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ABSTRACT 

 

Machine Learning Applications in Control Systems 

 

EREN, Doruk 

M.Sc. in Electrical and Electronics Engineering 

 

Supervisor: Asst. Prof. Dr. Oğuzhan ÇİFDALÖZ 

Co-Supervisor: Assoc. Prof. Dr. Erdem AKAGÜNDÜZ 

January 2023, 57 pages 

 

In this thesis, the use of Long Short-Term Memory (LSTM) networks as a 

potential alternative to Kalman filters in the task of state estimation was investigated. 

State estimation involves inferring the true state of a system from noisy or incomplete 

observations. Kalman filters are a widely used technique for this purpose, but they 

have certain limitations, such as the assumption of linearity. 

LSTMs are a type of recurrent neural network (RNN) that have demonstrated 

effectiveness in modeling complex, nonlinear systems in tasks such as language 

translation and image captioning. It was proposed that LSTMs may also be capable of 

accurately estimating the state of dynamic systems. 

To test this hypothesis, the performance of LSTMs of differing learning 

parameters and a Kalman filter was compared on a non-linear system benchmark 

dataset. The training of LSTM models required a considerable amount of processing 

power and time, which posed a challenge on consumer grade home computing devices. 

Efforts were made to optimize the training process, but the results were not entirely 

satisfactory. 

It is important to note that the scope of this investigation was limited to 

consumer grade computing devices, and the findings about LSTMs should not be taken 

as definitive. Further research using more powerful computing resources may be 

necessary to fully assess the capabilities of LSTMs in the task of state estimation. 
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ÖZ 

 

Kontrol Sistemlerinde Makine Öğrenim Uygulamaları 

 

EREN, Doruk 

Elektrik-Elektronik Mühendisliği Yüksek Lisans 

 

 Danışman: Dr. Öğr. Üyesi. Oğuzhan ÇİFDALÖZ 

Ortak Danışman Doç. Dr. Erdem AKAGÜNDÜZ 

Ocak 2023, 57 sayfa 

 

Bu tezde Kalman filtresi ile durum tahmini yapaktansa, bu görevi Uzun Kısa 

Dönemli Bellek (LSTM) ağına vermeyi bir potansiyel alternatif olarak kunlanmanın 

etkileri araştırılmıştır. Durum tahmini, bir sistemin gereç halini gürültüle veya tam 

olmayan gözlemlemelerden çıkartmaktır. Kalman filterler bu amaçta yaygın olarak 

kunlanılan bir tekniktirler, fakat bazı kısıtlamarı vardır, örneğin çıkartma yaptıkları 

sistemin doğrusal olduğunu varsaymaları gibi. 

 Yinelemeli Sinir Ağlarının (RNN)lerin bir türü olan LSTM’ler, dil çevirisi ve 

görütü alt yazısı olusturmak givi karmaşık ve dorusal olamayan sistemlerin 

modellenmesinded etkinlik gösterebilirler. Bu yüzden LSTM’lerin dinamik 

sistemlerin durumlarını doru şekilde tahmin etme yeteneğine sayip olabilecekleride 

önerildi. 

Bu hipotezi deneyebilmek için farklı örenme parametrelerine sahip LSTM’lerin 

performansları ile bir Kalman Filtersini performansı doğrusal olmayan bir sistemde 

karşılaştırıldı. LSTM modellerinin eğitimi, önemli miktarda işlem gücü ve zaman 

gerektiriyordu, bu da tüketici sınıfı ev işlem cihazlarında zorluk yarattı. Eğitim 

sürecini optimize etmek için çabalar sarf edildi, ancak sonuçlar tamamen tatmin edici 

değildi.  

Bu araştırmanın kapsamı tüketici sınıfı ev işlem cihazlarıyla sınırlı 

olduğundan, bu sonuçların LSTM’ler için çıkan bulguların kesin olarak kabul 
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edilmemesi gerekir. Durum tahmini görevinde LSTM’lerin kabiliyetlerini tam olarak 

değerlendirmek için daha güçlü bilgi işleme cihazları gerekli olarbilir. 

 

Anahtar Kelimeler: Uzun kısa dönemli bellek (LSTM), Kalman filresi, Kontrol 

sistemleri, Makine öğrenimi, Doğrusal olmayan 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 MOTIVATION AND AIM OF THE STUDY 

Control systems are systems designed to manage devices or systems. These 

devices can range from the simple thermostat inside a home to the complex machines 

and processes used to control industrial systems, machines and processes. Kalman 

Filters also known as linear quadratic estimators are algorithms that uses 

measurements over time along with any inaccuracies in said measurements to create a 

more accurate result than any single measurement alone using joint probability 

distribution. Kalman Filters are recursive estimators and therefore do not require a 

history of observations nor estimates. Machine learning is an umbrella term used to 

describe a way to, in theory, teach computer systems how to do complex and 

sometimes impossible-to-code actions by training data. Long short-term memory 

(LSTM) is a machine learning system that is well suited to classify, process or make 

predictions based on data collected over time. 

One of the most common issues with control systems in real world conditions 

is that the required information for the control system to control all states can 

sometimes be unavailable to access due to either limited sensors or due to certain states 

simply being hidden. A common method to deal with limited sensors and hidden states 

is to use a Kalman filter. The method in creating a Kalman filter uses the systems’ state 

space model and therefore the accuracy and the ability of the Kalman filter is directly 

proportional to the accuracy of the model. Kalman filters therefore are rather 

computationally expensive since Kalman filters are technically simulating the system 

they are trying to estimate. An LSTM has the capability to replace the processing and 

predicting current and future data that would be the result of a Kalman Filter while 

using less computational power when pretrained and deployed, as well as under ideal 

situations, adapt to changes to the preset model, since instead of being fed an “expected 
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parameters” list, the LSTM learns possible results from possible inputs and 

estimates from that step onward.  

 

1.2 FUNDAMENTALS 

Control Systems are systems that take in inputs from the world and manipulate 

them mathematically so that the resultant output is as desired. To achieve this effect, 

control systems can operate in a variety of methods, and under different conditions. 

Categorization in control systems can be based on feedback type, closed loop or open 

loop, the type of signal used, continuous or discrete, and finally based on the number 

of inputs and outputs, SISO (Single Input Single Output) or MIMO (Multiple Inputs 

Multiple Outputs). [12] 

 

1.2.1 Closed Loop Control Systems 

 Closed loop control systems are control systems, where the output is fed back 

into the control system as an input, thus allowing the control system to be able to 

monitor and react to the changes in the output as well as the input. These systems are 

more accurate as the reaction from the system is based on the intended results, however 

such systems are more difficult to design, and more expensive. 

 

 

Figure 1.1: A Block Diagram of a Closed Loop Control System [13] 

 

1.2.2 Open Loop Control Systems 

Open loop control systems are control systems, where the output is not fed back 

into the control system as an input. Since the control system is unaware of the output, 
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the input is the only factor determining the actions taken by the system to achieve a 

desired result. These systems are technically not automatic, since they cannot adapt to 

changes. Due to having no feedback, they are sometimes also called non-feedback 

control systems. 

