32 5 11 0.2 92.42 82.82 

0.03 32 5 15 0.21 91.4 82.62 

0.04 32 5 15 0.21 90.59 84 

0.05 32 5 15 0.21 91.4 83.23 

0.01 8 5 15 0.22 90.59 81.05 

0.01 16 5 12 0.22 90.74 81.99 

0.01 64 5 15 0.25 89.52 88.46 

0.01 128 5 15 0.21 92.71 88.85 

0.01 256 5 15 0.46 85.48 85.8 

0.01 32 3 15 0.24 89.52 83.43 

0.01 32 4 11 0.19 92.18 87.77 

0.01 32 6 11 0.22 91.62 86.14 

0.01 32 7 15 0.22 89.78 82.59 

 

Table 4.9: Grid Search Performances of ResNet-101. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 15 0.17 93.5 81.56 

0.015 32 5 12 0.19 92.98 85.94 

0.02 32 5 9 0.22 91.5 84.77 

0.03 32 5 15 0.24 90.05 86.81 

0.04 32 5 15 0.25 90.05 87.02 

0.05 32 5 11 0.18 92.78 86.17 

0.01 8 5 13 0.23 91.02 81.99 

0.01 16 5 15 0.23 89.78 80.09 

0.01 64 5 15 0.19 93.17 88.96 

0.01 128 5 15 0.33 86.83 83.97 

0.01 256 5 15 0.46 83.6 86.81 

0.01 32 3 8 0.21 91.78 85.65 

0.01 32 4 12 0.19 92.62 86.5 

0.01 32 6 15 0.26 88.71 83.5 

0.01 32 7 15 0.27 88.44 83.17 
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According to the training results of ResNet-152 in Table 4.10, the best graphics 

were formed in 16 batch sizes. This is a great value for low power computer setups. 

However, while the ResNet-101 model reached 93.17% training accuracy in 666.57 

seconds, the ResNet-152 model reached 92.47% training accuracy in 818.7 seconds. 

When the test results of ResNet-152 are examined in Table 4.11, it is seen that ResNet-

152 has the highest value among other ResNet architectures with 94.62% test accuracy. 

While ResNet-152 has the highest value with 10.38 seconds among other ResNet 

architectures on the basis of total test time, it has the lowest value with 0.14 on the 

basis of test loss. ResNet-152's precision has the highest value of 0.92 among other 

ResNet architectures. On the other hand, recall and F1 score values have the lowest 

value among all other models in this thesis. 

 

Table 4.10: Grid Search Performances of ResNet-152. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 15 0.2 92.74 90.09 

0.015 32 5 15 0.22 91.13 86.54 

0.02 32 5 10 0.21 91.9 87.29 

0.03 32 5 15 0.19 93.01 86.58 

0.04 32 5 7 0.25 90.3 80.83 

0.05 32 5 11 0.16 93.97 80.71 

0.01 8 5 14 0.2 91.5 88.81 

0.01 16 5 15 0.19 92.47 89.38 

0.01 64 5 15 0.23 91.4 88.28 

0.01 128 5 15 0.28 88.98 80.25 

0.01 256 5 15 0.48 83.87 87.2 

0.01 32 3 12 0.19 92.34 87.38 

0.01 32 4 14 0.17 93.34 80.78 

0.01 32 6 11 0.21 92.1 87.62 

0.01 32 7 15 0.21 90.86 80.37 

 

Table 4.11: Test Results of ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152 

on Construction Machinery Images. 

Model 
Accuracy 

(%) 

Total Time 

(sec) 
Loss Precision Recall  F1 Score 

ResNet-18 80.10 8.65 0.46 0.82 0.95 0.88 

ResNet-34 82.79 7.37 0.35 0.84 0.94 0.89 

ResNet-50 89.78 8.26 0.27 0.89 0.89 0.89 

ResNet-101 91.93 9.14 0.15 0.90 0.80 0.85 

ResNet-152 94.62 10.38 0.14 0.92 0.77 0.83 
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Figure 4.7: Accuracy vs. Epoch Graph of ResNet-18. 

 

 

Figure 4.8: Loss vs. Epoch Graph of ResNet-18. 
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Figure 4.9: Accuracy vs. Epoch Graph of ResNet-34. 

 

 

Figure 4.10: Loss vs. Epoch Graph of ResNet-34. 
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Figure 4.11: Accuracy vs. Epoch Graph of ResNet-50. 

 

 

Figure 4.12: Loss vs. Epoch Graph of ResNet-50. 
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Figure 4.13: Accuracy vs. Epoch Graph of ResNet-101. 

 

 

Figure 4.14: Loss vs. Epoch Graph of ResNet-101. 
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Figure 4.15: Accuracy vs. Epoch Graph of ResNet-152. 

 

 

Figure 4.16: Loss vs. Epoch Graph of ResNet-152. 
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4.1.4. MobileNet Architectures  

In this section, training and test results of MobileNet V2, MobileNet V3 Large, 

and MobileNet V3 Small models are examined. MobileNet is a deep learning model 

that uses depth-wise separable convolutions for mobile and embedded vision 

applications [55]. In addition, MobileNet introduced a revolutionary structure in 

mobile applications with a module named the inverted residual with the linear 

bottleneck. It provides great savings in computational cost by reducing the memory 

needed by mobile computer vision models without changing the accuracy [56]. Thanks 

to its low number of parameters, MobileNet [57] both takes up little space in memory 

and has a fast-training structure. As can be seen from Table 3.3, MobileNet 

architectures have the least number of parameters compared to other models. The 

MobileNetV2 model gave its best graphics at 0.01 learning rate, 16 batch size and 5 

early stopping patience values. When the data other than the highlighted best case in 

Table 4.12 were examined, the graphics were not very successful, although there were 

good training results. The fact that MobileNetV2 reaches its best form at 16 batch size 

makes it easy to train the model especially in low computer setup conditions. When 

the status of MobileNetV2 on the test dataset is examined in Table 4.15, it is seen that 

the test accuracy, precision, recall, and F1 score values are below 90%. Although these 

values are not bad, it is an undeniable fact that there are more promising models.  

