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ABSTRACT

PLATFORM INDEPENDENT DATABASE MANAGEMENT

Kabarcik, Ahmet
M.S.c., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Reza Hassanpour

September 2006, 50 pages

Functional dependencies of attributes for normalization and the most suitable
primary key of the table must be defined to get the best design decisions for the
databases, which have randomly inserted values.

This study investigates some probabilistic models over average case complexity
for random databases formed by independent random tuples with a common discrete
distribution. Mathematical values are tried to find for functional dependency. This
study aims to help the designer to find the most suitable minimal key and to give
an idea whether normalization is needed by detecting functional dependencies of the

attributes of tables automatically.

Keywords: random database, functional dependency, minimal key, average case com-

plexity, entropy, big O notation.
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OZ

PLATFORMDAN BAGIMSIZ VERITABANI YONETIMI

Kabarcik, Ahmet
Yiksek Lisans, Bilgisayar Mithendisligi Boliimii

Tez Yoneticisi: Yrd. Dog. Dr. Reza Hassanpour

Eylil 2006, 50 sayfa

Rastgele degerler atanarak olugturulan veritabanlarinda en dogru tasarimai elde et-
mek i¢in tablolardaki ozelliklerin normalizasyon igin iglevsel bagimliliginin ve tablonun
ana anahtariin belirlenmesi gerekir.

Bu caligma; her satir1, atanmadan once, bir muamma olan ve her satir1 birbirinden
bagimsiz olarak atanmig rastgele veritabanlarinda ortalama haldeki karigikhiga gore
baz1 olasihik modellerini inceler. Isglevsel bagimhilik icin matematiksel degerler bulun-
maya cahigilmigtir. Bu caligma; en uygun ve en kiuciik anahtar1 bulmay:1 ve tablolar-
daki alanlarin iglevsel bagimliliklarini otomatik olarak bulup normalizasyonun gerekip

gerekmedigi konusunda tasarimciya yardimeci olmay1 hedefler.

Anahtar Kelimeler: rastgele veritabanlari, en kii¢iik anahtar, ortalama haldeki karigiklik,

entropi, big O notasyonu.
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition

Database is created to store the data to tables for fetching whenever it is required.
There are two basics for the database; optimum storage of the data and operations on
that data. Storage component affects the performance and the result of the operations

on it.

The primary key of a relational table uniquely identifies each record in the table.
Key is an ordinary attribute that guarantees to have unique values (such as student
number, where each student is recorded once). Key may be a single attribute or a
combination of multiple attributes. If a key is composed from the smallest number
of attributes, it is called minimal key. Identification of the records by using keys is
fundamental base for the majority of algorithms. Usage of key, beside the search

application, is insertion, update, delete and maintaining the tuples.

Functional dependency specifies the relationship between two attribute sets. In a
relation, value of first attribute set defines the value of the second one. Functional

dependency size is related to modification capability of the attributes.



In relational database design, organizing the combination of attributes to avoid
the duplication of data is called normalization. Normalization divides a table into two
or more small tables according to functional dependency. Each small table describes
a part of whole. Deletion, insertion and update modifications of one part affect only
one place. Data is accessed and manipulated quickly and efficiently without having
risk for the integrity of the whole. To merge the data of the tables, primary keys are

used at algorithms.

The facts mentioned till here are the aspects of the optimum table design. Con-
sequently, choosing unsuitable primary key and the needs of normalization at a table
are the problems for the designer. The manager who is looking for the problems of
a table has to control the attributes and the contents of all the table. However an
automated system for that process can save the time and performance, there is not
an enough study for that approach in database design environment. The studies of
Demetrovics, Katona, Miklos, Seleznjev and Thalheim [1] construct the basis of this
study. Although this work does not have one to one correlation at each point with

his studies, they have guided us to gain our results.

1.2 Motivation

A solution for the automatic examine of the tables can be generated by using the
entropy values of the attributes. Entropy value needs to get the statistics of the values
of attributes. Although worst case complexity can occur at some tables whose tuple
size is limited, average case complexity gets to the front at the usage of this approach.

Average case complexity avoids from non-redundant tests. The applied processes on



these conditions produce a value for functional dependency.

Multiple key can be tested by the values of functional dependencies of attributes.
There may be more than one key at a table. To find the number of minimal keys and

size of minimal keys, big O and little o notations are studied respectively.

1.3 Objectives of the Study

The current applications of database do not contain a system for automatic test
of the tables. These tests aim to expose advices to the designer for normalization and
the multiple key as an alternative for the primary key. The goal of this study is to
establish that automatic system. Consequently, databases can be updated to the ones
that has heuristic support within the database design and more flexible ones and be

prevented wasting space of memory and time.

1.4 Organization of the Thesis

This thesis comprises five chapters. Chapter 1 is an introduction to this study
which contains background of the study, motivation points of this thesis and the

objectives of the thesis.

Chapter 2 begins with the definitions of the fundamental methods which have
roles on the creation of our cardinal methods. After the section of the Bonferroni
inequality, detailed exposition and the proofs of the cardinal methods, which we use

at our thesis, are presented. This chapter is the background of the approach which



will be used in the chapter 3.

Chapter 3 contains one section which aims to define how we adapt the methods
explained in chapter 2 to our thesis. Two subsections are formed. One for the usage
of the methods for normalization and the other one for the usage of the methods for

primary key.

Chapter 4 is the application part of the adapted methods of our thesis. The usage
of these methods for normalization and primary key reveals . The comments about

how to read the meanings of these result tables are made in two subsections.

Chapter 5, the last chapter is the conclusion part which is the summary of all the

study and which gives the information of how we reached to our goal.



CHAPTER 2

BACKGROUND

2.1 Relational Database

A database can be understood as a collection related files. The relational database
model was a huge step forward, as it allowed files to be related by means of a common
field. In order to relate any two files, they simply need to have a common field, which

makes the model extremely flexible [2].

The required data for database applications have no fundamental changes for
decades. It is noticeable that the data is more stable than the applications on itself.
The data held in the storage may have no meaning by itself. It becomes meaningful
with the operations on it. For example, the data ”Arzu Durgun” and ”Ceng 389”
open to make comments. A certain meaning is created when it is the result of a
query to get the answers of the following questions; ”Who gives the course of java

programming lesson?” and ”What is the course code for java programming lesson?”.

However data is meaningful with the operations on it for the last users; operations’
simplicity, efficiency, maintainability and flexibility are affected by the organization

of the data storage. For example, a table has the following fields; (studentld, name,



surname, fatherName, address, phoneNumber, calculusGrade). 1t is obvious that this
table is not a good organized one. calculusGrade has no functional dependency with
the others. To get the calculusGrade, searching the table which contains fatherName,
address and phoneNumber is not efficient. After the normalization application, the
calculusGrade field may be kept in a table called grades and others are kept as a
table called registry to give simplicity, efficiency, maintainability and flexibility to the

applications of this storage.

Two tables are established down. Tables are related by the fields cCode of the
first table and courseCode of the second one. By this relation, it can be seen that
Operating Systems course is given by Assist. Prof. Oguz Kabarcik. By these relations,

it becomes enough describing a course once in the second table.