 

 

Figure 1.2: A Block Diagram of an Open Loop Control System [13] 
 

1.2.3 Continuous Control Systems 

Continuous control systems are systems that continuously monitor and control 

a process or physical variable. These systems are designed to keep a process within a 

certain range or to track a specific set point. They're used in a wide range of operations, 

such as temperature control, speed control, position control, and chemical process 

control. They're extensively used in artificial processes, robotics, and other areas 

where precise control is warranted.  

 

 

Figure 1.3: A basic representation of a Continuous Control System [9] 
 

1.2.4 Discrete Control Systems 

Discrete control systems use discrete input signals to extrapolate discrete 

output signals. The variables used change predominantly in a discontinuous manner. 

These changes occur on specific time intervals and depending on the rate at which 

each next discrete step is taken (the sampling rate) approaches or strays aways from a 

continuous control system. 
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Figure 1.4: A basic representation of a Discrete Control System [9]  

 

1.2.5 Machine Learning 

Machine Learning is a topic under the umbrella of computer science. Machine 

Learning deals with creating algorithms that use collection of examples of prior 

experiences to become useful. Machine learning might therefore be defined as 

gathering a dataset, and then training a statistical model according to the dataset. [4] 

How well a statistical model can be trained depends on the method used in training the 

statistical model. 

The different training methods can be summarized as Supervised, 

Unsupervised, Semisupervised and Reinforcement learning. Supervised learning is 

where the dataset is clearly labeled, so the training doesn’t have to guess as to what 

the dataset contains, the main goal is to allow the training to focus on the connections 

between inputs and outputs. Unsupervised learning therefore is the opposite, where the 

dataset is not labeled, thus allowing for the statistical model to only find patterns, this 

form of training works well for dimensionality reduction, or outlier detection. 

Semisupervised learning is where a dataset that is both labeled and not labeled is used, 

with non-labeled data count being higher, which helps in the training process. [3] 

Reinforcement learning is where the statistical model is fed information from the states 

directly, and where the actions feedback to the states directly, a sort of trial-and-error 

method where the statistical model measures the responses to the changes made by 

itself and modifies itself so that the responses to the changes are in the parameters of 

the intended target. 

 

1.2.6 Long Short Term Memory 

Long Short Term Memory (LSTM) are a type of Recurant Neural Networks 

(RNN) first proposed by Schmidhuber and Hochreiter [8] to allow for learning 
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algorithms to store information over extended time intervals. LSTM’s are able to be 

used for multitudes of issues, and therefore are the most common type of RNN in use. 

LSTM’s main role is sustained by a ‘cell state’ inside a memory cell. This cell state 

can be interacted with, and information can be removed or added inside the memory 

cell. 

 

 

Figure 1.5: A LSTM memory cell [7] 

 

1.3 LITERATURE REVİEW 

 There Machine Learning Systems and all possible applications of Machine 

learning systems are comparably new topics, due to the interest in the possibilities, 

there are multiple studies on different use cases. The studies with goals that are 

relevant and helped mold this study are summarized below. 

 

1.3.1 Literature Review on Control Systems with Machine Learning 

 The major issue with control systems, that machine learning hoped to solve 

initially was identification of a nonlinear dynamic system. In a study done by B. 

Fernandez, A. G. Parlos and W. K. Tsai in the year 1990 a multilayer perceptron 

network was used to identify nonlinear dynamic systems from a black box where only 

inputs and outputs were available as input for the machine learning system [2]. While 

the goal of this study differs from the identification goal of the 1990 paper, the use of 

recurrent dynamic networks is a good baseline. In the 2019 paper by A. Ata, M.A. 

Khan, S. Abbas, G. Ahmad and A. Fatima design a system capable of predicting and 
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reacting before congestion occurs in a traffic control system via the use of artificial 

neural networks [1]. While the usage of a machine learning system is predominantly 

still in the identification stage, this study does highlight the ability of machine learning 

systems to be able to adapt to previous events and use this adaptation to predict future 

events. 

 In a paper from 2020 the team of Plasmas 27 used a machine learning 

algorithm, trained on data from a real-time control system, to control and predict 

events in a tokamak style plasma fusion reactor [14]. While the study only achieved 

around 90% accuracy with true positives and around 10% erroneous false positives, 

the possibility of further success is very possible. During a 2020 study S. Yang, M. P. 

Wan, W. Chen, B. F. Ng and S Dubey explored the use of a machine learning based 

system to control a building in real-time [10]. Using machine learning as again a way 

to model a changing environment. By the methodology used, a thermal energy saving 

of 58.5% in one case, and 36.7% in another had been achieved. While these numbers 

are high, these savings are only the amount saved from the initial non-machine learning 

based control system, and therefore are not the actual saving to energy consumption if 

no control system was present beforehand. 

 All these studies share the understanding that while machine learning systems 

are impressive in what they can achieve, the need for prior data, and multiple learning 

cycles cause machine learning systems to be only applicable in areas where datasets 

have been gathered, and extensively moderated. 

 

1.3.2 Literature Review on Control Systems with LSTM’s 

 Within the umbrella of machine learning, LSTMs are a great addition to control 

systems due to their high adaptability, as well as wide range of use scenarios. During 

a 2019 study S. M. Gharghory explored the use of a LSTM to predict the temperature 

and humidity inside a greenhouse. The LSTM trained with the data collected over the 

course of 27 days led to a root mean square error of just 0.16 and 0.62 for temperature 

and humidity respectively [6]. 

 During a 2020 paper by C. Su, X. Wang, L. Shen and H. Yu studied the flight 

of an UAV (unmanned aerial vehicle). Noticing the missing areas in the control system 

for a UAV during aggressive maneuvering, the team placed a LSTM based motion 
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command generation method to better handle the coupling and singularity problems 

that occurred without the additional control systems [11].  

 General interest in LSTM’s has only increased as this study started, and new 

studies were released during the duration of this study with overlapping purposes. A 

2019 study by Z. Zhou, R. Zhang and Z Zhu explored the use of Kalman filtering with 

a LSTM for image-based visual servo control. The team added an LSTM with a robust 

Kalman filtering algorithm, allowing the Kalman filtering that is usually sensitive to 

noise to gain a strong anti-noise interference ability [16]. 

 A 2020 study by Y. Tian, R. Lai, X Li, L Xiang, and J Tian used LSTM’s 

alongside Kalman filters. Using an LSTM alongside a Kalman filter, this study 

managed to decrease the estimator complexity while allowing for the combined system 

to show better generalization and convergence abilities [15]. 

 During a 2022 study F. Song, Y. Li, W. Cheng, L. Dong, M. Li and J. Li worked 

on improving a Kalman filter based on a LSTM for the purpose of tracking nonlinear 

radar targets. Using 3 separate LSTMs to calculate motion equation, motion noise and 

measurement noise, and then using these calculations as the input of a Kalman filter. 