 

Table 4.12: Grid Search Performances of MobileNet V2. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 13 0.18 93.06 87.46 

0.015 32 5 11 0.16 94.37 88.33 

0.02 32 5 15 0.24 88.71 86.7 

0.03 32 5 15 0.23 90.59 87.45 

0.04 32 5 13 0.14 94.97 86.34 

0.05 32 5 8 0.2 92.06 87.57 

0.01 8 5 12 0.24 90.22 86.17 

0.01 16 5 10 0.18 92.1 86.62 

0.01 64 5 15 0.26 88.71 86.6 

0.01 128 5 15 0.31 86.83 81.4 

0.01 256 5 15 0.46 84.41 87.04 

0.01 32 3 12 0.17 93.34 82.55 

0.01 32 4 11 0.24 88.71 83.3 

0.01 32 6 15 0.24 89.52 82.61 

0.01 32 7 13 0.19 92.02 83.56 
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Table 4.13: Grid Search Performances of MobileNet V3 Small. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 15 0.27 89.52 86.16 

0.015 32 5 15 0.26 87.63 80.19 

0.02 32 5 14 0.18 92.94 80.77 

0.03 32 5 15 0.22 90.86 83.84 

0.04 32 5 15 0.21 91.13 83.61 

0.05 32 5 15 0.23 91.13 85.56 

0.01 8 5 15 0.26 89.78 85.76 

0.01 16 5 15 0.24 88.98 80.2 

0.01 64 5 15 0.22 91.02 85.56 

0.01 128 5 15 0.44 81.18 83.52 

0.01 256 5 15 0.64 54.3 83.98 

0.01 32 3 15 0.26 86.56 84.89 

0.01 32 4 15 0.27 87.9 83.16 

0.01 32 6 15 0.26 88.44 84.46 

0.01 32 7 15 0.26 88.44 84.94 

 

In Table 4.13, it is seen that MobileNet V3 Small model gives the best graphics 

at 64 batch size, which is four times that of MobileNetV2. Looking at all the number 

of epochs before stopping values in the table, it is seen that the MobileNet V3 Small 

model is not prone to early stopping. Due to this situation, MobileNetV2 reached 

92.1% training accuracy in 428.12 seconds, while MobileNet V3 Small reached 

91.02% training accuracy in 590.55 seconds. When the test results of the MobileNet 

V3 Small model are examined in Table 4.15, although it has lower test accuracy and 

higher test loss value than MobileNetV2, it is slightly ahead of MobileNetV2 in total 

test time, recall and F1 score values. 

MobileNetV3 Large, on the other hand, gave its best graphics at 32 batch sizes, 

unlike other MobileNet architectures. The MobileNetV3 Large model gave the highest 

training accuracy with little difference, among the MobileNet architectures. When the 

calculation times of MobileNet architectures for 1 epoch in training are examined, it 

is seen that MobileNetV2 takes 38.92 seconds, MobileNetV3 Small takes 42.18 

seconds and MobileNetV3 Large takes 37.57 seconds. Although MobileNetV3 Large 

is the fastest MobileNet architecture to calculate 1 epoch, MobileNetV3 Large could 

not outperform MobileNetV2 in training speed, since the number of epochs before 

stopping value of MobileNetV2 is 10. When Table 4.15 is examined, the test accuracy 
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of MobileNetV3 Large gave a much more successful result with 92.47% compared to 

other MobileNet architectures. MobileNetV3 Large outperformed other MobileNet 

architectures in loss, precision, recall, and F1 score values in test results. 

 

Table 4.14: Grid Search Performances of MobileNet V3 Large. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 14 0.19 92.2 91.32 

0.015 32 5 15 0.18 93.55 87.61 

0.02 32 5 15 0.18 92.2 84.77 

0.03 32 5 15 0.15 94.35 84.93 

0.04 32 5 15 0.14 94.62 87.53 

0.05 32 5 15 0.15 94.09 87.76 

0.01 8 5 15 0.18 93.55 81.4 

0.01 16 5 15 0.18 93.28 86.96 

0.01 64 5 15 0.23 90.59 84.94 

0.01 128 5 15 0.35 86.56 80.91 

0.01 256 5 15 0.59 70.16 81.8 

0.01 32 3 15 0.18 91.94 88.41 

0.01 32 4 15 0.19 91.4 86.64 

0.01 32 6 15 0.19 92.2 86.03 

0.01 32 7 15 0.2 92.2 81.28 

 

Table 4.15: Test Results of MobileNet V2, MobileNet V3 Large, and MobileNet V3 Small 

on Construction Machinery Images. 

Model 
Accuracy 

(%) 

Total Time 

(sec) 
Loss Precision Recall  

F1 

Score 

MobileNet V2 88.70 8.81 0.21 0.86 0.86 0.85 

MobileNet V3 

Small 
87.63 7.12 0.29 0.86 0.87 0.86 

MobileNet V3 

Large 
92.47 7.27 0.15 0.91 0.88 0.89 
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Figure 4.17: Accuracy vs. Epoch Graph of MobileNet V2. 

 

 
Figure 4.18: Loss vs. Epoch Graph of MobileNet V2. 
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Figure 4.19: Accuracy vs. Epoch Graph of MobileNet V3 Small. 

 

 
Figure 4.20: Loss vs. Epoch Graph of MobileNet V3 Small. 
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Figure 4.21: Accuracy vs. Epoch Graph of MobileNet V3 Large. 

 

 
Figure 4.22: Loss vs. Epoch Graph of MobileNet V3 Large. 

 

4.1.5. DenseNet Architectures 

In this section, training and test results of DenseNet-121, DenseNet-161, 

DenseNet-169, and DenseNet-201 models are examined. According to their number 

of parameters and depth, DenseNets have high efficiency. Compared to other CNN 

models, DenseNets need fewer number of parameters to train a model and use the 
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number of parameters more wisely for almost identical accuracy level. Another 

advantage of DenseNets is its architecture, making it easy to train the model. Every 

layer in the architecture has direct connection from loss function to gradients. This 

connection network with different points makes DenseNets deeper and easier to train. 

Unlike conventional Convolutional Neural Networks, DenseNets do not have exactly 

the same number of connections as the number of layers. Because with the Dense 

Convolutional Network approach, 
𝐿(𝐿+1)

2
 connection was used in a model with an L 

layer. With dense blocks, a high-accuracy architecture can be created without any 

performance loss [58].  

When Table 4.16 is examined, it is seen that DenseNet 121's training is finished 

without early stopping and it gives the best graphics at 0.01 learning rate and 64 batch 

size. The absence of early stopping during the training of DenseNet 121 extended the 

training period of DenseNet 121. Although DenseNet 121's 0.19 training loss and 

92.25% training accuracy values were very successful, DenseNet 121 could not 

achieve the same success on test data. Especially when the test accuracy, test loss and 

precision values are examined, DenseNet 121 gave the most unsuccessful results not 

only among DenseNet architectures but also among all models. DenseNet 121's failing 

behavior in test results can be improved with a better prepared dataset and a larger grid 

search. 