Table 2.1: Relational Table 1

cCode title name | surname
ceng412 Dr. Arzu | Durgun
ceng412 Dr. Nael | Salman

cengb01 | Assist.Prof | Oguz | Kabarcik

Table 2.2: Relational Table 2

courseCode courseName
ceng389 Java
ceng412 Database

cengb01 Operating Systems




2.2 Functional Dependency

Consider a relation  that has two attributes A and B. The attribute B of
the relation is functionally dependent on the attribute A. The value of attribute A
uniquely determines the value of B and if there were several tuples that have the same

value of A then all these tuples will have identical value of attribute B.

Functional dependency does not imply a one-to-one relationship between A and
B, although a one-to-one relationship may exist between A and B. For example, let

A be student_number and be date_of_birth [3].

2.3 Sperner Theorem

Sperner system is a set system (F, E) in which no element is contained in another.
Formally, If X,Y are in F and X # Y, then X is not contained in Y and Y is not

contained in X.

51 (o) 21)

|S] is the cardinality of a finite set .S [4].

2.4 Random Database

Most of the human activities on computer applications have the major tasks for
organizing the collected data for optimum storage and operations on that data. Bank
accounting, ticket reservation, student registry at a school, stock registry are some

basic examples of that human activities.



Data is stored to 2-dimensional tables under databases. Table has m rows and
n columns, where m rows are tuples and n columns are attributes and U={1,...,n}

represents all attributes of the table.

Tuples t;(U)=(t;(1),...,t;(n)), j=1,...,m, are rows with domains in D;x...xD,,, where
D; are i=1,...n. R=R(m,n) is the relation corresponding to R. i.e. t;(U) # t;(U),

j #1in R [5].

R is said a random database, if tuples ¢;(U), j=1,...m are independent and
identically distributed random records with a given discrete distribution P{t;(U) =

k(U)} = P{k(U)} for k(U) € [,y Di (cartesian product).

Most of the tables have stochastic type of tuples which means that the existing
tuple can not be determined from the previous one. Therefore inserted tuples are
always random. This randomization may cause design problems at the hands of

inexperienced designers.

The occurrence of such a scenario may be an instance for the problems of ran-
dom tuples. Two fields of a simply designed table may be courseName and lecturer.
Although this table has no constraints for inserting the data, designer may accept
that each course is given by one lecturer. Therefore, table contains distinct courses
at each record and courseName is accepted as primary key by the inexperienced de-
signer. The relation between courseName and lecturer is many-to-one. Everything

works normally at this condition, until one course is divided into two sections and



the course is started to be given by two lecturers. The relation between the fields of
courseName and lecturer becomes many-to-many by the randomly inserted tuple(s).
Primary key fails and the structure of the table changes because of the newly inserted

random tuple(s).

2.5 Information Theory

Probability is ratio of the occurrence number of an event to the sum of the all
events’ occurrence number. The probability value for an impossible event is 0 and it

is 1 for an inevitable event.

Statistic is a quantity that is calculated from a sample of data. It is used to obtain

information about unknown samples of a population.

The word entropy is the amount of disorder of a system. It is the measure of the
uncertainty about the realization of a random variable. It is the expected amount of

information.

Information theory aliasing as Shannon entropy is the branch of mathematics
dealing with the efficient and accurate storage, transmission, and representation of
information. The basic concept of entropy in information theory is measuring how
much randomness exists in a signal or random event. The philosophy of information

theory is ”the less you know, the more valuable the information”.

For instance, usage ratios of the letters at FEnglish language are calculated. The

most used letter is ’e’, whereas 'z’ is the one of the least used ones. In spite of this



situation, the characters of the strings are random. The next character can not be
predicted, it does have some randomness and entropy is the measurement of this

randomness [6].

Information theory defines the entropy in terms of a discrete random event x, with

possible states 1..n as:

H(z) = =3 pli)logap(i) (2.3

For example, a coin is tossed up and $1 is betted on the flip of coin. If one already
has a good guess about the result, then the actual result is less informative. The unit

of randomness measurement of the information is taught as bit and the result is;

11 1 1 1 1
I(=.2)= (== - - —) = 1b: 2.4
(2,2) ( 210922)+( 210922) bit (2.4)

Meanwhile, the coin may be rigged and it is regulated to come up heads with
probability 0.99. Player will bet heads and have expected value $0.98 for the bet. That
means player would only be willing to pay less than $0.02 for advance information
about the outcome of the flip. If the coin were fair as in the upper paragraph,
expected value would be zero and player would be willing to pay up to $1 for advance

information. Information for the rigged condition will get the following result;

1 99 1 1 99 99

100’ 100) ~ " 100/%100) * 0ga——) = 0.08bi (2.5)

1( -
100 100

At fair condition, the value of information is 1, although it is 0.08 at rigged
condition. This difference is because knowledge increased at rigged condition, then

the value of information decreased [7].

10



2.6 Big O Notation

A theoretical measure of the execution of an algorithm, usually the time or memory
needed, given the problem size n, which is usually the number of items. More precisely,
it is used to describe an asymptotic upper bound for the magnitude of a function
in terms of another, usually simpler, function. Informally, saying some equation

f(n) = O(g(n)) means it is less than some constant multiple of g(n).

For instance 4n? — 2n + 4 is O(n?) because as n grows larger, the term n? will be

dominant and other coefficients can be neglected.

At the equation n? + 3n +4 < 2n? for all n > 10; 3n + 4 is O(n?), too, but big-O
notation is often misused to mean equal to rather than less than. The notion of equal

to is expressed by (n).

The importance of this measure can be seen in trying to decide whether an al-
gorithm is adequate, but may just need a better implementation, or the algorithm
will always be too slow on a big enough input. For instance, quicksort, which is
O(nlogn) on average, running on a small desktop computer can beat bubble sort,
which is O(n?), running on a supercomputer if there are a lot of numbers to sort.
To sort 1,000,000 numbers, the quicksort takes 6,000,000 steps on average, while the

bubble sort takes 1,000,000,000,000 steps! [8].

The big-O complexity of an algorithm is important, but it does not tell the entire
story. Any accurate and complete analysis of an algorithm should answer the question

of what the real cost of executing the algorithm is for real or typical problems.

11



Assume that two jobs are offered by two companies to a person. First one is
offering to duplicate the salary at every five years. Second one is offering to add
$1000 to the salary per year. Salary is increasing at O(2") at first company and it is

O(n) at second company.

This information is not enough to choose the best one. The starting salary must
be known whether both salaries are same. If the first company starts with the salary
$0, salary never increases. If the starting salary at the second company is much higher
than the first company, then even the wonderful raises the first company offers might
not actually make any difference before you retire. In this case, n isn’t going to get
too large, so the behavior of the salary as the person becomes infinitely old is not an

issue [9].

2.7 Little o Notation

A theoretical measure of the execution of an algorithm, usually the time or memory
needed, given the problem size n, which is usually the number of items. Informally,
saying some equation f(n) = o(g(n)) means f(n) becomes insignificant relative to
g(n) as n approaches infinity. More formally it means for all ¢ > 0, there exists some
kE > 0 such that 0 < f(n) < cg(n) for all n > k. The value of £ must not depend on

n, but may depend on c.

