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ABSTRACT 

 

ENSEMBLE METHODS FOR HEART DISEASE PREDICTION 
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PhD in Computer Science and Engineering 

 

Supervisor: Prof. Dr.  

Co-Supervisor: Assist. Prof. Dr. HA  

November 2022, 69 pages 

 

This work consists of automatic heart disease prediction ensemble methods; 

this critical human health task is performed using several new algorithms. First, we 

introduce a weak classifier based on the randomness analysis of binary sequences. 

Second, we present another classifier in which the shrunk covariance estimation is 

utilised during the training and prediction phases. Third, we present a classifier in 

which Gaussian probabilities are summed via a kurtosis and KS-test importance 

scheme. Finally, a two-fold ensemble implementation is created by fusing logistic 

regression and our majority voting density estimation classifier. This final classifier is 

compared with state-of-the-art methods, and the sensitivity, specificity, accuracy and 

optimised precision are reported. 

 

Keywords:  Bagging, Ensemble methods, Base estimator, Classification, Heart 

disease prediction 
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CHAPTER I  

 

INTRODUCTION 

 

5.1 HEART DISEASE PREDICTION 

Medical diagnosis is the process of determining the status of a patient via the 

physician's experience and available data [1]. When one is focused on heart disease, 

mechanising this procedure is known as automatic heart disease prediction. Deriving 

a machine learning model by using medical parameters or features extracted from 

medical data to estimate risk levels is important for such a task  [2]. The accuracy of 

the method is also crucial [1]. Today, the availability of large amounts of data makes 

it possible to analyse patterns in order to create machine learning models. 

 

5.2 MOTIVATION 

Our main motivation behind performing this research was of course to improve 

human health. On the other hand, presenting a new classifier was also an intriguing 

challenge. By concentrating on ensemble methods, we have devised new weak 

classifiers. Despite their simple nature, when they are followed by feature selection 

methods, they yield promising results. 

 

5.3 ROUTE 

In the Background Study chapter, we talk about ensemble methods, base 

estimators and logistic regression. In the Literature Review chapter, we concentrate on 

the heart disease prediction literature, in addition to artificial neural networks (ANNs), 

support vector machines (SVMs), naive Bayes (NB) methods and two state-of-the-art 

methods: `a firefly-based algorithm for heart disease prediction'  [3] and `a novel 

ensemble for heart disease prediction' [4].  

In the Proposed Technique chapter, we provide the algorithms of our weak 

classifier and describe the pipeline of the study, which consists of robust scaling, 

feature selection and classification.  
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In the Results section, metrics are described and a comparison of our method 

with state-of-the-art methods is performed. In the Conclusion chapter, naturally we 

summarise our experiments and sketch out potential future work. 
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CHAPTER II 

 

BACKGROUND STUDY 

 

6.1 ENSEMBLE METHODS 

In this chapter, we discuss ensemble methods, base estimators and logistic 

regression. We first give the definition of an ensemble method and mention stacking. 

Then, we discuss the integration of weak classifiers into the framework. Finally, a 

logistic regression formulation is presented to complete the overall scheme.  

A learning machine is a mechanical node of observation-to-output derivation. 

It deduces a decision after being fed a set of data. The data, most of the time, are in the 

form of a fixed-dimensional vector set. Ensemble methods gather information from 

several learning machines to form a more reliable decision  [5]. Thus, one may say that 

an ensemble method is a meta-machine collecting `opinions' [5] from underlying 

machines. 

 

Figure 2.1: Random forest [6] 
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6.2 BAGGING 

Bagging was proposed to reduce the variance of a predictor[7]. It stands for 

`bootstrap aggregating'. The word `bootstrap' references the sampling routine, while 

`aggregating' refers to the voting procedure. Given a base estimator, bagging yields 

n_estimators instances, where n_estimators is the total number of predictors. Each 

of these instances is trained on a different bootstrap sample [8]. Prediction is done 

according to the majority voting principle; i.e. the class that receives the greater 

number of votes from the base estimators is the winner of the prediction routine and 

thus is the output of the classification procedure.  

The FIT() and PREDICT() algorithms for a bagging classifier are given below. 

 

 

Figure 2.2: Bagging 
  

This algorithm is of course a simplified template of bagging. Today, there are 

implementations in which the number of features used by base estimators can be 

specified. Additionally, bagging ensembles can still be improved by new 

developments, as one can see from the results and analysis given by [9]. 

 



 
 

5 
 

6.3 BASE ESTIMATORS 

  These underlying machines are nodes of learning; they are also known as 

predictors, base estimators or ̀ weak classifiers'. Stacking predictor responses generally 

yields a much better performance than using a single weak classifier [10].  Averaging 

better-than-chance weak learners is known as boosting [11]. Stacking introduces a 

meta-classifier [11] that is trained on the base classifier responses to obtain better 

results. Random subspaces benefit from the idea of restricting the dimensionality of 

each base learner to a random subspace [11]. Our work combines bagging, random 

subspaces and stacking methods to predict heart disease.  

 

6.4 LOGISTIC REGRESSION 

 Suppose that our dependent variable is binary; i.e. it is either 0 or 1. If we 

model it linearly, we obtain the ordinary least squares approach: 

 [12], where  represents the independent variables (attributes) and  

 is the dependent variable. OLS has some disadvantages: namely, the use of a linear 

function, the violation of the pseudo-isolation condition and `error heteroskedasticity

[12]. 

    A linear function, that is, a function of the form  does not need 

to be restricted to values of 0 and 1, so it is not compatible with a binary dependent 

left-hand side [12]. 

    The violation of the pseudo-isolation condition means that there is a 

correlation between the error term and the regressor [12]. The choice for the 

distribution of the error term determines the analysis type [12]; a logistic distribution 

implies a logistic regression. If the distribution is normal, then one has a probit analysis 

[12]. 

In [13], it was shown, using a one-dimensional counter-example, that it is not 

possible to realise the zero mean and constant variance error assumption. Additionally, 

in [13], a real-life dataset is analysed and neglecting of a strong relation between an 

attribute and the regressand by linear prediction is shown. On the other hand, probit 

analysis covers this relation and yields `higher estimates of fit' [13].  
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Figure 2.3: Linear vs. Logistic [12] 
 

One advantage of logistic regression is that it is based on a `latent variable' 

approach [12]. Assume that the observed   is a ̀ reflection' of the continuous , where 

 if  and  otherwise [12]. Then, it can be said that 

. If it is supposed that   has a logistic distribution, then the appropriate 

analysis tool is logistic regression [12]. 

  The probability that    is   [12]. After 

linearising, we get , and the model parameters are estimated 

via the maximum-likelihood method [12].  
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CHAPTER III 

  

LITERATURE REVIEW 

 

7.1 HEART DISEASE PREDICTION 

This chapter is about studies on heart disease prediction and traditional 

algorithms on automatic classification. We first provide a picture of the current 

literature on heart disease prediction and then move on to state-of-the-art statistical 

classification. Then, we concentrate on specific contemporary heart disease prediction 

methods. 

In [14] a hybrid approach is proposed. These researchers performed 

experiments on the Cleveland dataset to report their method's performance. First, they 

removed some of the features manually and excluded missing-value observations from 

the dataset. Second, they determined the component candidates of their classification 

system by considering state-of-the-art classification schemes, including decision trees 

(DT), a linear model (LM), support vector machines (SVMs), random forest (RF), 

naive Bayes (NB), artificial neural networks (ANNs) and k-nearest neighbour (kNN) 

clustering. By clustering the data into partitions and testing the candidates, they found 

that RF and LM outperform the other methods.  