The end results of this hybrid approach were that the end results were better than either 

Kalman filters or LSTMs could produce on their lonesome [5]. 
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CHAPTER II 

MATHEMATICAL FORMULATION 

 

2.1 INTRODUCTION  

This chapter defines the decision process, and the mathematical calculations 

done for the model that serves as the basis for all the testing during the scope of this 

study. All linearization done to the non-linear model, and how the different equations 

describe the model will be expanded upon. 

 

2.2 LAGRANGIAN APPROACH 

 The first step is to find the Lagrangian Function by computing the difference 

between the kinetic and potential energy of a system. By letting 𝐸௣ denote the potential 

energy associated with the system and 𝐸௞ denote the kinetic energy of the system, the 

Lagrangian of the system is given by: 

 

𝑳 = 𝑬𝒌 − 𝑬𝒑 
Eq. 2. 1 

 
After the Lagrangian Function is found, the dynamic equation can be expanded 

upon. If the dissipative forces or torques on 𝜃௜ can be defined as 𝐹ఏ೔
 then the dynamical 

equations that denote the full system may be written as below: 

 

𝒅

𝒅𝒕
ቆ

𝜹𝑳

𝜹𝜽̇𝒊

ቇ −
𝜹𝑳

𝜹𝜽𝒊
= 𝑭𝜽𝒊

 

Eq. 2. 2 
 

where 𝜃௜ denotes the states. 
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2.3 DERIVATION OF FIXED-BASE INVERTED PENDULUM MODEL 

A fixed base inverted pendulum can be located on any point along the circle of 

radius 𝑟௣ depending on the angle at the base. This can be represented with the equation 

below: 

 

𝒓𝒑 = ቈ
𝒍𝒄𝒈𝒔𝒊𝒏𝜽

𝒍𝒄𝒈𝒄𝒐𝒔𝜽
቉ 

Eq. 2. 3 
Then the total kinetic energy of the system can be defined as: 

 

𝑬𝒌 =
𝟏

𝟐
𝒎𝒓̇𝒑 ∗ 𝒓̇𝒑 +

𝟏

𝟐
𝑰𝒄𝒈𝜽̇𝟐 

Eq. 2. 4 
 

While the total potential energy of the system is: 

 

𝑬𝒑 = 𝐦𝒈𝒍𝒄𝒈𝒄𝒐𝒔𝜽 
Eq. 2. 5 

 

Therefore, the Lagrangian for the fixed base inverted pendulum: 

 

𝐿 = 𝐸௞ − 𝐸௣ =
1

2
൫𝑚𝑙௖௚

ଶ + 𝐼௖௚൯𝜃̇ଶ −  m𝑔𝑙௖௚𝑐𝑜𝑠𝜃 

Eq. 2. 6 
 

2.4 DERIVATION OF THE 2-LINK INVERTED PENDULUM MODEL 

Let the position vector for the first link be: 

 

𝐫𝟏 = ൤
𝒍𝟏 𝒔𝒊𝒏𝜽𝟏

𝒍𝟏 𝒄𝒐𝒔𝜽𝟏
൨ ⇒ 𝒓̇𝟏 = ቈ

𝒍𝟏𝜽̇𝟏 𝒄𝒐𝒔𝜽𝟏

−𝒍𝟏𝜽̇𝟏 𝒔𝒊𝒏𝜽𝟏

቉ 

Eq. 2. 7 
 

Then the total kinetic energy in the first link shown in equation (2.8), the total 

potential energy in the first link is shown in equation (2.9) and the non-conservative 

moment acting on the first link can be seen in equation (2.10) 
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𝑬𝒌𝟏
=

𝟏

𝟐
൫𝒎𝟏𝒍𝟏

𝟐 + 𝑰𝟏൯𝜽̇𝟏
𝟐 

Eq. 2. 8 
𝑬𝒑𝟏

= 𝒎𝟏𝒈𝒍𝟏𝒄𝒐𝒔𝜽𝟏 
Eq. 2. 9 

−𝒄𝟏𝜽̇ 
Eq. 2. 10 

 

Similarly, the second links position vector can be described via equation (2.11). 

 

𝒓𝟐 = ൤
𝑳𝟏 𝒔𝒊𝒏𝜽𝟏ା𝒍𝟐𝒔𝒊𝒏𝜽𝟐

𝑳𝟏 𝒄𝒐𝒔𝜽𝟏 + 𝒍𝟐𝒄𝒐𝒔𝜽𝟐
൨ ⇒ 𝒓̇𝟐 = ቈ

𝑳𝟏𝜽̇𝟏 𝒄𝒐𝒔𝜽𝟏 − 𝒍𝟐𝜽̇𝟐𝒄𝒐𝒔𝜽𝟐

−𝑳𝟏𝜽̇𝟏 𝒔𝒊𝒏𝜽𝟏 − 𝒍𝟐𝜽̇𝟐𝒔𝒊𝒏𝜽𝟐

቉ 

Eq. 2. 11 
 

Using equation (2.11) the kinetic energy in the second link can be described by 

equation (2.12), the potential energy by equation (2.13) and the non-conservative 

moments by equation (2.14). 

 

𝑬𝒌𝟐
=

𝟏

𝟐
𝒎𝟐𝑳𝟏

𝟐𝜽̇𝟏
𝟐 +

𝟏

𝟐
൫𝒎𝟐𝒍𝟐

𝟐 + 𝑰𝟐൯𝜽̇𝟐
𝟐 + 𝒎𝟐𝑳𝟏𝒍𝟐𝜽̇𝟏𝜽̇𝟐𝒄𝒐𝒔(𝜽𝟏 − 𝜽𝟐) 

Eq. 2. 12 
𝑬𝒑𝟐

= 𝒎𝟐𝒈𝑳𝟏𝒄𝒐𝒔𝜽𝟏 + 𝒎𝟐𝒈𝒍𝟐 𝐜𝐨𝐬 𝜽𝟐 
Eq. 2. 13 

−𝒄𝟐𝜽̇ 
Eq. 2. 14 

 

Combining equations (2.7) to (2.14) the Lagrangian for the system using the 

formula in equation (2.15) can be seen in equation (2.16) 

 

𝐋 = ෍ 𝑬𝒌𝒊
𝒊

− ෍ 𝑬𝒑𝒊
𝒊

  

Eq. 2. 15 

𝐋 =
𝟏

𝟐
൫𝒎𝟏𝒍𝟏

𝟐 + 𝒎𝟐𝑳𝟏
𝟐 + 𝑰𝟏൯𝜽̇𝟏

𝟐 +
𝟏

𝟐
൫𝒎𝟐𝒍𝟐

𝟐 + 𝑰𝟐൯𝜽̇𝟐
𝟐 + 𝒎𝟐𝑳𝟏𝒍𝟏𝜽̇𝟏𝜽̇𝟐 𝐜𝐨𝐬(𝜽𝟏 − 𝜽𝟐)

− 𝒎𝟏𝒈𝒍𝟏𝒄𝒐𝒔𝜽𝟏 − 𝒎𝟐𝒈𝒍𝟏𝒄𝒐𝒔𝜽𝟏 − 𝒎𝟐𝒈𝒍𝟐𝒄𝒐𝒔𝜽𝟐 
Eq. 2. 16 

 

2.5 FIXED-BASE INVERTED PENDULUM SYSTEM 

 As can be seen below in (Figure 2.1) a single link inverted pendulum has 
multiple variables and parameters that must be considered before mathmatical 
representation can be made. These variables and parameters can be seen below in 
(Table 2.1). 
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Figure 2.1: A 2d Front View Representation of a Fixed Base Inverted Pendulum. 