For instance, 3n + 4 is o(n?) since for any ¢ we can choose k > (3 + /9 + 16¢) /2c.

3n + 4 is not o(n).o(f(n)) is an upper bound which is not asymptotically tight [10].

12



2.8 Best, Worst and Average Case Complexities

Best, worst and average cases of a given algorithm determine what the level of
resource usage is at least, at most and on average, respectively in computer science.

The mentioned resource may be running time or memory, for instance.

However the best case usage is mostly imaginary, average performance and worst
case performance are used widely in algorithm analysis. Probabilistic analysis tech-
niques, especially expected value (entropy), are used to determine expected average

running times.

Worst case performance analysis is often easier than the average case performance.
Determining what the average input and the limitation of the input are generally very
hard and sensitive. If the input of average case performance is defined insufficiently,

the analysis does not give the wanted result.

Linear search on an array has a worst case performance O(n), when the algorithm
has to check every element, but the average running time is O(n/2), when the item

is around the middle of an array.

Applying insertion sort on n elements. On average, half the elements in an array
Aq...A;_1 are less than an element A;, and half are greater. Therefore we check half
the subarray so t; = j/2. Working out the resulting average case running time yields

a quadratic function of input size, just like the worst case running time.

13
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Figure 2.1: Complexity Comparison Diagram

2.9 Poisson Approximation (Stein-Chen Method)

Sometimes calculating binomial probability is hard and long. It is possible to use
other distributions to approximate binomial distributions. Poisson approximation is

one of them.

Suppose we have an event that occurs over and over like buses stopping at a
bus stop. Occurrence of event is X, a time interval is T. The parameter of the
poisson distribution is the product of the length 7' and average length of time between
occurrences of event. The distribution of X is discrete, and calculating the probability

that X is equal to some particular value X is very simple.

Consider a sequence of independent Bernoulli trials with success probability p. Let
N (n; k1, ks) denote the number of times that k; failures are followed by ks successes
among the first n Bernoulli trials. We employ the Stein-Chen method to obtain a total

variation upper bound for the rate of convergence of N (n; k1, k2) to a suitable Poisson

14



random variable. As a special case, the corresponding limit theorem is established.
Similar results are obtained for Ny, (n;k1,k2), the number of times that &; failures
followed by k9 successes occur k3 times successively in n Bernoulli trials. The bounds
obtained are generally sharper than, and improve upon, some of the already known
results. Finally, the technique is adapted to obtain Poisson approximation results for

the occurrences of the above-mentioned events [11].

2.10 Monte Carlo Method

Any method which solves a problem by generating suitable random numbers and
observing that fraction of the numbers obeying some property or properties. The
method is useful for obtaining numerical solutions to problems which are too compli-

cated to solve analytically [12].

Interestingly, the Monte Carlo method does not require truly random numbers
to be useful. Much of the most useful techniques use deterministic, pseudo-random
sequences, making it easy to test and re-run simulations. The only quality usually
necessary to make good simulations is for the pseudo-random sequence to appear
"random enough” in a certain sense. That is that they must either be uniformly
distributed or follow another desired distribution when a large enough number of

elements of the sequence are considered [13].

Because of the repetition of algorithms and the large number of calculations in-
volved, Monte Carlo is a method suited to calculation using a computer, utilizing

many techniques of computer simulation.

15



2.11 The Bonferroni Inequality

The Bonferroni inequality is a fairly obscure rule of probability that can be quite
useful. By far its most useful application is in joint confidence intervals. The in-
equality gives you a confidence interval without assuming independence of the various
parameters. It usually turns out at around 95% confidence region is not much smaller

than with the assumption of independence.

Bonferroni inequality;

P(ayag...an) = P(a1) + P(a2) + ... + P(ap) —n + 1 [14] (2.6)

For instance, suppose that we have ten events a;, with P(a;) = 0.99. We want to es-
timate the joint probability P(ay...a19) = P(a1)...P(a10) = 0.99'0 = 0.904382075009.
However we have no grounds to assume independence. If we use the Bonferroni in-

equality get:

P(ay...an) = P(a1) + ... + P(ay) —n+ 1 =10(0.99) — 9 = 0.9 (2.7)

2.12 Functional Dependencies in Random Databases

Assume that A and B are the sets of attributes where A C U \ B and B C
U\ A. Random number of tuples in database R is defined as N = N(A, B) when
the functional dependency does not exist, i.e., t(A) = t'(A) and #(B) # ¢(B). Data
distribution of N (A, B) defines the degree of functional dependency between A, B.

As a result of this situation, it can be said that P{A—B} = P{N(A,B) = 0}.

16



For any tuple ¢(U), denote by
p(k(A), k(B)) = P{t(A) = k(A),1(B) = k(B)}, (2.8)

p(k(A)/k(B) = P{t(B) = k(B)/t(A) = k(A)} [1]; (2.9)
i.e., The conditional probability, p(k(A)/k(B)) is t(B) = k(B) when t(A) = k(A) and
for such models, mean of N(A, B) is calculated as the followings;

A=MA,B)=E[N(A,B)] = M Y p(k(A))(1 - p(k(B)/k(A)))p(k(B), k(A))
k(A)k(B)

= ME[p(t(A))(1 —p(¢(B)/t(A)))] [1], (2.10)
EJ[] is accepted as the mathematical expectation for the joint distribution {p(k(A),
E(B))}. As an example, for a uniform database, A = M27%(1 —27%) where a = h(A),
b= h(B), and M = m(m —1)/2. if R is a standard Bernoulli database, then a = |A|

and b = |B|.

Fai small databases
[ = -’% :1 — IU

ik large databases
Yoz = 20 very larpe databases
Aoy = 30
. .""--. A, e
Agy =10 Aga = 20 Ap =40

Figure 2.2: Poisson Distribution of Independencies in Different Databases With Dif-
ferent Parameters [15]

Theorem 1. [1] Let R be a uniform type database and p(k(B)/k(A))<é<1. Sup-
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pose that 0<A<ca; then
P{A— B}=e*14+0(27%) asm — o0, (2.11)

where 0<c<3In2 and v = 1-c/In2>0.

Corollary 1. [1] Let R be a uniform-type random database. If a — 2logo m — «

and b — 3, where | a |[< +oo and 1 < 8 < +o0, then
P{A — B} = ezp{—2" V(1 =27} asm — cc. (2.12)

This asymptotic result can be explained as in the following lines. The size of a
database designates the length of the left side or in other words, possible candidates
of dependents. That’s why, the right side B of a database, which has m tuples,
has subset of Fy(B) of all the possible functional dependencies F(B). The A value
is used to determine the set of Fy(B), since the probability P{A—B} ~ e as m
— 00. This set is much smaller than F(B). According to the average case, a high
probability of functional dependency that is occurred by F(B), which is valid in the
random database, is contained by Fi(B). Henceforth, heuristic algorithms like validity
checker of functional dependencies from F(B), should begin with the constraints of

Fy(B). This condition forms much faster success.