 

Table 4.16: Grid Search Performances of DenseNet-121. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 15 0.25 89.52 87.02 

0.015 32 5 15 0.24 89.78 81.74 

0.02 32 5 15 0.24 89.25 83.54 

0.03 32 5 15 0.24 90.05 85.94 

0.04 32 5 15 0.25 89.25 82.54 

0.05 32 5 15 0.22 91.4 87.87 

0.01 8 5 15 0.21 91.67 86.16 

0.01 16 5 15 0.25 88.98 90.11 

0.01 64 5 15 0.19 92.25 85.42 

0.01 128 5 15 0.31 87.63 82.95 

0.01 256 5 15 0.44 84.95 87.84 

0.01 32 3 11 0.19 93.02 87.91 

0.01 32 4 12 0.16 94.33 88.1 

0.01 32 6 15 0.26 88.71 86.49 

0.01 32 7 15 0.24 90.59 89.03 
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In Table 4.17, it is seen that DenseNet-161 gives the healthiest graph in 128 

batch size. A 128 batch size training process requires a high power computer setup 

and an average power GPU may be insufficient. Just like DenseNet-121, 

DenseNet-161 did not have early stopping. Since DenseNet-161 has a deeper 

network than DenseNet-121, this has resulted in higher training time. DenseNet-

121 completed the training process in 695.05 seconds, while DenseNet-161 

completed it in 867.1 seconds. When the test results of DenseNet-161 are examined 

in Table 4.20, DenseNet-161 gave a much more successful result in test accuracy 

than DenseNet-121. But on test loss basis, the difference in loss of 0.07 between 

DenseNet-121 and DenseNet-161 is not that promising. 

 

Table 4.17: Grid Search Performances of DenseNet-161. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 7 0.11 95.73 88.5 

0.015 32 5 15 0.24 90.05 85.78 

0.02 32 5 15 0.26 88.44 89.04 

0.03 32 5 15 0.23 91.13 80.85 

0.04 32 5 15 0.23 90.86 84.56 

0.05 32 5 15 0.24 90.59 87.16 

0.01 8 5 14 0.18 92.22 85.06 

0.01 16 5 15 0.24 90.32 88.37 

0.01 64 5 15 0.27 88.71 84.48 

0.01 128 5 15 0.2 93.22 83.74 

0.01 256 5 15 0.47 84.41 86.29 

0.01 32 3 14 0.12 95.77 82.61 

0.01 32 4 15 0.25 88.17 88.12 

0.01 32 6 15 0.26 90.05 89.16 

0.01 32 7 15 0.24 89.52 84.83 

 

When Table 4.18 is examined, it is seen that DenseNet-169 gives its most 

successful graphics under the same conditions as DenseNet-121. Although 

DenseNet-169 has a deeper architecture than DenseNet-161, it lags behind 

DenseNet-161 with 92.4% training accuracy. DenseNet-169 also completed its 

training in 15 epochs like DenseNet-161 and DenseNet-121. However, despite the 

fact that the network has a deep architecture, the training time was 123.69 seconds 

shorter than DenseNet-161, contrary to expectations. Although DenseNet-169 has 
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the same training loss value as DenseNet-121, it gave a slightly better result with 

92.4% in terms of training accuracy. In Table 4.20, DenseNet-169's test accuracy 

and total test time value lagged behind DenseNet-161's. When only the total test 

time value of DenseNet-169 is examined, it is seen that it is the slowest model that 

analyzes the test data with 11.08 seconds in this thesis. However, DenseNet-169's 

recall value is 0.97, which is the highest value among other models. 

 

Table 4.18: Grid Search Performances of DenseNet-169. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 10 0.24 90.22 90.05 

0.015 32 5 15 0.19 91.4 85.93 

0.02 32 5 14 0.12 94.97 81.1 

0.03 32 5 15 0.19 91.94 89.56 

0.04 32 5 15 0.18 93.28 80.5 

0.05 32 5 15 0.19 92.74 87.75 

0.01 8 5 15 0.2 91.67 80.32 

0.01 16 5 15 0.2 92.47 86.98 

0.01 64 5 15 0.19 92.4 89.94 

0.01 128 5 15 0.27 89.52 89.34 

0.01 256 5 15 0.45 87.37 83.21 

0.01 32 3 6 0.25 90.78 89.6 

0.01 32 4 12 0.15 94.13 86.29 

0.01 32 6 15 0.2 91.94 88.41 

0.01 32 7 15 0.2 92.2 89.52 

 

Table 4.19: Grid Search Performances of DenseNet-201. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 15 0.18 93.9 85.16 

0.015 32 5 14 0.13 95.05 83.51 

0.02 32 5 15 0.23 89.52 86.4 

0.03 32 5 15 0.23 91.67 82.44 

0.04 32 5 15 0.2 92.2 82.44 

0.05 32 5 15 0.2 92.74 89.01 

0.01 8 5 15 0.21 91.94 80.69 

0.01 16 5 15 0.22 89.78 84.82 

0.01 64 5 15 0.26 89.25 83.38 

0.01 128 5 15 0.33 87.1 83.97 

0.01 256 5 15 0.47 84.14 84.82 

0.01 32 3 15 0.15 94.37 84.49 

0.01 32 4 9 0.18 92.74 84.05 

0.01 32 6 14 0.24 88.98 86.49 

0.01 32 7 15 0.23 89.78 85.59 
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Unlike other DenseNet models, DenseNet201 gave its most successful 

graphics in 32 batch sizes, but it took 15 epochs to train like other DenseNet 

models. When the training loss and training accuracy values of DenseNet201 were 

examined, it was seen that it surpassed all other DenseNet models. DenseNet201 

has the deepest structure among DenseNet architectures. Therefore, it is expected 

to have a longer training time at the same epoch value. DenseNet201 has the 

longest training time of 895.58 seconds among other DenseNet architectures. 

However, the time it takes to calculate 1 epoch is 59.47 seconds, 2.47 seconds 

better than DenseNet161. When Table 4.20 is examined, DenseNet201's success 

on test data can easily be seen. While DenseNet201 is more successful than other 

DenseNet architectures in test accuracy, total test time, test loss, and precision 

values, it does not have the same success in recall and F1 score values. 

