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ABSTRACT 

 

Improved Successive Cancellation Decoding of Polar Codes 

 

Alrtaimi, Abdelkareim Abulgaasem 

Ph.D., Department of Electronic and Communication Engineering 

Supervisor: Assoc. Prof. Dr. Orhan GAZİ 

 

September 2021 

 

In this thesis, we propose improved successive cancellation polar code decoding 

algorithms. Polar codes are fragile to error propagation. Considering this issue, in our 

first proposal, we consider 𝐿𝑅 = 1, for which decision is made for the favor of bit 0 

in classical successive cancellation algorithm, and  propose multi-SC decoders, where 

we consider more than one decoders working in parallel and these decoders make 

opposite decisions for 𝐿𝑅 = 1. The proposed technique provides a flexible 

configuration and leads to the pruning of unnecessary path searching operations, which 

provide low complexity compared to successive cancelation list decoding algorithm. 

Multi-Parallel SC decoding shows a significant performance improvement compared 

with the original SC decoding and its performance is comparable to that of the 

successive cancellation list decoding algorithm. 

In our next proposal, we propose a method for the iterative decoding of polar codes 

replacing the unreliable received samples with randomly generated samples. In this 

method, first, a straight decoding operation is performed for the received frame and 

CRC check is performed, and if it is not satisfied, the received symbols are passed 

through virtual random channels before they are sent to the polar decoders employing 

successive cancellation decoding algorithm. When the received symbols are passed 

through virtual random channels, randomly generated noise is added to the inputs of 

the VRCs falling into a threshold interval, which contains unreliable information about 

the transmitted polar code-bit before they are sent to the polar decoder. For the decoded 

sequence, if the CRC check is not satisfied, a different randomly generated noise 

sequence is added to the unreliable inputs and the decoding operation is repeated. This 
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procedure is repeated until a predefined maximum iteration number as long as CRC is 

not satisfied.  

 

Keywords: Polar codes, multi-parallel SCD, BEC, iterative polar decoding, virtual 

random channels (VRCs), AWGN, and Rayleigh fading channels. 
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ÖZ 

 

Geliştirilmiş Ardışık Giderim Algoritması ile Kutup Kodlarının Çözümlenmesi 

 

ALRTAIMI, Abdelkareim Abulgaasem 

Doktora, Elektronik ve Haberleşme Mühendisliği 

Tez Yöneticisi: Doç. Dr. Orhan GAZİ 

 

Eylül 2021 

 

Bu tezde, geliştirilmiş ardışık iptal (SC) kutupsal kod çözme algoritmaları öneriyoruz. 

Çözümlenen bitin yanlış değerde seçilmesi diğer bitlerin de çözümlenmesini 

etkileyecektir. Bu duruma kutup kodlarında hata yayılımı ismi verilmektedir. Bu 

konuyu göz önünde bulundurarak ilk önerimizde, klasik ardışık giderim 

algoritmasında bit 0 lehine karar verilen 𝐿𝑅 = 1 durumunu ele alıyoruz ve birden fazla 

kod çözücünün paralel olarak çalıştığı çoklu SC kod çözücüleri öneriyoruz. Bu kod 

çözücüler 𝐿𝑅 = 1 için zıt kararlar verir. Önerilen teknik esnek bir konfigürasyon 

sağlar ve ardışık giderim liste kod çözme algoritmasına kıyasla düşük karmaşıklık 

sağlayan ve bunu da gereksiz patika arama işlemlerinin elenmesiyle sağlayan bir 

algoritmadır. Çoklu paralel SC kod çözme, orijinal SC kod çözme ile 

karşılaştırıldığında önemli bir performans artışı gösterir ve performansı, ardışık iptal 

liste kod çözme algoritmasının performansına yaklaşmaktadır. 

Bir sonraki önerimizde, alınan sinyaldeki güvenilir olmayan örneklerin rastgele 

üretilen örneklerle değiştirilmesiyle kutupsal kodların yinelemeli bir şekilde çözülmesi 

için bir yöntem öneriyoruz. Bu yöntemde, önce alınan örnekler ile klasik kod çözme 

işlemi gerçekleştirilir ve CRC kontrolü yapılır ve bu sağlanmazsa alınan örnekler sanal 

rastgele kanalından (VRC) geçirilir. Alınan örnekler sanal rasgele kanalından 

geçirildiğinde, VRC'lerin girişinde içerisinde yeterli bilgi içermeyen örnekler rasgele 

örneklerle değitirilirler. Daha sonra VRC çıktısı SC çözücüye gönderilir. Çözücünün 

çıktısı için CRC kontrolü yapılır, ve eğer CRC kontrolü sağlanmazsa alınan örnekler 
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tekrar VRC'ye gönderilir ve işlemler tekrar edilir. Bu prosedür, CRC karşılanmadığı 

sürece önceden tanımlanmış bir maksimum yineleme sayısına kadar tekrarlanır. 

 

 

Anahtar Kelimeler: Kutup kodlar, Çoklu paralel SCD, BEC, yinelemeli polar kod 

çözme, sanal rastgele kanallar (VRC'ler), AWGN ve Rayleigh sönümleme kanalları. 
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CHAPTER 1 

 

 

1. INTRODUCTION 

 
Channel coding problem is one of the main topics of information theory. Error control 

codes are used for reliable data transmission in the presence of noise and interference. 

The recently introduced polar codes [1] are used to correct the transmission errors in 

communication systems. The polar codes are constructed in a recursive manner. The polar 

codes can achieve the channel capacity of discrete-input memoryless symmetric channels. 

The construction of polar codes is based on specific procedure of recursive encoding, and 

to this end, the transmission channel is synthesized from N virtual channels, where the N 

represents the length of the code. 

 

1.1 Successive Cancellation (SC) Decoding 

 

Depending on the number of recursions used for the construction of polar codes, the sub-

channels get either low reliability or high reliability, the data stream are allocated to the 

channel with high reliability. Sub-channels may not be fully polarized when the 

recursions number is low for a finite length of polar codes, and this may cause poor error 

correction performance.  

 

To tackle this issue, different approaches have been proposed in the literature, where 

several studies investigated rely on either modified the kernels of the recursive encoding 

procedure, in respect of increasing the rate of polarization [2], [3], or enhanced versions 

of the SC decoder [4], [5], [6], in order to increase its ability to deal with incompletely 

polarized channels.  

 

1.2 Successive Cancellation List (SCL) Decoding. 

 

The SC-List (SCL) decoding procedure was introduced in [4]. Different from the SC 

algorithm, where only a single candidate code word is searched, SCL saves L's most 
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reliable candidate code words at every step, and it greatly enhances the performance of 

the error correction for codeword lengths between short and moderate length. The SCL 

decoding mechanism, based on the same principle as the maximum likelihood (ML) 

decoding, performs well at a high signal-to-noise-ratio (SNR). Researchers have 

investigated the potential utility of applying the SCL decoding, along with cyclic 

redundancy check (CRC) code and its concatenation to determine the transmitted data 

[4]. It is shown that CRC concatenated polar codes employing SCL decoding  

outperforms the existing error-correcting codes including turbo codes as well as low-

density parity-check (LDPC) codes. 

However, the severe disadvantage of the SCL decoder is that it requires large memory 

storage with high run time. The latency increases as the list size increases. To alleviate the 

large computational complexity successive cancellation stack (SCS) decoding is proposed 

in [6], however, this method requires large memory storage. 

 

1.3 Successive Cancellation Stack (SCS) Decoding 

 

This algorithm provides the error-correcting performance similar to the SCL algorithm 

with a complexity that varies with channel conditions. The complexity of SCS is the same 

as SCL at high channel noise, and as the channel noise decreases, the SCS complexity 

approaches to that of SC. 

 

1.4 Successive Cancellation Bit-Flipping Decoding 

 

The SC-based decoding algorithm, called SC Bit-Flipping, employing iterative decoding, 

to reduce the computation complexity is introduced in [5]. In the BF decoding algorithm 

after SC decoding operation, candidate bits, which have low |LR| values, are selected, and 

in sequel, the bit with the smallest |LR| is flipped and decoding is performed assuming 

that CRC is not satisfied. In each decoding attempt, only one bit, 𝑤 = 1, is flipped in the 

decoded code word. After each decoding operation, CRC check is performed, and the 
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decoding operation with bit flipping is repeated until either CRC is satisfied or maximum 

iteration number, 𝑇𝑚𝑎𝑥, is reached. This decoding algorithm achieves an error-correcting 

performance close to that of the SC-List with 𝐿 = 2. Its complexity is 𝑂(𝑁), which is the 

memory complexity of the SC algorithm, and it has an average computational complexity 

of 𝑂(𝑁 log𝑁) at high SNR. 

 

1.5 Improve Versions of Successive Cancellation Bit-Flipping Decoding 

 

Multi-bit flip SC decoding is introduced in [7] where a critical set is constructed as a bit-

flip index set and a new metric is utilized to determine the priority of bits to be flipped, 

aiming to find the true first error faster, to reduce the computational complexity. The 

maximum number of bit-flip equals the level of the critical set [7]. 

The bit-flipping methods employed with SC-list (SCL) decoder for polar codes are 

introduced in [8, 9]. In [8], the characteristics of path splitting states in SCL decoding are 

analyzed and used to determine the type of path splitting for bit flipping, and a revised 

critical set (RCS) is defined to indicate the bit to be flipped in case the original CA-SCL 

decoding fails. Row weight-based successive cancellation list flipping, RWB-SCL-

Flipping, algorithm is proposed in [9] where the correlation between error distribution of 

information bits and their associated row weights in the generator matrix is used. The 

information bits associated with small row weights in the generator matrix are deduced 

as error-prone, and they are selected as the flipping bits with a high priority. 

In spite of many attempts that have been made with the purpose of improving the polar 

decoders in terms of performance and complexity [10–18], it is still an open issue to 

explore an efficient decoding algorithm that can achieve an adequate frame error rate 

performance, FER, with low complexity, particularly when polar codes with finite length 

are considered. 
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1.6 Thesis Contribution 

 

In this thesis work, we introduce new efficient low complexity algorithms to improve the 

performance polar decoders.  We focus on the LR=1 case, and an high performance low 

complexity improved SC decoding algorithm is proposed. 

Besides, we also propose a new technique that is used in AWGN and Rayleigh fading 

channels by adding random noise to the unreliable soft information, falling into a 

threshold interval, in the received sequence. 