Theorem 1 exposed the importance of the stochastic relations of the attributes
for the functional dependency. Stochastic properties of attribute set A and stochastic
relationship between the attribute values in A and B define the functional dependency
of a random database with sufficiently large m. Also, the data distribution of attribute
A defines the factor, and the conditional data distribution of attribute B with a given

t(A) characterizes the second factor for calculation of the functional dependency.
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2.13 Keys in Random Databases and Relations

2.13.1 Random Databases

The asymptotic results that are mentioned at the upper section for the functional
dependency property is very similar with the key probability P{R = A} when b =
h(B) — oo as m — oo. A formula for P{R = A} also exists for a uniform random
database. Again the entropy value, a = h(A) and average calculation of tuples,
M = m(m —1),2 are same as in the functional dependency. The random number of
key condition violations are also determined here, N = N(A) =| {t;(A) =t;(A),i,j =
1,...,m,i < 5} |. The distinguish tuple capability in R of A is characterized by the
distribution of N(A). It is obviously seen that P{R=A} = P{N(A) = 0} for a set
of attributes A C U and mean number of key condition violations is denoted by the
formula, A = A\(A) = E[N(A)] = MZ,C(A)p(k;(A))2 = MEI[p(t(A))], where E[] is the

mathematical expectation for the distribution {p(k(A))}.

Theorem 2. [1] Let R be a uniform-type database.

(1) If 0 <A<ca, then
P{RE=A}=e¢*(1+0(2") asm— oo, (2.13)
where 0 < ¢ < $In2 and v =3 —¢/In2 > 0;

ii) If R s uniform then P{R A}l = m:_l 1 —j27%) < e~ If additionally,
7=1

0 < X< 202N/ where 0 < v < 2, then

P{RE= A} =1+ 0(277) asm — oc. (2.14)
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In the uniform case, A = M27%, we also formulate the following:

Corollary 2. [1] Let R be a uniform-type random database. If a — 2logam — O,

where |a| < +oo, then

P{R = A} = exp{—2" "D} as m — . (2.15)

Remark. [1] Assume that the length of the shortest key in A is determined as
v = v(A) i.e. an integer random variable, which equals the length of a minimal key
subset B in A. That’s why, {v(A4) < r} = {R = A} if |A| = r. The entropy value is
|A| = a for Bernoulli database and a = a —21logy m. It is an obvious result of theorem

2, that if « — z/1n2 — 1, then

P{v(A) < a} = P{v(A) — 2logam < a} — exp{—€e™ "} asm — oo. [1]  (2.16)

The results, till now, occurred that the size of a shortest key after the normalization
of A has asymptotically the Gumbel (double exponential) distribution and the values

of the random variable v(A) valued near 2 log, m.

It is observed that keys are more likely in a very small interval. Therefore, to get
the fastest algorithms, which search for keys in relations, must check these intervals

first.

2.13.2 Random Relations

The only difference at definition between R, which is a random database, and R,

which is a corresponding relation, is that & may have identical tuples. Here, u = h(U).
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Thus, N(U) < N(A) and, therefore,
P{RE= A} =P{N(A)=0/N{U) =0} = P{N(A) =0}/P{N(U) = 0}. [1] (2.17)

After then, A(U)/A(A) < 27" can be established for uniform-type databases. Formu-
las that are occurred after the main results of asymptotic behavior of key probability
can be applied for random relations. Application of Theorem 2 and Eq. (2.17),

without trying to have a result for generality results with the following:

Theorem 3. [1] Let R be a uniform-type and R be the corresponding random

relation.

(1) If0< A(A) <ca and 0 < A(U) < cu, then
P{R E A} = exp{—X(A)(1 — XU)/X(A)}(1+0(277)) as m — oco. (2.18)
where 0 < ¢ < 3In2 and y =3 —¢/In2 > 0;

(ii) If M(A) — X and u — a — oo, then P{R |= A} — e % as m — oo, where

0 < Ao < +o0;

(iii) If R is uniform, then P{R | A} = H;”;ll(l —J279 /(1 —g27").

Application of the same arguments in Theorem 3, clearly, (2.16) is also valid for

random relations if u — a — o0 as m — oo.

2.14 Minimal Keys

After all, it is time for deriving the main asymptotic result from the previously

told results for the minimal key probability P{R |=nn A} at the set of attributes A.
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This situation is an extreme condition and firstly it is studied on standard Bernoulli
database. Arguments are similar at the condition of D; = {0,1,...,d},i = 1,...,n, and

d > 2. Notations are same with the previous sections and result is as the following:
Theorem 4. [1] Let R be a standard Bernoulli database and 0 < Ao < X < ca,
where 0 < ¢ < %ln 2. Then, there exists v > 0 such that for any sufficiently large g,

P{R |=pin A} = e Ml—e M1+ 0((277) as m — oo, (2.19)

By Theorem 4, the evaluation of the asymptotic maximum value of the minimal
key probability is possible.
Proposition 1. [1] If 0 < Ay < A, then
P{R |=pin A} = P(a) < Paz(a) ~e Y/(a+1) as m — oo, (2.20)
and also P(a) = Ppag(a) iff
2log, m — logy In(2log, m) — 14+ 0(1) < a < 2logym — 1, (2.21)
ie, A=1In(a+1)(1+0(1)) asm — occ.
The resemblance between the result that is obtained from the Theorem 4 and
Proposition 1, and the worst case complexity of minimal key systems can be analyzed
now. Thus, in average, a small number of minimal key is occurred without mattering

whether the size of m is small or large. Because of this reason, worst-case complexity

results are highly different for these cases.

Proposition 1 showed that the probability to be a minimal key for a set of attributes

A tends to be 0 as a — oo. This result is not affected by the length of m or by the
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size of attribute set A. The importance of this relationship, when the conditional
minimal key probability P(a/K) = P{R |=min A/R |= A} is considered, is shown at

the following corollary.

Corollary 3. [1] Let m? = 2%t (Ina + d), i.e.,A ~ Ina +d, and d — z, where

|z| < +o0,and also d > N\g —Ina, A\g > 0. Then

P(a/K) — exp{—e "} as m — oc. (2.22)

Now it follows directly that if A =Ina + d and d — +00, then

P(R Emin A) ~ P{R = A} ~ e as m — oo. (2.23)

In addition, same formulation of the main results about asymptotic behavior of min-
imal key probability can also be applied for the random relations too. It is obvious,

{R Emin A} CT{N(U) = 0} and, therefore,

P{R Emin A} = P{R Fmin A/N(U) = 0} = P{R Fmin A}/P{N(U) = 0}. (2.24)

Applying Theorems 2 and 4 and Eq. (2.24) the following is obtained:

Theorem 5. [1] Let R be a random relation and the conditions of Theorem / be
valid. Suppose u =n > §logy m, where % < 0 < oo; then, there exists y > 0 such that

for any sufficiently large Ay > 0,

P{R Emin A} = exp{—X(1 —2"")} (1 —e 1)1+ 0(277)) asm — co. (2.25)

Remark. [1] The results that are obtained at Proposition 1 are also valid for

random relations if n —a — as m — oo.

