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ABSTRACT

(ALPHA-PSI) TYPE CONTRACTIVE MAPPINGS AND RELATED FIXED
POINT THEOREMS

URGUP, Edanur
M.Sc., Department of Mathematics and Computer Science
Supervisor: Prof. Dr. Kenan Tag

February 2016, 33 pages

This thesis consists of three sections. The first section is reserved for introduction,
some basic definitions and declaration of literature about alpha-psi type contrac-
tive mappings and related fixed point theorems have been presented. The second
section deals with the main results. We have applied definition of alpha-admissible
for two different functions of f and 7. Furthermore, we have investigated their

results. Finally, the third section includes discussion and conclusion.

Keywords: Fixed Point, Contractive Mappings, (a-t)-Contractive Condition,

a-admissible maps, Multi-Valued Maps, Coincidence Points
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0V

ALPHA-PSI TIPINDEN BUZULME DONUSUMLERI VE ILGILI SABIT
NOKTA TEOREMLERI

URGUP, Edanur
M.Sc., Matematik—Bilgisayar Boltimii
Tez Yoneticisi: Prof. Dr. Kenan Tag

Subat 2016, 33 pages

Bu caligma ti¢ boliimden olugsmustur. Birinci boliim girig,temel tanmimlar,literatiir
bilgileri alpha-psi tipinden biiziilme doniigtimleri ve ilgili sabit nokta teoremlerine
ayrilmistir. Ikinei boliimde ana fikri verdik. Alpha-admissible tammim iki farkl
fonksiyon olan f ve T icin uyguladik ve sonuclarim inceledik. Uctincil boliimde

sonug ve tartigmalara yer verdik.

Anahtar Kelimeler: Sabit Nokta, Biiziilme Donitigtimleri, alpha-psi tipinden
biiziilme kogulu, a-admissible dontigiimler, Cogul degerli doniigiimler, Cakigma

noktalar:
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CHAPTER I

Introduction

1.1 SOME BASIC DEFINITIONS AND THEOREMS

In 1922, Banach published his fixed point theorem also known as Banach’s Con-

traction Principle using the concept of Lipschitz mappings.

Definition 1.1.1. Let (M,d) be a metric space. The map T : M — M is said
to be lipschitzian if there exists a constant k > 0 (called Lipschitz constant) such
that

d(Tz,Ty) < kd(z,y)

A lipschitzian mapping with a lipschitz constant k less than 1, i.e. k <1, is

called contraction.

Theorem 1.1.1 (Banach’s Contraction Principle). Let (M, d) be a complete met-
ric space and let T : M — M be a contraction mapping. Then, T has a unique

fixed point xo; and for each x € M, we have
lim, oo™ = 9

Moreover, for each x € M, we have

n

k
d(T"z, xy) < 1 kd(T:E,x).

Definition 1.1.2 (Fixed Point). Let f be a function which maps a set of X into
itself; i.e. f: X — X. A fixed point of the mapping f is an element x belonging
to X such that f(z) = x.

Definition 1.1.3 (Contraction Mapping). Let (X,d) be a metric space. Then, a
map T : X — X is called as a contraction mapping on X if there exists q € [0,1)
such that d(Tz, Ty) < q d(z,y) for all x,y in X.



Definition 1.1.4 (Coincidence Point). The Coincidence point (or simply coin-
cidence) of two mappings in their domain has the same image point under both
mappings.

Formally, given two mappings f,g: X — Y, it can be said that a point x in X is
a coincidence point of f and g if f(x) = g(x).

Coincidence points is, in most settings, a generalization of fized point theory, the
study of points x with f(x) = x. Fized point theory is the special case obtained
from the above by letting X =Y and taking g to be the identity mapping. Just
as fized point theory has its fized-point theorems, there are theorems that also

guarantee the existence of coincidence points for pairs of mappings.



1.2 SOME KNOWN RESEARCH

In this part, We have investigated what has happened about (a-1) Type Con-
tractive Mappings and Related Fixed Point Theorems, and who the founders of
this theory are and how they have been classified by these researchers. We have

gone through some articles about all of them.

In the last decades, metric fixed point theory has had many applications in
functional analysis. The contractive conditions on underlying functions play an
important role to find solutions for metric fixed point problems. The Banach con-
traction principle is a remarkable result in metric fixed point theory. Metric fixed
point theory has been appreciated by a number of authors who have improved
the celebrated Banach fixed point theorem for various contractive mapping in the
context of different abstract spaces. The authors introduced the notions of
(a-1))-contractive mappings, and investigated the existence and uniqueness of a
fixed point for such mappings. Further, they showed that several well-known fixed
point theorems can be derived from the fixed point theorem of (a-t))-contractive
mappings.

In 2012, Samet [1] introduced the concepts of (a-1)-contractive and a-admissible
mappings, and established various fixed point theorems for such mappings in com-
plete metric spaces.

Afterwards, Karapmar and Samet [2] generalized the notion (a-t))-contractive
mappings, and obtained a fixed point for this generalized version.

Let ¥ be the family of functions ¢ : [0,00) — [0,00) satisfying the following
conditions:

(¥y) 9 is nondecreasing;

(Uy) >0 ™(t) < oo for all ¢ > 0, where ¢ is the nth iterate of 9.

In the literature, these functions are known as (c)-comparison functions. It is
easily proved that if ¢ is a (¢)-comparison function, then ¢ (t) < ¢ for any ¢ > 0.

Recently, Samet et al.[1] introduced the following concepts.

Definition 1.2.1. Let (X,d) be a metric space and T : X — X be a given
mapping. We can say that T is an (a- )-contractive mapping if there exist two

functions a : X x X — [0,00) and 1 € U such that



a(z,y)d(Tz,Ty) < V(d(z,y)), for all z,ye€X.

Clearly, any contractive mapping, which could be, a mapping satisfying Banach
contraction is an (a- )-contractive mapping with a(x,y) =1 for all z,y € X and
U(t)=kt, k€ (0,1).

Definition 1.2.2. Let T : X — X and o : X x X — [0,00). We say that T is

a-admissible if for all x,y € X, and we have

alz,y) > 1= a(Tz,Ty) > 1

We have shown some examples.

Example 1.2.1. Let X = (0,00). Define T : X — X and a: X x X — [0,00)
by Tx = In(x + 1) for allx € X and

alz,y) = e if x>y
= 0 :if x<uy

Then, T 1s a-admussible.