 

Table 4.20: Test Results of DenseNet-121, DenseNet-161, DenseNet-169, and DenseNet-

201 on Construction Machinery Images. 

Model 
Accuracy 

(%) 

Total Time 

(sec) 
Loss Precision Recall  F1 Score 

DenseNet-121 75.80 10.12 0.47 0.79 0.95 0.86 

DenseNet-161 83.33 9.98 0.40 0.84 0.95 0.89 

DenseNet-169 82.79 11.08 0.38 0.84 0.97 0.90 

DenseNet-201 87.09 8.03 0.29 0.85 0.90 0.87 
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Figure 4.23: Accuracy vs. Epoch Graph of DenseNet-121. 

 

 
Figure 4.24: Loss vs. Epoch Graph of DenseNet-121. 
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Figure 4.25: Accuracy vs. Epoch Graph of DenseNet-161. 

 

 
Figure 4.26: Loss vs. Epoch Graph of DenseNet-161. 
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Figure 4.27: Accuracy vs. Epoch Graph of DenseNet-169. 

 

 
Figure 4.28: Loss vs. Epoch Graph of DenseNet-169. 
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Figure 4.29: Accuracy vs. Epoch Graph of DenseNet-201. 

 

 
Figure 4.30: Loss vs. Epoch Graph of DenseNet-201. 
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4.1.6. EfficientNet Architectures 

In this section, training and test results of EfficientNet B0, EfficientNet B1, 

EfficientNet B2, EfficientNet B3, EfficientNet B4, EfficientNet B5, EfficientNet B6, 

and EfficientNet B7 models are examined. There are some main factors such as the 

selection of the dataset according to its purpose and the sufficient architectural depth 

to make the training phase of convolutional neural networks efficient. The importance 

of the harmony between network width, depth, and resolution in creating a healthy 

model is presented with the compound scaling method. The success of this approach 

has been very clearly demonstrated by the EfficientNet-B7 in literature [59]. The 

EfficientNet models trained in this thesis showed some differences among themselves.  

 

Table 4.21: Grid Search Performances of EfficientNet B0. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 15 0.25 88.98 90.22 

0.015 32 5 15 0.26 87.1 86.26 

0.02 32 5 15 0.25 88.71 81.25 

0.03 32 5 14 0.17 93.06 86.46 

0.04 32 5 15 0.21 89.78 81.25 

0.05 32 5 13 0.16 93.7 82.75 

0.01 8 5 15 0.27 87.9 88.99 

0.01 16 5 15 0.21 91.32 86.84 

0.01 64 5 15 0.35 87.1 90.18 

0.01 128 5 15 0.58 73.39 87.22 

0.01 256 5 15 0.67 50 50 

0.01 32 3 15 0.28 88.71 81.54 

0.01 32 4 15 0.26 88.44 80.69 

0.01 32 6 15 0.25 90.32 80.25 

0.01 32 7 15 0.26 87.9 82.01 

 

EfficientNet B0 gave the best graphics at 0.01 learning rate, 16 batch size and 

5 early stopping patience. EfficientNet B0 is one of the three models that gives the 

most successful graphics at 16 batch sizes among all the models in this thesis. The 

other two models are ResNet152 and MobileNetV2. When Table 4.21 is examined, it 

is seen that there is no early stopping in any case, except for the learning rate values 

of 0.03 and 0.05. Despite this situation, the training time of 638.75 seconds is not bad 

among other EfficientNet models. Examining Table 4.29 for the test results of 
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EfficientNet B0, it is seen that the lowest precision value among other EfficientNet 

models belongs to EfficientNet B0. 

 

Table 4.22: Grid Search Performances of EfficientNet B1. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 15 0.23 92.63 86.48 

0.015 32 5 15 0.32 88.44 88.68 

0.02 32 5 15 0.29 88.98 86.95 

0.03 32 5 15 0.3 88.44 87.17 

0.04 32 5 15 0.28 88.98 86.68 

0.05 32 5 15 0.27 89.52 87.9 

0.01 8 5 15 0.34 85.48 81.81 

0.01 16 5 15 0.25 89.58 84.92 

0.01 64 5 15 0.4 85.22 85.12 

0.01 128 5 15 0.6 62.37 50.58 

0.01 256 5 15 0.69 50.32 52.73 

0.01 32 3 15 0.34 88.17 83.73 

0.01 32 4 15 0.34 87.37 85 

0.01 32 6 15 0.34 86.29 85.15 

0.01 32 7 15 0.34 86.56 89.62 

 

As seen in Table 4.22, EfficientNet B1 model gave its most efficient graphics 

at 0.01 learning rate, 32 batch size and 5 early stopping patience. When the number of 

epochs before stopping values are examined, it is seen that there is no early stopping 

in the EfficientNet B1 model under any circumstances. When this situation is 

considered on the basis of training time, since the EfficientNet B1 model is deeper 

than the EfficientNet B0, it creates a higher training time expectation. Despite this, 

EfficientNet B1's training time was 548.07 seconds, 90.68 seconds shorter than 

EfficientNet B0. When the training loss values are examined, the EfficientNet B1 

model has the highest value with 0.23 not only among the EfficientNet architectures 

but also among all the models. When the test results in Table 4.29 are examined, it is 

seen that among other EfficientNet architectures, EfficientNet B1 is the fastest model 

to examine test data on a total test time basis with 7.20 seconds. 

When Table 4.23 is examined, it is seen that EfficientNet B2 gives the best 

graphics under the same conditions as EfficientNet B1. In addition, EfficientNet B2 

and EfficientNet B1 have the same training loss as 0.23. However, these similarities 

change when Table 4.29 is examined. EfficientNet B2's test accuracy is the lowest of 
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all EfficientNet architectures at 82.25%. When the test results of all EfficientNet 

models are examined, the EfficientNet B2 model has the highest value compared to 

other EfficientNet architectures with a test loss value of 0.33. On the other hand, 

EfficientNet B2's recall value is 0.93, which is the highest value among EfficientNet 

architectures. 