Then, they combined these two methods to form their HRFLM method, which 

had an accuracy of 88.7%. Although it is a valuable empirical study concerning the 

combination of classifiers, this work suffers from the limitedness of the utilised 

dataset; only the Cleveland dataset is included. 

The authors of [15] engineered a `heart disease prediction system' (HDPS) 

constructed using, as in [14], the Cleveland dataset (303 instances, 13 features). Their 

system is one of the relatively old decision support systems in the literature; it has an 

accuracy of 80%. They utilised ANNs to predict heart disease. Their neural network 

has a 3-layered structure consisting of input (13 neurons), hidden (6 neurons) and 

output (2 neurons) layers. They trained their system 100 times to study the 

performance of the method. A nice property of their research is that a GUI was built 
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that is ready to be used. The critique that applied to [14] can be repeated here, as the 

researchers considered only one dataset. Additionally, their algorithm presentation is 

too verbal, and a reader can easily be confused by the overall picture that is presented. 

For example, they use an abbreviation, `LAV', which seems to stand for something 

mysterious. 

The authors of [16] also utilised the Cleveland dataset to provide classification 

results. They considered 3 state-of-the-art methods to predict heart disease: DTs, NB 

and ANNs. The power of this work relies on the fact that the researchers not only 

provide the success rates of the underlying classical models but also give examples of 

professionally interpretable data visualisations. A critique concerning the lack of a 

comparison with state-of-the-art methods can be neglected this time because this is 

also one of the oldest systems proposed in the literature. An additional property of their 

framework is the integration of the Data Mining Extension (DMX) query language. 

This allows an expert to use the system and obtain information about the data. One 

point that caught our attention is that the Cleveland dataset normally has 303 

observations, but in this work, a higher number of observations (909) is reported: this 

is due to the consideration of all of the data located at 

https://archive.ics.uci.edu/ml/datasets/heart+disease that are marked as `Cleveland'. 

Studies concentrating on 303 observations actually utilise the `Cleveland' file of the 

archive above. Another point concerns the pre-processing step: all the numerical 

values are converted into categorical values in this work. 

The authors of [17] created one of the early pipelines in the literature: it is based 

on a `coactive neuro-fuzzy inference system' (CANFIS) for predicting heart disease. 

Their CANFIS architecture has 5 layers: Premise Parameters, Firing Strength, 

Normalised Firing Strength, Consequence Parameters and Overall Output. The work 

combines the proposed architecture with genetic algorithms (GAs) to find the best 

parameters. Experiments are conducted on the Cleveland dataset and a very low mean 

square error is noted: 0.000842. GAs depend on three operations: selection, crossover 

and mutation. After an initial population is provided, the system evolves towards a 

better solution via the provided operators. The implementation platform is 

NeuroSolutions, an ANN environment developed by NeuroDimension. One advantage 

of the system is that it can categorize the following heart disease types: type 1, type 2, 

type 3 and type 4. Unfortunately, this report is restricted to only one dataset. 
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             Figure 3.1: A DT dependency network from [16] 
 

      The authors of [17] created one of the early pipelines in the literature: it is based 

on a `coactive neuro-fuzzy inference system' (CANFIS) for predicting heart disease. 

Their CANFIS architecture has 5 layers: Premise Parameters, Firing Strength, 

Normalised Firing Strength, Consequence Parameters and Overall Output. The work 

combines the proposed architecture with genetic algorithms (GAs) to find the best 

parameters. Experiments are conducted on the Cleveland dataset and a very low mean 

square error is noted: 0.000842. GAs depend on three operations: selection, crossover 

and mutation. After an initial population is provided, the system evolves towards a 

better solution via the provided operators. The implementation platform is 

NeuroSolutions, an ANN environment developed by NeuroDimension. One advantage 

of the system is that it can categorize the following heart disease types: type 1, type 2, 

type 3 and type 4. Unfortunately, this report is restricted to only one dataset. 

The authors of [18] concentrated on the ANN, DT and NB methods to evaluate 

the performance of data mining techniques on heart disease prediction. They 

conducted experiments on a  UC Irvine Machine Learning Repository (UCI) dataset 

using WEKA, MATLAB and TANAGRA. MATLAB was used for fuzzy logic 

experiments. In addition to these, they also performed experiments concerning 

clustering-based classification. On the Cleveland dataset, they reported an accuracy of 

86.5\% for naive Bayes. They applied a GA to select 6 features from the overall dataset 

and found that 6 features were relevant. Their pipeline also had an imputation 

component, where the missing values were replaced using appropriate strategies. An 

accuracy of 86.5% was obtained after 70%/30% training/testing splitting was used. 

Without this splitting, they reported a 100% accuracy for the ANN, but this may be 
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misleading since no training/testing splitting or cross-validation was performed. 

Therefore, the conclusion of the work is somewhat confusing since a kNN method can 

be by definition a winner when training/testing splitting is not used. 

 The authors of  [19] utilised UCI data to establish a system supporting heart 

disease prediction. After 80%/20% training/testing splitting, they reported an accuracy 

of around 89% for their NB classifier. Alternative methods such as sequential mining 

optimisation (SMO), a Bayes net (BN) [20] and an ANN (multilayer perceptron 

(MLP)) were also examined. The most accurate and efficient choice was, according to 

their results, the NB classifier. One advantage of this work is that they present a fully 

functional system, that is, a system accompanied by data mining and encryption, to 

predict heart disease. The Advanced Encryption Standard (AES) is their method of 

choice for their encryption component. Although NB classifiers do not need pre-

processing steps such as scaling, other additional pipeline components can be 

considered to improve the overall performance of this system. A feature selection step, 

for example, can be beneficial in terms of both accuracy and efficiency.    

The authors of [21] conducted experiments on the Cleveland dataset and 

utilised WEKA and KEEL [22] to implement their methods. They formulated a 

decision tree to perform the task of heart disease prediction. Their system has 3 

parameters: confidence, minimum item sets and a threshold. To formulate the best 

rules, they plugged a hill climbing algorithm into their framework. After 10-fold cross-

validation, they found that their ̀ efficient' system outperformed classical methods such 

as SVM and kNN (in particular, they tested 1NN). The novelty of this work is that 

they constructed an alternative decision tree algorithm that can outperform not only 

C4.5 but also ANN methods like MLPs. Their explicit formulation of the rules and the 

pruned rules is another advantage. In this way, the work contributes to the literature 

on interpretable classification. On the other hand, adding a bagging or boosting 

component to their system could improve the performance since ensemble methods 

have such proven accuracy-boosting abilities. Feature selection could also be applied 

to increase the overall accuracy. 

The work [23] is a popular modern work that examines state-of-the-art 

classification methods. These methods are the NB, DT, kNN and RF methods. They 

found that 1NN is the most accurate method on the Cleveland training dataset (the one 

with 303 instances). On the test dataset, NB is the most accurate method since it has 

an accuracy of around 88.1%. Their pre-processing component involves a missing-
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value replacer, but the authors do not explicitly state which one was used. The 

implementation tools were WEKA and Python. The training/testing split ratio is not 

given. The authors conclude that, to obtain higher accuracy rates, one needs to develop 

more complex methods. The work has a clean and simple summary of the methods 

they use. They also summarise the current literature by giving the accuracies of some 

high-performing models. In the article, it is concluded that kNN with k = 7 was the 

winner, but when we look at the test results, the winner seems to be naive Bayes. On 

the other hand, they cite the work of [24] by summarising their results: NB -- 84.5%, 

SVM -- 84.5% and functional trees (FTs) -- 84.5\%. When we first saw this triple tie, 

this seemed peculiar (imagine that 3 models being tested have exactly the same 

accuracy) and we intended to verify the results. In [24], the SVM is actually reported 

to have an accuracy of 85.1%. 