Example 1.2.2. Let X = [1,00). DefineT : X — X and o : X x X — [0,00)
by Tox = 2>  forallx € X and

(2.1) r+y if x>y
alx,y) =
Y 0 af <y

Then, T 1s a-admissible.

Example 1.2.3. Let X = (0,4+00). Define T : X — X and o : X x X — [0, 00)
by Te =Inx  forallx € X and

o(z,y) = 2 if x>y
A 0 :if <y

Then, T 1s a-admissible.



Example 1.2.4. Let X = [0,+00). DefineT: X — X and a: X x X — [0,00)
by Tx =+/x forallx € X and

(z,9) ey af x>y
a(z,y) =
Y 0 if o<y

Then, T s a-admissible.

Remark 1.2.1. In the ezamples (1.2.3) and (1.2.4), every nondecreasing self-

mapping T is a-admissible.

Theorem 1.2.1. (Samet [1]) Let (X, d) be a complete metric space, and T : X x X
be an (a-1 )-contractive mapping. Suppose that

1. T is a admissible;
2. there ezists xg € X such that a(xg, Txg) > 1;

3. T is continuous.

Then there exists u € X such that Tu = u.

Theorem 1.2.2. Let (X,d) be a complete metric space and T : X x X be an
(a-1) )-contractive mapping. Suppose that

1. T is o admassible;
2. there exists xg € X such that a(xg, Txg) > 1;

3. if {xn} is a sequence in X such that a(xp, xp11) > 1 for alln and x, — v €
X asn — oo, then a(x,,z) > 1 for all n.
Then there exists u € X such that T'u = u.

Theorem 1.2.3. In addition to the hypotheses of Theorem 1.2.1 (resp., Theorem
1.2.2) the condition, for all z,y € X, there exists z € X such that a(z,z) > 1
a(y, z) > 1, and one obtains uniqueness of the fized point.

In this study, we have introduced the concept of generalized (-1 )-contractive type
mappings, and we have studied the existence and uniqueness of fixed points for such
mappings. The theorems presented in this study extend and generalize the above
results derived by Samet et al. in [1].Moreover, from the fized point theorems, we
have had the possibility deduce various fixed point results on metric spaces endowed

with a partial order and fized point results for cyclic contractive mappings.
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On the other hand, Asl [3] characterized the notions of (a-t)-contractive map-
ping and a-admissible mappings with the notions of (a-1)-contractive and
« -admissible mappings to investigate the existence of a fixed point for a multi-

valued function.

Furthermore, Rezapour and Shahzad [4] generalized the notion of (a-t)-Ciric
in fixed point results for multivalued mappings.
Denoted by ¥ the family of nondecreasing functions 1 : [0, c0) — [0, c0) such that
St 00 Y"(t) < +oo for all t > 0. It is well-known that () < ¢ for all ¢ > 0,
Let (X,d) be a metric space, 8 : 27 x 2* — [0,00) be a mapping and ¢ € V.
A multivalued operator 7' : X — 2% is said to be (f-1) contractive whenever
B(Tx, Ty)H(Tz,Ty) < ¥(d(z,y)) for all z,y € X, where H is the Hausdorff
metric. Alikhani, Rezapour and Shahza proved the fixed point results for (8-1)
contractive multifunctions. Let (X, d) be a metric space, a : X x X — [0,00) be
a mapping and ¢ € W. It can be stated T': X — 2% is an (a-t)-Ciric generalized

multifunction if

a(z,y)d(Tz,Ty) < ¢ (max {d(x, y),d(x, Tx),d(y, Ty), d(z,Ty) —2F d(y, T) })

for all x,y € X. Also, it can be said that the self-map F' on X is a-admissible
whenever a(x,y) > 1 implies a(Fx, Fly) > 1 [1]. In this study, we it can be said
fixed point results for (a-1)-Ciric generalized multifunctions.
In 2012, Haghi, Rezapour and Shahzad proved that some fixed point generaliza-
tions are not the real ones. Here, by presenting a result and an example, we are
going to show that obtained results in this new field are the real generalizations

in respect to the previous ones in the literature.

Lemma 1.2.1. Let (X,d) be a complete metric space, o : X x X — [0,00) be a
function, v € U and T be a self-map on X such that

alx,y)d(Tz, Ty) < ¢ (max{d(x, y),d(z, Tx),d(y, Ty), %[d(m, Ty) + d(y, Tx)] })

forall z,y € X. Suppose that T is a-admissible and there exists xo € X such that
a(xg, Tyo) > 1. Assume that if z, is a sequence in X such that a(x,,T,1) > 1

for all n and x,, — x, then a(x,,z) > 1 for all n. Then T has a fized point.



Next, MU Ali,Kamran and Karapimar [5] proved fixed point theorems for non-
self multivalued (a-1))-contractive type mappings using a new condition. Sal-
limi’s and Hussain’s [6] work was to modify the notions of (a-1)-contractive and
a-admissible mappings further, and establish fixed point theorems for such map-
pings in complete metric spaces. After that, Karapnar, Salimi and Vetro [7]
introduced the notion of a G-(a-1)-Meir-Keeler contractive mapping and proved
some fixed points theorems for this class of G-metric spaces. Following them,
Gordji, Karapmar and Sintunavarat [8] introduced a new type of generalized (-
1)-Meir-Keeler contractive maapping and established some interesting theorems

on the existence of fixed points for such mappings via admissible mappings.

In 1969, Meir and Keeler established a fixed point theorem in a metric space
(X, d) for mappings satisfying the condition that for each ¢ > 0 there exists
d(e) > 0 such that

e >d(x,y) <e+d(e) implies d(Txz,Ty) <e

for all z,y € X. This condition is called as the Meir-Keeler contractive type condi-
tion. We have introduced a new type of contractive mapping based on Meir-Keeler
type contractive condition. For such mappings, we have studied and established
fixed point theorems via admissible mappings. Moreover, we have presented some
applications of our new results.

In this regard, let N denote the set of positive integers. Let ¢ stands for the family
of nondecreasing functions v : [0,00) — [0,00) such that » >°, ¢"(t) < oo for
each t > 0, where 9" is the nth iterate of 1.