 

Table 4.23: Grid Search Performances of EfficientNet B2. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 15 0.23 91.75 83.86 

0.015 32 5 15 0.3 87.37 89.72 

0.02 32 5 15 0.27 87.1 87.08 

0.03 32 5 15 0.28 86.29 83.82 

0.04 32 5 15 0.26 89.25 86.46 

0.05 32 5 15 0.27 87.63 86.16 

0.01 8 5 15 0.28 87.37 90.53 

0.01 16 5 15 0.29 86.56 82.29 

0.01 64 5 15 0.4 85.22 85.73 

0.01 128 5 5 0.68 59.46 50.1 

0.01 256 5 8 0.68 59.98 52.73 

0.01 32 3 15 0.31 86.83 87.41 

0.01 32 4 15 0.29 86.56 84.26 

0.01 32 6 15 0.28 86.29 84.15 

0.01 32 7 15 0.3 86.83 84.39 

 

When Table 4.24 is examined, it is seen that the EfficientNet B3 model gives 

the most successful graphics at 0.04 learning rate and 32 batch size values. Looking at 

the table, it is seen that the training accuracy in cases with a learning rate of 0.01 

decreases as the batch size increases.  

At the same time, no early stopping was experienced in any of the situations in 

the table. When the training loss value of EfficientNet B3 is examined, it is seen that 

it is lower than the EfficientNet B0, B1, and B2 models. In addition, the EfficientNet 

B3's training accuracy is higher than that of the EfficientNet B0, B1, and B2 models.  

The test results of the EfficientNet B3 model are excellent. When Table 4.29 

is examined, it is seen that the test accuracy of EfficientNet B3 is 98.38%. This value 

is not only the highest among the EfficientNet architectures, but the highest among all 

other models. This is the same for test loss and precision values. EfficientNet B3's test 
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loss and precision values are 0.08 and 0.97, respectively. These values are the highest 

values among all models. 

Table 4.25 states that the EfficientNet B4 model gives the healthiest graphics 

at 0.03 learning rate and 32 batch size. While the EfficientNet B4 model achieved 

91.78% training accuracy in 696.59 seconds, the EfficientNet B3 achieved 92.86% 

training accuracy in 670.73 seconds. In this case, the high training accuracy value 

expected from the model depth of EfficientNet B4 could not be met.  

Looking at the test results of the EfficientNet B4 model in Table 4.29, it is seen 

that the test loss value is the second lowest value between the EfficientNet 

architectures with 0.17. At the same time, the EfficientNet B4 model is the second-

best model among the EfficientNet architectures in terms of test accuracy, precision, 

and F1 score. 

 

Table 4.24: Grid Search Performances of EfficientNet B3. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 15 0.3 87.1 87.62 

0.015 32 5 15 0.28 90.59 87.71 

0.02 32 5 15 0.26 88.71 82.75 

0.03 32 5 15 0.25 88.98 89.61 

0.04 32 5 15 0.19 92.86 86.47 

0.05 32 5 15 0.22 90.05 85.07 

0.01 8 5 15 0.26 88.17 84.77 

0.01 16 5 15 0.26 89.78 83.88 

0.01 64 5 15 0.48 82.53 85.7 

0.01 128 5 15 0.61 59.94 51.81 

0.01 256 5 15 0.65 59.62 52.8 

0.01 32 3 15 0.3 87.37 88.86 

0.01 32 4 15 0.28 89.25 80.7 

0.01 32 6 15 0.3 88.44 83.37 

0.01 32 7 15 0.29 87.63 87.84 

 

According to Table 4.26, the EfficientNet B5 model gave its best graphics 

under the same conditions as the EfficientNet B4 model. Although the training loss 

values of EfficientNet B5 and EfficientNet B4 are the same, the training accuracy of 

EfficientNet B5 is higher than EfficientNet B4. However, as an important point, the 

EfficientNet B5 model achieved 93.92% training accuracy in 1179.78 seconds, while 

the EfficientNet B4 model achieved 91.78% training accuracy in 696.59 seconds. The 
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training time of the EfficientNet B5 model is the longest of all models. When Table 

4.29 is examined for the test results of EfficientNet B5, the total test time value is 9.29 

seconds, which is the second worst model among the EfficientNet architectures. 

 

Table 4.25: Grid Search Performances of EfficientNet B4. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 5 0.69 57.66 87.52 

0.015 32 5 15 0.33 87.63 82.38 

0.02 32 5 15 0.29 89.52 89.64 

0.03 32 5 15 0.2 91.78 87.12 

0.04 32 5 15 0.28 88.71 84.07 

0.05 32 5 12 0.25 90.1 90.18 

0.01 8 5 15 0.29 87.9 86.22 

0.01 16 5 15 0.31 88.44 80.95 

0.01 64 5 5 0.69 56.62 51.84 

0.01 128 5 5 0.69 58.06 52.73 

0.01 256 5 5 0.69 59.86 52.21 

0.01 32 3 3 0.68 59.66 52.42 

0.01 32 4 3 0.69 55.27 50.38 

0.01 32 6 6 0.69 58.74 51.48 

0.01 32 7 7 0.69 57.02 51.8 

 

Table 4.26: Grid Search Performances of EfficientNet B5. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 15 0.34 87.11 86.51 

0.015 32 5 15 0.35 85.75 81.5 

0.02 32 5 15 0.31 88.44 88.26 

0.03 32 5 15 0.2 93.92 86.45 

0.04 32 5 15 0.29 88.17 81.87 

0.05 32 5 12 0.21 91.78 85.38 

0.01 8 5 15 0.4 85.75 80.51 

0.01 16 5 15 0.26 89.47 82.49 

0.01 64 5 15 0.69 59.02 52.23 

0.01 128 5 15 0.69 59.7 52.78 

0.01 256 5 7 0.69 58.62 51.23 

0.01 32 3 15 0.39 86.56 84.92 

0.01 32 4 15 0.41 83.87 88.63 

0.01 32 6 15 0.4 85.22 89.48 

0.01 32 7 15 0.4 84.68 80.36 

 

In Table 4.27, it is seen that the most successful graphics of the EfficientNet 

B6 model are formed at a learning rate of 0.05. Among all EfficientNet architectures, 
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EfficientNet B6 is the best model for both training loss and training accuracy. Looking 

at Table 4.29 for the test results of EfficientNet B6, it is seen that EfficientNet B6 has 

the worst total test time with 9.90 seconds and the worst precision with 0.79. 

 

Table 4.27: Grid Search Performances of EfficientNet B6. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 15 0.46 81.99 84.16 

0.015 32 5 15 0.27 89.35 84.22 

0.02 32 5 15 0.24 89.98 86.43 

0.03 32 5 15 0.21 91.94 87.82 

0.04 32 5 15 0.2 91.66 81.23 

0.05 32 5 15 0.17 93.93 82.67 

0.01 8 5 15 0.26 89.58 80.37 

0.01 16 5 15 0.26 90.02 83.25 

0.01 64 5 15 0.69 55.75 52.83 

0.01 128 5 15 0.68 59.66 51.25 

0.01 256 5 15 0.69 59.62 52.41 

0.01 32 3 15 0.45 84.68 80.56 

0.01 32 4 15 0.45 82.8 87.8 

0.01 32 6 15 0.37 87.72 80.74 

0.01 32 7 15 0.34 85.79 86.77 

 

Table 4.28: Grid Search Performances of EfficientNet B7. 