 
 Table 2.1: Variable and Parameters for Single Link Inverted Pendulum 

 
 Using the information from (Figure 2.1) and (Table 2.1) dynamical equation 

can be calculated. 

 

2.6 DOUBLE INVERTED PENDULUM 

The system used in this project is designed to be a good analog for general 

nonlinear systems. Using the special characteristics of a double inverted pendulum 

system, it becomes possible to test the different computational costs, and accuracies of 

different methodology for finding sensor values without the use of sensors with either 

common filters or machine learning systems. The first step when dealing with this new 

nonlinear system is to simulate the model in MATLAB so that different methods can 

be tested and logged accuratly, efficienctly and consistently. 

 

Identification Symbol Definition Unit 
Variable θ Angle between vertical and pendulum rad 
Variable τ Torque applied to pendulum Nm 

Parameter m Mass of pendulum kg 

Parameter c 
Friction coefficient for motion of 

pendulum 
kg * m/s2 

Parameter g Specific acceleration due to gravity m/s2 

Parameter 𝑙௖௚ Location of center of gravity for the 
pendulum 

m 

Parameter 𝐼௖௚ Inertia acting on the center of gravity of 
the pendulum 

Nm/rad2/s2 
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Figure 2.2: A 2d Front View Representation of a Double Inverted Pendulum. 

 

As can be seen in the figure above (Figure 2.2), the model used during this 

study has a fixed joint and a moving joint. On the fixed joint, where the pendulum 

connects to the ground plane, a motor is fixed such that the angle of the bottom joint 

(fixed joint (𝜃ଵ)) can be controlled via the control system. On the moving joint (upper 

join (𝜃ଶ)) there is an encoder which allows for high speed, accurate logging of the 

angle of the upper joint. Both joints move in the same plane, thus allowing for 1 motor 

to control both angles, albeit with difficulty.  

Compared to the single link inverted pendulum, pendulums of i links have 

slightly different parameters, which can be seen below in (Table 2.2) 

 

Table 2.2: Variable and Parameters for i-Link Inverted Pendulum 

Identification Symbol Definition Unit 
Variable θ1 Angle between vertical and pendulum rad 
Variable θ2 Angle between the ith link and the link 

before 
rad 

Variable τ Torque applied to the first link Nm 
Parameter mi Mass of the ith link kg 
Parameter li Lenght of the ith link m 
Parameter 𝑙௜೎೒

 distance between ith links center of gravity 
and the ith hinge 

m 

Parameter 𝐼௜೎೒
 moment of inertia on the ith link about the 

center of gravity 
Nm/rad2/s2 

Parameter g Specific acceleration due to gravity m/s2 
Parameter ci Friction coefficient for motion of the ith 

link 
kg * m/s2 
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Using information from (Figure 2.2), (Table 2.2), (Equation 2.16) and 

(Equation 2.17) the nonlinear dynamical equation for a 2-link pendulum can be 

calculated as: 

 

𝒎𝟐𝑳𝟏𝒍𝟐 𝐜𝐨𝐬(𝜽𝟏 − 𝜽𝟐) 
Eq. 2. 17 

𝒎𝟏𝒍𝟏
𝟐 + 𝒎𝟐𝑳𝟏

𝟐 + 𝑰𝟏 
Eq. 2. 18 

−𝒎𝟐𝑳𝟏𝒍𝟐 𝐬𝐢𝐧(𝜽𝟏 − 𝜽𝟐) 𝜽̇𝟐
𝟐 + (𝒎𝟏𝒈𝒍𝟏 + 𝒎𝟐𝒈𝑳𝟏) 

Eq. 2. 19 
𝒔𝒊𝒏𝜽𝟏 − 𝒄𝟏𝜽𝟏 + 𝝉 

Eq. 2. 20 
𝒎𝟐𝑳𝟏𝒍𝟐 𝐬𝐢𝐧(𝜽𝟏 − 𝜽𝟐) 𝜽̇𝟏

𝟐 + 𝒎𝟐𝒈𝒍𝟐 𝐬𝐢𝐧 𝜽𝟐 − 𝒄𝟐𝜽̇𝟐 
Eq. 2. 21 

൤
(𝑬𝒒. 𝟐. 𝟏𝟗) (𝑬𝒒. 𝟐. 𝟏𝟖)

(𝑬𝒒. 𝟐. 𝟏𝟖) 𝒎𝟐𝒍𝟐
𝟐 + 𝑰𝟐

൨ ቈ
𝜽̈𝟏

𝜽̈𝟐

቉ = ൤
(𝑬𝒒. 𝟐. 𝟐𝟎)

(𝑬𝒒. 𝟐. 𝟐𝟏)
൨ 

Eq. 2. 22 
 

 Defining the state vector as below in (Equation 2.23) and linearizing (Equation 

2.22) at (Equation 2.24) and (Equation 2.25) yields the state-space representation for 

the 2-link pendulum. 

 

𝒙𝒑 = [𝜽𝟏 𝜽̇𝟐 𝜽̇𝟏 𝜽̇𝟐]𝑻 
Eq. 2. 23 

𝒙𝒑𝒆
= [𝟎 𝟎 𝟎 𝟎]𝑻 

Eq. 2. 24 
𝝉𝒆 = 𝟎 

Eq. 2. 25 
𝑬𝒑𝒙̇ = 𝑨෡𝒑𝒙 + 𝑩෡𝒑𝝉 

Eq. 2. 26 

𝑬𝒑 =     

⎣
⎢
⎢
⎡
𝟏 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 ൫𝒎𝟏𝒍𝟏

𝟐 + 𝒎𝟐𝑳𝟏
𝟐 + 𝑰𝟏൯ (𝒎𝟐𝑳𝟏𝒍𝟐)

𝟎 𝟎 (𝒎𝟐𝑳𝟏𝒍𝟐) 𝒎𝟐𝒍𝟐
𝟐 + 𝑰𝟐 ⎦

⎥
⎥
⎤
 

Eq. 2. 27 

𝑨෡𝒑 = ൦

𝟎    𝟎         𝟏      𝟎
𝟎

𝒎𝟏𝒈𝒍𝟏 + 𝒎𝟐𝒈𝑳𝟏

𝟎

𝟎 𝟎 𝟏
𝟎 −𝒄𝟏 𝟎

𝒎𝟐𝒈𝒍𝟐 𝟎 −𝒄𝟐

൪ 

Eq. 2. 28 

𝑩෡𝒑 = ൦

𝟎
𝟎
𝟏
𝟎

൪ 

Eq. 2. 29 
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(Equation 2.26) can also be written in state-space form as seen below in 

(Equation 2.30). 