 

1.6.1 High-Performance Low Latency Parallel Successive Cancelation Decoder 

Structures 

 

Polar codes are decoded using successive cancellation (SC) algorithm where likelihood 

ratios (LRs) for data bits are calculated sequentially, and decisions are made using the 

calculated LRs. During the decoding of an information bit, the decision results for the 

predecessor bits are used, and a wrongly decided predecessor bit has a negative effect on 

the accurate calculation of the LR for the information bit being decoded. In the SC 

algorithm, when LR=1, the information bit is decoded as  𝒖̂𝒊 = 𝟎, however, such a 

decision has a 50% of chance of being correct. In this thesis, we propose improved polar 

decoders utilizing a number of SC decoders. We consider the case of 𝐿𝑅 = 1 and propose 

polar decoder structures for the more accurate calculation of the 𝐿𝑅𝑠 of the successor bits. 

 

1.6.2 Improving the Performance of Polar Decoders Using Virtual Random 

Channels. 

 

In this part, we propose the use of virtual random channels (VRCs) to improve the 

performance of successive cancellation decoding algorithms used to decode the polar 

codes.  For this purpose, we consider CRC concatenated information sequences before 

polar encoding operation. We introduce a decoder structure called the Noise-Aided 

Iterative SC decoder, where the received signal is decoded in an iterative manner using 
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VRCs. The proposed system shows comparable performance to that of the state-of-the-

art CA-SCL, besides it has low complexity for high SNR values.  

 

1.7 Thesis Organization  

The thesis is structured as follows: Chapter 2 presents a brief literature review of channel 

coding. The concept of channel polarization for polar codes, and the calculation of the 

Bhattacharyya parameters, 𝑍(𝑊), in the channel polarization process for different 

channels are explained in Chapter 3.  

In Chapter 4, we explain the decoding of polar codes using the SC decoding algorithm, 

which can be illustrated by the factor graph resembling a Butterfly-based structure. The 

Butterfly-based structure can be explained using the tree structure. In the logarithmic 

version of the SC algorithm 𝐿𝐿𝑅s (log-likelihood ratios) are used to reduce the complexity 

of the calculations. 

In Chapter 5, we introduce M-Parallel SC Decoding algorithm. In SC decoding of polar 

codes, whenever 𝐿𝑅(𝑢̂𝑖) = 1 the decision is made as 𝑢̂𝑖 = 0. However, in such an 

approach, we have a 50% chance of making a correct decision. A wrong decision will 

certainly have negative effects on the determination of the successive bits. Considering 

this issue, we propose multi-parallel structures employing SC decoding algorithms. 

Chapter 6 deal with the use of virtual random channels (VRCs) to improve the 

performance of successive cancellation decoding algorithms used to decode the polar 

codes.  For this purpose, we consider CRC concatenated information sequences before 

polar encoding operation. We introduce a decoder structure called the Noise-Aided 

Iterative SC decoder, where the received signal is decoded in an iterative manner using 

VRCs. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

Information theory was born with the publication of Shannon's paper a mathematical 

theory of communication in 1948. Shannon in his paper showed the criteria for the reliable 

transmission of the data over noisy channels and stated the need of channel codes for 

reliable data transmission but he did not propose any channel coding method for the 

reliable transmission. Shannon in his paper drew the frontiers of the reliable 

communication [19]. Following the Shannon's paper, a new research area in 

communication society called channel coding appeared and channel coding became one 

of the main concepts of communication systems 

The philosophy of channel coding lies on the addition of the guard bits to the information 

bits and using these guard or parity bits for the error correction procedure. Addition of 

the parity bits to the information bits increases the bit vector length, and this leads to an 

increase in the Hamming distance among codewords. Increased Hamming distance 

among codewords decreases the probability of error for the determination of the 

transmitted bit vector, i.e., codeword, at the receiver side. The channel coding is a crucial 

operation in any communication applications, such as internet, and cellular phones. 

Channel encoding is a vital part of the modern communication systems. A typical modern 

communication system is depicted in Fig 1.1. 

 

 

 

 

 

 

Figure 1.1 The main components of digital communication system.  
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In communication theory, a communication channel is characterized by the conditional 

channel probabilities. 

Let 𝑋 and 𝑌 denote the input and output alphabet of a communication channel. The 

channel is described by 𝑊: 𝑋 →  𝑌 along with its transition probabilities 𝑊(𝑦 | 𝑥)  such 

that 𝑥 ∈ 𝑋 is transmitted through the channel, and 𝑦 is the received signal at the receiver 

side. The channel input alphabet can be considered as the range set of a random variable, 

and similarly the channel output alphabet can be considered as the range set of a random 

variable assuming that we use discrete channel. In case, we use a continuous channel, 

such as Gaussian channel, we use intervals for input and output alphabets, i.e., we have 

infinitely many inputs and outputs. 𝑊(𝑦 | 𝑥)  can be considered as the conditional 

probability mass or density function, considering both discrete and continuous channels, 

of two random variables.  Shannon in his paper defined the channel capacity, 𝐶(𝑊), 

which indicates the maximum reliable transmission speed per-transmission or per-second, 

considering the transmission of a single symbol or the transmission of a number of 

symbols per-second. When the transmission speed 𝑅 is smaller than the channel capacity, 

i.e., when 𝑅 <  𝐶(𝑊), then it is possible to achieve error free transmission using the 

channel codes.  

 

Channel codes can be classified as block and convolutional channel codes. Block channel 

codes are the subject of linear algebra. Block channel codes are vector subsets, and the 

aim of channel coding is to deploy linear binary codes that satisfy the properties of linear 

algebra with a large minimum distance. In case transmitted data is corrupted during the 

transmission, the codes are used to recover the erroneous bits altered by the noise. 

Decoding operation at the receiver side can be classified as hard and soft decoding. In the 

hard decoding operation, each bit decision is made after its decoding operation. On the 

other hand, in soft decoding operation, we calculate 0 and 1 the probabilities for the bit 

being decoded, and usually after all the 0 and 1 probabilities for all the bits are calculated, 

decisions are made for all the bits. Minimum distance, which is the smallest Hamming 

weight of all codewords of a code, is directly related to the code's error correction 

capability.   
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The decoding operation can be considered as selecting the codeword that is  closest to the 

received word (after hard-decision). Therefore, it is desirable to employ codes with large 

minimum distances so that a maximum number of erroneous bits are corrected. 

 

Hamming introduced the first algebraic codes and he called them Hamming codes [20]. 

The Hamming codes are single error correction codes. After Hamming codes, there are 

other various efficient algebraic codes such as as Golay codes, BCH codes [21, 22], Reed-

Muller codes [23, 24], and the Reed-Solomon codes [25] are introduced. These codes are 

use in different applications such as in modems, CDs as well as DVDs. To achieve 

efficient performance, codes with large clock lengths must be constructed and 

implemented in practice. The improvement of computer resources made it possible to 

design codes with large block lengths with complex decoding algorithms.  

Elias introduces product codes in [26] where large codes are constructed  by combining 

two or more shorter length codes. Code concatenation was proposed by Forney [27] 

where data word is encoded using the first  code 𝐶1, and the output of 𝐶1 is encoded by 

𝐶2. Forney’s findings illustrate that by selecting the component codes in an appropriate 

manner, the error probability can decay almost exponentially with a decoding algorithm.  

Elias presented convolutional codes in [28]. Convolutional codes are different from block 

codes in terms of encoding and decoding. The Viterbi algorithm is used for the decoding 

of block codes [29]. The BCJR algorithm can also be for the decoding of convolutional 

codes [30]. Those algorithms run on linear complexity within the desired block length. If 

convolutional codewords have large lengths, then it is possible  to get probability of errors 

vanishing exponentially. Nevertheless, the run time of the decoding can increase 

exponentially at such large lengths. Fano's algorithm for the decoding of convolutional 

codes is introduced in [31].  

 

Low-density parity-check (LDPC) codes are discovered during the ’60s [32]. The parity 

check matrices of these codes have very few non-zero entries. These matrices have a 

constant number of non-zero entries on each row and column. 
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Gallager showed that these codes have a non-zero relative distance. He also proposed a 

low-complexity iterative decoding algorithm. Unfortunately, due to the lack of 

computational resources at that time, the power of these codes and the decoding 

algorithms were not realized. MacKay and Neal constructed codes based on sparse 

matrices [34] and observed that they perform very well using a low complexity belief 

propagation algorithm. It was later noticed that these codes were a special case of LDPC 

codes and that the decoding algorithm was similar to the probabilistic decoding suggested 

by Gallager. Around the same time, Sipser and Spielman [35] constructed expander codes 

and came up with a simple decoding algorithm that could correct a linear fraction of 

adversarial errors. 

 

The invention of turbo codes by Berrou, Glavieux, and Thitimajshima [33] was a 

breakthrough in the practice of coding. Turbo codes achieved rates close to the capacity 

with a linear complexity-decoding algorithm. The turbo codes are constructed by 

concatenating two convolutional codes in parallel with a random bit interleaver in 

between. Turbo codes are decoded using iterative decoding algorithms. BCJR algorithm 

is adopted for the decoding of turbo codes. Wiberg, Loeliger, and Kotter [36, 37] unified 

turbo codes and LDPC codes using code graphs, and the turbo decoding algorithm, the 

belief propagation algorithm of MacKay and Neal, and the probabilistic decoding of 

Gallager turned out to be different incarnations of the same algorithm. The study leaded 

to a bridge between sparse graph codes and other fields like machine learning, statistical 

mechanics, and computer science. 

 

The success of turbo codes and the subsequent rediscovery of LDPC codes aroused the 

interest in LDPC codes and message passing algorithms. Some of the important 

contributions to the message-passing algorithms were done in a series of papers by Luby, 

Mitzenmacher, Shokrollahi, Spielman, and Stemann [38, 39, 40, 41]. In [38, 40], the 

authors analyzed a suboptimal decoder known as “peeling decoder” for the binary erasure 

channel (BEC). They constructed codes for the BEC, which achieve capacity using the 

peeling decoder. Later, in [42], the peeling decoder was formulated on a tree.  
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In [43], Richardson and Urbanke developed density evolution [42] and a class of 

message-passing algorithms. This class includes the important belief propagation 

algorithm. By combining density evolution by belief propagation with optimization 

techniques, channel codes were constructed achieving the capacity of Gaussian channel 

to within 0.0045dB [44]. Many techniques over turbo and LDPC codes have been 

proposed which empirically achieve rates close to capacity for various channels.  