The authors of [25] performed experiments on the Cleveland and Statlog 

datasets. They set Cleveland as the training set and Statlog as the testing set. The 

compared methods are the NB, DT and ANN (MLP) methods. They add two more 

attributes to the data: obesity and smoking. They found, by performing experiments 

on the datasets, that these additional features improve the overall accuracy of heart 

disease prediction. Without the added features, the accuracy scores for NB, DT and 

ANN are 94.4%, 96.7% and 99.3%, respectively. With the added features, the new 

accuracy scores are (in the same order) 90.4%, 99.6% and 100%. Their pre-processing 

step has a missing value replacement component. The implementation was done in 

WEKA. The architecture of the winning ANN is not given. Although 

Cleveland/Statlog training/testing splitting is somewhat tricky or `weird', this method 

provides one of the highest scores obtained in the heart disease prediction literature, 

followed by the CANFIS method of [17]. 

The work [26] resembles [18]. The authors summarise the experiments 

performed on the (extended) Cleveland dataset using a 1:1 training/testing split ratio. 

NB, kNN, DT and classification via clustering are the methods they considered. The 

implementation frameworks are WEKA and TANAGRA. Unlike [18], rough set 

theory is tested and some results are reported. Although there is a `rule dump', explicit 

measurements of the accuracy and other metrics are missing. The claim is that rough-

set-theory-based feature selection outperforms the alternatives. Association rule 

discovery is also mentioned; four constraints are introduced to reduce the rule set. The 
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conclusion of the work is that DT outperforms other methods such as kNN, NB and 

classification via clustering. 

The author of [27] summarises their IoT-based heart disease prediction system. 

They test their system on 3 datasets: the Hungarian, Framingham and Public Health 

datasets. Normally, the application of a deep neural network to tabular data requires 

additional steps, such as encoding or transformations [28]. Here, a direct 

implementation is mentioned, which could be revolutionary, but the author does not 

note the literature on the relationship between deep neural networks and tabular data. 

Since one needs spatial or time series data to make convolution work, how the pipeline 

is constructed is somewhat blurry in the paper. Is it transformation based? Is it 

encoding based? On the other hand, is it something else entirely? If we put aside the 

questions about the connection of the work to the general deep neural network 

literature, we see that, after the integration of adaptive elephant herd optimisation 

(AEHO), the accuracy of the framework is high: it achieves accuracies of 93.3%, 

98.2% and 97.6% for the Hungarian, Framingham and Public Health datasets, 

respectively. 

The work [29] is a survey of heart disease prediction. It is not an extended and 

full-scope review but it provides some insight into the methods utilised in the literature. 

It begins with feature extraction (principal component analysis (PCA)) and feature 

selection (correlation-based feature selection (CFS)), and then it proceeds to the 

classification methods: NB, SVM, kNN, DT and RF. The corresponding reported 

highest accuracies are (on different datasets) 84.2%, 99.0%, 83.2%, 92.2% and 97.0%. 

The authors also speak briefly about stacking. They conclude that there are many 

methods for predicting heart disease via machine learning. It is noted that while alone 

DT was not able to satisfactorily complete the task, when PCA was added to the 

framework, good results could be achieved. Additionally, they underline the ability of 

RF and ensemble methods to solve the problem of overfitting. They comment on the 

fast computation and success of NB. 

The authors of [30] provide a sex-specific coronary heart disease (CHD) 

mathematical model. This model is older and from a time when there were no SVMs. 

They used the Framingham dataset, and the utilised variables were age, blood pressure, 

total cholesterol, HDL-C, diabetes and current smoking status. The Cox regression 

coefficients are considered in the work and the model is validated for different 

populations (the main model induction was done using a white, middle-class 
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population). For white and black populations, the estimates were reasonably good,  but 

for Japanese-American and Hispanic men, and for Native American women, there was 

an overestimation in the prediction of CHD. This was resolved after the process of 

recalibration. The authors concluded that the proposed method was reasonably 

accurate and could also be applied to other ethnic groups after recalibration.   

The authors of [31] utilised the Cleveland dataset. The compared methods were 

RF, DT, LR and NB. No feature selection or data transformation was applied. 

Experiments were performed after an 80%/20% training/testing split. The metrics 

employed are the accuracy, precision, recall and F-score. Confusion matrices are 

considered and accuracy values are given. According to the study, the winning method 

is RF with a 90.2% accuracy. RF is the winner according to the precision, recall and 

F-score measures as well, with values of 90.4%, 88.2% and 90.1%, respectively. The 

explanation of RF in this work is somewhat incorrect because RF does not create just 

one decision tree but benefits from several decision trees trained on data. The authors 

conclude their work by stating a plan for coding a web interface for their system. This 

study suffers from the use of only one dataset and the lack of appropriate feature 

selection and extraction methods. 

The authors of [32] propose a method called the heart disease prediction model 

(HDPM); their pipeline has outlier detection, data balancing and classification steps. 

Outliers are detected via the density-based spatial clustering of applications with noise 

(DBSCAN), data balancing is performed using the synthetic minority over-sampling 

technique-edited nearest neighbour (SMOTE-ENN) method and classification is done 

using XGBoost. They report high values of the accuracy and other metrics. The 

accuracy scores are 95.9% and 98.4% for the Statlog and Cleveland datasets, 

respectively. This work is a state-of-the-art work in which each step is clearly 

formulated and analysed. The compared methods are NB, LR, MLP, SVM, DT and 

RF. The implementation libraries are sklearn, imbalanced-learn and XGBoost. The 

authors also present a web application based on their method. 

The authors of [33] conducted experiments on their own dataset and integrated 

DTs and kNN to predict heart disease. The attributes that were considered were age, 

gender, blood pressure, pulse rate and cholesterol. The reported accuracy is 80.0% but 

no training/testing split ratio or cross-validation scores are given. They observe that 

the accuracy score increases when the number of attributes is increased. This work is 

very limited in terms of generalisation since the dataset was manually prepared. There 
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is also no data pre-processing and feature selection. The main contribution of the study 

is the presentation of a practical system for heart disease prediction. On the other hand, 

additional metrics such as the specificity and sensitivity are missing. 

The work [34] is a comparison of the classification methods KStar, DT, SMO, 

BN and ANN (MLP). It differs from the surveys that we have talked about up to now 

due to its depiction of AUC curves in addition to the accuracy. According to this 

paper's findings, BN is the most successful method; it yields AUC values of 90.2% 

and 88.1% for the Statlog and `Collected Data' datasets, where `Collected Data' refers 

to the data the authors collected from Enam Medical Diagnosis Centre. The results are 

obtained after 10-fold cross-validation. This is the first heart disease prediction study 

in which the KStar algorithm is tested. KStar differs from standard kNN due to its use 

of the entropy-based distance. In terms of accuracy, SMO is the winner but in terms 

of the AUC, BN is more successful. In this work, the authors also report the training 

times of the models: the ANN is the slowest model and KStar is the fastest model.   

The author of [35] performed experiments on their own dataset, which had 

7339 observations; the data were retrieved from PGI, Chandigarh. This is the biggest 

dataset in the literature considered so far. Normally, this dataset has 15 dimensions but 

the author reduced the number of dimensions to 8 using best fit search. This work is 

also one of the studies in which feature selection is considered seriously and applied. 