Remark 1.2.2. For every function 1 : [0,00) — [0, 00) the following holds:
lim ¢(t) =0 — ¢(t) <t — (0) =0
n—oo

Therefore, if 1 € U, then for each t > 0, ¥ (t) <t and ¥(0) = 0.

Example 1.2.5. Let 11,15 : [0,00) — [0,00) be defined in the following way:

Sif 0<t<l1

=1t and 1y =
V=2 v { Sif o t>1

[SSAGVIEN

It is clear that 1,19 € V. Notice that 11,10y are examples of continuous and

discontinuous functions in W.



Remark 1.2.3. If T : X — X satisfies the Banach contraction principle in a
metric space (X, d), then T is an (a-y )-contractive mapping, where a(x,y) = 1
for all x,y € X and 1(t) = kt for allt > 0, where k € [0,1).

Afterwards, Karapmar [9] investigated the existence and uniqueness of fixed
points of (a-1)-contractive mappings in complete generalized metric spaces, in-

troduced by Branciari.

In addition, Karapmar [10] considered a generalization of (a-1)-Geraghty con-
tractions and investigated the existence and uniqueness of fixed point for the
mapping satisfying this condition. It is important to recall Geraghty’s theorem.
For this purpose, it will be significant first to remind the class of F' all functions
B :]0,00) — [0, 1)which satisfies the condition:

lim §(t,) =1 dimplies lim ¢, =0

n—00 n—00
Theorem 1.2.4. (Geraghty) Let (X,d) be a complete metric space and
T: X — X be an operator. If t satisfies the following inequality:

d(Tz, Ty) < B(d(z, y))d(z,y),
for any x,y € X, where B € F the T has a unique fized point.

Definition 1.2.3. Let (X,d) be a metric space, and let o : X x X — R be a
function. A mapping T : X — X is said to be generalized (a-1))-Geraghty con-
traction if there exists B € F' such that

a(z,y)v(d(Tz, Ty)) < B(U(M(z,y))Y(M(z,y))
for any x,y € X, where

M(z,y) = max{d(z,y),d(x, Tx),d(y, Ty)},

and ¢ € .
Notice that if we take ¥ (t) =t in Definition[1.2.53],then T is called generalized

a-Geraghty contraction mapping.

After, MU Ali, Kamran and Karapmar [11] considered the characterization of
the notions of (a-t)-contractive and a-admissible mappings in the context uni-

form spaces.



Lastly, Karapmar, Shahi and Tas [12] introduced two classes of generalized
(a-1))-contractive type mappings of integral type in order to analyze the existence
of fixed points for these mappings in complete metric spaces.

We have touched upon some necessary definitions and basic results from the liter-
ature. Throughout thesis, let N denote the set of all nonnegative integers. Berzig

and Rus [13] introduced the following definition.
Definition 1.2.4. (see [13]) Let N € N. We can say that « is N-transitive (on
X)if

Lo, L1y ey TNA1 e X Oé(:??i,l’i+1) Z 1

foralli€{0,1,....,N} = a(xg,xy41) > 1

In particular, we can say that a is transitive if it is 1-transitive, i.e.,
r,y,z€ X ta(z,y) >1 and ay,z) >1=az,z) > 1
As consequences of Definition [1.2.4], we obtain the following remarks.

Remark 1.2.4. (see [13])

1. Any function o : X x X — [0, +00) is 0-transitive.
2. If a is N transitive, then it is kN-transitive for all k € N.
3. If « is transitive, then it is N-transitive for all N € N.

4. If a 1s N-transitive, then it is not necessarily transitive for all N € N.

Let U be the family of functions ¢ : [0,00) — [0,00) satisfying the following
conditions:
(W) ¢ is nondecreasing;
(Uy) D207 Y"™(t) < oo for all t > 0, where Y™ is the nth iterate of 1.
In the literature, such mappings are called in two different ways: (c)-comparison
functions in some sources(see, e.q., [11]), and Bianchini-Grandolfi gauge functions
in some others (see, e.q., [12-1}]).
It can be easily verifed that if ¢ is a (c)-comparison function, then ¥ (t) < t for
any t > 0.
Define ® = {p : ¢ : RT — R} be such that ¢ is nonnegative, Lebesgue integrable

and satisfies
/ e(t)dt >0 for each €>0
0

10



Shahi et al. in [14] introduced the following new concept of (a-) )-contractive type
mappings of integral type.

Definition 1.2.5. Let (X, d) be a metric space and T : X x X be a given map-
ping. We say that T is an (a- )-contractive mapping of integral type if there exist
two functions a: X x X — [0,400) and » € ¥ such that for each x,y € X,

d(Tz,Ty) d(z,y)
a(m,y)/o p(t)dt < (/0 gp(t)dt) )

where ¢ € . In what follows, we recollect the main results of Shahi et al. [14].

Theorem 1.2.5. Let (X,d) be a complete metric space and o : X x X — [0, +00)
be a transitive mapping.Suppose that T : X x X is an (a- )-contractive mapping

of integral type and satisfies the following conditions:

1. T is a-admissible;
2. there ezists xo € X such that a(xg, Txg) > 1 ;

3. T s continuous.

Then, T has a fized point,that is,there exists z € X such that Tz = z.

Theorem 1.2.6 (14). Let (X,d) be a complete metric space and a : X x X —
[0,4+00) be a transitive mapping.Suppose that T : X x X is an (a-y))-contractive

mapping of integral type and satisfies the following conditions:

1. T is a-admissible;
2. there exists xy € X such that a(xg, Txg) > 1 ;

3. if {xn} is a sequence in X such that oz, Tp1) > 1 for all n and x, —
x € X asn — oo, then there exists a subsequence {xnu} of {x,} such that
(T, x) > 1 for all k.

Then, T' has a fized point. In this point, there exists z € X such that Tz = z.

It 1s important to pay attention that in the theorems above, the authors proved
only the existence of a fized point. To guarantee the uniqueness of the fixed point,
the following condition is needed. (U): For all x,y € Fix(T), there exists z € X
such that a(x,z) > 1 and a(y, z) > 1, where Fiz(T) denotes the set of fized points
of T.

11



The last one is [15] to employ multivalued maps for (¢-1)-contraction condition
in a complete metric space. Murthy and Tiwari have obtained a common fixed
point theorem for (¢-1))-contraction under compatible maps of type(A).