 

In this thesis, we propose low complexity capacity achieving decoding methods for polar 

codes introduced by Arıkan [1]. Polar codes are the primary class of error-correcting 

codes that achieve the capacity of communication channels with “low encoding and 

decoding complexity”, and performance of polar codes can be proven mathematically.  
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CHAPTER 3 

 

 POLAR CODING 

 

3.1 Useful definitions and notations 

 

We will define the notations that will be used throughout this chapter. Let 𝑊 be the 

channel on which the transmission takes place; 𝑋 and 𝑌 the channel input and output 

alphabets, 𝑊(𝑦|𝑥), 𝑥𝜖𝑋, 𝑦𝜖𝑌 are the transition probabilities. The operator ⨁ is modul-2 

addition, ⨂ is the Kronecker product defined as: 

𝐴⊗ 𝐵 = [
𝐴11𝐵 ⋯ 𝐴1𝑛𝐵
⋮ ⋱ ⋮

𝐴𝑚1𝐵 ⋯ 𝐴𝑚𝑛𝐵
] (3.1) 

 

where 𝐴, 𝐵 and, 𝐴⨂𝐵 are matrices of sizes 𝑚× 𝑛, 𝑞 × 𝑔 and 𝑚𝑞 × 𝑛𝑔. The Kronecker 

power 𝐴⨂𝑁 is defined as: 

𝐴⨂𝑛 = 𝐴⨂𝐴⨂(𝑛−1) (3.2) 

for all 𝑛 ≥ 1, with, 𝐴⨂0 ≜ 1.  

For vectors, we use the following notations: 𝑎1
𝑁denotes the row vector (𝑎1, … , 𝑎𝑁) with 

𝑁 = 2𝑛, 𝑛 being a positive integer; 𝑎𝑖
𝑗
: the subvector defined by (𝑎𝑖, … , 𝑎𝑗) with 1 ≤ 𝑖 ≤

𝑗 ≤ 𝑁; 𝑎𝑖,𝑒
𝑗

: the subvector (𝑎𝑘: 𝑖 ≤ 𝑘 ≤ 𝑗; 𝑘 𝑒𝑣𝑒𝑛) and 𝑎𝑖,𝑜
𝑗

: (𝑎𝑘: 𝑖 ≤ 𝑘 ≤ 𝑗; 𝑘 𝑜𝑑𝑑) ; 𝐴 ⊂

{1,… ,𝑁}, 𝑎𝐴: the subvector (𝑎𝑘: 𝑘 ∈ 𝐴). 

 

Definitions:  

The capacity of a discrete transmission channel is defined as the maximum value of the 

mutual information between its input and output considering all possible probability 

distributions. The symmetrical capacity (in bits/s) of a binary discrete memoryless 

channel, B-DMC,  is defined as [1] 

 

𝐼(𝑊) ≜∑∑
1

2
𝑥𝜖𝑋𝑦𝜖𝑌

𝑊(𝑦|𝑥) log
𝑊(𝑦|𝑥)

1
2𝑊

(𝑦|0) +
1
2𝑊

(𝑦|1)
(3.3) 
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Moreover, the Bhattacharyya parameter, i.e., channel reliability parameter, is defined as 

 

𝑍(𝑊) ≜∑√𝑊(𝑦|0) +𝑊(𝑦|1)

𝑦𝜖𝑌

(3.4) 

 

These two parameters represent the capacity and reliability of the channel and they are 

the basic expressions of the polar coding. The capacity 𝐼(𝑊) is the highest bit rate that 

can be transmitted reliably through channel 𝑊. The 𝑍(𝑊) parameter is an upper bound 

for the maximum transmission error. 

Two common types of symmetrical channels are binary erasure channel, BEC, and binary 

symmetric channel, BSC. For the output alphabet 𝑌 = {0,1}, for a BSC we 

have 𝑊(0|0) = 𝑊(1|1) and 𝑊(1|0) = 𝑊(0|1). A BEC is a B-DMC such as 

𝑊(𝑦|0)𝑊(𝑦|1) = 0 and 𝑊(𝑦|0) = 𝑊(𝑦|1). We write 𝑊𝑁 to denote the channel 

corresponding to 𝑁 uses of 𝑊, and 𝑊𝑁: 𝑥𝑁 → 𝑦𝑁 is defined by 

 

𝑊𝑁(𝑦1
𝑁|𝑥1

𝑁) =∏ 𝑊(𝑦𝑖|𝑥𝑖)
𝑁

𝑖=1
(3.5) 

 

Properties:  

For all B-DMC 𝑊, we have [1]:  

 

log2
2

1 + 𝑍(𝑊)
 ≤ 𝐼(𝑊) ≤ √1 − 𝑍(𝑊)2 (3.6) 

𝐼(𝑊)2 + 𝑍(𝑊)2 ≤ 1 ≤ 𝐼(𝑊) + 𝑍(𝑊) (3.7) 

The parameters 𝐼(𝑊) and 𝑍(𝑊) take their values in the interval [0,1] and further we have 

𝐼(𝑊) ≈ 1 → 𝑍(𝑊) ≈ 0, perfect channel  

𝐼(𝑊) ≈ 0 → 𝑍(𝑊) ≈ 1, completely noisy channel 

which can be verified using 3.6 and 3.7. The larger 𝐼(𝑊) means the better channel and 

vice versa. That is, the channel with the smallest value of 𝑍(𝑊) is the most reliable one. 

Starting from the two equivalences, we can say that to know the properties of a B-DMC 
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channel, it is sufficient to study one of the two parameters. We will use 𝑍(𝑊), which is 

simpler and easier to handle.  

 

The main idea of polar coding is to build virtual channels from the physical channel 𝑊  

such that a fraction of them tends to be perfect channels and the rest tend to be completely 

noisy channels. This is called channel polarization. 

 

3.2  Channel Polarization 

 

Polarization forms the basis of the construction of polar codes. It consists of synthesizing 

𝑁 independent copies of a given B-DMC 𝑊 to construct 𝑁 other channels 

{𝑊𝑖
𝑁: 1 ≤ 𝑖 ≤ 𝑁}. The polarization appears in the sense that 𝐼(𝑊𝑁

(𝑖)
) tends towards 0 or 

1 [1]. The channel polarization operation is done in two stages: channel combination and 

channel splitting. 

 

3.2.1 Channel combining   

 

It consists of grouping 𝑁 copies of a given B-DMC 𝑊 channel into 𝑊𝑁channel. For 𝑛 =

1, 𝑁 = 2𝑛 = 21 independent copies of 𝑊1 = 𝑊 are combined to form the channel 

𝑊2: 𝑋
2 → 𝑌2. For 𝑊2, we have  

 

𝑊2(𝑦1, 𝑦2|𝑢1, 𝑢2) = 𝑊(𝑦1|𝑢1⊕𝑢2)𝑊(𝑦2|𝑢2) (3.8) 

 

𝑊2 channel is depicted in Fig. 3.1. 

 

Figure 3.1 The 𝑊2 channel. 
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From Fig. 3.1, we obtain 𝑥1 = 𝑢1⨁𝑢2 and 𝑥2 = 𝑢2. The relationship between 𝑥1
2 and 𝑢1

2 

can be expressed using 

𝑥1
2 = 𝑢1

2𝐺2 

where 𝐺2 = [
1 0
1 1

].  

For 𝑛 = 2 , 𝑁 = 22 = 4,  the channel combining is shown in Fig. 3.1. Two independent 

copies of the channel 𝑊2 are combined in the same way to construct 𝑊4: 𝑋
4 → 𝑌4 whose 

conditional probability satisfies 

 

𝑊4(𝑦1
4|𝑢1

4) = 𝑊2(𝑦1
2|𝑢1⊕𝑢2, 𝑢3⊕𝑢4)𝑊2(𝑦3

2|𝑢2, 𝑢4) (3.9) 

 

 

Figure 3.2 Construction of  𝑊4 from two copies of 𝑊2  

 

The permutation operation 𝑅4 transforms the vector 𝑠1
4 = (𝑠1, 𝑠2, 𝑠3, 𝑠4) to 𝑣1

4 =

(𝑠1, 𝑠3, 𝑠2, 𝑠4) = (𝑠1,𝑜
4 , 𝑠1,𝑒

4 ). From Fig. 3.2, we obtain 

 

𝑥1
4 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑢1⨁𝑢2⨁𝑢3⨁𝑢4, 𝑢3⨁𝑢4, 𝑢2⨁𝑢4, 𝑢4) (3.10) 

 

The relationship between 𝑢1
4 and 𝑥1

4 can be written as 

 𝑥1
4 = 𝑢1

4𝐺4 
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where 𝐺4 = [

1 0
1 0

0 0
1 0

1 1
1 1

0 0
1 1

].  

 

The relationship between the probabilities of transitions 𝑊4 and 𝑊4 is 𝑊4(𝑦1
4|𝑢1

4) =

𝑊4(𝑦1
4|𝑢1

4𝐺4). We have 𝐺4 = 𝐵4𝐺2
⨂2, where 𝐵4 is a permutation matrix. 

 

The combined channel 𝑊𝑁 for any 𝑛 ≥ 1,𝑁 = 2𝑛 is formed using two independent 

copies of the channel 𝑊𝑁/2 as indicated in Figure 4 where it is seen that 𝑠2𝑖−1 =

𝑢2𝑖−1⨁𝑢2𝑖 and 𝑠2𝑖 = 𝑢2𝑖 for 1 ≤ 𝑖 ≤ 𝑁/2. 𝑅𝑁 is the as the reverse shuffling operation, 

and it takes 𝑠1
𝑁 and produces 𝑣1

𝑁 = (𝑠1, 𝑠3, … , 𝑠𝑛−1) = (𝑠1,𝑜
𝑁 , 𝑠1,𝑒

𝑁 ), which is the input for 

𝑊𝑁/2 as shown in Fig 3.3. 

 

 

Figure 3.3 Recursive construction of the 𝑊𝑁 channel from two 𝑊𝑁/2. 

 

The code bits are obtained as 

𝑥1
𝑁 = 𝑢1

𝑁𝐺𝑁 . (3.11) 
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The relationship between the conditional transition probabilities of 𝑊𝑁 and 𝑊𝑁 can be 

written as 

 

𝑊𝑁(𝑦1
𝑁|𝑢1

𝑁) = 𝑊𝑁(𝑦1
𝑁|𝑢1

𝑁𝐺𝑁). (3.12) 

 

The 𝐺𝑁 matrix of size 𝑁 is called the generator matrix. Arikan showed that 𝐺𝑁 = 𝐵𝑁𝐺2
⨂𝑛 

where 𝐵𝑁 is a row permutation matrix called bit-reversal. 