23



As a conclusion of until here, assume to have a uniform random database R and
|D;| > 2, for i € A. The asymptotic result of P{R =i, A} can also be generalized
for this case. d; = |D;| —2 > 0 for i € A. Denote by 7 = |A|7{i : d; = k,i € A}|
for k = 0,...,L, where L = max;cad; > 0. Note that E:OLW]C = 1 and {m}}

is distribution of values d; for i € A. Denote by g(z) the generating function for
the distribution {r;}f and whereby g(2) := S2¢_, 2¥m, |2| < 1. In particular, for
a standard Bernoulli database, L = 0, mp = 1 and g(z) = 1 are obtained. Let

A =1Ina+ d, where a = h(A). The following condition is introduced:

ae *gle ) =e dg(e ¥/a) = 0 as m — . (2.26)

Write mpqp = mazi<r<rmp. Evidently, to ensure (2.26) it is sufficient, if d — 400,

since |g(2)| < 1 for || < 1; or if e~%max(my, e Tmaz/a) = 0 as m — oco.

Proposition 2. [1] Let R be a uniform and (2.26) hold. If logy(L + 2) =

o(a) asm — oo and A < 2°%, where 0 < e < ' 3, then (2.23) is valid.

In the following simple examples of nontrivial distributions, L > 1.

Example 1 (Two-steps distribution) [1]. Let 7, =0,k =1,...,L—1 and mo+7p =
1, 7 > 0. Then g(z) = mo + z"nz, and 2.26 holds iff e~%maz(myrpe~d"1Me) —

0 as m — oo.

Example 2 (Binomial distribution) [1]. Let for any k =0, ..., L, 1 = (é) prgl—k,

p(m) = 1—¢q(m) > 0. Then g(z) = (¢+2p)*, and 2.26 holds iff LIn(g+e %p/a) —d —
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2.15 Proofs

Assume to have (Q,F,P) as a standard probability space. For every B € F,
denote by B := Q\ B. Let N = Y .1 I, where I, is the indicator of the event
Cy and P{I, =1} = P(C,), @« € T" and M = |I'|. There are classic limit theorems
for independent indicator random variables. In general, C,, a € T', are dependent
and it needs a different technique. The Stein-Chen method has been developed for
establishing poisson approximation for sums of dependent indicator variables. One of

the result of this approach is used at following lines.

I is denoted by I', = I'\{a}, and X is denoted by A = E[N] = Mq. Assume that
I, is divided into T'Y, and I, such that I, and {Iz; 8 € ', } are independent. We get

mo = |T9].

Proposition 3. [1] Let N be the sum of indicators, ¢ = P{l, = 1}, and E[I,Ig] <

sfora €I and B € I'?. Then
|P{N =0} — e < A\/M(mg + 1 +mgs/q?). (2.27)
following elementary inequality is also used,

(1 +2)] <20zl |2l < (2.28)

1
5
2.15.1 Functional Dependencies in Random Databases

Proof of Theorem 1. [1] To apply the Stein-Chen method, note that in this case
'={@,j) :4,j =1,...m,i < j}, where [I'| = M = m(m — 1)/2. Further, write
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N(A,B) = > cr Lo, where I, is the indicator of the event C, = Cj; = {t;(A) =
tj(A),t;(A) # t;(A)}. The random variables I,, @ € I', are identically distributed,
but dependent. In addition, T'Y, = {(i, k), (I,5);k # 4,1 # 4}, and |I%| = 2(m — 1) for
a = (i,7). Moreover, P{I, =1 =g} and E[I,Ig] = s for all « € I" and 8 € I'%. Now,

Proposition 3 yields
IP{N = 0} — ¢ | < A/M(2(m — 1) + 1+ 2(m — 1)s/q?) = 4)\/m(%s/q2). (2.29)
Since R is uniform-type, s < ¢° is obtained and, therefore,
IP{N = 0} — ™| < C1A/m < Coeemp{) +In A — %m 2a},  (2.30)
where 0 < C1, Cy < 0o, and the assertion follows.

Proof of Corollary 1. [1] For a finite value of )¢ the assertion follows directly

by theorem 1 and Eq. (2.30). If A\g = 0 the following estimate can be used:

P{REA}=1-P{N>1}=1-P{{JCyj} >1-XA—=1 asm—>occ. (231
1,J
If \g = oo, then for every ¢ > 0 and A\, > 0, m. is found such that mg(m. —

1)/2P{C12} = A.. Then for every n > n., A > A, and m > m,, then the following is

obtained

P{A — B} = P{N =0} = p(m) < p(m,). (2.32)
Applying now the assertion of the theorem, the following is obtained;
P{A— B} <pm.)<eM+e/2<e¢ (2.33)

for every m > m.. This completes the proof.
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2.15.2 Keys in Random Databases and Relations

The proofs after here is very similar with the ones which are for functional depen-
dencies. Same notation of above is valid; N(A) = }_ .p I, where I, is the indicator
of the event C, = C;j; = t{t;(A) = t;(A)}. Now the proofs of Theorem 2(i) and

Corollary 2 repeat those of Theorem 1 and Corollary 1, respectively.

In the uniform case the following combinatorial argument is used. One can find
2% = [[;ca |D;| variants for the first row #(A) in R. For the second raw, there are

2% — 1 variants and so on. There exist 2™ different matrices mx|A|, and whence,

m—1 m—1
pm) = PRI A} = o ] @~ )= [J0 -2 <o (2.34)
j=0 j=0

Applying now (2.28) yields e=#™ < e*p(m) < 1, where

22 2a

Zf — <1 m2a292\00— (2.35)

for some 0 < Cy < oo, and (ii) follows, since p(m) = e (1 + 6,,), with |d,,,| <

1—e7 " < pme

2.15.3 Minimal Keys

Proof of Theorem 4. [1] R be a standard Bernoulli database and whence |A| = a.
Denote by Ay = A\ {k}, Ay = {R = Ay}, k =1,...,a, and A = {R =A}. Then
it follows directly by the definition of a minimal key that P{R =, A} can be

represented in the following form: (‘;)
a

P{R [Epin A} = P(8) =) (1)~ 1<])P{A1,..., A} (2.36)

J=1
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In fact, {R Fmin A} = {RE A} Nj_1 {R E A;} =ANj_,A;. Therefore, P{R Epin A} =
P{A}+P(Uj-,A)), since ANA; = for j = 1,...,a. Then (2.36) follows by using the

inclusion-exclusion formula.

For the proof of the theorem, first the Poisson approximation technique is ap-
plied to evaluate the probability P{A;...A;}; Then the Bonferroni inequality yields

the assertion.