In terms of the accuracy, the DT is the winner with an accuracy of 95.6% after 10-fold 

cross-validation, and in terms of the F-measure, the ANN is the winner with an F-

measure of 97.4%. NB is also tested and its reduced-feature-setting accuracy score is 

92.4%. The author concludes that the performance of the DT can be explained by its 

ability to capture `simple datasets'. WEKA is the platform on which the experiments 

are conducted. This work can be improved by testing more feature selection and 

classification methods on the proposed dataset. 

The authors of  [36] report an accuracy of 100.0% on the Cleveland dataset (the 

authors calls it a `public dataset' and state that the number of observations is 303, so 

we have deduced that the dataset is the Cleveland dataset). The utilised method is a 

backpropagation ANN and the framework is WEKA. In pre-processing, a missing 

value replacement routine is applied, and the experiment is conducted with a 

40\%/60\% training/testing split configuration. Although the score is notable, it may 

be a `peeking at the test data' [37] result since the number of parameters is high and 
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the training/testing split is fixed. The pre-processing step is said to have a filtering step 

to exclude irrelevant data, but details are not given. 

The authors of [38] run 10-fold cross-validation experiments on the Cleveland 

dataset, and the tested methods are the DT, logistic tree model (LTM) and RF. This is 

the first study that uses an LTM to predict heart disease. The authors of the work 

reported accuracy values of 83.4%, 76.3% and 80.0% for the DT, LTM and RF, 

respectively. No pre-processing or feature selection methods were performed and the 

Cleveland dataset is the only dataset considered. One of the claims in the conclusion 

is that the DT is the winner, but according to the tables presented before the conclusion, 

the LTM seems to be the winner. Since there are two tables that contradict each other, 

it is highly possible that there is a mistake in the LTM results. On the other hand, this 

study has the advantage of reporting a relatively detailed analysis of the DT with regard 

to the pruning process. The verbal description of the other algorithms is satisfying as 

well. 

The authors of [39] test the SVM, DT, LR and kNN methods on the Cleveland 

dataset. They prefer a training/testing ratio of 73%/37%. The work also includes an 

introductory taxonomy of machine learning that describes supervised, unsupervised 

and reinforced methods. There is a nice balance of visual and verbal ingredients in the 

text. The reported accuracy scores are 83%, 79%, 78% and 87%, which indicates that 

kNN is the winner. Although there is a section called `data balancing' in which the 

class sample counts are given, there is no clear statement on the method used. There 

is also no feature selection or extraction. Additionally, no other metrics, such as the 

sensitivity and specificity, are reported. Despite its suitable visual-verbal 

representation, the study suffers from a lack of generalisation to multiple datasets. 

Additionally, there are bold claims like `x proved that...' which refer to empirical 

studies. The experiments are conducted in the Jupyter Notebook environment. 

The work [40] is an extensive evaluation study on heart disease prediction. The 

tested methods are SVM, LR, deep neural networks (DNNs), DT, NB, RF and kNN. 

The Cleveland and Statlog datasets are used. All of the classifiers are presented in a 

formal and decent way to summarise the algorithm. Several different metrics are 

utilised, including the accuracy, sensitivity, specificity, precision, negative predictive 

value (NPV), F1-score and Matthews correlation coefficient (MCC). Testing is done 

via 5-fold and 10-fold cross validation. In 10-fold cross validation, with respect to the 

F1-score, SVM is the winner for both the Cleveland and Statlog datasets. In terms of 
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the accuracy, DNN is the winner for the Statlog dataset and SVM is the winner for the 

Cleveland dataset. The implementation ranges from mobile to web-based technologies 

and the coding language is Python. The authors compare their results with existing 

studies and claim that they have achieved better scores. Although the work is very 

detailed and many classification measures are employed, it is not clear how their 

systems differ from the existing systems. Clearly, it is not because of the data pre-

processing part, because that part only involves the missing value replacement of at 

most 6 observations. Since there are no feature selection and feature transformation 

steps in the pipeline, one can deduce that this success is due to the libraries used, but 

no details are given about this subject. 

The work [41] is a study on the (extended) Cleveland dataset in which the NB, 

DT and ANN classifiers are compared. For the default setting, in which WEKA 

routines are used on a 13-feature dataset, the accuracies are 86.53%, 89.0% and 

85.53% for NB, DR and ANN, respectively. The methodology is not clear; no 

training/testing split or k-fold cross-validation was applied, so we assume that the 

results are due to the training data only, which somewhat invalidates the reliability of 

the research; this resembles the situation in [33]. One advantage of the study is that 

there is a GA component that is tested with NB, DT and clustering (it is mysterious 

that classification via clustering suddenly appears in the paper after the GA). For the 

GA, 6 features are selected with a crossover probability of 0.6 and  a mutation 

probability of 0.033. In combination with the GA, the DT is the most successful 

method, yielding an accuracy score of 99.2%; NB achieved an accuracy of 96.53%. 

Clustering here achieves a relatively low score of 88.3\%, which is better than the 

scores achieved by NB and the ANN without the GA. There is additionally a 

description of the a priori and maximal frequent itemset algorithm (MAFIA) but this 

is again used in a `pop-up' manner in the paper because there are no empirical details 

concerning this algorithm. 

The authors of [42] propose a system built upon NB. The Cleveland dataset is 

used and  various training/testing ratios are utilised. For a testing size of 240, the 

overall accuracy is 89.6% (five-category classification: no risk, low risk, moderate 

risk, high risk and very high risk). For testing sizes of 290 and 276, the accuracies are 

89.0% and 88.8%, respectively. The only data source is the Cleveland dataset and no 

feature selection scheme is applied. After a brief definition of machine learning 

terminology (supervised learning and unsupervised learning), the authors describe the 
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dataset and report their results for various numbers of test observations. The pre-

processing step involves the removal of 6 missing-value vectors. This study is limited 

in various ways. No alternative methods are tested and no automatic pre-processing 

algorithm is employed. 

The authors of [43] also propose a decision support system that uses NB. The 

Cleveland dataset is used. The organisation of the article is educational rather than 

research-focused. The step-wise explanation of NB is enriched by probability 

calculation details such as the use of the Gaussian distribution and categorical data 

handling. However, the methodology is missing; no measurements, comparisons or 

other empirical elements are reported. The Cleveland dataset is the only data source, 

and NB is the only method used. No pre-processing is applied, and no feature selection 

is performed, similar to [42]. Nevertheless, the introductory manual calculation on a 

computer-buying dataset has educational value. 

The work [44] is an extensive work that concentrates on accuracy 

improvements via feature selection. Although the authors refer to the Cleveland dataset 

as UCI in the paper, there are also places in the study where the Cleveland dataset is 

referred to as a separate entity, which is confusing. There is also some confusion 

regarding the list of classifiers; a `Logistic Regression (SVM)' expression exists, but 

this contradicts the very definitions of each of these classifiers. Is it an SVM with a 

special kernel? Is it a hybrid LR-SVM? These questions cannot be directly answered 

using the paper since these explanations are missing. We assume that `LR (SVM)' 

stands for SVM and report that their most successful result was obtained by the 

minimum redundancy maximum relevance (MRMR) SVM; a score of 84.9% is 

reported. This score is above the MLP/SVM scores of other works cited here (84.2%). 

NB and RF are also tested together with MRMR, yielding approximately the same 

accuracy score: 84.2%. The DT and LR methods are also used. The tool the 

experiments were carried out on was RapidMiner. The pipeline in this paper also 

involves various pre-processing methods, including cleaning, transformation, 

reduction and binning, but the details are not given. 