 

3.2.2 Channel splitting 

 

After the channel combination, the next step of channel polarization is to divide the 

combined channel 𝑊𝑁 into 𝑊𝑁
𝑖 : 𝑋 → 𝑌𝑁 × 𝑋𝑖−1 split channels defined by the transition 

probabilities: 

𝑊𝑁
(𝑖)(𝑦1

𝑁 , 𝑢1
𝑖−1|𝑢𝑖) ≜ ∑

1

2𝑁−𝑖
𝑊(𝑦1

𝑁|𝑢1
𝑁)

𝑢𝑖+1
𝑁 ∈𝑋𝑁−𝑖

(3.13)
 

 

𝑊𝑁
(𝑖)

 is the channel seen by 𝑢𝑖. For the channel input 𝑢𝑖, channel outputs are 

 (𝑦1
𝑁 , 𝑢1

𝑖−1), 1 ≤ 𝑖 ≤ 𝑁. 

Let's now consider the decoding operation considering the split channels. 

First, we decode the bit 𝑢1 using the received symbols 𝑦1
𝑁 = [𝑦1 𝑦2… 𝑦𝑁−1  𝑦𝑁].  The 

channel 𝑊𝑁
1 is defined as [45]: 

𝑊𝑁
1:  𝑢1 → 𝑦1

𝑁 .  

In the second step, the bit 𝑢2 can be decoded using the previously decoded bit 𝑢1 and the 

received symbols 𝑦1
𝑁. The channel 𝑊𝑁

2 is defined as 

𝑊𝑁
2:  𝑢2 → 𝑦1

𝑁 , 𝑢̂1.  

In general for the decoding of the bit 𝑢𝑖, the channel 𝑊𝑁
𝑖  is defined as 

  

𝑊𝑁
𝑖 :  𝑢𝑖 → 𝑦1

𝑁 , 𝑢̂1, 𝑢̂2, … , 𝑢̂𝑖−1  

 

The channel splitting operation is illustrated in Fig 3.4. 
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Figure 3.4 Illustration of channel splitting. 

 

3.2.3 The phenomenon of the channel polarization 

 

This polarization phenomenon can be explained with the following theorem [1]:  

Channel polarization refers to the fact that it is possible to synthesize N independent 

copies of a given B-DMC channel and 𝛿 ∈ [0,1] then the set of the values of N binary-

input channels 𝐼(𝑊𝑁
(𝑖)
) ∈ [1 − 𝛿, 1]. such that as N becomes large the fraction of 

indices 𝑖 for which 𝐼(𝑊𝑁
(𝑖)
) is near 1 approaches 𝐼(𝑊) and the fraction for 

which 𝐼(𝑊𝑁
(𝑖)
) is near 0 approaches 1 − 𝐼(𝑊). 

In other words the two poles of 𝐼(𝑊𝑁
(𝑖)
) are 𝐼(𝑊) and 1 − 𝐼(𝑊). Here is a diagram 

showing the channel bias effect. 
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Figure 3.5 Channel polarization for a BEC with erasure probability 𝜀 = 0.5. 

 

In Fig. 3.5, it is seen that a set of 𝐼(𝑊𝑁
(𝑖)
)  𝑖 = 20, … , 𝑁 = 210, gets value of 1, and some 

others get the value of 0, and the rest get value in between 0 and 1. 

 

3.3 The recursive channel transformation 

 

The channel polarization is nothing but a channel transformation from 𝑁 independent 

copies of a given B-DMC 𝑊. This transformation begins by grouping of two copies of 

𝑊 by a technique based on the mutual information chain rule. For independent channels 

we have the property 

 

𝐼(𝑢1, 𝑢2; 𝑦1, 𝑦2) = 𝐼(𝑢1; 𝑦1) + 𝐼(𝑢2; 𝑦2) = 2𝐼(𝑊) (3.14) 

 

For combined channel, we can write  

 

𝐼(𝑢1, 𝑢2; 𝑦1, 𝑦2) = 𝐼(𝑢1; 𝑦1, 𝑦2) + 𝐼(𝑢2; 𝑦1, 𝑦2, 𝑢1) (3.15) 
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𝑊−and 𝑊+ are the split channels.  The expressions on the right side of 3.15, are the 

mutual information for split channels, i.e., 𝐼(𝑊−) = 𝐼(𝑢1; 𝑦1, 𝑦2) and 𝐼(𝑊+) =

𝐼(𝑢2; 𝑦1, 𝑦2, 𝑢1), and we have   

𝐼(𝑊−) + 𝐼(𝑊+) = 2𝐼(𝑊) (3.16) 

The conditional channel probabilities for split channels can be written as 

 

𝑊−(𝑦1; 𝑦2|𝑢1) = ∑ 𝑊(𝑦1|𝑢1⨁𝑢2)𝑊(𝑦2|𝑢2)

𝑢2∈𝑋

(3.17) 

𝑊+(𝑦1, 𝑦2, 𝑢1|𝑢2) =
1

2
𝑊(𝑦1|𝑢1⨁𝑢2)𝑊(𝑦2|𝑢2) (3.18) 

 

Let 𝑊− = 𝑊2
(1)

 and 𝑊+ = 𝑊2
(2)

, the channel splitting operation can be illustrated as 

(𝑊,𝑊) → (𝑊2
(1)
, 𝑊2

(2)
).  

The relationship between split channels can be illustrated using [1]: 

  

(𝑊𝑁
(𝑖), 𝑊𝑁

(𝑖)) → (𝑊2𝑁
(2𝑖−1),𝑊2𝑁

(2𝑖)) (3.19) 

 

Conditional split channel probabilities can be calculated using 

 

𝑊2𝑁
(2𝑖−1)(𝑦1

2𝑁 , 𝑢1
2𝑖−2|𝑢2𝑖−1) =

= ∑
1

2
𝑊𝑁
(𝑖)
(𝑦1

𝑁 , 𝑢1,𝑜
2𝑖−2⨁𝑢1,𝑒

2𝑖−2|𝑢2𝑖−1⨁𝑢2𝑖)𝑊𝑁
(𝑖)
(𝑦𝑁+1

2𝑁 , 𝑢1,𝑒
2𝑖−2|𝑢2𝑖)

𝑢2𝑖∈𝑋

(3.20)
 

and 

𝑊2𝑁
(2𝑖)(𝑦1

2𝑁 , 𝑢1
2𝑖−1|𝑢2𝑖) =

=
1

2
𝑊𝑁
(𝑖)(𝑦1

𝑁 , 𝑢1,𝑜
2𝑖−2⨁𝑢1,𝑒

2𝑖−2|𝑢2𝑖−1⨁𝑢2𝑖)𝑊𝑁
(𝑖)(𝑦𝑁+1

2𝑁 , 𝑢1,𝑒
2𝑖−2|𝑢2𝑖) (3.21)

 

 

For the split channel capacities we have the expressions [1] 

 

𝐼(𝑊2𝑁
(2𝑖−1)) + 𝐼(𝑊2𝑁

(2𝑖)) = 2𝐼(𝑊𝑁
(𝑖)) (3.22) 
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𝑍(𝑊2𝑁
(2𝑖−1)) + 𝑍(𝑊2𝑁

(2𝑖)) ≤ 2𝑍(𝑊𝑁
(𝑖)) (3.23) 

  

We have the inequalities  

𝐼(𝑊2𝑁
(2𝑖−1)) ≤ 𝐼(𝑊𝑁

(𝑖)) ≤ 𝐼(𝑊2𝑁
(2𝑖)) (3.24) 

𝑍(𝑊2𝑁
(2𝑖−1)) ≥ 𝑍(𝑊𝑁

(𝑖)) ≥ 𝑍(𝑊2𝑁
(2𝑖)) (3.25) 

for the split channel capacities and for the Bhattacharyya parameters of the split channels. 

If BEC is used for the transmission of the code bits, then we have the capacity equalities 

𝐼(𝑊𝑁
(2𝑖−1)) = 𝐼 (𝑊𝑁

2

(𝑖)
)

2

(3.26) 

𝐼(𝑊𝑁
(2𝑖)) = 2𝐼 (𝑊𝑁

2

(𝑖)
) − 𝐼 (𝑊𝑁

2

(𝑖)
)

2

(3.27) 

where 𝐼(𝑊1
(1)
) = 1 − 𝜖 and for the Bhattacharyya parameters of the split channels we 

have the equalities 

𝑍(𝑊𝑁
(2𝑖−1)

) = 2𝑍 (𝑊𝑁
2

(𝑖)
) − 𝑍 (𝑊𝑁

2

(𝑖)
)

2

(3.28) 

𝑍(𝑊𝑁
(2𝑖)) = 𝑍(𝑊𝑁

2

(𝑖)
)2 (3.29) 

where (𝑊1
(1)
) = 𝜖 . 

 

In Fig. 3.6, recursive channel transformation using Butterfly structure is depicted. It is 

seen from Fig. 3.6 that the split channels 𝑊8
(𝑖)
: 1 ≤ 𝑖 ≤ 8, are obtained from 8 copies of 

the B-DMC 𝑊 channel. The split channel located at a node is obtained from the two 

channels to the right of the node to which it is connected, for example using 𝑊2
(1)

and 

𝑊2
(2)

, we get 𝑊4
(1)

. 
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Figure 3.6 Butterfly structure for recursive channel transformation for N = 8. 

 
 

3.4 Polar coding 

 

Polar coding utilize the channel polarization effect to construct codes that attain the 

capacity of the channel. The principle of polar coding lies on sending the data through 

those the most reliable channels, i.e., sending data those channels whose 𝑍(𝑊8
(𝑖)
) are 

closer to 0. 

Polar codes belong to a special class of codes called 𝐺𝑁−coset codes. 

Polar coding is achieved using 

𝑥1
𝑁 = 𝑢1

𝑁𝐺𝑁 (3.30) 

where 𝑁 = 2𝑛, 𝑛 ≥ 1, represents the block length and 𝐺𝑁 is the generator matrix of the 

code 𝐺𝑁 −coset. Given a subset 𝐴 such that 𝐴 ⊂ {1,… ,𝑁}, 3.30 can be written in the 

form 

𝑥1
𝑁 = 𝑢𝐴𝐺𝑁(𝐴)⨁𝑢𝐴𝑐𝐺𝑁(𝐴

𝑐). (3.31) 
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Where 𝑢𝐴 is a subvector, whose dimension is 𝑘, of 𝑢1
𝑁, and it is composed of the elements 

of 𝑢1
𝑁 whose indices are in 𝐴. 𝐺𝑁(𝐴) is the submatrix of 𝐺𝑁 constructed using the rows 

whose indices belong to 𝐴. The vector 𝑢𝐴 is called the information vector and 𝑢𝐴𝑐 is called 

frozen bit vector, i.e., it is a type of party bit vector. In general, we choose 𝑢𝐴𝑐 as 01
𝑛−𝑘. 