The events A;, k = 1,...,a, are strongly dependent. Hence, the event E, =A;...A,

is represented as follows, E, = (\,_, D;j, where D;; = - Déj and Déj = {ti(A) =

i<j

ti (A}

Lemma 1. [1] Let 1 < p < T and 0 < A < ca, where 1 < T < maz(ca/\ —1,a)

and 0 < c < %ln 2. Then there exists v > 0 such that

P(A;..Ay) = e PHDAX1 4+ 0(e77) as m — co. (2.37)

Proof. [1] Denote by I, the indicator of the event D, = D;j, a € ', and N(A) =

> acr la- First consider P(D;;) = P(D13), i,j = 1,...,m,i # j. P(D12) is found by

using again the inclusion-exclusion formula. Namely, |A;] = a — 1,

P(D},) = P(D},) = P{t:(41) = t2(A;)} =2 (@D, (2.38)

If Iy # 15 and k > 2, then D}, D}y = {t;(A) = 12(A))} and, therefore,

P(DY,...D%) = P(DYL,D%) = P{t;(A) = to(A)} =27 (2.39)
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Thus, the inclusion-exclusion formula yields

P(Dyp) = Y PDY)- > PDYLDE) + ..
I

l1<lz
p p\ 1 p\ 1 _i(r\1
= — (7)== — e (=1)P —
7= (0)a () ()
2p+1—p 1 p+1
and, therefore,
A =ENA]=Mp+1)27"=(p+ 1)\ (2.41)

To estimate the probability P(D,Ds) when Dg € I'%, the inclusion-exclusion formula

is used again for the events Cy; = D}, D!, for k,l = 1,...,a. Then

P(DoDp) = PD13D13 = P(| D1, DY,) = P(| Cr). (2.42)
k.l k,l
If k =, then
P(DiyD1y) = P{t1(A1) = ta(A1), t1 (A1) = t3(A1)} = s1, (2.43)

where s = 272(e=1)_ If |; [, then

P(D{,D%5) = P{ti(A1) = ta(A1), 11 (Ag) = t3(A2)}
= P{t1(A12) = t2(A12), t1(A12) = t3(A12) JP{11(2) = 12(2),11(1) = t3(1)}

= s, (2.44)

where Ay = A\{k,[}, and, therefore,

P = tr+2(3) 1 = 1 (2.45)
k,l

Applying again (2.39) yields that if k1 = ko or I = Iy, then P(Cy, 1, Cry,) =

27 2=D=1 = 5,/2. otherwise P(Cj,1,Cr,1,) = 272972 = 5;/4. Let order the set
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{(kull) : (kZalz) 7é (k],l]),’L 7& ja Za] = 17-"a (p22)}a and T = C(k1,l1)a I = 17"'a (p22)'
Hence,
N P(TT) = 3. P(ChiyiCryyy) = 20( 2 ) s1/2 + ( v —2p(P)s1/4).  (2.46)
i<j Z i<j 2 2 2

Finally, the following is obtained;
P(D12D13) = U Cr) = (p— 1)*s1/4 +p*s1 — p(p — 1)s1 < Cp’sy (2.47)
for some 0 < C' < oco. Thus, from proposition 3 and Eq. (2.47) we get
|P(Ep) — e 2| < C1)p/m, (2.48)

where A, = (p+ 1)A < (T + 1)A < ca, and 0 < ¢ < 3 In2. The assertion follows now

as in Theorem 2(ii).

Further, the asymptotic function is represented in the following inclusion-exclusion

form
A1 — =N — - _1) (%) -GN _
(== 3 1)J(j) j (2.49)

Hence, the Bonferroni inequality implies

|P{R FEmin A} — ei/\(l - ei/\)a|

(7)€ @ pEn + X (§)le 0 - Pl

j<T

2 (;) (e"T+DN 4 Z (j) R;(m

<T
= e Ml-e M + D) (2.50)

N

N

for every T' = 1, ..., a, First consider Iy. Let T be as in Lemma 1 and choose ¢; > 0
such that T = cia/A < |(ca/X — 1)|, and A > XAg. Then, for a sufficiently large

Ao, then T' < a is obtained. Applying (2.28) and Stirling’s formula, the following is
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obtained

L < a7 ?T(1—e?)70 < Crexp{T In(a/T) + T — AT + 2ae™*}
< C’gemp{acl)\_l In(A/c1) —acy + acy /X + 2ae_)‘}

< Cgemp{acl)\al InXg — c1a + acy /Ao + aef)‘o} L<e M, (2.51)

for some v; and C; > 0, 1 =1, ..., 3, and sufficiently large Ag > 0.

In the case of I combining Lemma 1 and Eq. (2.28), the following is obtained

a
I, < (1—e )% E e A <a) <exp{—ya—aln(l —e ) +ae *}
4 J
7=0

< exp{—ya+ v+ 3ae™} < 29, (2.52)

for some 7, > 0 and sufficiently large A\g. Now the assertion follows (2.51) and (2.52).

Proof of Proposition 1. [1] First, let A > Ay > 0, as in Theorem 4, then the

following is obtained;
Pla)~e  Ml—eM*<el/(a+1) = Prasla), (2.53)

since the f(z) = z(1 —z)% = > 0, has the unique maximum point z = 1/(a + 1), i.e.

A=In(a+1)+o0(l) as m — occ. Namely,
fmae = f(1/(a+1) =1/(a+1)(1 = 1/(a+1))* ~e " /(a+1) asm— oo. (2.54)

If A > ca, then P(a) < e < e . Finally, the asymptotic estimates in the assertion

can be easily checked.

Proof of Corollary 3. [1] If m? = 2°*!(Ina + d), then m2~%? — oo and

A=M2""=(lna+d)(14+0(1/m)) =lna+c >\, (2.55)
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where ¢ = d(14+0(e™7?)) as m — oo, Ay > 0. The assertion follows now by applying

Theorems 2 and 4, since

P(a/K) = PR Emin AR | A}/P(R |= A} = P{R min A}/P{RE A}. (2.56)

Proof of Proposition 2. [1] Denote by p;(a) = P{R }= A;} and p(a) = P{R |=
A} for i € A. By the definition of a minimal key as in the proof of (2.36) the following

is obtained

pla) > P — Y pila) = pa)(1 + Gm). (2.57)
i€A

To prove the assertion it is sufficient to verify that J,, — 0 asm — oo. Write

a; = a — log, | D;| and \; = M2~% = \|D;| for i € A. By assumption,
m ~ V242 < 2(0/2(4e) < 9R/3=ma 5 (2.58)

where a; ~ a as m — oc. Thus, \; < 2°1%, 0 < g1 < %, uniformly in 7 € A. Hence,
the claims of Theorem 2 (ii) hold uniformly in ¢ € A. It is observed that there exists

Yo > 0 such that

pila) = M1+ 0@ %)) = @A (1 4 O(em1)),

pla) = e M1+ 0(e ), (2.59)
as m — oo uniformly in 4 € A. Finally,

|0m| = 1/p(a) sz (1+0O(e %) /\Z —diA

i€A i€A

L
ae™? Ze_k/\wk =ae Mgle™) =e %g9(e7/a) = 0 as m — oo, (2.60)

and the assertion follows.
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CHAPTER 3

METHODOLOGY

3.1 Usage of Methods

The methods, told previously, showed that numerical values for normalization and

primary key can be obtained by using probability and entropy values.

The results of the methods can be used to establish a system to help the optimiza-
tion of the tables. While establishing that methods, it must be paid careful attention
for the worst and average case complexities, because mostly there is no need to take
care for millions of registered data. Instead of checking all data, it is better to test the
range, which is defined by little o notation, and obey the constraints which is defined

by big O notation.

The formula, A = M27%(1 — 27%), which is proved at the previous chapter, will
be our main gateway to obtain methods for our applications. For calculation of

information functions a and b, we are using the formula of Shannon entropy.

Entropy values help to find the degree of functional dependency () between two

sets of attributes. By using obtained A, some basic programs can be established.
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One of these programs displays a table, which shows the functional dependency of
each field with each of the rest. This table gives the information about whether a

normalization is needed.