 

𝒙̇𝒑 = 𝑨𝒑𝒙𝒑 + 𝑩𝒑𝝉 = ൫𝑬𝒑
ି𝟏𝑨෡𝒑൯𝒙𝒑 + ൫𝑬𝒑

ି𝟏𝑩෡𝒑൯𝝉 
Eq. 2. 30 
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CHAPTER III 

MATLAB SIMULATION 

 

3.1 INTRODUCTION  

The model and state space equations (2.28), (2.29) and (2.30) are moved into 

MATLAB then prepped for simulation by designing a basic control system, so that the 

model’s base responses can be validated.  

As per the focus of this study, following the simulation of the model, an LSTM 

neural network is designed. This network is then modified, so that the changes made 

to the amount of hidden values present in the network, as well as the training duration, 

otherwise known as max epochs of training, can be modified, to see the effects on the 

computational cost during training and operation, as well as changes to the results. 

The system modeled in MATLAB can be seen in Figure 3.2. As can be seen 

the system has 2 joints. The joint connected to the ground plane with the angle 

designation 𝜃ଵ and is connected to a motor directly, thus allowing 𝜃ଵ to be directly 

controlled. 𝜃ଵ is in a plane directly perpendicular to the ground plane. 𝜃ଵ is connected 

to a secondary joint with angle designation 𝜃ଶ. 𝜃ଵ and 𝜃ଶ move in the same plane. The 

distance between the two joints is 𝐿ଵ . 𝐿ଵ  is assumed to be a rod of uniform mass 

distribution. After joint 2 (𝜃ଶ) a secondary rod of uniform mass 𝐿ଶ exists. Joints 1 and 

2 have 0 extra mass, beyond the mass of the rods 𝐿ଵ and 𝐿ଶ in those locations. 

 

3.1.1 Model Importing and Validation 

To begin with, the equations found previously (The state space descriptor 

equations (2.28), (2.29) and (2.30)) are converted to a State Space Matrices where: 

 

𝑨 = 𝒊𝒏𝒗൫𝑬𝒑൯ ∗ 𝑨𝒑 
Eq. 3. 1 
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𝑩 = 𝒊𝒏𝒗൫𝑬𝒑൯ ∗ 𝑩𝒑 
Eq. 3. 2 

𝑪 = [𝟏 𝟎 𝟎 𝟎] 
Eq. 3. 3 

𝑫 = 𝟎 
Eq. 3. 4 

 

By incorporating an integrator in equations (3.1), (3.2), (3.3) and (3.4) along 

with a LQ Servo control system design, the final form of the equations can be attained 

for farther analysis. The goal of this feedback system is to control the angle of the 

bottom link, while maintaining the upper link in a perpendicular position relative to 

the ground, which is represented by 𝜃ଶ = 0. 

 

𝑪𝒑 = [𝟏 𝟎 𝟎 𝟎] 
Eq. 3. 5 

𝑪𝒓 = ൥
𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟏

൩ 

Eq. 3. 6 

𝑪 = ൤
𝑪𝑷

𝑪𝒓
൨ 

Eq. 3. 7 

𝑨𝒂𝒖𝒈 = ቂ
𝟎 𝑪𝑷

𝟎 𝑨
ቃ 

Eq. 3. 8 

𝑩𝒂𝒖𝒈 = ቂ
𝟎
𝑩

ቃ 

Eq. 3. 9 

𝑸 =

⎣
⎢
⎢
⎢
⎡
𝟏𝟎𝟎 𝟎 𝟎

𝟎 𝟏𝟎𝟎 𝟎
𝟎 𝟎 𝟏𝟎

𝟎
𝟎
𝟎

𝟎
𝟎
𝟎

𝟎     𝟎   𝟎 𝟏𝟎 𝟎
𝟎     𝟎   𝟎 𝟎 𝟎⎦

⎥
⎥
⎥
⎤

 

Eq. 3. 10 
𝑹 = 𝟎. 𝟎𝟏 

Eq. 3. 11 
 

Using the equations above from (3.5) to (3.11), the figure below (3.1) is 

generated to validate the expected frequency response of the system, both proving 

feasibility of the control system, and anchoring the expected results from the control 

system. 
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Figure 3.1: Bode plot for Try. 

 

As Figure 3.1 illustrates at low frequencies, the magnitude of the error signal 

is 0 dB, indicating that the control system directly follows reference commands when 

the input frequency is smaller than 2 rad/ sec. This is in line with the anticipated 

behavior of the system. However, at high frequencies, the magnitude of the error signal 

is approaching 0, which implies that the control system effectively attenuates high- 

frequency noise. This result is also compatible with the expected behavior of the 

system. 

 

Figure 3.2: Bode plot for Tre. 
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 The graph in Figure 3.2 shows the relationship between the input signal( r) and 

the error signal( e) of a control system. The graph indicates that the input signal has a  

minimum impact on the error signal. At  most frequency points, the effect of the input 

signal on the error signal is either zero or has a negative dB magnitude, indicating a  

minimum impact. The graph also shows that at low frequencies, the steady- state error 

is small, which is in line with the frequency response of the Try system. also, the small 

magnitude at low frequencies means that low frequency output disturbances will be 

rejected. still, at high frequencies, the steady- state error is large, which is also in 

compliance with the Try  frequency response. 

 

Figure 3.3: Bode plot for Tdiy 
 

The graph in Figure 3.3 demonstrates the effect of input disturbance di on the 

output signal y of a control system. As shown in the graph, the magnitude of the effect 

of input disturbance di on the output signal y is very low. It reaches at most -40dB at 

its highest point, indicating that the disturbance has a minimal impact on the output 

signal. This implies that the system is relatively robust to input disturbances. 
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Figure 3.4: Bode plot for Tru 
 

The frequency response graph in Figure 3.4 illustrates the effect of the 

reference input r on the control input u in a control system. The graph provides insights 

into the relationship between the reference input r and the control input u and how they 

affect the system's performance. Variations in the effect of the input r on the control 

variable u at different frequencies was taken into account when designing the control 

system. At low frequencies the magnitude of the control input is smaller than at high 

frequencies. The magnitude of Tru at high frequencies is large, meaning that 

measurement noise is going to have a large effect on the control output. In a real 

physical implementation controlers are augmented with a low pass filter in order to 

remedy the noise applification problem. In this thesis, the low pass filter is ommited 

in order to keep the system simple. This ommition is not going to have any impact on 

the study conducted during this thesis. 

 

3.2 SIMULATION OF CONTROL SYSTEM 

Using the equations above (3.1) to (3.4) a Kalman Filter is designed, with the 

parameters of Eq. (3.11) and  
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                                                  𝑄 = ൦

0.5 0 0
0 0.5 0
0 0 0.5

0
0
0

0    0   0 0.5

൪                                          (3.12) 

 

This Kalman Filter is Discretized and placed into a MATLAB SIMULINK 

along with the initial model in a nonlinearized fashion and simulated to control for all 

unexpected errors that may occur when dealing with a nonlinear system. 