The choice of 𝑢𝐴𝑐 does not affect the performance of the system [1]. Hence, 3.31 can be 

simplified as 𝑥1
𝑁 = 𝑢𝐴𝐺𝑁(𝐴). Polar code can be considered as a linear block code with 

input vector 𝑢𝐴 and the generator matrix 𝐺𝑁. The parity check matrix can be formed by 

the columns of 𝐺𝑁 of the polar code whose indices are in 𝐴𝑐 [44]. 

For example, for (4,2) polar code, encoding operation can be detailed as 

 

𝑥1
4 = 𝑢1

4𝐺4 → 𝑥1
4 = 𝑢𝐴𝐺4(𝐴)⨂𝑢𝐴𝑐𝐺4(𝐴

𝑐) → 

𝑥1
4 = (𝑢2, 𝑢4) [

1 0
1 1

1 0
1 1

] + (0,0) [
1 0
1 1

0 0
0 0

]. 

 

For data word (𝑢2, 𝑢4) = (1,1) , the codeword is obtained as 𝑥1
4 = (0, 1, 0, 1). 

 

The polar code is a 𝐺𝑁 −coset code with parameter (𝑛, 𝑘, 𝐴, 𝑢𝐴𝑐) where the elements of 

𝐴, i.e., the indices for information bits, correspond to the most reliable channels. The 

indices in 𝐴 are chosen such that 𝑍(𝑊𝑁
(𝑖)
) ≤ 𝑍(𝑊𝑁

(𝑗)
) for all 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐴𝑐. Note, that 

from this selection rule it is clear that polar code construction is specific to the channel 

for which it is designed. 

 

3.4.1. Bhattacharyya parameter based channel construction 

 

The channel polarization process begins with the calculations of the Bhattacharyya 

parameter values, 𝑍(𝑊), for the type of channel under concern. The values of the 

Bhattacharyya parameters are used to estimate the noiseless and the noisy bit channels. 

After Bhattacharyya parameter calculation, before the polar encoding information, data 

vector is formed. In the data vector, information bits are placed to those locations with 

good Bhattacharyya parameter values converging to 0, and frozen bits are placed to 

locations with bad Bhattacharyya parameter values converging to 1. 
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The Bhattacharyya parameters can be calculated in a recursive manner as depicted in Fig. 

3.7 where it is seen that for the upper braches, we use 2𝑍 − 𝑍2 and for the lower branches 

we employ 𝑍2 during the recursive calculations. The initial values of Bhattacharyya 

parameters differ considering the type of the channel and they are determined as shown 

in Table 1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Polarized transformation Bhattacharyya parameter Z (W)  

 

 

Table 1  Initial values of the Bhattacharyya parameters for different channel types. 

Channel 

type 

Affected parameter Initial 𝑍(𝑊) Good channel Bad 

channel 

𝐵𝐸𝐶 Erasure probability  𝜖 𝜖 2𝑍(𝑊) − 𝑍2(𝑊) 𝑍2(𝑊) 

𝐵𝑆𝐶 Symmetric probability 𝑃 2 × √𝑃(1 − 𝑃) 2𝑍(𝑊) − 𝑍2(𝑊) 𝑍2(𝑊) 

𝐴𝑊𝐺𝑁 𝑆𝑁𝑅 
𝑒
−𝑅
𝐸𝑏
𝑁𝑜 

2𝑍(𝑊) − 𝑍2(𝑊) 𝑍2(𝑊) 

 

3.4.1.1 Binary erasure channel (BEC)  
 

As it is illustrated in Fig. 3.8, the initial value of the Bhattacharyya parameter is set to be 

𝑍 = 𝜖. After that, the channel is split into two sub-channels (𝑊2
(1)
, 𝑊2

(2)
), and for the 

 

2(
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split channels the reliability measures are calculated using 𝑍(𝑊2
(1)) = 2𝑍(𝑊) − 𝑍(𝑊)2 

and (𝑊2
(1)) = 𝑍(𝑊)2.  

 

Figure 3.8 Code construction of BEC for 𝑁 = 8, 𝐾 = 4, and 𝜖 = 0.5 

 

The calculation of the Bhattacharyya values for BEC for 𝑁 = 8,𝐾 = 4, and 𝜖 = 0.5 is 

explained in Fig. 3.8 where it is seen that a backward recursive calculation is performed. 

It is also seen in Fig. 3.8 that there are 3 = log (8) stages where Bhattacharyya values are 

calculated, and frozen bit indices are chosen for large 𝑍 values. 

 

3.4.1.2. Binary symmetric channel (BSC)  
 

The input alphabet of the BSC channel is 𝑥 = {0, 1} and the channel output alphabet is 

𝑦 = {0, 1}. The channel transition probabilities are 𝑝(𝑦 = 0|𝑥 = 1) = 𝑃, 

𝑝(𝑦 = 1|𝑥 = 0) = 𝑃 and we have 𝑝(𝑦 = 0|𝑥 = 0) = 1 − 𝑃,  𝑝(𝑦 = 1|𝑥 = 1) = 1 − 𝑃. 

The Bhattacharya parameter for BSC can be calculated as 𝑍 = 2 × √𝑃(1 − 𝑃) .  

 

⊕ W

W

⊕

W

W

⊕⊕

⊕ W

W

⊕

W

W

⊕⊕

⊕

⊕

⊕

⊕
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3.4.1.3. Additive white Gaussian noise (AWGN) channel  
 
 

The output of the 𝐴𝑊𝐺𝑁 is represented by 𝑦 = 𝑥 + 𝑛  where 𝑥 ∈ {+1,−1}  and 𝑛 is the 

additive white Gaussian noise with zero mean and variance 𝜎2. The channel transition 

probability can be computed using,  

𝑝(𝑦|𝑥) =
1

𝜎√2𝜋
exp [−

(𝑦 − 1)2

2𝜎2
] (3.32) 

The Bhattacharya parameter of AWGN can be calculated as 𝑍 = 𝑒
−𝑅

𝐸𝑏
𝑁0 where 𝐸𝑏 is the 

transmitted bit energy and 𝑁0/2 is the double sided noise power spectral density. 

 

3.5 Polar Encoding 

 

For polar encoding operation, we need generator matrix of the polar code under concern. 

The generator matrix of the polar code for frame length 𝑁 is calculated as [1] 

𝐺𝑁 = 𝑅𝑁 (𝐺2⨂𝐺𝑁
2
) = 𝐵𝑁𝐺2

⨂𝑛 = 𝐺2
⨂𝑛𝐵𝑁 . (3.33) 

Where 𝐵𝑁 is a permutation matrix, and it is recursively calculated as in 

𝐵𝑁 = 𝑅𝑁 (𝐼2⨂𝑅𝑁
2
) (𝐼4⨂𝑅𝑁

4
)… . . (𝐼𝑁

2
⨂𝑅2) = 𝑅𝑁 (𝐼2⨂𝐵𝑁

2
) . (3.34) 

 Let 𝑁 =  2𝑛, 𝑛 ≥  0, and 𝐼𝑘 be a 𝑘-dimensional identity matrix for 𝑘 ≥ 1. Substituting 

3.34 into 3.33, we get 

𝐺𝑁 = (𝐼𝑁
2
⊗𝐹)𝑅𝑁 (𝐼2⨂𝐺𝑁

2
) , for 𝑁 ≥ 2 (3.35) 

where 𝐺1 = 𝐼1. 

3.35 can also be written as 

𝐺𝑁 = 𝑅𝑁 (𝐹 ⊗ 𝐼𝑁
2

) (𝐼2⨂𝐺𝑁
2

) . (3.36) 

3.35 and 3.36 are equivalent to each other. From formulas 3.35 and 3.36, we notice that 

(𝐼𝑁/2⊗𝐹)𝑅𝑁 = 𝑅𝑁(𝐹 ⊗ 𝐼𝑁/2). Hence, we can write formula 3.36 as 

𝐺𝑁 = 𝑅𝑁 (𝐹 ⊗ 𝐺𝑁
2
) . (3.37) 
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For 𝑁/2, we get 

𝐺𝑁
2
= 𝑅𝑁

2
(𝐹 ⊗ 𝐺𝑁

4
) (3.38) 

leading to 

𝐺𝑁 = 𝑅𝑁 (𝐹 ⊗ 𝑅𝑁
2
(𝐹 ⊗ 𝐺𝑁

4
)) . (3.39) 

Using the identity (𝐴𝐶)⊗ (𝐵𝐷) = (𝐴⨂𝐵)(𝐶⨂𝐷) with 𝐴 = 𝐼2, 𝐵 = 𝑅𝑁/2, 𝐶 = 𝐹, 𝐷 =

𝐹 ⊗ 𝐺𝑁/4 for 3.39 we get 

𝐺𝑁 = 𝑅𝑁 (𝐼2⊗𝑅𝑁
2
) (𝐹⊗2⊗𝐺𝑁

4
) . (3.40) 

Where we have 

𝐺𝑁
2
= 𝐵𝑁𝐹

⨂𝑛 (3.41) 

𝐵𝑁 = 𝑅𝑁 (𝐼2⊗𝐵𝑁
2
) (3.42) 

where 𝐵𝑁 represents permutation matrix also known as bit-reversal and 𝐼2 is the identity 

matrix, 𝐵2 is initialized as 𝐵2 = 𝐼2. ⊗ is the Kronecker product, 𝑅𝑁 is the permutation 

operation which maps the input sequence {1, 2, 3, 4, … ,𝑁} to {1,3, … , 𝑁 − 1, 2, 4, … ,𝑁} 

and 𝑛 = log2𝑁. 