Another program can contain the list of functional dependency value of each field
to the rest of all. Also page contains a list of all fields with checkboxes. By choosing
the fields due to some rules and submitting them, A of the combination can be found.
Comparing this A value with the A value of the primary key can show us the alternative

multiple keys of the primary key.

3.1.1 Calculation of the Functional Dependency ()\)

Calculating the result of A\ = M27%(1 — 27?) gives the functional dependency of
one attribute set, whose entropy value is a, to another attribute set, whose entropy

value is b.

The formula A = M27%(1 — 27°) contains three unknown values; M, a and b. M
is the average of the length of tuples which is defined by big O and little o notations
and it is calculated by the formula M = m(m —1)/2 (m: number of tuples). Big O is
the segment that affects the result most. Here big O is data segment which has the
biggest entropy value. According to little o notation, we must choose a data segment

which is bigger than the segment of big O.

For calculation of entropy values a and b; a = h(A), b = h(B), we use the formula
h(z) = —>_p(i)logy p(i). Here the probability value, p(i), is the ratio of the same

valued data to all data.
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Following slice of a table (Table 3.1) is used to explain how A value is calculated
for functional dependency. The functional dependency value of last two fields, course

and classroom, is calculated at the following lines.

Table 3.1: A Table Slice for Calculating the A

day course | classroom

Monday calculus B307
Tuesday algebra B307
Wednesday | algebra B307
Thursday | algebra B312

Friday calculus B312

course field has 2 kinds of totally 5 data; 2 calculus values and 3 algebra values.
But 2 of the algebra values correspond to the same value, B307, at classroom field.
That’s why, we take just 1 of them and assume we have 2 algebra values. One is
corresponding to B307 and the other one is corresponding to B#12. Finally we have
totally 4 data for course field; 2 calculus and 2 algebra. Information value for the

course field is calculated as following;

h(course) = — ZP(Z) logy p(i)
I(%é) — (—%logg %)4—(—%10%2 %)
- 1 (3.1)

classroom field has 2 kinds of totally 5 data; 3 B307 values and 2 B312 values. Again
2 of the B307 value correspond to the same value, algebra, and we take just 1 of them.

Information value for classroom field is calculated as following;

35



2 2 2 2 2 2
I(ZaZ) = (—Zlogzz)‘i‘(—zlogzz)

m is 4 for this condition because both of the fields use totally 4 tuples. M value

for this piece of the table is;

M = m(m—1)/2=4(4-1)/2

Functional dependency of course field to classroom field is calculated as following;

A = M2—h(cou'rse)(1 _ 2—h(classroom))
= 6% 2*1(1 — 2*1)

= 15 (3.4)

3.1.2 Method for Normalization

To analyze a table for normalization, all the fields of the table is evaluated and
a functional dependency table (FDT) like multiplication table is established from
functional dependency values of each field to each of the rest fields. When we evaluate

the table according to the following rules, we can define its normalization needs.

e At an optimal table, which does not need normalization, each entry of columns

have near values at FDT.
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e The fields, which need to be transferred to another table, have obviously very

smaller )\ values to each other at their columns at FDT.

e Also the fields, which need to be transferred to another table, may have smaller

A values than the primary key of the table.

e The fields, which gets limited type of data, may be misleading at small sized

tables. That’s why they can be neglected.

The second normal form states that each field in a multiple field primary key
table must be directly related to the entire primary key. Or in other words, each
non-key field should be a fact about all the fields in the primary key [16]. So our

method helps the designer about the application of the second normal form.

3.1.3 Evaluating the Combination of Fields for Multiple Key

If there is not a suitable field to be a primary key, adding a new field, which
contains auto increased numbers, can create a primary key but this process increases
the size of the table and table uses more space from the memory, however this extra

field has ease of usage.

To find an alternative for the primary key, which is created just to be a primary key,
designer may define the key from the combination of the table’s own fields. Functional
dependency value of the combination to the rest must be equal to the value of primary
key. At this point, the most important question is how do we decide which fields will

be chosen for the combination of multiple key? Answer is at the following process;
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e A program, coded to find the multiple keys of the tables, displays a table con-
taining functional dependency of each field to the rest. Also program lets the
users choosing the component fields for multiple key combination and program

displays the functional dependency value of this combination to the rest.

e To choose the components of multiple key, the field which has the smallest A
value is chosen. For other component of the combination, the next smallest

value is found.

e Then X value of the combination to the rest is calculated. If this value is equal to
the value of primary key, this combination can be multiple key. If it is not equal,

the field, which has the following smallest A\ value, is added to the combination.

e If the size of database is too small, the fields, which have limited type of data,
may be misleading. That’s why such kind of fields may be omitted. For instance,
a field called grade can only have the values {1, 2, 3,...,100} and can not have

another value. So this field is misleading at small sized databases.

Table 3.2 is a very basic table and it will be analyzed for multiple key at the

following lines.

Table 3.2: A Test Table Slice for Multiple Key Test

name | surname | username email authority
ahmet | kabarcik ahmet a.kabarcik@cankaya.edu.tr editor
ahmet | kabarcik | kabarcik | a.kabarcik@cankaya.edu.tr | referee
ertan | oOzturk ozturert ozturert@gmail.com referee
ahmet kara ahmet akara@yahoo.com referee
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This table contains the information of the persons for a journal. The values editor
and referee of the authority field define the different user rights. That’s why every
email can be kept twice but can not match with the same username or authority. On
this slice of the table no field can be primary key. But the combination of {username,
email} has unique values at each tuple and it can be the minimal key of the table. Also
the combination of {username, email}, {username, authority} and {email, authority}

can be the minimal key of that table.

The fields, which contain limited type of data, can be misleading. So we must
make comments about them due to this situation. At this table authority field suits

to this situation.

Assume we accept the combination of {username, email} as minimal key. Let’s

see its calculation process.

The entropy of username field;

h(username) = — Zp(z) log, p(7)
211 2 2 1 1 1 1
I(ZaZaZ) = (—Zlogg Z)+(_110g2 Z)Jr(_Zlng Z)
= 15 (3.5)

The entropy of email field;

h(email) = —Zp(i)loggp(i)

211 2 2 1 1 1 1

I(—, = ~) = (—Zlogzz)+(—Zlog21)+(—110g21)

~- 15 (3.6)

The entropy value of the combination of {username, email};
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| =
| =
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The entropy of the rest is like the following;

h(rest)

=
=
=
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|

— > p(i)log, p(i)

1

(_Z log, 1

=Y pli) logy p(i)

1
(_Z log,

2

1
4

and M =m(m —1)/2 =4(4—-1)/2 = 6;

D+ (g1

4

1
) + (_Z log,

1
4

1 1 1
089 Z) + (—- log 1

4

1

1
)+ (=7 logz 3

The functional dependency of username field to the rest;

= 1.5910

M2—h(username) (1 _

627151 —272)

2—h(rest))

The functional dependency of email field to the rest;

_ M2fh(email)(1 _

27h(rest) )

= 6x27°(1-27?)