The work [45] is a comprehensive review of the subject of heart disease 

prediction. Following the definition of the tasks to be performed using machine 

learning, the authors present tables containing the paradigms of automatic heart disease 

prediction. They guess that future trends will involve soft computing, in which `multi-

agent technologies' are employed. A list of popularly used tools is given; it includes 
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WEKA, TANAGRA, MATLAB, Orange, .NET and RapidMiner. The listed methods 

include the DT, NB, SMO, AdaBoost and ANN methods. According to the study 

findings, the ANN had an accuracy of 100.0% and the DT had an accuracy that was 

above 99.6% (on 15 features). 

In [46], an MLP system is applied to predict heart disease. The precision and 

recall values are 0.91 and 0.89, respectively. The IDE used is PyCharm, and the 

selected machine learning library is sklearn. No pre-processing methods, such as 

scaling and dimension reduction, are carried out before classification. On the other 

hand, to exclude expensive lab measurements, the authors proposed a subset of 7 

features: age, sex, blood pressure, heart rate, diabetes, hyper-cholesterol and body 

mass index. They also recommend the usage of several sensors for the practical 

application of their system, including AliveKor, MyHeart, HealthGear and Fitbit. 

The authors of [47] evaluated J48, Reptree, NB, a Bayesian net and 

Classification and Regression Tree (CART) on the South Africa dataset. The accuracy 

values of the 10-fold cross validation are 0.991, 0.991, 0.972, 0.981 and 0.991 for J48, 

Reptree, NB, the Bayesian net and CART, respectively. The considered attributes of 

the dataset are the following: gender, age, chest pain type, blood pressure level, 

cholesterol, heart rate, smoking status, blood sugar and  electrocardiogram (ECG). The 

environment in which the experiments were performed was WEKA. This work also 

utilised only one dataset and no data pre-processing was applied. Additionally, an 

explanation or summary of the classification techniques is missing. 

 

Table 3.1: Literature Results 
Team Dataset Accuracy 

Bhatla et al. [18] Cleveland 86.5 
Repaka et al. [19] Cleveland 89.0 

Shah et al. [23] Cleveland 84.5 
Dangare et al. [25] Cleveland 100.0 

Khan et al. [27] Hungarian 93.3 
Rajdhan et al. [31] Cleveland 90.2 

Fitriyani et al. [32] Chandigarh 95.9 
Taneja et al. [35] Cleveland 95.6 
Singh et al. [36] Cleveland 100.0 

Methaila et al. [41] Cleveland 99.2 
         Medhekar et al. [42] Cleveland 89.6 

        Bashir et al. [44] Cleveland 84.2 

 

Ensemble methods have been successfully applied to heart disease prediction 

[2]. In [1], a decision support system is introduced that uses majority voting ensembles. 
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The authors of [4] established an ensemble of `heterogeneous' classifiers to build an 

effective system. In [48], another ensemble was found to provide accurate medical 

diagnoses. 

The authors of [49] suggest using an MLP to model heart disease data. They 

report high accuracy results, indicating the effectiveness of neural network schemes in 

this domain. The authors of [50] introduce random forest swarm optimisation and test 

it on the Eric and Spectf datasets. In [51], a ̀ feature boundaries' one-class classification 

method is applied and compared with other one-class classification models. The work 

[52] provides an informative survey of heart disease prediction. 

Although deep learning [53] is mostly known for image and video input, there 

exist applications involving tabular data [54]. Exploring the power of neural networks 

in this domain, the authors of [55] tested such deep learning methods. The authors of 

[56] constructed a supervised neural network to detect heart disease based on fuzzy 

sets. 

Support vector machines (SVMs) [57] are another widely applied classification 

method. The authors of [58] selected features via an SVM to estimate the heart disease 

risk. They reported specificity, sensitivity and accuracy scores on different datasets. 

The authors of [59] employed `mean Fisher-based feature selection' and `accuracy-

based feature selection' before using a radial basis function SVM. The authors of [60] 

took advantage of `hybrid' forward feature selection, which was followed by SVM 

categorisation. 

 

7.2 ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks are inspired by human brain biology. Inspired by a 

natural neuron, an artificial neuron has inputs, weights and activation functions [61]. 

The inputs are like synapses, weights resemble signals and activation involves a 

mathematical function that calculates the response of the neuron [61]. After their first 

appearance [62], ANNs with various architectures were designed; these architectures 

range from backpropagation ANNs [63] to deep learning systems [53]. In this section, 

backpropagation ANNs are considered and briefly explained. 

ANNs have input, hidden and output layers [61]. The input layer is where the 

data are fed into the system. As the name implies, it represents the input of the network. 

A hidden layer is an intermediate [61] collection of nodes in which additional 

calculations are performed. By node, we mean a neuron or other complex unit (maybe 
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even a network itself [61]). The output layer provides the results of the system.  A 

backpropagation ANN is a supervised mode l[61], which means that one provides 

input and output tuples to the machine to train the framework. The name 

`backpropagation' comes from the idea of reducing the error term by `propagating' the 

error backwards, while the layers feed information forward. The activation function is 

a weighted sum [61] 

 

 
 

 

 

(3.1) 

Rather than using the identity function, one generally selects the sigmoidal 

function [61] due to its nice mathematical interpretation: 

 

 
 

 

 

(3.2) 

 The error function is then [61]: 

 

  

 

 

(3.3) 

 

The error of the network is the sum over all output units: 

 

  

 

 

(3.4) 

 

The adjustment of the weights is done via gradient descent according to the 

following relation [61]: 

 
 

 

 

(3.5) 
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7.3 SUPPORT VECTOR MACHINES 

Support vector machines, which were originally proposed by Vapnik et al. [64], are a 

generalisation of linear classifiers to possibly infinite-dimensional spaces via kernel 

tricks [65]. By a linear classifier, we mean a classifier in which the decision function  

is of the form [57]  . 

 Here,    is an input vector and  is the weight vector. The optimal hyperplane 

is defined `as the one with the maximal margin of separation between the two classes' 

[57].   can be uniquely represented as a linear combination of input vectors lying on 

the margin (support vectors) [57]: . Thus, all information that is used to 

categorise the patterns is stored in a subset of the training set. Therefore, the final 

decision function is 

 

 

 

 

(3.6) 

 

Figure 3.2: An SVM optimal hyperplane [66] 
 

 

Moreover, if one defines a mapping by taking the input space as the domain 

and the feature space as the range [67]   and lets  

[67], then the decision function in the feature space can be represented as 

 

 

 

 

 

(3.7) 
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             Figure 3.3: Kernel-induced feature space [66] 
 

 or  is chosen such that the classes are separated linearly in the feature space. 

This is sometimes called implicit mapping [67], because one does not need the explicit 

representation of the features but only the kernel values -- that is, the inner products 

on the feature space. A linear kernel is induced via identity mapping: . A 

polynomial kernel is of the form  (here,  is the degree). A radial basis function 

(RBF) kernel, on the other hand, has the form  . 

Additionally, kernels are not restricted to fixed-dimensional input spaces; one 

can define kernels on vector sets [68] and on strings [69]. 

 

7.4 NAIVE BAYES 

      The naive Bayes classifier is backed by Bayes' Theorem, and the probability of 

an input    belonging to a given class  is calculated with the following formula [70]: 

  

  

 

 

 

(3.8) 

  Then, the decision function is  

 

   

(3.9) 

  

  In the case of continuous variables,   is usually calculated by assuming a 

normal distribution [71]: 
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(3.10) 

 

   Figure 3.4: A Gaussian probability distribution function [72] 
 

 

     In [73], a heart disease prediction system is developed by building a 15-

dimensional dataset via questionnaires and naive Bayes. The authors of [42] proposed 

a naive Bayes system based on the Cleveland dataset (a 15-dimensional training 

dataset). The authors of [74] applied k-means clustering before naive Bayes 

classification.   