After the Banach fixed point theorem a lot of researches have been carried out
to extend and generalize the Banach fixed point theorem in different spaces. We

have divided these researchers into two groups:

1. One group of researchers tried to obtain fixed points by using different con-
traction conditions such as Edelstein [21], Kannan [23], Browder [18], Ciric
[20], etc.

2. Another group of researchers tried to weaken the contraction condition by
introducing a control functions in place of the contraction constant
a € (0,1). In particular, Rakotch [25] and Boyd and Wong [19] obtained
fixed points of a self map which were employed on the contraction condition

in a complete metric space which follows:

Let T : X — X be such that
d(Tx,Ty) < (d(z,y)) for all z,yeX

d(Tz,Ty) < a(d(z,y))d(z,y) for all x,ye X

In the earlier results, the control functions ¢, « : [0, 00] — [0, 00] are continuous
and monotonically decreasing. Using these control functions, we have a healthy
literature in the context of fixed point theory dealt with it and applications.
Later, it was an open problem before the researchers working in the area of fixed
point theory and applications existing in any contraction condition which is weaker
than of Banach [17].

It was Rhoades [26] who responded the question and established a theorem in a
complete metric space by implementing the result of Alber et. al [16] in Hilbert
spaces to a complete metric space.

The contraction condition used by Rhoades ([26]) is in the following.

A mapping T : X — X satisfies the following condition

d(Tx,Ty) < d(z,y)e(d(z,y)), for all z,yeX.

After Rhoades [26], a good number of results appeared in the literature of fixed

point theory and applications.

12



Definition 1.2.6 (22). Let S,T : (X,d) — (X, d) be mappings. S and T are said
to be compatible of type(A) if

lim d(T'S(x,)),SS(x,)) =0 and d(ST(x,),TT(x,)) =0

n—oo

whenever x,, is a sequence in X such that lim, . S(z,) = lim, ., T'(z,) =t for

somet e X.

Theorem 1.2.7. Let (X,d) be a complete metric space and let A, B,S and T :
X — X be a mapping satisfying

Y(d*(Az, By)) < ¥(M(z,y)) — ¢(N(z,y))

for all z,y € X with x # y and

M (z,y) = max{d*(Sz, Ty), (Sz, Az).d(Ty, By), d(Sx, Az).d(Ty, Ax),
1

5(d(Sz, By).d(Ty, By)), (d(Sz, By).d(Ty, Ax))}

and

N(z,y) = min{d*(Sz, Ty), (S, Azx).d(Ty, By), d(Sx, Ax).d(Ty, Ax),
1

§(d(5w, By).d(Ty, By)), (d(Sz, By).d(Ty, Ax))}

A(X)CT(X) and B(X) C S(X);
One of A, B, S, and T is continuous; A, S and B, T are compatible pair of type(A);

@ :[0,00) = [0,00) is a mapping such that ©(t) > 0; which is lower semi-
continuous for all t > 0 and ¢ is discontinuous at t = 0 with ¢(0) = 0 and
Y [0,00) = [0,00) is an alternating function.

Then A, B,S and T have a unique common fixed point in X.

13



In the recent years, Chandok, Tag and Ansari [27] have investigated some fixed
point results for T AC-type contractive mappings. They have proved some fixed
point results for new type of contractive mappings using the notion of cyclic ad-
missible mappings in the framework of metric spaces. Their results have extended,

generalized and improved some of the well-known results from literature.

Let X be a nonempty set and 7': X — X be an arbitrary mapping. It can be
said that z € X is a fixed point for 7', if + = Txz. We denote Fix(T) the set of
all fixed points of T .

Definition 1.2.7 (28). Let T : X — X be a mapping and o, 5 : X — RT be two
functions. We say that T is a cyclic (a, B )-admissible mapping if

(1) a(z) > 1 for some x € X implies f(Tx) > 1,
(ii) B(x) > 1 for some x € X implies a(Tx) > 1.

Example 1.2.6 (28). Let T : R — R be defined by T(—x) = —T'(x). Suppose
that o, B : R — RY are given by B(x) = 5% for all x € R and a(y) = 57Y for all
y € R. Then T is a cyclic (o, B) -admissible mapping.

Let U denote the set of all monotone increasing continuous functions
¥+ 10,00) = [0, 00), with ¢~ 1({0}) = 0.

Let @ denote the set of all continuous functions

¢ :[0,00) = [0,00), with lim, o ¢(t,) = 0 = lim, o t, = 0.

Lemma 1 (19). Suppose that (X, d) is a metric space. Let {x,} be a sequence in
X such that d(x,,xn+1) — 0 as n — oo. If {x,} is not a Cauchy sequence then
there exist an € > 0 and sequences of positive integers {m(k)} and {n(k)} with
m(k) > n(k) > k such that d(Xpm k), Tngk)) = €, d(Tmg)—1, Tnrk)) < € and

(1) imy o0 A(Trm(k)—1, Tn(k)41) = €;

(ii) imp o0 d(Tm(k), Tnk)) = €;

(443 iy 00 A(Tpa(k)—1, Tn(r)) = €.

Remark 2. in a same way to the proof of Lemma 1, we get

khjélo A(Zn(k)+15 Tmk)+1) = €
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In 2014, the concept of C-class functions(see Definition 1.2.8) was introduced
by H. Ansari in [29] and is important to see the number of examples (1),(2) from
Example 1.2.7.

Definition 1.2.8. [29] It can be pointed out that f : [0,00)* — R is called C-class

function if it is continuous and satisfies following axioms:
(1) f(s,t) <s;
(2) f(s,t) = s implies that either s =0 ort =0;

for all s,t € 10, 00),.

Note that f(0,0) = 0.
We denote C-class functions as C.

Example 1.2.7. [29] The following functions f : [0,00)?> — R are elements of C.
(1) f(s,t) =s—t, f(s;t) =s=1t=0;
(2) f(s,t) =ks,k € (0,1), f(s,t) =s=1=0;

(3) f(s,t) = T f(s,t)=s=s=0o0rt=0;

(4) f(s,t) =log(t+a®)/(L+1t),a>1, f(s,t)=s=s=0ort=0;
(5) f(s,t) =In(l14+a°)/2, a > e, f(s,t) =5 = s=0;
(6) f(s,t) = (s + DA [ [ >1, f(s,t) =5 =t =0.