 

Numerical Example: 

For 𝑁 = 8, we can calculate the generator matrix as   

 𝑛 = log2 8 = 3,  𝐺8 = 𝐵8𝐹
⨂3 = 𝐵8 [

1 0
1 1

]
⨂3

, 𝐵2 = 𝐼2 = [
1 0
0 1

] 

𝐵4 = 𝑅4(𝐼2⨂𝐵2) = [

1 0 0 0
0 0
0 1
0 0

1 0
0 0
0 1

] ([
1 0
0 1

]⨂ [
1 0
0 1

]) = [

1 0 0 0
0 0
0 1
0 0

1 0
0 0
0 1

] 

 

𝐵8 = 𝑅8(𝐼2⨂𝐵4) = 
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𝐵8 =

[
 
 
 
 
 
 
 
1 0
0 0

0 0
0 0

0 1
0 0

0 0
0 0

0 0
1 0

0 0
0 0

0 0
0 1

0 0
0 0

0 0
0 0

1 0
0 0

0 0
0 0

0 1
0 0

0 0
0 0

0 0
1 0

0 0
0 0

0 0
0 1]

 
 
 
 
 
 
 

([
1 0
0 1

]⨂ [

1 0 0 0
0 0
0 1
0 0

1 0
0 0
0 1

]) 

= 

[
 
 
 
 
 
 
 
1 0
0 0

0 0
0 0

0 0
0 0

1 0
0 0

0 0
1 0

0 0
0 0

0 0
0 0

0 0
1 0

0 1
0 0

0 0
0 0

0 0
0 0

0 1
0 0

0 0
0 1

0 0
0 0

0 0
0 0

0 0
0 1]

 
 
 
 
 
 
 

       

 

𝐺8 = 𝐵8𝐹
⨂3 =

[
 
 
 
 
 
 
 
1 0
0 0

0 0
0 0

0 0
0 0

1 0
0 0

0 0
1 0

0 0
0 0

0 0
0 0

0 0
1 0

0 1
0 0

0 0
0 0

0 0
0 0

0 1
0 0

0 0
0 1

0 0
0 0

0 0
0 0

0 0
0 1]

 
 
 
 
 
 
 

[
1 0
1 1

]
⨂3

=

[
 
 
 
 
 
 
 
1 0
1 0

0 0
0 0

1 0
1 0

1 0
1 0

0 0
1 0

0 0
0 0

0 0
1 0

0 0
1 0

1 1
1 1

0 0
0 0

1 1
1 1

1 1
1 1

0 0
1 1

0 0
0 0

0 0
1 1

0 0
1 1]

 
 
 
 
 
 
 

 

and encoding operation for 𝑁 = 8 can be performed as 

𝑥1
𝑁 = 𝑢1

𝑁𝐺𝑁 → 𝑥1
𝑁 = 𝑢1

𝑁

[
 
 
 
 
 
 
 
1 0
1 0

0 0
0 0

1 0
1 0

1 0
1 0

0 0
1 0

0 0
0 0

0 0
1 0

0 0
1 0

1 1
1 1

0 0
0 0

1 1
1 1

1 1
1 1

0 0
1 1

0 0
0 0

0 0
1 1

0 0
1 1]

 
 
 
 
 
 
 

 

leading to the equation set 

𝑥1 = 𝑢1⨁𝑢2⨁𝑢3⨁𝑢4⨁𝑢5⨁𝑢6⨁𝑢7⨁𝑢8 

𝑥2 = 𝑢5⨁𝑢6⨁𝑢7⨁𝑢8 

𝑥3 = 𝑢3⨁𝑢4⨁𝑢7⨁𝑢8 

𝑥4 = 𝑢7⨁𝑢8 

𝑥5 = 𝑢2⨁𝑢4⨁𝑢6⨁𝑢8 

𝑥6 = 𝑢6⨁𝑢8 

𝑥7 = 𝑢4⨁𝑢8 

𝑥8 = 𝑢8. 
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Figure 3.9 Block diagram illustration of polar encoding. 

 

The encoding process can be using factor graphs as in Fig. 3.10 where information bits 

are used for the indices in 𝐴 = {4, 6, 7, 8} and the frozen bits are used for the indices in 

𝐴𝑐 = {1, 2, 3, 5}. Frozen bits are all equal to 0. The graph explains the mapping operation 

𝑥1
8 = 𝑢1

8𝐺8 = 𝑢1
8𝐺2

⨂3. 

 

Figure 3.10 Polar encoding illustration for 𝑁=8 and 𝐾=4 using factor graph. 

 

Channel outputsInput bits Encoded bits
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CHAPTER 4 

 

POLAR DECODING 

 

For the decoding of polar codes, several decoding algorithms are used in the literature. 

Some of these algorithms as: successive cancellation (SC) [1], linear programming 

decoding (LP) [45], and SC with list (SCL), i.e., SC List [4]. In this chapter, we explain 

SC decoding of polar codes in details. Besides, we provide brief information for SCL 

decoding algorithm. 

 

4.1 SC Decoding of Polar Codes 

 

4.1.1 Fundamental concepts for polar decoding 

 

The kernel units that are repeatedly utilized in encoder and decoder structures of polar 

codes are depicted in Fig.4.1. The kernel unit can be considered for the smallest length 

codeword of polar encoder and decoder units. 

  

 

 

Figure 4.1 Kernel encoding and decoding units of polar codes. 

 

In Figure 12 𝑎, 𝑏, 𝑐, 𝑑 and 𝑎̂, 𝑏̂, 𝑐̂, 𝑑̂  are binary variables. It is clear from Fig.4.1 that 

𝑎̂ = 𝑐̂⨁𝑑̂          𝑏̂ = 𝑑̂ (4.1) 

From 𝑎̂ = 𝑐̂⨁𝑑̂, it is clear that 𝑎̂ = 0 if 𝑐̂ = 𝑑̂ = 0 or 𝑐̂ = 𝑑̂ = 1, which implies that 

𝑃(𝑎̂ = 0) = 𝑃(𝑐̂ = 0)𝑃(𝑑̂ = 0) + 𝑃(𝑐̂ = 1)𝑃(𝑑̂ = 1) (4.2) 

and in the same manner we have 𝑎̂ = 1 if 𝑐̂ = 0 , 𝑑̂ = 1 or 𝑐̂ = 1, 𝑑̂ = 0 from which we 

can write that 

 

W

W

⊕ W

W

⊕

Encoding Decoding
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𝑃(𝑎̂ = 1) = 𝑃(𝑐̂ = 0)𝑃(𝑑̂ = 1) + 𝑃(𝑐̂ = 1)𝑃(𝑑̂ = 0) (4.3) 

Likelihood ratio for estimated the bit 𝑎̂ can be calculated as: 

𝐿𝑅(𝑎̂) =
𝑃(𝑎̂ = 0)

𝑃(𝑎̂ = 1)
 

in which substituting 4.2 and 4.3, we obtain 

𝐿𝑅(𝑎̂) =
𝑃(𝑐̂ = 0)𝑃(𝑑̂ = 0) + 𝑃(𝑐̂ = 1)𝑃(𝑑̂ = 1)

𝑃(𝑐̂ = 0)𝑃(𝑑̂ = 1) + 𝑃(𝑐̂ = 1)𝑃(𝑑̂ = 0)
 

leading to 

𝐿𝑅(𝑎̂) =
1 + 𝐿𝑅(𝑐̂)𝐿𝑅(𝑑̂)

𝐿𝑅(𝑐̂) + 𝐿𝑅(𝑑̂)
(4.4) 

which is used to estimate the value of 𝑎̂. After the estimation of 𝑎̂, the bit 𝑏̂ can be 

determined. Assuming that the bit 𝑎̂ is determined as 0, i.e., 𝑎̂  =  0  then we have 𝑏̂  =  0  

if 𝑐̂  =  0, and 𝑑̂  =  0, and 𝑏̂  =  1 if 𝑐̂  =  1 and 𝑑̂  =  1. Then we can write 

𝑃(𝑏̂ = 0)
𝑎̂ = 0

= 𝑃(𝑐̂ = 0)𝑃(𝑑̂ = 0) (4.5) 

and

𝑃(𝑏̂ = 1)
𝑎̂ = 0

= 𝑃(𝑐̂ = 1)𝑃(𝑑̂ = 1) (4.6) 

Likelihood ratio for the bit 𝑏̂ can be written as 

𝐿𝑅(𝑏̂)
𝑎̂ = 0

=
𝑃(𝑏̂ = 0)

𝑎̂ = 0

𝑃(𝑏̂ = 1)
𝑎̂ = 0

 =
𝑃(𝑐̂ = 0)𝑃(𝑑̂ = 0)

𝑃(𝑐̂ = 1)𝑃(𝑑̂ = 1)
 

which can be calculated as 

𝐿𝑅𝑎̂=0(𝑏̂) = 𝐿𝑅(𝑐̂)𝐿𝑅(𝑑̂). (4.7) 

If 𝑎̂ is decided to be 1, i.e., 𝑎̂  =  1,  then 𝑏̂  =  0 if 𝑐̂  =  1 and 𝑑̂  =  0, and 𝑏̂  =  1 if 

𝑐̂  =  0 and 𝑑̂  =  1. Then, we can write 

𝑃(𝑏̂ = 0)
𝑎̂ = 1

= 𝑃(𝑐̂ = 1)𝑃(𝑑̂ = 0) (4.8) 

𝑃(𝑏̂ = 1)
𝑎̂ = 1

= 𝑃(𝑐̂ = 0)𝑃(𝑑̂ = 1) (4.9) 

Likelihood ratio for the bit 𝑏̂ under constraint 𝑎̂  =  1 can be written as 
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𝐿𝑅(𝑏̂)
𝑎̂ = 1

=
𝑃(𝑏̂ = 0)

𝑎̂ = 1

𝑃(𝑏̂ = 1)
𝑎̂ = 1

  =
𝑃(𝑐̂ = 1)𝑃(𝑑̂ = 0)

𝑃(𝑐̂ = 0)𝑃(𝑑̂ = 1)
 

 

𝐿𝑅(𝑏̂)
𝑎̂ = 1

= 𝐿𝑅(𝑐̂)−1𝐿𝑅(𝑑̂). (4.10) 

The formulas 4.7 and 4.10 can be combined  under a single term as 

𝐿𝑅(𝑏̂) = [𝐿𝑅( 𝑐̂)]1−2𝑎̂ × 𝐿𝑅(𝑑̂). (4.11) 

For any codeword length, the formulas 4.4 and 4.10 takes the forms 

LN
(2i−1)(y1

N, û1
2i−2) =

LN
2

(i)
(y1

N
2 ,û1,o

2i−2⨁û1,e
2i−2)LN

2

(i)
(yN

2
+1

N ,û1,e
2i−2)+1

LN
2

(i)
(y1

N
2 ,û1,o

2i−2⨁û1,e
2i−2)+LN

2

(i)
(yN

2+1

N ,û1,e
2i−2)

(4.12) 

and 

LN
(2i)(y1

N, û1
2i−1) = [LN

2

(i)
(y1

N
2 , û1,o

2i−2⨁û1,e
2i−2)]

1−û2i−1

× LN
2

(i)
(yN

2
+1

N , û1,e
2i−2) . (4.13) 

 

The bit decision considering its likelihood ratio is made according to 

𝑢𝑖 = {
0    𝑖𝑓  𝐿𝑅(𝑢𝑖) ≥ 1
1     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

(4.14) 

 

4.1.2 Determination of the Level indices and the node bit distribution  

 

The decoding operation using the tree structure can be divided into two parts, the 

distribution of the previously decoded bits to the nodes, and the node 𝐿𝑅𝑠 calculation for 

the current decoding bit [46]. The tree is divided into log2(𝑁) + 1 levels in the bit 

distribution stage, 𝑁 is frame length such that 𝑁 = 2𝑛. For instance, for 𝑁 = 16, the total 

number of levels is  log2(16)  + 1 = 5 and the indices of the levels are 0,1,2,3,4.  The 

number of nodes at the topmost level is 20 = 1, and the number of nodes in the 

bottommost level is 24 = 16. 