 

7.5 CHAOS FIREFLY ATTRIBUTE REDUCTION AND FUZZY LOGIC 

One of the state-of-the-art approaches to heart disease prediction is introduced 

in [3]. In this approach, the firefly algorithm (FA) and rough set feature reduction are 

followed by type-2 fuzzy logic classification. There are three main properties of the 

FA [75]: 

 All fireflies are unisex; hence, any two fireflies may be attracted to each 

other. 

 For any two fireflies, the one with less brightness will move towards the 

other one. If, for a firefly, there is no brighter firefly, then its movement 

will be random in space. 

 Brightness is calculated using the fitness function. 

Attraction is calculated using the formula: 
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(3.11) 

 

where    is the distance between two fireflies  and  [3].  is the attraction parameter 

defining the attractiveness  at  [3] and  is the light absorption coefficient [75]. 

The Gaussian map for the attraction parameter is [3], [75] 

 

 

 

 

 

(3.12) 

 

The authors of [3] combined this FA approach with rough sets [76] and `an 

interval type-2 Takagi Sugeno Kang fuzzy logic system' [3] to diagnose heart disease. 

A similar approach is used in [77] on the Cleveland, Hungarian and Switzerland 

datasets. The authors of [78] fused fuzzy logic with decision trees [79, 80] to detect 

coronary heart disease. The authors of [17] implemented a `coactive neuro-fuzzy 

inference system' (CANFIS) and tested their framework on the Cleveland dataset. The 

authors of [81] built a pipeline consisting of a genetic algorithm and fuzzy logic. 

 

 

             Figure 3.5: Chaos Firefly Attribute Reduction and Fuzzy Logic (CAFL) architecture 
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7.6 BAGMOOV 

          BagMOOV stands for `bootstrap aggregation with multi-objective optimised 

voting' and it was suggested in [4]. This extensive work considers 5 datasets (SPECT, 

SPECTF, Heart disease, Statlog and Eric) and reports accuracy, sensitivity, specificity 

and F-measure results after 10-fold cross-validation. The authors incorporate the idea 

of multi-objective optimised voting [82] using an ensemble of 5 base estimators: NB, 

linear regression [83], quadratic discriminant analysis [84], an instance-based learner 

[85] and SVMs. They introduced a weight calculation for each base estimator to obtain 

the best final decision. Of all the methods discussed so far, BagMOOV is the most 

reminiscent of our methods. The fundamental difference is that BagMOOV uses state-

of-the-art classifiers as base estimators and modifies the `bagging' part by introducing 

a weighting scheme, whereas our methods concentrate on creating new base predictors 

and keep the classical bagging scheme. 

 

 

FIgure 3.6: BagMOOV architecture [4] 
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          An early bagging approach to heart disease can be seen in [86]; these researchers 

work on the Cleveland dataset and compare their results with decision trees. The 

authors of [87] proposed a model that integrates fuzzy logic, bagging and gradient 

boosting [88] approaches. The authors of [89] analysed the ensemble method 

performance when classifiers are applied after swarm optimisation [90] feature 

selection. The author of [91] showed that ensemble methods outperform standalone 

base classifiers in the detection of coronary heart disease. 
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CHAPTER IV 

 

PROPOSED TECHNIQUE 

 

8.1 COMPONENTS 

          Although the name of this chapter implies `one technique', here we introduce 

the components of our `proposed techniques', since we propose several methods. 

Actually, our work can be seen as the `evolution' of a method; it begins with high 

accuracy and precision-recall values, develops towards balanced accuracy and 

sensitivity-specificity values and finally ends with an optimised precision (OP) [92] 

that is approximately 12% better than that of state-of-the-art methods. Moreover, two 

methods are introduced to predict heart disease using a popular dataset (Cleveland). 

      First, we begin with the bagged reference vector classifier (BRVC) and bagged 

shrunk covariance classifier (BSCC). Second, we continue by developing the Gaussian 

probability and kurtosis-based majority voting bagging classifier (GKMVB). Third, 

we introduce the Maxwell distribution and KS-test-based majority voting bagging 

classifier (MKMVB). Fourth, the density estimation majority voting bagging classifier 

(DEMVB) is proposed. Fifth, a bagged majority voting nearest centroid algorithm 

(BMVNC) is proposed. Despite the fact that our contributions are mainly `base 

estimators', there are actually components of transformation, normalisation and feature 

selection since each of these processes contributes to the success of the system. 

Therefore, we will talk about this as well. Sixth, a method is applied after extensive 

pre-processing steps, including scaling, neighbourhood component analysis, recursive 

cross-validated feature selection (as in GKMVB, MKMVB and DEMVB), fuzzy 

rough set-based instance selection and random oversampling. Additionally, a gradient 

boosting algorithm is applied after the same steps. 

 

8.1.1 BRVC & BSCC 

          A reference vector classifier analyses the randomness of binary label sequences 

associated with the sorted array of distances to a vector. Let  be an observation. The 
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distances of other observations to   are calculated and sorted. Then, the binary 

sequence, which is the label sequence associated with the distance sequence, is 

analysed and assigned a randomness value [93]. The more non-random this number is, 

the more important the observation is.  such important observations, their distances 

and the associated label sequences are kept to form a decision function.  

 

 

Figure 4.1: RVC training 
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Figure 4.2: RVC prediction 
 

          FIT() represents the training phase of the algorithm.  is a hyperparameter: the 

number of reference vectors. refers to the randomness 

calculation function. We have benefitted from using the exponential of the 

autocovariance [94]. PREDICT() is the function that is used to find the label of a given 

test vector. For each reference vector , the distance of the test vector  is computed 

and located in the corresponding sequence. Then, its location in the aligned binary 

sequence is found to calculate the vote of the reference vector: if there are more  
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than  in the neighbourhood, then the reference vector returns ; otherwise, it returns 

. The votes are summed and compared to return the label of the test vector. 

          The final estimator is BRVC, which is the bagged variant of the reference vector 

classifier; i.e. each base estimator in the bagging classifier is an instance of the RVC. 

          In the literature, there have been applications of shrunk covariance matrices, 

including portfolio optimisation [95] and trajectory classification [96]. In this work, 

we employ two shrunk covariance estimation methods, namely Ledoit-Wolf  [97] and 

Graph-Lasso [98], to sum weighted Mahalanobis distances [99]. The weighted 

Mahalanobis distances to the class means are summed and compared to determine the 

class of a test vector.

 

 

Figure 4.3: SCC training 
 

 

          Analogous to BRVC, BSCC represents the bagged shrunk covariance classifier, 

where each base estimator is an instance of the SCC. 

 

8.1.2 GKMVB & MKMVB 

GKMVB analyses each component (attribute, feature) separately and collects 

votes for each class to predict the label of a vector. Of course, for this to happen, it 

needs fundamental statistics about each feature; here, these are the mean, variance, 

kurtosis and KS-test [100] statistics. One-dimensional classification is performed 

using a variant of the Gaussian probability. Actually, for a given distribution of 

location  and scale , the probability density function (pdf) has the form [72] 
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(4.1) 

 

 

Figure 4.4: SCC prediction 
 

 

          We instead used 

 
 

 

(4.2) 

 

          Despite the existence of robust kurtosis estimation methods [101], a sample 

estimation of the kurtosis [102]  is preferred since this yielded better results: 

  

 
 

 

(4.3) 

     where  is the sample moment defined by the formula 
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(4.4) 

      and  is the sample variance. 