Definition 1.2.9. Let (X,d) be a metric space and o, B : X — R be two func-
tions. It can be claimed that T : X — X is a T AC-contractive mapping if

a(z)B(y) =2 1= (d(Tz,Ty)) < f(Y(d(z,y)), o(d(z,y))) (1.2.1)

forx,y € X, where f €C, ¢ €V and ¢ € .
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Now, let us prove our first theorem.

Theorem 1.2.8. Let (X,d) be a complete metric space and T : X — X be a
cyclic («, B)-admissible mapping. Assume that T is a T AC-contractive mapping.
Suppose that there exists xo € X such that a(xo) > 1 and S(z9) > 1 and either of
the following conditions hold:

(a) T is continuous, or

(b) if {x,} is a sequence in X such that x, — x and f(x,) > 1 for all n, then
Ba) > 1.

Then T has a fized point.

Moreover, if a(x) > 1 and S(y) > 1 for all x,y € Fiz(T), then T has a unique
fixed point.

Proof. Define a sequence {z,} by x, = T"xq = Tz, 1 for all n € N. Since T is a
cyclic (a, §)-admissible mapping and «(xg) > 1 then §(z1) = S(Txg) > 1 which
implies a(zy) = a(T'zy) > 1. By continuing this process, we get a(zs,) > 1 and
B(x9n_1) > 1, for all n € N. Again, since T is a cyclic (a, #)-admissible mapping
and [(zg) > 1, by the similar method, we have 3(zs,) > 1 and a(xs,_1) > 1 for
all n € N. That is, a(z,) > 1 and f(z,) > 1 for all n € NU {0}. Equivalently,
a(x,—1)B(z,) > 1 for all n € N. From (1.2.1), we have

IN

f(d(zn—1,22)), p(d(Tn-1,70)))
< P(d(zn-1, 7)) (1.2.2)

P(d(n, Tnir))

Using monotonicity of ¢, we get

(X, Tpg1) < d(xp_1,2,),

for all n € N. Hence the sequence {d(z,,z,41)} is a decreasing sequence. So for
the nonnegative decreasing sequence {d(z,, 1)}, there exists some r > 0, such
that

lim d(x,, Tpy1) =7 (1.2.3)

n— o0
Assume that r > 0. On letting n — oo in (1.2.2), using the continuity of ¢» and
f and inequality (1.2.3), we obtain

P(r) < flib(r), o(r)) < o(r), (1.2.4)
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thus f(¢(r),é(r)) = ¥(r). Now, by using Definition 1.2.8, we get that either
Y(r) =0 or ¢(r) = 0, in both cases it follows that » = 0, which implies

lim d(x,,z,+1) = 0. (1.2.5)

n—oo

Now, we shall prove that {z,} is a Cauchy sequence. If possible, let {x,} be
not a Cauchy sequence. Then by lemma 1 there exists an § > 0 and two sequences
of positive integers {m(k)} and {n(k)} with, n(k) > m(k) > k such that

Hm d(Zm)s Tngky) = UM d(Tpm)15 Tk +1) = 0. (1.2.6)

n—oo n—oo

Now, by setting = z,,, and y = x,,, in (1.2.1), and using
a(Tn(k)) B(Tmek)) > 1, we obtain

V(@)1 Tary+1)) < FO(A(@mry, Tagr)))s DAy, Tngry)))

On letting & — oo, using (1.2.6) , we obtain

»(0) < f(¥(6), 0(6)) < (0), (1.2.7)

»(0) =0, or ¢(§) = 0, that is, 6 = 0 which is a contradiction. This shows that
{z,} is a Cauchy sequence. Since (X, d) is a complete metric space, then there is

z € X such that x,, — z as n — oco.
Now, we firstly suppose that T is continuous. Hence,
Tz= lim Tz, = hm Tpil = 2.
n—oo

So z is a fixed point of T

In the second part, we suppose that condition (b) holds, that is, a(x,,)5(z) > 1.

So, we have

(d(xnir, T2)) < F(@(d(2n, 2)), §ld(2n, 2))) < P(d(20, 2)).

By taking the limit n — oo and using the properties of ¥, we obtain d(z,7z) = 0.

Hence z is a fixed point of T

To prove the uniqueness of fixed point, let us suppose that z; and z, are two
fixed points of T'. Since a(z1)B(z2) > 1, from (1.2.1), we have
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Y(d(z1,22)) = V(d(T21,T2)) < f((d(21,22)), d(d(21, 22))) < P(d(21, 22)).

Hence by using the properties of ), we have z; = z5. O]

Example 1.2.8. Let X = R endowed with the usual metric d(z,y) = |x — y| for
allz,y e X and T : X — X be defined by

-4, ze[-2,1]
T(x) =
3z, R\ [-2,1]

and a, B : X — R* be given by

2 x€e[-2,0] 1, ze€/0,1]
a(r) = and B(z) =

Also define p € U as Y(t) =t, p € ® as §(t) = 5 and F € C as F(s,t) = 2

1+t

Now, we firstly prove that T is a cyclic («, B)-admissible mapping.

If a(x) > 1. Then x € [-2,0] and Tx € [0,1]. Therefore, f(Tx) > 1.
Similarly, if f(x) > 1, then o(Tx) > 1. Then T is a cyclic («, 3)-admissible
mapping.

Now, let us check the hypotheses (b) of Theorem 1.2.8.

Let {x,} C X such that f(x,) > 1 and x, — x. Therefore, z,, € [0,1]. Hence
z € [0, 1],

Let a(x)B(y) > 1. Then x € [—=2,0] and y € [0,1] and so we have
r— d(x,
U(d(Ta, Ty)) = [Ta = Ty = ko — g < § o —y| = 4 = ey
Hence inequality (1.2.1) is satisfied. Therefore by Theorem 1.2.8, T has a fized

point.

Corollary 1.2.1. Let (X, d) be a complete metric space andT : X — X be a cyclic
(o, B)—admissible mapping. Assume that T is a (o, B)— contractive mapping, that

is, for all x,y € X,

a(@)B(y)v(d(Tz, Ty)) < f((d(z,y)), o(d(z,y))). (1.2.8)
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Suppose that there exists xy € X such that a(xg) > 1 and f(x¢) > 1 and either
of the following conditions hold:

(a) T is continuous, or

(b) if {x,} is a sequence in X such that x, — x and f(x,) > 1 for all n, then
B(zx) > 1.