Learning 

Rate 

Batch 

Size 

Early 

Stopping 

Patience 

Epochs 

Before 

Stopping 

Training 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

0.01 32 5 15 0.23 90.9 80.73 

0.015 32 5 15 0.28 88.75 84.17 

0.02 32 5 15 0.24 90.34 86.91 

0.03 32 5 15 0.21 91.94 86.02 

0.04 32 5 15 0.18 92.58 82.94 

0.05 32 5 15 0.19 92.18 82.96 

0.01 8 5 15 0.27 89.27 80.24 

0.01 16 5 15 0.26 89.07 80.53 

0.01 64 5 5 0.69 58.94 52.83 

0.01 128 5 6 0.69 50.6 51.48 

0.01 256 5 9 0.69 59.38 51.93 

0.01 32 3 15 0.69 57.86 51.35 

0.01 32 4 15 0.35 87.15 87.26 

0.01 32 6 15 0.37 87.03 86.72 

0.01 32 7 15 0.35 86.95 90.33 

 

According to Table 4.28, EfficientNet B7 gave the most promising graphics at 

0.01 learning rate and 32 batch size. The training performance of EfficientNet B7, 
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when compared to other EfficientNet models, was the model that gave the worst results 

with 0.23 training loss and 90.9% test accuracy. When Table 4.29 is examined in terms 

of test results, although the EfficientNet B7 model has a better total test time value 

than EfficientNet B6, it could not exceed EfficientNet B6 in test accuracy. 

 

Table 4.29: Test Results of EfficientNet B0, EfficientNet B1, EfficientNet B2, EfficientNet 

B3, EfficientNet B4, EfficientNet B5, EfficientNet B6, and EfficientNet B7 on Construction 

Machinery Images. 

Model 
Accuracy 

(%) 

Total Time 

(sec) 
Loss Precision Recall  

F1 

Score 

EfficientNet B0 83.33 8.31 0.31 0.81 0.89 0.84 

EfficientNet B1 88.17 7.20 0.22 0.86 0.83 0.84 

EfficientNet B2 82.25 7.41 0.33 0.83 0.93 0.88 

EfficientNet B3 98.38 9.22 0.08 0.97 0.81 0.88 

EfficientNet B4 89.78 8.32 0.17 0.89 0.86 0.87 

EfficientNet B5 89.12 9.29 0.27 0.85 0.87 0.85 

EfficientNet B6 89.78 9.90 0.26 0.88 0.79 0.83 

EfficientNet B7 87.63 8.75 0.29 0.86 0.86 0.86 

 

 

Figure 4.31: Accuracy vs. Epoch Graph of EfficientNet B0. 
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Figure 4.32: Loss vs. Epoch Graph of EfficientNet B0. 

 

 

Figure 4.33: Accuracy vs. Epoch Graph of EfficientNet B1. 
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Figure 4.34: Loss vs. Epoch Graph of EfficientNet B1. 

 

 

Figure 4.35: Accuracy vs. Epoch Graph of EfficientNet B2. 
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Figure 4.36: Loss vs. Epoch Graph of EfficientNet B2. 

 

 

Figure 4.37: Accuracy vs. Epoch Graph of EfficientNet B3. 
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Figure 4.38: Loss vs. Epoch Graph of EfficientNet B3. 

 

 

Figure 4.39: Accuracy vs. Epoch Graph of EfficientNet B4. 
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Figure 4.40: Loss vs. Epoch Graph of EfficientNet B4. 

 

 

Figure 4.41: Accuracy vs. Epoch Graph of EfficientNet B5. 
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Figure 4.42: Loss vs. Epoch Graph of EfficientNet B5. 

 

 

Figure 4.43: Accuracy vs. Epoch Graph of EfficientNet B6. 
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Figure 4.44: Loss vs. Epoch Graph of EfficientNet B6. 

 

 

Figure 4.45: Accuracy vs. Epoch Graph of EfficientNet B7. 
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Figure 4.46: Loss vs. Epoch Graph of EfficientNet B7. 
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CHAPTER V 

 

DISCUSSION 

 

In this chapter, the models trained and tested in the previous chapter were 

subjected to an additional testing phase. The purpose of this test phase, which consists 

of satellite images of different difficulty levels, is to measure the classification 

performance of all models in this thesis under different conditions. 6 satellite images, 

3 of which are construction machines and 3 of which are non-construction machines, 

at easy, medium, and hard levels, which the models have never seen before, were 

examined. At the end of this chapter, the performances of the models in these satellite 

images were compared and the most successful model was selected. 

 

5.1 MODEL TESTING WITH IMAGES OF DIFFERENT DIFFICULTY 

LEVELS 

When the results obtained in this thesis are compared with the results in the 

literature, some points draw attention. When the study conducted by Arabi et al. [50] 

is examined, it is seen that there are 3271 images in the dataset they used. This number 

is 21 more than the number of images used in this thesis. In the study, which includes 

street view images, MobileNet was used as the base model. The minimum precision 

value is 83.70% for the excavator, while the maximum precision value is 96.94%, 

which belongs to the mixer truck. When the results of the MobileNet model in Arabi 

et al.'s study and the MobileNet architectures in this thesis are examined, it is seen that 

the lowest precision among the MobileNet architectures in this thesis belongs to 

MobileNetV2 with 86.16%. 

The total number of images of the dataset used by Guo et al. [33] in their 

construction machinery study with drone images is 240. The authors used 216 images 

of this dataset for training and 24 for testing. Although Guo et al.'s VGG16 model 
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achieves 98.8% precision and surpasses the VGG16 model in this thesis, this 

value, which was tested with only 24 images, is not very healthy. 

Looking at the literature, the dataset used in Li et al.'s [38] study is at an 

important point. The aim of the study, which performs binary classification with 

satellite images, just like in this thesis, is to detect cloud and non-cloud images. Li et 

al. used a dataset of more than 200.000 satellite images for their study. As a result of 

the study, the test accuracy value was 0.96 and the F1 value was 0.88. Although the 

highest test accuracy value in this thesis is 0.98 and the highest F1 value is 0.92, it is 

not interesting that these values are higher than Li et al. because the dataset used in 

this thesis is smaller than the dataset used in Li et al.'s study. 