 

 
Figure 3.5: Simulink Diagram of the Simulation Process. 

 

As can be seen on Figure 3.5 the simulation has multiple paths that lead to the 

same direction, this is done to allow for both simulated and real world scenarios to be 

tested simultaneously, and with minimal downtime. The Kalman Filter in Figure 3.5 

is assuming real world scenario where angle measurements for 𝜃ଵ and 𝜃ଶ are avaliable, 

however angular velocities (𝜃̇ଵ and 𝜃̇ଶ ) are not avaliable. The simulation also has a 3d 

animation, in which the motion of the double inverted pendulum can be tracked and 

observed. A still from this animation can be observed below, with pink being the top 

link, yellow being where the top link is attached to the bottom link, blue being the 

bottom link, and red being the motor attached to the bottom link, controlling the bottom 

links angle. 
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Figure 3.6: Animation Output from MATLAB Simulink Simulation. 

 

3.3 LSTM DESIGN 

 The start of the design process was to decide what kind of neural network 

would work best for replacing the Kalman Filter. Given that Kalman Filter’s are 

estimators, an estimator network being a replacement made direct logical sense, and 

therefore a LSTM was picked. LSTM’s ability to predict values with comparibly small 

network sizes was the lead reasoning. The  LSTM design used during the study always 

had a total of four layers. The first layer, a Sequence Input Layer, with three inputs, 

allows the LSTM to take in values as a sequence, allowing the LSTM to continue 

predicting during operation. The second layer, an LSTM Layer, where the inputs from 

the input layer are operated on using hidden values that will be trained. The third layer, 

the one and only Fully Connected Layer, allowing each value inside the previous layer 

to affect the other, and congregating the values down to two outputs. The fourth and 

last layer, consisting of a Regression Layer, helping establish connections between 

dependent and independent values 

 

3.3.1 LSTM Training 

The LSTM design was modified, so that the hidden values in layer 2 can be 

changed, to allow for multiple different hidden value counts to be tested. These 

different LSTM models were then trained four times, using separate datasets each time, 

for different max epochs, to test for over and under training, as well as memorization 

of the data. Of all networks trained, networks trained with one thousand max epochs 
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performed the best, and therefore were prioritized. Each network was trained on a 

personal computer, with the specs in the table below: 

 
Table 3.1: Specifications of the computer used for all Simulations and Training. 

 

 Each training of a 1000 max epoch network took roughly 240 minutes, and 

each network was trained 4 times, leading to each fully trained network being 960 

minutes or 16 hours of training. Training was left overnight in most cases, since the 

personal computer would be locked up to calculate the training. Despite the intensive 

training however, all training was completed successfully, and both the Loss function 

and the RMSE of the models were seen to drop significantly after 4 training sessions. 

 To train each network datasets from the simulation were used, however for the 

training datasets, the data acquired was from the original data, and not the Kalman 

Filter approximations. The training was done with initial conditions for the system (the 

input in terms of sin wave) having been altered. These alterations were to both the 

amplitude and the frequency of the sin wave. The highest amplitude input used was 

9π/180 while the lowest was 3π/180. The fastest frequency used was 2rad/sec while 

the slowest frequency was 0.5rad/sec. The changes to frequency and amplitude were 

not linked. 

 

Part Name/Designation Part Size/Core Count Rated/Running Speed 

CPU-AMD Ryzen 7 3800X 

Processor 
8-cores 3.89 GHz 

Corsair Vengeance Pro 

DDR4 Ram 

4 x 8 GB sticks for a total of 

32 Gigabytes 
3200 MHz 

MSI Nvidia GeForce RTX 

2080 SUPER 
8 GB of GDDR6 Memory 1650 MHz 

Samsung 970 Evo Nvme 

M.2 storage 
500GB 

3400 MB Read 

2300 MB Write 
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Figure 3.7: Training Progress Graph 1 for Network with 400 Hidden Values 1000 Epoch, 
the first of four training steps. 

 

In Figure 3.7 we can see the network fail to learn how to deal with the changing 

sinus values from the training data, and the irregularities in the nonlinear system. At 

the end of the training the loss function sits at a peak of almost 12 meaning a high 

number of predictions made by the LSTM were wrong. The RMSE at the same point 

goes as high at 4.8, meaning that those errors are rather seperate. This training step 

was completed in 235 minutes and 50 seconds. 

 
Figure 3.8: Training Progress Graph 2 for Network with 400 Hidden Values 1000 Epoch, 

the second training step. 
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In Figure 3.8 a repeat of Figure 3.7 is occuring, where the priviously learned 

values have changed due to the new dataset, and the previously learned values are 

clashing with the new amplitude and frequency, causing large erros. This behaviour is 

most noticed towards the end, where the new learnt values are still weighted wrong 

and thus cause peaks in both the loss function and the RMSE function. These error 

peaks go as high as 44 on the loss function, and above 9 on the RMSE function, 

meaning not only is the LSTM wrong more often, but the margin by which it is wrong 

has also increased. This training step was completed in 222 minutes and 2 seconds. 

 

 

Figure 3.9: Training Progress Graph 3 for Network with 400 Hidden Values 1000 Epoch, 
the third training step.  

 

In Figure 3.9 the amplitude of inputs has increased yet again, however the 

frequency has decreased beyond the initial value even beyond the original in Figure 

3.7. This decrease in frequency allows the LSTM to adapt to the new values much 

quicker, and thus for the first time the highest peak is at the start, and after the first 

hundred epochs have passed, no peak surpasses 5.5 in the loss function or 3.5 in the 

RMSE function. This training step was completed in 237 minutes and 56 seconds. 
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Figure 3.10: Training Progress Graph 4 for Network with 400 Hidden Values 1000 Epoch, 
the last training step.  

 

In Figure 3.10 the frequency of the input is raised again, to its highest value, 

while the amplitude is decreased to its lowest value, this combination allows for the 

LSTM to have less peaks in errors, and the peaks it does have to be in the minimums 

of Figure 3.7, Figure 3.8, Figure 3.9. This shows that not only has the LSTM learned 

to adapt to different frequencies and amplitude, but that a high frequency which was 

initially an issue in Figure 3.8 is no longer a weakness of the LSTM. This training step 

was completed in 219 minutes and 25 seconds. 

As can be seen from the change between Figure 3.7 and Figure 3.10 the many 

stages of training led to massive improvements in the final loss, and RMSE values. 

While the first three stages look erratic, since each stage is a mere step, the final 

training allows for the congregation of all training to achieve significantly more 

accurate, and much more reliable results. The total training time for this LSTM was 

15 hours, 15 minutes and 13 seconds. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1 INTRODUCTION 

During the scope of this study, a total of 20 LSTM models at different hidden 

values and epoch counts were modeled and trained. These trained LSTMs were then 

placed alongside the Kalman Filter from figure  Figure 3.5 to test whether the resultant 

LSTMs were trained sufficiently, or if any patterns on training mistakes surfaced. 