Then T has a fized point.

Moreover, if a(x) > 1 and B(y) > 1 for all z,y € Fix(T), then T has a unique
fixed point.

Proof. Let a(x)B(y) > 1 for x,y € X. Hence by using (1.2.8), we have T is
a T AC-contractive mapping. Therefore, by applying Theorem 1.2.8, we have
reached the result. O]

Definition 1.2.10. Let (X,d) be a metric space and and o, 3 : X — R be two
functions. be a cyclic (o, 5)-admissible mapping. A mapping T : X — X is called
a weak T AC'— rational contraction if a(x)p(y) > 1 for some x,y € X implies

d(T, Ty) < f(M(z,y), o(M(z,y))), (1.2.9)

where f € C, ¢ € & and M(x,y) = max {d(x,y), [Hd(ﬂfﬁﬂyfy)} _

Theorem 1.2.9. Let (X, d) be a complete metric space and T : X — X be a cyclic
(o, B )-admissible mapping. Suppose that T is a weak T AC— rational contraction.
Assume that there exists xg € X such that a(xg) > 1 and B(xo) > 1 and one of

the following assertions hold:
(a) T is continuous, or

(b) if {x,} is a sequence in X such that x, — = and f(x,) > 1 for all n, then
B(x) > 1.

Then T has a fixed point.

Moreover, if a(x) > 1 and 5(y) > 1 for all z,y € Fiz(T), then T has a unique
fixed point.
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Proof. Define a sequence {x,} by x,, = T"xq = Tx,_; for alln € N. Since T is a
cyclic («, §)-admissible mapping and «(xg) > 1 then §(z1) = S(Tx) > 1 which
implies a(x2) = a(T'z1) > 1. By continuing this process, we geta(xs,) > 1 and
B(xon_1) > 1, for all n € N. Again, since T is a cyclic (a, #)-admissible mapping
and [(zg) > 1, by the similar method, we have 3(zs,) > 1 and a(xs,_1) > 1 for
all n € N. That is,a(x,) > 1 and S(x,) > 1 for all n € NU{0}. Equivalently,
a(xy—1)B(xy,) > 1 for all n € N. Therefore by (1.2.9), we have

d(Tp, 1) < f(M (21, 20), S(M(Tn-1,7n))), (1.2.10)
where M (x,_1,2,) = {d(x,_1, Tn, d(Tpn, Tni1))} -

Now, suppose that there exists ng € N such that d(x,,, Tno+1) > d(Tpg—1, Tny)-
Therefore, M(xpy—1, Tn,) = d(Tpny, Tnyg+1) and so from (1.2.10), we get

IN

f(d(xnovxno-&-l)?Qb(d(mexno-ﬁ-l))) (1'2'11)
A(Tpgs Trgs1)- (1.2.12)

d(xnoa l‘m)-i-l)

IN

This implies that d(x,,, Tpy41) = 0, or ¢(d(Tng, Tng+1)) = 0,
that is d(xp,, Tno+1) = 0, which is a contradiction. Hence, d(x,,, x,11) < d(z,_1,2y)
for all n € N. As a result, {d(z,,z,+1)} is a decreasing sequence. Thus, for the

nonnegative decreasing sequence {d(z,, ,+1)}, there exists some r > 0, such that

lim d(z,, Tpy1) =7 (1.2.13)

n—oo

Assume that r > 0. On letting n — oo in (1.2.11), using the continuity of 1
and f and (1.2.13), we obtain

r< f(r,o(r)) <r, (1.2.14)

which implies that either » = 0, or ¢(r) = 0, that is in both cases it follows that

r = 0, which implies

lim d(z,, 2p41) = 0. (1.2.15)
n—oo
Now, let us prove that {z,} is a Cauchy sequence. If possible, let {z,} be not
a Cauchy sequence. Then by lemma 1 there exists an § > 0 and two sequences of
positive integers {m(k)} and {n(k)} with, n(k) > m(k) > k such that

lim d(l‘m(k),xn(k)) = lim d(IL‘m(k)Jrl,In(k)Jrl) = 0. (1.2.16)

n—oo n—o0
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Now, by setting = 2, 41 and y = Yy, 11 in (1.2.9), and using

a(Tn(k)) B(Tm@r)) > 1, we obtain

d(xmk-i-lv xnk+1) < f(M(xnkv IWk)’ ¢(M(wnk’ ka)))’ (1'2'17)

[1+d(1‘nk ,l‘nk+1)]d(1‘mk 71'mk+1) }

where M (2, , T, ) = max {d(xnk,:vmk), FEE S|

On letting & — oo, using (1.2.16) and (1.2.17), we obtain

6 < f(0,¢(0)), (1.2.18)

Y(6) =0, or ¢(0) = 0, that is, 6 = 0 which is a contradiction. This shows that
{z,} is a Cauchy sequence. Since (X,d) is a complete metric space, then there

exists z € X such that z,, = 2z as n — oc.
First, we consider that 7" is continuous. Hence,
Tz = lim Tx, = lim z,41, = 2.
n—oo n—oo

Therefore, z is a fixed point of T

As a second, we suppose that condition (b) holds, that is, a(z,)B(z) > 1. So,

we have

d(ni1,T2) < f(M(n, 2), (M (20, 2))) < M (20, 2)

where M (z,,z) = max {d(xn, 2), [Hd(x;(i?;ﬁ‘f(z’h)} . By taking the limit n —
oo and using the properties of ¢, we can obtain d(z,Tz) = 0. Hence z is a fixed

point of T'.

To prove the uniqueness of fixed point, suppose that z; and z, are two fixed
points of T'. Since a(z1)5(z2) > 1, from (1.2.9), we have

d(Zl, 22) = d(TZl, TZQ) S f(M(Zl, 22), ¢(M<Zl, 22))) S M(Zl, ZQ),

where M(Zl’ 22) = max {d(Zl, 22>’ [1+d(zd1(,312;2])i§i2,7122)} '

This implies that d(z1,22) = 0 or ¢(d(21,22)) = 0 and hence z; = 2». O

21



Example 1.2.9. Let X = [0, 4+00) endowed with the usual metric d(z,y) = | — y|
forallz,y e X and T : X — X be defined by

—%, €01
Tl =13 [0,1]
50w € (1,+00)

and o, B : X — R* be given by
1 z€]0,1]
0 otherwise .