 

 

Figure 4.5: GKMVB training 
 

 

         MKMVB differs from GKMVB in terms of the probability density function that 

is used (it should be noted that our formula in (4.2) is not actually a pdf but instead is 

a `quasi'-distance). The Maxwell-Boltzmann pdf( ) [103] is 

 

 
 

 

(4.5) 

 

    Its cumulative distribution function (cdf) is [103] 

 

 
 

 

(4.6) 

 

        where  is the incomplete gamma function 

 
 

 

 (4.7) 
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Figure 4.6: GKMVB prediction 
 

   

 

Figure 4.7: MKMVB training 
 

 

8.1.3 DEMVB 

Applying standard probability density functions and weighting using the KS-

test statistic may give good results. However, what about tackling the problem from a 

different perspective? That is, what happens if we try to approximate the cumulative 

distribution function and then take its derivative to obtain the density function? In this 
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method, kurtosis and the KS statistic are automatically excluded since   is 

approximated by the cumulative step function . 

Two strategies are applied: the first is DEMVB-I. In this strategy, a polynomial 

 is fitted to , and its derivative  is computed to approximate the density 

function. Second, in the DEMVB-II strategy, the derivative of  is directly 

calculated using   and the central difference formula. From a theoretical 

viewpoint, for a value , where  and  are the nearest sample values, 

setting  to  is not satisfying since the left and right limits of  are not 

equal, which implies that the derivative does not exist. This is also true for a linear 

approximation of  that is calculated using . However, in practice, after the 

conduction of experiments, we have seen that a central difference formula can 

outperform the state-of-the-art methods. This, of course, does not mean that the 

proposed density estimation method is the best method available, as there are many 

sophisticated methods for estimating the density. By state-of-the-art results, we mean 

the overall results achieved after density estimation-based one-dimensional 

classification, majority sums and bagging in the context of heart disease prediction. 

 

 

         Figure 4.8: MKMVB prediction 
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8.1.4 BMVNC 

          BMVNC represents the bagged variant of the majority voting nearest centroid 

(MVNC) method. MVNC is essentially a `biased' variant of the nearest centroid 

classifier. The distance to the class mean is added to the distance from the class mean 

to the overall mean. Weighting is again done using a kurtosis exponentiation, with a 

small change; this time, the absolute value is not taken. 

 

 

Figure 4.9: MVNC training 
 

 

 

Figure 4.10: MVNC prediction 
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8.1.5 IWRF 

          The inner-product wavelet random forest (IWRF) method involves the 

combination of a wavelet transform scheme and random forest classification. The 

algorithm exploits the feature extraction capabilities of the discrete wavelet transform 

via inner-product associated binary sequences. The idea depends on expressing a 

vector using its inner-product associated binary (label) sequences (which resembles 

the binary sequence generation of RVC). For each vector , first, the inner-product 

collection  is calculated. Let  be 

 where  is the largest element of , is the 

second largest element of  and so on. That is,  is the reversely sorted tuple obtained 

by . If  are the corresponding class labels of   and 

 are the results of , then the transformed features are the first  

elements of . Here,  is a method parameter. 

 

 

Figure 4.11: IWRF 
 

8.1.6 XGBFN 

          XGBFN stands for XGBoost [104] neighbourhood component analysis + fuzzy 

rough set prototype selection + random oversampling. XGBFN is a direct application 

that resembles [32]. It is a robust pipeline; that is, its reported metrics are averaged 

after a series of runs (the random state of each stochastic method is set to a number in 

a run, and this is repeated 5 times to find the average measurements). XGBoost is 

probably `the king of tabular data' since a notable number of winners in Kaggle 
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competitions used XGBoost to crunch the sample matrices. Unlike in [32], we intended 

to apply the method to the three UCI datasets, the Cleveland, Hungarian and 

Switzerland datasets, following the methodology of [105]. 

Neighbourhood component analysis seeks a linear transformation  such that 

in the transformed space, one obtains a more accurate classification; specifically, the 

average leave-one-out (LOO) classification is maximised. The effect of linear 

transformation on the final space is dealt with by considering the whole transformed 

space via stochastic gradient descent [106]. 

Fuzzy rough set prototype selection (FRPS) is a sophisticated prototype 

selection algorithm in which fuzzy logic and rough set theory are unified to select the 

best prototypes. First, a quality measure called the ordered weighted average (OWA) 

is introduced and a wide range of thresholds are selected. For each threshold, the 

corresponding subsets in which the quality of the instances is higher than the threshold 

are formed [107]. The LOO accuracy of each subset is recorded; that is, the whole 

dataset is classified with respect to the subset and the resulting accuracy is calculated. 

Then, the maximal accuracy subset is returned.  

Random oversampling is a relatively simple method in which (in our case) the 

minority class is resampled to balance the dataset. 

 

8.1.7 PREPROCESSING & FEATURE SELECTION 

Before GKMVB, MKMVB and DEMVB classification, a quantile transformer 

[108] and a robust scaler [109] are applied. The quantile transformer maps the input 

data into the desired distribution (for GKMVB, MKMVB and DEMVB-I, a uniform 

distribution is chosen, whereas for DEMVB-II, the normal distribution is chosen) and 

the robust scaler considers the median and interquartile range (IQR) to scale the data. 

A standard scaler [108] is utilised before BMVNC. A minmax scaler [109] is used 

before BRVC and BSCC.   

For feature selection, BRVC and BSCC are followed by conditional infomax 

feature extraction (CIFE) [110, 111] and SelectKBest [112] (which is analysis of 

variance (ANOVA)-based), respectively. Thirty-three features were selected before 

BRVC and 10 before BSCC. Recursive Feature Elimination with Cross Validation 

(RFECV) is the method of choice for GKMVB, MKMVB and DEMVB for the 

Spectf/Statlog pipelines. For the application of DEMVB to the Eric dataset, a quantile 
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transformer, followed by a standard scaler, is used before SelectKBest. The number of 

selected features was 6 for this scenario. 

 

8.1.8 PARAMETERS & PIPELINES 

For BRVC and BSCC, a grid-search cross-validation is conducted to find the 

set of bagging classifier parameters: namely, the number of estimators, the maximum 

sample ratio for sampling and the maximum feature ratio for subspace selection. 

 

 

Figure 4.12: BRVC and BSCC pipeline 
 

 
          For GKMVB, MKMVB and DEMVB, no cross-validation is applied. The 

performance of BMVNC is directly measured via 10-fold cross-validation, as in [4]. 

The GKMVB, MKMVB and DEMVB pipeline can be seen in Figure 4.13.  

          For DEMVB-I on Spectf,  and the polynomial degree is set to 

. For DEMVB-I on Statlog,  is set to  and  is set to . The quantile 

transformer output distribution was set to the default setting: uniform. The number of 

estimators for the DEMVB-I bagging classifiers was set to ,  the number of features 

(sampling parameter) was set to  and the number of samples (sampling parameter) 

was set to .  
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Figure 4.13: GKMVB, MKMVB and DEMVB pipeline 
  

 

The parameters of `the most robust setting' (the setting for which the average 

accuracy, sensitivity, specificity and optimised precision were reported) are given 

below:  

 For DEMVB-I on Spectf, ,   and the polynomial 

degree was . The quantile transformer output distribution was uniform. 

The number of quantiles was set to the half of the length of the dataset (half 

of the number of observations). The base estimator logistic regression 

regularisation parameter was . The number of estimators for each 

bagging classifier was . 

 For DEMVB-II on Statlog,  and the order of the 

derivative approximation was . The logistic regression regularisation 

parameter was . The number of estimators for bagging classifiers was 

. 

 For DEMVB-II on Eric,  and . The number of 

estimators was . The number of features for SelectKBest was . 