= 1.5910

4

1
) + (_Z log,

)+ (5

1

1 l
082 4)

1
7

(3.7)

(3.8)

(3.10)

The functional dependency for {username, email} field, in other words for our candi-

date of multiple key;

M2fh(username+email) (1 - 27h(rest))

6+272(1 —27%)

1.1250
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We create an imaginary primary key whose values are automatically increased and
calculate its A value. We compare this value with the upper calculated value. If they

are equal, this combination can be accepted as multiple key.

As it is seen that (\) value of the combination of username and email is smaller
than the components. Another result of upper operations may be that accuracy is

direct, performance is indirect proportional with the amount of processed data.
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CHAPTER 4

APPLICATION

4.1 Application of Methods

The results that are obtained at the previous chapter are coded to establish an
automated system to compile the tables for testing the relations of their attributes.
Although the output of these tests have not 100 percentage accuracy for defining the
requirements of the table, results are very helpful for the evaluation of the table for

the designers who can read these outputs correctly.

To test the methods, we write programs by using PHP language with the database
of MySQL on Apache server. Programs are established to be open for all MySQL
server users to test their tables on the internet. After submitting the necessary in-
formation on the first page (Figure 4.1), the output of the dependency values will

display.
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Server Name:

Database Name: |
Table Name:

Usar Name:

Password:

Figure 4.1: Necessary Information for Testing the Table

4.1.1 Application for Normalization

The program, which we write for analyzing the normalization needs of the tables,
reveals the value of functional dependency of each field to each of the rest fields. This
dependency describes whether the field needs to be transferred to another table or

needs to be deleted from the table.

Again our base formulas are A = M27%(1 —27?) and the formula of entropy value,

H(a) = =32 p(i) logy p(i).

A table called employee, whose slice is seen at (Table 4.1), is used to test our re-
sults. Table contains these fields; no, empNo, empName, empTitle, salary, projectID,

projName, customerlD, customerName, customerCity, responsibility, duration.

Our program displays a functional dependency table (FDT) like the one at Figure
4.2. This table contains the functional dependency values of each field to each of the

rest fields. Analyzing process of normalization is like the following;
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Table 4.1: A Slice of the employee Table for Testing Normalization
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Figure 4.2: Functional Dependency Table for employee Table
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e When we analyze the projectID column at FDT, it is seen that the value 4.84 is
obviously smaller than the rest. Also it is smaller than the dependency value of
primary key, no, which is the first entry of the projectID column, which is 19.36.
The value 4.84 corresponds to the projName field at its row and this value is
the A\ value of projName field to projectID field. Then we analyze the column
projName and it is seen that the value 3.40 is very smaller than the rest. 3.40
shows the A value of projID field to the projName field. So these 2 fields need

to be normalized according to these results.

o customerID column at FDT table has 2 values which are smaller than the A
value, 19.99, of no field, which is primary key. These values are 10.08 and
8.75 corresponding to customerName and customerCity fields respectively. cus-
tomerName column has also 2 values which are very smaller than the rest and
primary key. These values are 4.58 and 7.95 corresponding to the customerID
and customerCity fields. Also customerCity column has 2 small values corre-
sponding to customerID and customerName fields. So these 3 fields need to be
normalized and the primary key of the new table must be kept instead of that

3 fields.

e Functional dependencies of empNo, empName, empTitle, salary to each other
are also very smaller than the rest and near or smaller than the primary key.

That’s why they also need to be normalized.

At this situation, our process results with the operation of second normal form.

At the beginning, we had 1 table and at the end of the process, we get 4 table.
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4.1.2 Application of the Multiple Primary Key

Assume that a table has not got any suitable field for being a primary key and a
field is created just to be a primary key. On the other side, combination of more than
one field might be an alternative for that primary key. Here, choosing the components

of that combination is the most important point.

The rules were defined for multiple keys at the previous chapter. The program,
which is coded due to that rules, is applied to the table studentGrade, which is seen
at (Table 4.2). Program displays 2 figures for our test table, studentGrade. First
figure (Figure 4.3) contains the functional dependency value of each filed to the rest.

Second figure (Figure 4.4) contains a list of attributes with checkboxes.

Table 4.2: studentGrade Table for Analyzing Multiple Key Property

110 studentIl | courseCode | section | grade

1 2000722004 MATH321 2 Ab
2 200022004 MATHI4E 1 Ea
3 200022004 CEINGEEE 1 CE
4 200122058 MATH321 2 Ab

At the program of multiple primary key, again same formulas are used to find

functional dependency values. The formulas are; A = M27%(1 — 27°) and H(a) =

- Z:‘L:O (i) logy p(i).

The processes to find the multiple key of the studentGrade table is like the follow-

ing;

e Firstly, we find the attribute, which has the smallest A value, from Figure 4.5.

It is seen that 1.4991951453323 value of the studentID field is the smallest one.
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Figure 4.3: Functional Dependency Table of Each Field to the Rest at studentGrade
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Figure 4.4: Field List of the studentGrade Table with Checkboxes

The value of no field is omitted because we are looking for its alternative. Then
we choose the checkbox next to studentID field from Figure 4.4. It means, we

find the first component of multiple key.

Then we choose the second field, which has the following smallest value. The
following value is courseCode field at this table. Then we choose the checkbox
next to courseCode field from Figure 4.4. So we find the second candidate of

the components.

After choosing the checkboxes studentID and courseCode from Figure 4.4, we
submit them to find the A value of the combination of {studentID, courseCode}.
If its value is equal to the value of no field, which is created just to be a primary
key, this combination can be a multiple key. If this is not equal to that value,

we add next field according to the rules.
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e After the submission, a new A table occurs like the one at Figure 4.5. At this
table, it is seen that the value of the combination, {studentID, courseCode}, is
equal to the value of primary key. So this combination can be an alternative for

primary key, no.

e As it is mentioned before the fields, which take data from a limited source, may
be misleading at small sized databases. Here the fields section and grade suit
that situation. That’s why we would not choose them although if they had

suitable values.

Rest of the Fields
+ (studentID)) + (courseCode) {]GE‘E‘EBBEE%

no 002733521824
studentIT 1.4991951453323
courseCode 478027554854
zection 16214 609947756
grade 52 2050071350353

Figure 4.5: Functional Dependency Table for Combined Fields and All Fields of
studentGrade Table

If no A value equal to the primary key is found after all tests of the combinations,

it means there is no multiple key and a primary key has to be created.
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CHAPTER 5

CONCLUSIONS

Database systems, formed from unpredictable data, need a system that can elimi-
nate the configuration errors of the attributes of tables and that can find the optimum
minimal key. Such a kind of system can increase the efficiency and the flexibility of
the database, so wasting time due to the organization will be minimal. It also supplies
the best arrangement of the data, so wasting memory space due to data duplications

will be minimal too.

There is no parallel studies with this thesis. The studies of J. Demetrovics, et. al.
is the main source of this work. They define basics of functional dependency by using
the entropy of the data of fields. We use the same way for functional dependency.
They have studies to find the length of minimal key but these studies does not define
the components of the minimal key. This thesis aimed to find the elements of the
minimal key. Although the studies of J. Demetrovics, et. al. does not contain any
application for normalization, this thesis contains a system for normalization by using

the result of their studies.
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