Also, define ¢ € ® as ¢p(t) =L and F € C as F(s,t) = s —t.

2
It is not so difficult to verify that T is a cyclic («, B)-admissible mapping.

Now, we check the hypotheses (b) of Theorem 1.2.9.

Let {x,} C X such that f(x,) > 1 and x, — x. Therefore, z,, € [0,1]. Hence
z € [0, 1],

Let a(z)B(y) > 1. Then x € [0,1] and y € [0, 1], so we have
d(Tz,Ty) = |Tx —Ty| = & |x — y| < max {d(:my), [1+d(r,T1‘)]d(y,Ty)} '

d(z,y)+1
In this way, inequality (1.2.9) is satisfied. Therefore by Theorem 1.2.9, T has a

fixed point, that s, 0 is a fized point of T.

Now, we apply some cyclic contraction via cyclic («, §)-admissible mapping in
a natural way. The Theorem (1.2.8) to prove a fixed point theorem involving a

cyclic mapping.

Theorem 1.2.10. Let A and B be two closed subsets of complete metric space
(X,d) such that ANB # 0 and T : AUB — AU B be a mapping such that
TAC B and TB C A. Assume that

v(d(Tz, Ty)) < f(v(d(z,y)), p(d(x,y))) (1.2.19)

forallx € A andy € B where f € C, v € ¥ and ¢ € ®. Then T has a unique
fized point in AN B.
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Proof. Define o, 8 : X — R™ by

1, r€A 1, »r€B
a(r) = and f(z) =

0, otherwise 0, otherwise

Let o(x)B(y) > 1. Then x € A and y € B. Hence, by (1.2.19) we have

P(d(Tz,Ty)) < f(e(d(z,y)), p(d(z,y))),
for all x,y € AU B.

Let a(xz) > 1 for some x € X, then x € A. Hence, Tx € B and so §(Tx) > 1.
Now, let B(x) > 1 for some = € X, sox € B. Hence, Tz € A and then o(Tz) > 1.
Therefore T is a cyclic (a, §)-admissible mapping. Since AN B is nonempty, there
exists g € AN B such that a(zg) > 1 and [(zg) > 1.

Now, let {z,} be a sequence in X such that S(z,) > 1 for all n € N and
x, — z, then x, € B for all n € N. Therefore x € B. This implies that (z) > 1.
So the condition (b) of Theorem 3.2 hold. Therefore, T has a fixed point in AU B,
say z. Since z € A, then z =Tz € Band since z € B, then z =Tz € A. Therefore
z € AN B. The uniqueness of the fixed point follows easily from (1.2.19). O

Example 1.2.10. Let X = R endowed with the usual metric d(z,y) = |x —y| for

all v,y € X and T : AUB — AU B be defined by Twx = —%5 where A = [~1,0]

and B = [0,1]. Also define 1, ¢ : [0,00) — [0,00) by ¥(t) =t and ¢(t) = 3t.

Indeed, for all z € A and all y € B, we have

W(d(Ta, Ty)) = Tx — Ty| = o — yl = (d(w, y)—o(d(z,v) = FW(d(x,y)), 6(d(z, ))).
Therefore, the conditions of Theorem 1.2.10 hold and T has a unique fized point,

that is, 0 is a fixed point of T

Corollary 1.2.2. Let A and B be two closed subsets of complete metric space
(X,d) such that ANB # 0, and T : AUB — AU B be a mapping such that
TACB and TB C A. Assume that

d(Tz,Ty) < f(d(z,y), o(d(x,y))), (1.2.20)

for allx € A and y € B where f € C, and ¢ € ®. Then T has a unique fized
point in AN B.
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CHAPTER II

Main Results

Now, we are going to apply a-admissible in Definition (1.2.2) for two different
functions of f and T
In addition to this, we are going to explain some definitions. To begin with,

a-admissibility for a pair of mappings will be defined.

Definition 2.0.1. Let T and f be self-mappings on a nonempty set X and

a: X x X —[0,00) be another mapping. It can be that T and f are a-admissible
iof the following condition holds:

v,y e X, alfx, fy)>1= a(Tz,Ty) > 1.

Definition 2.0.2. Let (X,d) be a metric space and T : X — X and f: X - X
is called f-weak compatible <= (fT)(z) C X Ve X and

o limd(fTx,,Tfx,) <limd(Tfx,,Tz,)

o limd(fTlx,, fr,) <limd(Tfx,, Tz,)

whenever x,, € X such that Tz, —t, fx, —t for somet € X.

Now, the result for single-valued f-weak compatible mappings is to proved.

Theorem 2.0.1. Let (X,d) be a complete metric space and f : X — X and
T : X — X be the f-weak compatible pair such that TX C fX.Suppose that the

following conditions hold:

1. T and f are a-admissible mappings;

2. affr, fy) > 1= &d(Tx, Ty) < YE(M(2,y)) (2.0.1)
where M (z,y) = max{d(fx, fy),d(fx,Tx),d(fy,Ty),d(fz,Ty),d(fy, Tx)}

and & and 1 are as defined earlier.
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3. There exists fxg € X and fx, € Txy such that
O‘(fﬂfm fxl) Z 17

If one of the mappings T and f is continuous,then there exists a point t € X
such that ft =Tt =1.

Proof. Tt is seen that the sequence {Tx,},where Tz, = fx,.; for each n,is a
Cauchy sequence. Hence it converges to some point z € X. Suppose that T is
continuous.Then T2z, — Tz and T fx,, — Tz. By f-weak compatibility of f and

T, we have

1. lim d(fTz,, Tfx,) < lim d(T fz,, Tx,),
n—oo

n—oo
and

2. lim d(fTxy, fr,) < lim d(T fz,, Tx,) (2.0.2).
n—oo n—o0

Now,using (2.0.1),(2.0.2) and the continuity of 7', we get

Ed(T%x,, Ty) < PE(M (2, y))
< € (max{d(fTn, frn),d(fTzn, T?2y), d(frn, Txy), d(fTT,, T1y),
d(fn, T?x,))}
< pé&(max{d(fTn, fr,), d(fTzn, Tfr,),d(T fr,, T?2y,),d(fTwn, T2y),
d(fwn, Tay), d(fTx,, Txy), d(fo,, T?2,))}

that is,
Ed(Tz,z) < Y&(max{d(Tz,z2),d(Tz z2),0,d(Tzz2),d(z,Tz))} as n— oo,

that is, Tz = z. Since Tx C fX there exists a point z’,such that z = Tz = f2’
and using (2.0.1) again,

Ed(T?z,,, Txy) < Y&(max{d(fTxy, 2), d(fTx,, T?x,),d(2, T, d(fTx,, T),d(z, T*x,))}

As n — oo we deduce that d(z,T2") < Y€d(z,T7Z)that is, z = T2 = fz' and we
get

fz=fTZ=Tf =Tz =z.