The distribution of the previously decoded bits to the nodes can be defined using formula 

4.15, where the active nodes appear at certain levels which are called g-nodes and the 
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passive nodes appear at certain levels which are called f-nodes. The active levels can be 

determined using 

𝐿 =∑2𝑖

𝑖

(4.15) 

where 𝑖 denotes the indices of the active levels. The labels of g-nodes on the active levels 

can be 0 or 1. Let us assume as an example that 𝑁 =  16 and the first 11 bits are decoded. 

For decoding of 12th bit, the previously decoded bits are distributed among the nodes and 

the number 11 can be written as 

11 = 20 + 21 + 23. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 The node bits location for the decoding of 12th data bit.  

 

4.1.3 Distribution of the decoded bits to the nodes using generator matrix  

 

The distribution of previously decoded bits to the nodes can be achieved using the 

generator matrix. Assume that we have the code word length 𝑁 and the first 𝑀 bits are 

decoded 𝑢1
𝑀 = [𝑢1 𝑢2 𝑢3…𝑢𝑀]. We consider the decoding the bits (𝑀 + 1)𝑡ℎ bit. 𝑀 can 

be written as 

𝑀 =∑2𝑖

𝑖

= 𝑀1 +𝑀2 +⋯ . .+𝑀𝑘. 
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Where 𝑖 denotes the indices of the active levels. The labels of g-nodes on the active levels 

can be obtained by dividing the decoded bit vector 𝑢1
𝑀 into sub-vectors 𝑣1,𝑣2, 𝑣3…𝑣𝑘 

containing 𝑀1, 𝑀2, … ,𝑀𝑘 bits as in 

[𝑢1 𝑢2…⏟    
𝑣𝑘

………⏟
𝑣2

 … 𝑢𝑀⏟  
𝑣1

]. 

 

Since the sub-vectors 𝑣1,𝑣2, 𝑣3…𝑣𝑘 are defined, the node bits at certain levels can be 

calculated as  

𝑏1 = 𝑣1 × 𝐺𝑀1   , 𝑏2 = 𝑣2 × 𝐺𝑀2 … 𝑏𝑘 = 𝑣𝑘 × 𝐺𝑀𝑘 . 

 

For instance, assume that 𝑁 = 16 and the first 7 bits are decoded. For the decoding of 

the 8th bit, the previously decoded bits are distributed among the nodes, for this purpose 

first we write  the number 7 as in 

7 = 20 + 21 + 22 = 1 + 2 + 4. 

 

Next, the previously decoded bits vector 𝑢1
𝑀 = [𝑢1 𝑢2 𝑢3…𝑢𝑀] are divided into sub-

vectors as 

[𝑢1 𝑢2 𝑢3 𝑢4⏟      
𝑣4

 𝑢5 𝑢6 ⏟  
𝑣2

 𝑢7⏟
𝑣1

]. 

 

Multiplying sub-vectors by the corresponding generator matrices, we get the node-bit 

vectors as 

𝑏1 = 𝑣1 × 𝐺1 = 𝑢7 × 1 → 𝑢7 

𝑏2 = 𝑣2 × 𝐺2 = [𝑢5 𝑢6] × [
1 0
1 1

] → 𝑏2 = [𝑢5⊕𝑢6  𝑢6] 

𝑏4 = 𝑣4 × 𝐺4 = [𝑢1 𝑢2 𝑢3 𝑢4] × [

1 0
1 0

0 0
1 0

1 1
1 1

0 0
1 1

] → 

𝑏4 = [𝑢1⊕𝑢2⊕𝑢3⊕𝑢4   𝑢3⊕𝑢4   𝑢2⊕𝑢4   𝑢4]. 
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Figure 4.3 The distribution of the decoded bits to the nodes using generator matrix 

 

4.2 Principle of SC decoding 

 

This decoding technique, proposed by Arıkan [1], [47], is known as successive 

cancellation. In this algorithm, the 𝑖𝑡ℎ bit 𝑢𝑖 is decoded using the previously decoded 𝑖 −

1 bits i.e., 𝑢̂1
𝑖−1, and the received word 𝑦1

𝑁. For the frozen bit positions, no calculation is 

necessary and 𝑢̂𝐴𝑐 = 𝑢𝐴𝑐. First, an estimation 𝑢̂1 of 𝑢1 is made using 𝑦1
𝑁. Then, 𝑢̂2 is 

decoded from 𝑦1
𝑁 and 𝑢̂1, and this procedure is repeated till the decoding of last bit. The 

task of SC decoder, therefore, is to determine an estimate 𝑢̂1
𝑁 of 𝑢1

𝑁 from the knowledge 

of 𝐴, 𝑢𝐴𝑐 and 𝑦1
𝑁. Since the decoder knows the frozen bits, i.e., we have 𝑢̂𝐴𝑐 = 𝑢𝐴𝑐 , its 

task is to determine an estimate 𝑢̂𝐴 of the information bits 𝑢𝐴. The decoder generates its 

estimate according to 

𝑢̂𝑖 ≜ {

𝑢𝑖   𝑖𝑓 𝑖 ∈ 𝐴
𝑐                                                

0   𝑖𝑓 𝐿𝑁
(𝑖)(𝑦1

𝑁 , 𝑢̂1
𝑖−1) ≥ 1  ,   1 ≤ 𝑖 ≤ 𝑁

1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            

(4.16) 

where 𝐿𝑁
(𝑖)

 is defined as 

𝐿𝑁
(𝑖)(𝑦1

𝑁 , 𝑢̂1
𝑖−1) =

𝑊𝑁
(𝑖)(𝑦1

𝑁 , 𝑢̂1
𝑖−1|0)

𝑊𝑁
(𝑖)(𝑦1

𝑁 , 𝑢̂1
𝑖−1|1)

(4.17) 

Using (3.20) and (3.21) it can be shown that 
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and 

LN
(2i)(y1

N, û1
2i−1) = [LN

2

(i)
(y1

N
2 , û1,o

2i−2⨁û1,e
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2

(i)
(yN

2
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N , û1,e
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4.2.1 Butterfly structure of SC decoder 

 

Fig.4.4 illustrates SC decoding with 𝑁 = 8. This decoding begins on the right of the graph 

with the 𝐿𝑅(𝑦𝑖) of the bits calculated from the received word.  𝐿𝑅(𝑦𝑖)  are combined in 

pairs as it progresses to the left of the graph. There are  log2(𝑁) = 3 stages each 

containing 𝑁 = 8 nodes. The decoded bits are located to the left of the graph. For each 

node, the two incoming 𝐿𝑅𝑠, denoted by 𝐿𝑎and 𝐿𝑏 are combined to produce the 𝐿𝑅 of the 

node. Two functions for calculating 𝐿𝑅𝑠, for 𝑓 and 𝑔 nodes, are used. These functions 

are given in 4.18 and 4.19. The nodes for which the function 𝑓 are used are labeled by 𝑓, 

i.e., white, and for those the function 𝑔 are used are labeled by 𝑔, i.e., gray. In general, 

the 𝐿𝑅𝑠 of the level 𝑗 are calculated from the 𝐿𝑅𝑠 of the level 𝑗 − 1. Equations 4.18 and 

4.19 can be expressed for a single node as 

 

  𝑓(𝐿𝑎, 𝐿𝑏) =
1+𝐿𝑎.𝐿𝑏

𝐿𝑎+𝐿𝑏
  

𝑔(𝐿𝑎, 𝐿𝑏 , 𝑢̂𝑠𝑢𝑚) = 𝐿𝑎
(1−2𝑢𝑠𝑢𝑚)𝐿𝑏 → 𝑔(𝐿𝑎, 𝐿𝑏 , 𝑢̂𝑠𝑢𝑚) = {

𝐿𝑎. 𝐿𝑏  𝑖𝑓 𝑢̂𝑠𝑢𝑚 = 0
𝐿𝑏
𝐿𝑎
        𝑖𝑓 𝑢̂𝑠𝑢𝑚 = 1

 

   

(4.20) 

 

where 𝑢̂𝑠𝑢𝑚 is the partial binary sum of the previously estimated bits. These are the binary 

sums at the labels of the nodes. The value of 𝑢̂𝑠𝑢𝑚 determines whether the function 𝑔 

performs a multiplication or a division. 



  

36 
 
 

 

Figure 4.4 Butterfly-based structure of SC decoder for 𝑁 =  8. 

 

Example: For a transmission system employing polar codes, we have codeword length 

is 𝑁 = 8, code rate 𝑅 = 1/3 and AWGN is used. The information set is 𝐴 = {4,6,8}. The 

values of information bits are all one. The frozen bits 𝑢1, 𝑢2, 𝑢3, 𝑢5, 𝑢7 are chosen as 0. 

The calculations of the likelihood ratios for the information bits are shown in Fig.4.5. 

 

The likelihood ratio calculation for the fourth bit 𝑢4 is depicted in Fig.4.5. 

In Fig.4.5, the channel observations are given as {0.4800, −2.7848, 0.8946, −0.7669,

0.5275, −2.3709, 1.1148, −0.7829}. 

Since the frozen set is {1, 2, 3, 5}, then we know that 𝑢1 is a frozen bit and its value is 0. 

Similarly 𝑢2 and 𝑢3 are both frozen bits and there is no need to decode them. For the 

decoding of 𝑢4, the likelihood ratio is calculated from right to left. The likelihood ratio is 

found as 𝐿8
(4)
= 0.0435, and since 𝐿8

(4)
 is smaller than 1, then 𝑢4 is decided to be 1. 

 

))
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Figure 4.5 Factor graph for the decoding of bit 𝑢4. 

 

The rest of the bits 𝑢5, … , 𝑢8  are decoded in a similar manner and the full result is shown 

in Fig.4.6. 

 

Figure 4.6 Factor graph for the decoding of data bits for 𝑁 = 8. 
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4.2.2 Tree structure of SC decoder 

 

The tree structure for the decoding of polar codes can be constructed and in this structure 

the previously decoded bits are distributed to the nodes considering the left child nodes 

and the right child nodes on the decoding tree. Bit distribution process is performed after 

the total number of levels and its indices are found, and number of nodes assigned in each 

level is determined. 

The distribution of the previously decoded bits to the nodes is used to determine the active 

nodes, classified as 𝑔 − 𝑛𝑜𝑑𝑒𝑠, that appear at certain levels and the passive nodes, 

classified as 𝑓 − 𝑛𝑜𝑑𝑒𝑠.   