When the general model results up to this point are examined, it is seen that 

some models attract more attention than others and are one step ahead. When the total 

training time data is examined, it is seen that AlexNet is the fastest trained model with 

357.82 seconds, while EfficientNet B5 is the slowest trained model with 1179.78 

seconds. In addition to this information, AlexNet's calculation time for an epoch during 

training gave the fastest result with 32.53 seconds, while EfficientNet B5 gave the 

slowest result with 84.27 seconds.  

When the training loss values are examined, it is seen that VGG19 is the model 

with the least loss value with 0.1. The highest loss values with 0.23 belong to 

EfficientNet B1, EfficientNet B2, and EfficientNet B7 models. VGG19 has not only 

the lowest loss but also the highest training accuracy at 96.33%. In contrast, ResNet34 

has the lowest training accuracy of 90.17%.  

Considering the test results, the remarkable speed of AlexNet during the 

training process continued to be effective when examining the test data. AlexNet was 

again the fastest model by examining the test dataset in a total of 7.10 seconds. On the 

other hand, DenseNet169 analyzed the test dataset in 11.08 seconds and was the 

slowest model.  

Considering the test accuracy, test loss, and precision values, it can be easily 

said that the EfficientNet B3 and DenseNet121 models are at completely opposite 

poles. This is because the test accuracy, test loss, and precision values of EfficientNet 

B3 have the highest values with 98.38%, 0.08, and 0.97, respectively, while the values 

provided by DenseNet121 have the lowest values with 75.80%, 0.47, and 0.79, 
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respectively. When the recall values are examined, the difference between 

DenseNet169 and ResNet152 models is very large. While DenseNet169 gave the best 

results with a recall value of 0.97, ResNet152 gave the worst result with a recall value 

of 0.77. In addition to these comparisons, on the basis of the F1 score, VGG19 gave 

the highest result with 0.92, while ResNet152 gave the lowest result with 0.83. 

The purpose of this evaluation phase is to see the responses of the models 

trained for this thesis to images of different difficulty levels. The evaluation results 

obtained at the end of the training processes of deep learning algorithms are important 

to measure the success of the model. Unfortunately, it is not entirely correct to make 

an inference just by examining the training accuracy of a model. It is a very accurate 

way to give some images that the model has not seen before as input and see its reaction 

to those images. 

To put this thesis on a fairer ground, a total of 6 satellite images, 3 of which are 

construction machines and 3 of which are non-construction machines, were taken from 

Google Earth. These images, which were determined as easy, medium, and difficult to 

classify, were placed in each difficulty level as 1 construction machine and 1 non-

construction machine. Images can be viewed in detail in Figure 5.1, 5.2, 5.3, 5.4, 5.5, 

and 5.6. 

 

 
Figure 5.1: Easy-to-Classify Construction Machine Satellite Image. 
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Figure 5.2: Easy-to-Classify Non-Construction Machine Satellite Image. 

 

 
Figure 5.3: Medium-to-Classify Construction Machine Satellite Image. 
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Figure 5.4: Medium-to-Classify Non-Construction Machine Satellite Image. 

 

 
Figure 5.5: Hard-to-Classify Construction Machine Satellite Image. 
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Figure 5.6: Hard-to-Classify Non-Construction Machine Satellite Image. 

 

As a piece of detailed information, satellite images from Google Earth cannot 

always provide the same quality resolution as images taken with a digital camera 

because Google Earth works with different satellite image providers. 

External factors such as shadow, an interlacing of multiple objects, and objects 

that are very similar to a construction machine are some of the factors that affect the 

difficulty of the images. The reason why Figure 5.1 and Figure 5.2 are easy-to-classify 

satellite images is that there is nothing to cause confusion. Especially when Figure 5.1 

is examined, all the construction machines captured in the satellite image can be seen 

clearly. 

Figure 5.3 is a medium-to-classify satellite image because the shadow from the 

trees around the construction machine is worthy of attention. The reason why Figure 

5.4 is a medium-to-classify satellite image is that the yellow rectangular object in the 

middle of the image resembles a work machine. A model should not be confused by 

this similarity. 

The construction machines in Figure 5.5 look smaller and have lower resolution 

compared to other satellite images. In fact, some parts of construction machines are 

not fully visible due to satellite image providers. This makes Figure 5.5 a hard-to-
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classify satellite image. Figure 5.6 is a hard-to-classify non-construction machine 

image, as Figure 5.6 has more of a construction machine-like image than Figure 5.4, 

and the yellow vehicle on the left side of the satellite image is likely to cause confusion. 

 

Table 5.1: Classification Performances of All Models at Different Difficulty Levels. 

Models 
Easy to classify Medium to classify Hard to classify 

CM NCM CM NCM CM NCM 

AlexNet ✓ ✓ ✓ ✓   

VGG16 ✓ ✓ ✓ ✓  ✓ 

VGG19 ✓ ✓ ✓ ✓  ✓ 

ResNet-18 ✓ ✓ ✓ ✓   

ResNet-34 ✓ ✓  ✓ ✓ ✓ 

ResNet-50 ✓ ✓ ✓ ✓  ✓ 

ResNet-101 ✓ ✓ ✓ ✓ ✓ ✓ 

ResNet-152 ✓ ✓ ✓ ✓ ✓ ✓ 

MobileNet V2 ✓ ✓ ✓ ✓ ✓ ✓ 

MobileNet V3 Small ✓ ✓ ✓ ✓  ✓ 

MobileNet V3 Large ✓ ✓ ✓ ✓ ✓ ✓ 

DenseNet-121 ✓ ✓ ✓ ✓  ✓ 

DenseNet-161 ✓  ✓ ✓  ✓ 

DenseNet-169 ✓ ✓  ✓  ✓ 

DenseNet-201 ✓ ✓ ✓ ✓  ✓ 

EfficientNet B0 ✓ ✓ ✓ ✓ ✓ ✓ 

EfficientNet B1 ✓ ✓ ✓ ✓ ✓ ✓ 

EfficientNet B2 ✓ ✓ ✓ ✓  ✓ 

EfficientNet B3 ✓ ✓ ✓ ✓ ✓ ✓ 

EfficientNet B4 ✓ ✓ ✓ ✓ ✓ ✓ 

EfficientNet B5 ✓ ✓ ✓ ✓  ✓ 

EfficientNet B6  ✓ ✓ ✓ ✓ ✓ 

EfficientNet B7 ✓ ✓ ✓ ✓ ✓ ✓ 

 

In Table 5.1, classification performances of all models trained in this thesis on 

satellite images at different difficulty levels are shown. If a model classified an image 

correctly, it was ticked, and box was marked with a cross, if it was classified 

incorrectly.   