Now, suppose that f is continuous. Then, f%x, — fz and fTx, — fz.By f-weak
compatibility of f and T" and continuity of f, we have
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1. lim d(fz,Tfx,) < lim d(T fx,, 2)
n—oo

n—oo
and
2. lim d(fz,z) < lim d(T fz,, 2) (2.0.3).

Now, using (2.0.1),(2.0.3) and continuity of f, we get

< 1/;§(max{d(f2xn, f‘rn)v d(f2mn7 fon)a d(fl’n, Txn)v d<f2xm Txn)a d(fl’n, fon))}

that is,
Ed(fz,2) <&d(T frp, z) < Y&(max{d(fz, z2),d(fz,Tfxr,),0,d(fz, 2),d(z,Tfx,)}as n — oo

Ed(fz,2z) <&(Tfrp, z) < &(max{d(fz, z),d(T fx,,2),0,d(T fr,,2),d(z,Tfr,)}as n — 0o

that is,7 fx, — z as n — oo and fz = z. Again using (2.0.1) and (2.0.3), we

have
§d(Tz, T fr,) < &(max{d(fz, f*x,),d(f2,Tz),d(f*wn, T fr,),d(fz, T fr,),d(fPa,, T2)}
that is,

€d(Tz, 2) < Y€(max{d(0,d(z,Tz),0,0,d(z, T=)}as n — oo,

a contradiction. Therefore, 2z is a common fixed point of f and T

Finally, example to discuss the validity of Theorem (2.0.1) is provided. O

Example 2.0.1. Let X = [0,00) be endowed with the Euclidean metric d. Let
fr= %(952 +x) and Tx = %(9:2 +2) for each x > 0.T and f are clearly continuous
and T(X) = f(X) = X. Since fx = Tx iff x,, — 1. Also, it can be presented that
f and T are f-weak compatible.

1 :when z,y>0

0 : otherwise

Take (t) = L and p(t) = V/t for each t > 0.

Then, T and f satisfy condition (2.0.1).

Moreover, T and f are a-admissible mappings. Thus, all the conditions of Theo-

let a: X x X — [0,00) bya(x,y):{

rem (2.0.1) are satisfied. Therefore, T and f have the coincidence point such as

1 1s coincidence point of T and f.
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Example 2.0.2. Let X = [0,00), and let d(z,y) = |z —y|. Let fo = 3(a* 4 3)

and Txr = %(xQ + 2x) for each x > 0. T and f are clearly continuous and

T(X)=f(X)=X. Since fo =Tx iff v, —» 1. Also we can show that f and T

are f-weak compatible.

let : X x X = [0,00) by a(z,y) = { L swhen @,y 20
0 : otherwise

Take (t) = & and o(t) = V't for each t > 0. Then, T and f satisfy condition
(2.0.1).

Moreover, T and f are a-admissible mappings. Thus, all the conditions of Theo-
rem (2.0.1) are satisfied. Therefore, T and f have the coincidence point such as

1 is coincidence point of T and f.

Remark 2.0.1. Coupled fized point theorems can be constructed for multi-valued
as well as single-valued mappings by taking T defined as T : X x X — CL(X)
and T : X x X — X in the theorem proved above. In order to deduce the results
for coupled fized point, it is crucial to take a defined as a: X? x X? — [0, 00).
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CHAPTER III

Conclusion

In this thesis, We have worked on the topic of (a-))-Type Contractive Mappings
and Related Fixed Point Theorems. We have examined the (a-1)-Type Contrac-
tive Mappings And Related Fixed Point Theorems under the various headings
and included some other researches from the literature.

In the last decades, metric fixed point theory has been appreciated by a num-
ber of authors who have extended the celebrated Banach fixed point theorem for
various contractive mapping in the context of different absract spaces.Recently,
Samet, Vetro and Vetro have introduced the notion of (a-1)-Type Mappings.
After those researchers, Karapmar and Samet have generalized the notion of (a-
1)-Contractive Mappings and obtained a fixed point for this generalized version.
Furthermore, Asl has characterized the notions of (a-1))-contractive mapping and
a-admissible mappings with the notions of (a-1)-contractive and « -admissible
mappings to investigate the existence of a fixed point for a multivalued function.
Denote with ¥ the family of nondecreasing functions ¢ : [0,00) — [0, 00) such
that Y 2, ¢"(t) < oo for all ¢ > 0, where )" is the nth iterate of 9.

It is known that v (t) < ¢ for all ¢ > 0 and ¢ € V.

Let (X, d) be a metric space, T be a self-map on X, ¢ € ¥ and o : X x X —
[0,00) be a function. Then T is called an (a-1)-contraction mapping whenever
alz,y)d(Tz, Ty) < P(d(z,y)) for all z,y € X. Also, it can be stated that T is
a-admissible whenever a(x,y) > 1 implies o(T'z, Ty) > 1.

These kind of researches are to be continued.

In this study, definition of a-admissibility has been applied for one function; how-
ever, the definition of a-admissibility has been expanded for two mappings 7" and
f. Firstly, we have defined a-admissibility for a pair of mappings.

Let T and f be self-mappings on a nonempty set X and

a: X x X — [0,00) be another mapping. It can be pointed out that 7" and f are
a-admissible if the following condition holds:

r,ye X, offz,fy) > 1= a(Tz,Ty) > 1.
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After all, we have concluded that these functions are f-weak compatible, and they
have a common fixed point. Consequently, 7" and f have a coincidence point such
as 1. The equation of fox = Tx, x is applied to 1 as it is a condition of coincidence
point. If we take the position that f is an identity, we will find a-admissible.

In the end, it could be said that the main part that we have approached in this
study is not in the literature yet. Therefore there is a lot of corollary for it to be

expanded and included in the results. This is an open-ended question.
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