 For IWRF, the number of estimators was . SelectKBest was executed 

while  was , and the wavelet transformer feature length was . 

The pipeline associated with XGBFN is as follows: 

 One-hot encoding of categorical variables; 

 Imputation via `median' and `most frequent' strategies; 

 Minmax scaling; 

 Neighbourhood components analysis feature reduction; 

 RFECV feature selection, where the estimator is XGBoost; 
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 FRPS prototype selection; 

 Random oversampling; 

 XGBoost 10-fold cross-validation. 

 

8.1.9 RESULTS 

     Here, we describe the datasets and metrics used. Then, we give the results for 

each dataset and compare the performance of our methods with the state-of-the-art 

methods.   

 

8.1.9.1 Datasets 

          To compare our results with  [3], we have conducted experiments on the Spectf 

and Statlog datasets. Spectf has 44 features obtained from single-photon emission 

computed tomography (SPECT) images [2]. Statlog, on the other hand, has 13 

features:  age, sex, chest pain type, resting blood pressure, serum cholesterol in mg/dl, 

resting electrocardiographic results, maximum heart rate achieved, exercise-induced 

angina, ST depression induced by exercise relative to rest, the slope of the peak 

exercise ST segment, the number of major vessels (0--3) coloured by fluoroscopy and 

defect type [2]. One third of each dataset is used for training, and the rest is reserved 

for testing. 

          To compare our results with [4], the Eric dataset is analysed. This dataset has 

210 observations and 7 features: age, chest pain, resting blood pressure, blood sugar, 

resting electrocardiographic results, maximum heart rate and exercise angina. The 

results on the Eric dataset are reported after 10-fold cross-validation, as in [4]. 

     To compare our results with [105], the Cleveland (a popular dataset), Hungarian 

and Switzerland datasets are analysed. The Cleveland dataset has 303 samples with 

some missing attributes. The Hungarian dataset has 294 observations, while the 

Switzerland dataset has 123 observations. Each of these three UCI datasets has 13 

features. 

 

8.1.9.2 Evaluation 

          The first prototype of the system is evaluated using the accuracy, precision and 

recall, where 
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(4.8) 

 

 
 

 

 

(4.9) 

      and 

 

 
 

 

(4.10) 

      The results of our system's first prototype, namely BRVC and BSCC, can be 

seen in Table 4.1 and Table 4.2. 

 

Table 4.1: Accuracy Comparison 
Method Spectf Statlog 

NB 79.7 85.2 
SVM 79.7 81.5 
ANN 77.0 81.5 
CAFL 87.2 88.3 

BRVC, BSCC 88.7 88.8 

 

Table 4.2: Precision and Recall Measurements 
Dataset Precision Recall F-score 

BSCC (Statlog) 85.5 89.8 87.6 
BRVC (Spectf) 91.4 93.7 91.4 

 

      The second and third versions of the system are evaluated using the sensitivity, 

specificity and optimised precision [92], where 

  

  

(4.11) 

 

 
 

 

(4.12) 

 

and 
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(4.13) 

 

Table 4.3: Spectf Results 
Method Accuracy Sensitivity Specificity OP 

NB 79.7 100.0 0.0 -20.0 
SVM 79.7 100.0 0.0 -20.0 
ANN 77.0 89.3 28.9 25.9 
CAFL 87.2 94.2 68.9 71.6 

GKMVB 88.7 66.0 90.7 73.4 
MKMVB 83.1 80.0 83.4 81.0 
DEMVB-I 87.0 80.0 87.7 82.4 

 
Table 4.4: Statlog Results 

Method Accuracy Sensitivity Specificity OP 
NB 85.2 82.6 87.1 82.5 

SVM 81.5 82.6 80.6 80.2 
ANN 81.5 82.6 80.6 80.2 
CAFL 88.3 84.9 93.3 83.5 

GKMVB 88.3 91.7 84.3 84.1 
MKMVB 86.1 87.6 84.3 84.2 
DEMVB-I 87.7 89.6 85.5 85.4 

 

      The results in Table 4.3, Table 4.4 and Table 4.5  represent the maximum values 

of the 10 runs. A point that must be stated here is that  DEMVB is our most robust 

model since it gave an average optimised precision of 75.3 on Spectf,  84.1 on Statlog 

and 74.4 on Eric, respectively. Here, DEMVB-I (polynomial setting) is applied to the 

Spectf dataset, and DEMVB-II (centred differencing) is applied to the Statlog and Eric 

datasets.   

Table 4.5: Eric Results 
Method Accuracy Sensitivity Specificity OP 
Bagging 73.2 76.9 68.4 67.4 
Adaboost 65.1 68.3 60.9 59.2 
Stacking 79.4 87.2 69.6 68.1 

NNE 77.0 79.5 73.9 73.3 
BagMOOV 80.9 86.3 73.9 73.2 

RF 81.8 84.5 75.8 77.0 
IWRF 83.7 86.2 80.3 80.1 

DEMVB-II 82.5 88.5 78.9 78.1 
BMVNC 82.7 83.2 82.7 82.3 

 

      In Tables 4.6, 4.7 and 4.8, AGAFL stands for the state-of-the-art [105] results 

for the Cleveland, Hungarian and Switzerland dataset combination.  
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Table 4.6: Cleveland Results 
Method Accuracy Sensitivity Specificity OP 
AGAFL 90.0 91.0 90.0 89.0 
LPP + RBFL 68.0 79.0 84.0 65.0 
RS + FL 73.0 100.0 67.0 53.0 
XGBFN 95.0 94.0 96.0 94.0 

 

Table 4.7: Hungarian Results 
Method Accuracy Sensitivity Specificity OP 
AGAFL 91.0 92.0 88.0 89.0 
LPP + RBFL 67.0 87.0 38.0 28.0 
RS + FL 70.0 86.0 35.0 28.0 
XGBFN 92.0 89.0 94.0 89.0 

 
Table 4.8: Switzerland Results 

Method Accuracy Sensitivity Specificity OP 
AGAFL 89.0 97.0 75.0 76.0 
LPP + RBFL 72.0 76.0 67.0 66.0 
RS + FL 63.0 67.0 72.0 59.0 
XGBFN 99.0 100.0 97.0 97.0 
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CHAPTER V 

 

CONCLUSION 

 

We have seen that ensemble methods, specifically bagging classifiers with 

custom base estimators, are effective tools for the prediction of heart disease. The RVC 

and SCC were written by exploiting the binary sequences associated with distance 

measures and shrunk covariance estimators, respectively. These methods yielded good 

accuracy results when they were backed by the proper feature selection. The precision 

and recall results were also satisfactory, but the specificity and sensitivity scores 

needed major improvement. We solved this problem by adopting a better pre-

processing scheme, namely by applying quantile transformation and recursive feature 

elimination. Then, several majority voting classifiers were proposed: GKMVB, 

MKMVB and DEMVB. The first of these was based on the idea of weighting the 

features using kurtosis and KS-test values. The second was derived by using an 

implementation of the Maxwell-Boltzmann distribution, and the third involved the 

estimation of density functions by analysing the empirical cumulative distribution 

function.  

Our claim is that this work is valuable for two reasons: first, we have achieved 

results that are better than those of the state-of-the-art methods. Second, our results 

were obtained via new classifiers (except for XGBFN). As we have seen, the heart 

disease prediction literature mostly consists of the `application' of some well-known 

method to the problem. Although a focus on application absolutely does not lower the 

value of these methods, some consideration of novelty is also needed. Of course, on 

some level, all methods are reducible to the application of some well-known theory, 

but striving for the development of new classifiers is still an important challenge. We 

hope that our methods are usable in other application contexts. 
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