 Kalman Filter had an expectant result throughout its use, despite not being an 

extended Kalman Filter, as that would be even more computationally intensive. A 

common theme in the Kalman Filter was a slight delay and slight errors, but due to the 

tolerances calculated via the frequency response graphs in Figure 3.1 to Figure 3.4 the 

delay and errors were not enough to compromise the system’s stability. 

 LSTMs suffered throughout the course of this study, mostly due to an inability 

to adapt to the zero conditions of the system. This inability to start at zero coupled with 

a rushed frequency caused the LSTM to cause massive issues to the system stability. 

Despite this, LSTM did show extremely similar graphs with each other and almost all 

different LSTM models fell into one of 3 categories. 

 

4.2 KALMAN FILTER 

The Kalman Filter worked almost as well as the original data from the 

simulation in Figure 3.5. While during the simulation a delay of 0.15seconds and a 

gain error of 0.3 was recorded from the Kalman Filter, these values were well within 

the phase margin of 125 degrees, time margin of 2.78seconds and gain margin of 

9.69db’s. These errors can be noticed in the figures below: 
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Figure 4.1: Difference between Simulated Data (Green), and Kalman Approximation 
(Yellow) of 𝜽̇𝟏 

 

As can be seen in Figure 4.1 while Kalman Filters estimates of 𝜃̇ଵ are close, 

they are subject to errors in both the phase, and the amplitude. 

 

 

Figure 4.2: Difference between Simulated Data (Purple), and Kalman Approximation (Blue) 
of 𝜽̇𝟐 

 

Unlike the findings in Figure 4.1, it can be seen that 𝜃̇ଶ calculations done for 

Figure 4.2 cause Kalman values to drift in the opposite way as they do with 

calculations for 𝜃̇ଵ. 
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These values, and their drift could further be improved upon by changing the 

Kalman Filter into an Extended Kalman Filter, however for the scope of this study, the 

Kalman Filter working was adequate.  

 

4.3 LSTM 

To simulate the LSTM successfully, the MATLAB Simulink file show in 

Figure 3.5 had to be modified, to allow for the addition of the “Predict” block, allowing 

the LSTM to be implanted into the simulation model. The resultant simulation model 

can be seen below: 

 

 
Figure 4.3: Simulink Diagram of the Simulation Process with added LSTM block. 

 

As can be seen in Figure 4.23 the addition of the LSTMs Predict block 

increased the complexity of the simulation. Due to training being done with radian to 

degrees converted data, the data received from the simulation has to be converted prior 

to insertion into the LSTM block, this combined with the added delay to discretize the 

data, as well as make it arrive in manigeable chunks however increase the delays, and 

errors in the predictions made by the LSTM. The results  are as follows: 
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Figure 4.4: Difference between Simulated Data (Yellow), and LSTM 

Approximation (Purple) of 𝜃̈ଵ 

 

As can be seen in Figure 4.2 while the frequency and time delays are within 

the margins barely, the amplitude is many times over the margins. This error only gets 

exasperated when the system’s control loop becomes dependent on the information 

from the LSTM, and it causes the nonlinear system to crash.  

 

Figure 4.5: Difference between Simulated Data (Blue), and LSTM Approximation 

(Teal) of 𝜃̈ଶ 

 



 
 

30 
 

The issue prevalent in Figure 4.24 is even more prevalent in Figure 4.25, while 

the frequency and time response are accurate, due to the amplitude being multiple 

times what the real value is, it is not possible to call the data acquired a success. 

While the data in Figure 4.24 and Figure 4.25 were only from a single LSTM 

trained at 400 hidden values and 1000 max epochs, it is a good representation of the 

general results from all twenty different LSTMs trained during the duration of this 

study. 
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CHAPTER V 

CONCLUSION 

 

5.1 INTRODUCTION AND SUMMARY OF RESULTS 

While the initial goal of replacing a Kalman Filter with a LSTM was not 

achieved, during this study, many different parameters of LSTMs were explored, and 

their effects to results obtained has been documented. The multitudes of trained 

LSTMs have also been compared with each other, allowing for direct, visual 

comparisons to be made to different parameters, and training processes. MATLAB 

Simulink has been used extensively, beyond the initial assumed scope of the program 

especially as it relates to the simulation and simultaneous usage of multiple LSTM 

models predicting the same system using different parameters. 

In this study, a comparison was made between the performance of Kalman 

filters and LSTMs in the task of state estimation. The results show that the Kalman 

filter performed well, with a slight delay and slight errors that were still within the 

tolerances calculated via the frequency response graphs. The Kalman filter's capability 

to handle direct systems made it a suitable choice for the task at hand. Still, it should 

be noted that the use of an Extended Kalman filter may have further enhanced the 

results. On the other hand, the LSTMs struggled with acclimating to the zero 

conditions of the system. The training of LSTM models necessitated a considerable 

amount of processing power and time, and the results weren't entirely satisfactory. The 

LSTMs caused delays, errors, and stability issues when compared to the Kalman filter. 

The study also found that LSTMs showed extremely comparable graphs with each 

other and practically all different LSTM models fell into one of 3 families.  

As this study ends, two things have become clear, first, while neural networks 

hold incredible possibilities, it is still up to the users to be able to bring out all the 

possibilities to bear fruit and flourish. Second, a neural network requires multiple tries, 

and each try can be many hours of training, having dedicated hardware, or using cloud 
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solutions when dealing with neural network dedicated projects should always 

be an option that is considered and explored. 

 

5.2 COMPARISON OF KALMAN FILTER AND LSTM 

In terms of accuracy, the Kalman filter performed well, with only a slight delay 

and slight errors in comparison to the simulated data. The errors were still within the 

tolerances calculated via the frequency response graphs, which indicates that the 

Kalman filter was able to provide a reliable estimate of the true state of the system. 

However, the use of an Extended Kalman filter may have further improved the results. 

In contrast, the LSTMs struggled with accuracy, showing significant errors in 

both the phase and amplitude of the estimates. The LSTMs were unable to adapt to the 

zero conditions of the system, causing delays and errors in their predictions. These 

errors were further exacerbated when the system's control loop became dependent on 

the information from the LSTM, leading to issues with the stability of the system. 

The findings of the study showed that the oscillation frequency of the natural 

system, when measured with a sinusoidal input of 1 rad/ sec, was 6.284 seconds for 

both 𝜃̈ଵ  and  𝜃̈ଶ . This frequency is identical across both the Kalman filter and the 

LSTM models as well. While the frequency for both models were identical, the phase 

shift was different. The Kalman filter trails ahead of the natural system in the 

frequency of 𝜃̈ଵ by 0.297seconds. This difference is minimal and therefore the Kalman 

filter can keep the system within the requested parameters. The LSTM results trail 

ahead of the natural system in the frequency of 𝜃̈ଵ by 1.570seconds, or exactly 1/4 the 

frequency of oscillation. This difference is a major reason that the system becomes 

unstable under the control of the LSTM system. The Kalman filter trails behind of the 

natural system in the frequency of 𝜃̈ଶ by 0.967seconds. This difference is comparably 

large, but the Kalman filter can keep the system within the requested control 

parameters and therefore this delay is still within excepted margins. The LSTM results 

trail behind of the natural system in the frequency of 𝜃̈ଶ by 1.570seconds, or exactly 

1/4 the frequency of oscillation again. While this delay is large, it is more uniform with 

the system in comparison with the Kalman filter. However, the LSTM system can’t 

keep the system controlled, and therefore this ‘uniform’ delay is not within acceptable 

parameters. 