When the predictions for Figure 5.1, which is an easy to classify image, are 

examined, it is seen that all models make correct predictions except for EfficientNet 
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B6. On the other hand, only the DenseNet-161 model misclassified Figure 5.2, which 

is an easy to classify non construction machine image. 

Only ResNet-34 and DenseNet-169 misclassified Figure 5.3, which is a 

medium-to-classify construction machine image, while other models predicted 

correctly. In Figure 5.4, which is a medium to classify construction machine image, all 

models have been classified correctly. 

When it came to hard-to-classify satellite imagery, things started to get messy. 

Among the 23 models, 11 models correctly classified Figure 5.5, which is the image 

of a hard-to-classify construction machine, while the remaining 12 models 

misclassified Figure 5.5. 

When the predictions of the models for the hard to classify non construction 

machine satellite image in Figure 5.6 are examined, all other models have correctly 

classified Figure 5.6, except for AlexNet and ResNet-18 models. 

When Table 5.1is examined, it is seen that 9 models out of 23 correctly classify 

all satellite images at all difficulty levels. These models are ResNet-101, ResNet-152, 

MobileNet V2, MobileNet V3 Large, EfficientNet B0, EfficientNet B1, EfficientNet 

B3, EfficientNet B4, and EfficientNet B7. 

When the overall model results of the architectures that predict all images 

correctly are evaluated, EfficientNet B3's test accuracy value of 98.38%, test loss value 

of 0.08 and precision of 0.97 on test images distinguish EfficientNet B3 from other 

models. EfficientNet B3's outstanding success in both the test dataset consisting of 

10% of the training dataset and its success on images with different difficulty levels 

made EfficientNet B3 the most successful model in this thesis. 



 
 

82 

 

CHAPTER VI 

 

CONCLUSION 

 

The ever-changing and developing technology does not limit the use of 

construction machinery only to the works carried out in legal ways, but it can also 

continue its activities in areas where fixed-location cameras and drone flights are likely 

to be inaccessible. Both for this point and in situations where drone activities may be 

limited, the importance of easy and global access of satellite images emerges. With 

construction machinery detection applications performed using satellite images, both 

manpower and time can be saved. This technology can be used in many large-scale 

construction projects as well as in any sector other than the construction industry. 

Each construction project has its specific purpose and responsibilities to fulfill. 

The level of complexity and size of the projects vary according to the purpose they 

address. In addition, the size of a project depends on how complex it is. According to 

Vital et al. [60] the more complex a project, the larger the construction site. 

Construction projects can be examined under four headings in terms of 

complexity and size of construction sites according to the needs of the society they 

serve. The first and most common of these are residential projects. The level of 

complexity of residential construction sites is not high considering the whole 

construction industry. Therefore, it is difficult to say that residential projects are large 

construction sites. Secondly, when commercial projects are examined, they have a 

more complex structure than residential projects in terms of purpose. Since 

commercial buildings do not have to be as close to the center of the city as residential 

buildings, the area covered by the construction site tends to be wider. When industrial 

structures are considered as the third title, it is seen that the construction site size and 

complexity have increased even more. Especially considering the size and complexity 

of industrial mass production factories, it is seen that it is generally spread over large 

areas in parts far from the city. Fourthly, if infrastructure projects are examined, it is
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not even sincere to see how large and complex these projects are. Especially 

when the road projects are taken into account, the size of the construction site spreads 

kilometers. 

Drones are mostly used in relatively small or medium-sized construction sites 

for construction activity monitoring. Although drones perform great work, they can be 

inefficient when it comes to very large construction sites. When the issue is considered 

in terms of manpower, time consumption and cost, using satellite images instead of 

drones for construction activity monitoring in large sites can be a promising solution. 

In this thesis, construction machinery detection is performed using satellite 

images. Satellite images from various states of The United States of America were 

used to train 23 pre-trained deep learning models with the transfer learning method. 

The custom construction machinery dataset consisting of 3250 satellite images with 

different kind of construction machinery placed on different ground types is created 

from scratch using Google Earth. To the best of the authors' knowledge, no study 

detects construction machinery using satellite images although few studies in the 

literature perform construction machinery detection using drone images. 

For the sake of this thesis, 23 different models, each with different parameter 

numbers and depths, were trained using the Python programming language. After the 

training phase, the results of all models were analyzed and EfficientNet B3 was the 

model that gave the best results. 

6 new satellite images at 3 different difficulty levels were taken using Google 

Earth in order to obtain fairer, accurate, and healthy results without relying only on the 

training results. Satellite imagery of 1 construction machinery and 1 non-construction 

machinery at each difficulty level was used to test all models. As a result of this test 

phase, the EfficientNet B3 model, which correctly classifies 6 images at easy, medium, 

and hard difficulty levels, was chosen as the most efficient and successful model in 

this thesis. 

Although the success of EfficientNet B3 in detecting construction machinery 

using satellite images is an indisputable fact, more efficient models can be obtained 

with more types of construction machinery, datasets containing more satellite images, 

and more different hyper parameter research. 
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As future work, danger zones of construction machineries can also be detected 

in addition to the construction machinery classification. In the future, this technology 

can be used in construction sites that can be viewed with real-time live satellite images, 

and can be combined with a system that warns before occupational accidents occur. 

Construction sites inherently contain too many dangerous items. These items, which 

directly affect the lives of both workers and employers, can cause serious injuries or 

even death. Like any issue concerning human life, construction sites must have high 

priorities that control the dangerous workflow. The concept of construction activity 

monitoring comes to the fore in this regard. Every construction machinery has a 

hypothetical danger zone that can lead to fatal accidents. The zone, which is almost 

impossible to measure with the human eye at a single glance, can be detected using 

satellite imagery and artificial intelligence. There are some blind spots where 

construction machine operators cannot interfere. Any worker in the vicinity of a 

construction machine during operation may not be noticed and have a fatal accident 

due to these blind spots. The safety zone feature can be used to analyze the entire 

construction site in large projects that have access to live satellite imagery. 

Additionally, detecting construction machinery from satellite imageries can be used 

for detecting illegal logging or unlicensed constructions from satellite surveillance 

systems. 
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