 
 

33 
 

On top of frequency, magnitude was another point of issue. For 𝜃̈ଵ the systems 

natural peak sits at 4.707 radians per second squared. The Kalman filter calculated the 

same peak at 4.046 radians per second squared. The 0.661 radians per second squared 

difference was within the acceptable margins of error due to the nature of the control 

system. The LSTM calculated the same peak to be 19.520 radians per second squared. 

This difference of 14.813 radians per second squared, or in other words, a over 4 times 

multiple of the original value, causes the results from the LSTM to cause the system 

to fall into chaos. This issue with magnitude is amplified for 𝜃̈ଶ. The systems natural 

peak of 1.394 radians per second squared was calculated by Kalman filter to be 1.661 

radians per second squared. The difference of 0.267 radians per second squared is 

within operating margins and therefore the system works without issues. The LSTM 

calculated the same peak as 7.054 radians per second squared. This difference of 5.660 

radians per second squared is the largest error calculated during the entire test, and 

when paired with the error in the calculation for 𝜃̈ଵ explains why the LSTM can’t keep 

the system functioning. 

In terms of stability, the Kalman filter performed well, with only a slight delay 

and slight errors in comparison to the simulated data. The Kalman filter was able to 

provide a stable estimate of the true state of the system, even in the presence of noise 

and disturbances. On the other hand, the LSTMs caused significant issues with the 

stability of the system, leading to crashes of the nonlinear system. 

In terms of computational requirements, the Kalman filter was computationally 

efficient, requiring minimal resources to perform the state estimation task. However, 

it should be noted that the use of an Extended Kalman filter would have been more 

computationally intensive. In contrast, the LSTMs required a considerable amount of 

processing power and time to train, and the results were not entirely satisfactory. While 

the embedded version of the LSTM will require significantly less processing power, 

during this study the LSTM was only tested within MATLAB. Therefore, the LSTMs 

also required additional resources to perform the state estimation task, such as the 

"Predict" block in MATLAB Simulink. 
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5.3 LIMITATIONS OF THE STUDY  

The study performed on the use of Kalman filter and LSTMs for state estimation 

was conducted using consumer- grade computing devices. These devices may not have 

had the computational power and time to completely appraise the performance of 

LSTMs in this task. As a result, the study's findings may not be thoroughly 

representative of the true capabilities of LSTMs for state estimation. It's possible that 

with more important computing devices, the results from the LSTMs could have been 

enhanced and potentially have been suitable to match or surpass the performance of 

the Kalman filter. However, this wasn't explored in the current study. 

The study performed on the use of Kalman filter and LSTMs for state estimation 

assumed that the system being estimated was linearizable. This assumption may not 

always hold true in real- world applications and could have influenced the accuracy of 

the results attained. As a result, the conclusions drawn from the study may not be 

representative of the true performance of Kalman filter and LSTMs for state estimation 

in non-linear systems. The effectiveness of these techniques in non-linear systems 

should be evaluated in unborn studies to supply a further comprehensive understanding 

of their capabilities. 

The study that was conducted on the performance of Kalman filter and LSTMs for 

state estimation was limited in scope as it only concentrated on a particular type of 

non-linear system. This narrow focus may have impacted the validity of the results and 

the conclusions drawn from the study. The findings may not be applicable to other 

types of non-linear systems, and consequently, its generalizability to other real- world 

scenarios are limited. It's imperative to undertake fresh research that encompasses a 

broader spectrum of non-linear systems to gain a comprehensive understanding of the 

efficacity of Kalman filters and LSTMs in the task of state estimation. 

 

5.4 FUTURE STUDY 

The findings of this study have important implications for the use of LSTMs in 

state estimation tasks. While LSTMs showed promise as a potential alternative to 

Kalman filters, the results of this study indicate that more powerful computing 

resources and  farther optimization of the training process may be necessary to 

completely assess the capabilities of LSTMs in this  environment. Given time, 
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multitudes more LSTM models can be  produced, trained and tested. While this study 

was  unable to find the right model parameters and training parameters to  generate an 

LSTM  qualified of  superseding a Kalman Filter, since this study began there has been 

successful  homogenizing between Kalman Filter and LSTMs to produce results faster 

and with better  precision than any system by itself. Further more, the supposition of a 

linearized system in this study limits the generalizability of the findings, and future 

research could explore the use of LSTMs in nonlinear systems that haven't been 

linearized, or in ranges of linearized systems where the motion approaches more non-

linear actions. Other types of recurrent neural networks could also be  researched as 

potential alternatives to Kalman filters. Overall, the limitations of this study  punctuate 

the need for  farther  exploration to completely understand the capabilities and 

limitations of LSTMs in state estimation tasks.  

 

5.5 CONCLUSION 

The study found that the Kalman filter outperformed LSTMs in terms of 

accuracy, stability, and control of the system in state estimation tasks. The Kalman 

filter showed minimum errors and was within the calculated tolerances, while LSTMs 

struggled with accuracy, stability, and adapting to zero conditions of the system. The 

study also highlighted the differences in the phase shift and magnitude errors between 

the Kalman filter and LSTMs, with the Kalman filter having errors within respectable 

margins and LSTMs having significant errors. The study concluded that LSTMs 

necessitate a considerable amount of processing power and time for training, but the 

significance of this study lies in the finding that multiple training sessions can increase 

accuracy. This information is useful for those considering using LSTMs for state 

estimation tasks, as it sheds light on the significance of multiple training sessions for 

increased accuracy. 
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APPENDICES 

 

Appendix 1: LSTM Comparison Graphs 

 

 

Figure R.1: 5 Lstms θ1 response from simulataenously responding to the same input 

 

 

Figure R.2: θ1 response from 5 more Lstms simulataenously responding to the same 

input as R1 (no LSTM from R1 is present) 



 
 

39 
 

 

Figure R.3: θ1 response from 5 more Lstms simulataenously responding to the same 

input as R1 (no LSTM from R1 or R2 is present) 

 

 

Figure R.4: θ1 response from 5 more Lstms simulataenously responding to the same 

input as R1 (no LSTM from R1, R2 or R3 is present) 
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Figure R.5: 5 Lstms θ2 response from simulataenously responding to the same input 

 

Figure R.6: θ2 response from 5 more Lstms simulataenously responding to the same 

input as R1 (no LSTM from R5 is present) 
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Figure R.7: θ2 response from 5 more Lstms simulataenously responding to the same 

input as R1 (no LSTM from R5 or R6 is present) 

 

 

Figure R.8: θ2 response from 5 more Lstms simulataenously responding to the same 

input as R1 (no LSTM from R5, R6 or R7 is present) 

 