The decoding process for frame length 𝑁 consists of two steps. In the first step the 

previously decoded bits are distributed to the nodes as explained in algorithm-1 [46,48]. 

 

Algorithm 1: The distribution of  decoded bits to the nodes 

Input 𝑁 frame length and received data bits. 

1: If 𝑖 is odd, then node-check-bit = 𝑥𝑖 and 

2:   Left child-node: 𝐿𝑐 = 𝑥1,𝑜
𝑖−1⊕𝑥1,𝑒

𝑖−1 

3:   Right child-node: 𝑅𝑐 = 𝑥1,𝑒
𝑖−1 

4: else 

5:   Left child-node: 𝐿𝑐 = 𝑥1,𝑜
𝑖 ⊕𝑥1,𝑒

𝑖  

6:    Right child-node: 𝑅𝑐 = 𝑥1,𝑒
𝑖  

7:  end 

8:  If 𝑖 = 1 then 

9:     Terminate 

10: else 

11:  𝑖 = 𝑖/2 

12: Go to step-1 and repeat 1 − 6 for the left-child and right-child nodes 

13: end 

 

Let's consider a numerical example for the decoding operation. Assume that the codeword 

length for polar code is 𝑁 = 8, and assume that the first 5 bits are decoded as  
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𝑢1
5 = [1 0 1 1 1], and we want to decode the 6𝑡ℎbit. 

 

As it is clear that the decoded bit vector 𝑢1
5 = [1 0 1 1 1] contains an odd number of bits. 

The decoded bit 𝑢5 is assigned to the topmost head node as shown in Fig.4.7. 

 

Figure 4.7 The first step of the decoded-bit distribution to the nodes. 

 

The distribution of the all the previously decoded bits to the nodes is illustrated in Fig.4.8.  

Figure 4.8 Distribution of the decoded bits to the nodes. 
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The second step involves the calculation of the likelihood values recursively. Since each 

𝐿𝑅 ∶ 𝐿𝑁
(𝑖)

 is associated with the 𝑊𝑁
(𝑖)

 channel, for the computation of 𝐿𝑁
(𝑖)

  a similar path 

to the one in Fig.4.4 , used for the construction of 𝑊𝑁
(𝑖)

, is followed. To calculate  𝐿𝑁
(𝑖)

 for 

𝑊𝑁
(𝑖)

 we use the likelihood ratios of the channels participated in the formation of the 

channel 𝑊𝑁
(𝑖)

. Each node has a label. If there is a bit assigned to a node, i.e., a g-node, 

then 4.19 is used to compute the node 𝐿𝑅, otherwise 4.18 is used for f-node  

 

 

4.3 LLR based SC decoder version 

 

The SC decoder presented in the previous section is based on the 𝐿𝑅, likelihood ratio, 

calculations and the functions 𝑓 and 𝑔 require multiplications and divisions which are 

difficult to implement in practice. Leroux and others [49] proposed log-domain SC 

decoding algorithm where 𝐿𝐿𝑅𝑠, log-likelihood ratios, are used for the calculations of 𝑓 

and 𝑔 functions. Log-domain version of 4.20 can be written as 

 

  𝑓(𝐿𝐿𝑎, 𝐿𝐿𝑏) = 2 tanh
−1 (tanh (

𝐿𝐿𝑎

2
) . tanh (

𝐿𝐿𝑏

2
))  

𝑔(𝐿𝐿𝑎, 𝐿𝐿𝑏 , 𝑢̂𝑠𝑢𝑚) = 𝐿𝐿𝑎 . (−1)
(𝑢𝑠𝑢𝑚) + 𝐿𝐿𝑏 = {

𝐿𝐿𝑎 + 𝐿𝐿𝑏           𝑖𝑓 𝑢̂𝑠𝑢𝑚 = 0
−𝐿𝐿𝑎 + 𝐿𝐿𝑏        𝑖𝑓 𝑢̂𝑠𝑢𝑚 = 1

 

   

(4.21) 

 

where 𝐿𝐿𝑎 ≜ ln(𝐿𝑎) and 𝐿𝐿𝑏 ≜ ln (𝐿𝑏). The 𝑔 function can easily be implemented by an 

adder/subtractor conditioned by the 𝑢̂𝑠𝑢𝑚 bit in hardware while the implementation of the 

𝑓 function is still complex. As in LDPC codes, the min-sum approximation [49] can also 

be exploited to reduce the complexity of 𝑓, and we get 

 

𝑓(𝐿𝐿𝑎, 𝐿𝐿𝑏) ≜ 𝑠𝑖𝑔𝑛(𝐿𝐿𝑎). 𝑠𝑖𝑔𝑛(𝐿𝐿𝑏).  𝑚𝑖𝑛(|𝐿𝐿𝑎|, |𝐿𝐿𝑏|) (4.22) 

 

The computational complexity of the SC decoder is 𝑂(𝑁 log𝑁) [1]. 
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4.4 Alternative tree representation of the SC decoder 

 

The SC decoding process can be seen represented using a code tree. The decoding starts 

with the root which has two edges with labels 0 and 1, and the metrics 𝑊𝑁
(𝑖)(𝑦|0) and 

𝑊𝑁
(𝑖)(𝑦|1), respectively. The SC decoding chooses the path with the greater metric and 

the other is discarded. The chosen edge, in turn, gives two edges with labels 0 and 1 with 

the metrics 𝑊𝑁
(𝑖)(𝑦, 𝑢̂1|0)and 𝑊𝑁

(𝑖)(𝑦, 𝑢̂1|1), respectively. Usually at each level the 𝑢̂𝑖 bit 

is decoded by comparing the two metrics 𝑊𝑁
(𝑖)
(𝑦, 𝑢̂1

𝑖−1|0) and 𝑊𝑁
(𝑖)
(𝑦, 𝑢̂1

𝑖−1|1). If 𝑖 

belongs to a frozen index, then the SC decoder gives 𝑢̂𝑖 = 0. This procedure continues 

up to the leaf nodes. 

Figure 20, shows an example of the SC decoding procedure for 𝑁 = 4 and 𝑘 = 4. 

This tree is made up of 4 levels, where each level represents a decoded bit. The value 

associated with each node is the 𝐿𝑅-based metric for the decoding path from the root node 

to the current node. The bold red edges in the figure show the SC decoding path. 

The number written next to each of the nodes is the metric of the decoding path from the 

root to that node. The nodes that are extended during the SC decoding procedure are 

represented by the numbered circles and the corresponding numbers indicate the order of 

processing. The black circles represent nodes that are visited (whose path metric is 

calculated) but have not been retained, and the gray circles are those which are not visited 

during the search process. The path taken by the decoding process is not guaranteed to be 

the most likely one. As it is seen from the example shown in Fig.4.9 , the bit string 1000 

has the largest probability of all paths of length 𝑁, but it failed in the competition at the 

first level. The decoding sequentially evaluates the metrics : 𝑊𝑁
(𝑖)(𝑦|0) = 0.55 

𝑊𝑁
(𝑖)(𝑦, 𝑢̂1 = 0|0) = 0.3, 𝑊𝑁

(𝑖)(𝑦, 𝑢̂1
2 = 00|1) = 0.25 and 𝑊𝑁

(𝑖)(𝑦, 𝑢̂1
3 = 001|1) = 0.2. 

So the decoder output becomes 𝑢̂1
4 = (𝑢̂1, 𝑢̂2, 𝑢̂3, 𝑢̂4) = (0011). 

The output of the decoder corresponding to that of the ML decoder is the path of length 

4 which has the greatest metric at the lowest level. For this example, 1000 with the path 

metric 𝑊𝑁
(𝑖)(𝑦, 100|0) = 0.36 corresponds to the optimal path. 
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Figure 4.9 SC decoding on a tree for 𝑁 =  4 and 𝐾 =  4. 

 

Decoding fails if 𝑢̂1
𝑁 ≠ 𝑢1

𝑁. The complexity of the decoding algorithm is determined 

primarily by the calculation of 𝐿𝑅𝑠. Using a space-efficient structure [50] to implement 

the SC decoder, the time and space complexities can be reduced from 𝑂(𝑁 log𝑁) to 

𝑂(𝑁). Although the polar codes asymptotically achieve the capacity of the channel, 

empirical studies have shown that for finite block lengths, for low and medium lengths, 

the polar codes with SC decoding show worse performance than that of turbo codes and 

LDPC codes. To improve the performance of SC decoding algorithm, Tal and Vardy 

proposed a variant of SC decoding algorithm called the SC List Decoding (SCL). 

 

4.5 Successive Cancellation List (SCL) Decoding 

 

The sequential decoding nature of SC algorithm is a bottle neck for the performance of 

polar codes. Since if a bit is wrongly decoded, there is no chance of correcting it in the 

rest of the decoding process. 

To improve the performance of SC decoding algorithm, Tal and Vardy [28] proposed the 

SCL. The SCL algorithm produces a number of bit strings, 𝐿 known as the list size, each 

is a candidate for the transmitted data word, and the best one is decided as the output of 

the decoder.  Like the SC, the SCL can be represented using a tree. 
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4.5.1 The SCL decoder seen in the form of a code tree 

 

Like SC, the SCL decodes the input bits 𝑢̂𝑖 , 𝑖 = 1,… . , 𝑁, successively one-by-one. Unlike 

the SC where only one path is kept after processing at each level, SCL allows 

simultaneous exploitation of up to 𝐿 candidate paths for the next level. For each level, the 

SCL decoder doubles the number of candidate paths for each 𝑢̂𝑖 bit,  i.e., 𝑢̂𝑖 = 0 and 𝑢̂𝑖 =

1, as shown in Fig.4.10. If 2𝐿 candidate paths are obtained, then a pruning procedure is 

used to select the most probable 𝐿 paths having the largest path metrics. These 𝐿 paths 

are stored in a list for processing at the next level. Note that for a frozen bit, the number 

of candidate paths is not doubled because its value is known. At the end of the decoding 

process, when the leaf nodes are arrived in, the most probable path having the largest path 

metric in the list is chosen as the output of the decoder. 

 

In Fig.4.10, SCL decoding operation with 𝐿 = 2,𝑁 = 4, and 𝐾 = 4 is illustrated [4]. At 

level 1, the SCL has two path for 𝑢̂1 = 0 and 𝑢̂1 = 1. Then, at level 2, the path number 

is doubled. Since the size of the decoder list is 𝐿 = 2, after calculation of every 2𝐿 = 4 

new path metrics, the SCL decoder selects the 𝐿 = 2 paths having the largest path metrics 

.  

Figure 4.10 SCL decoding with 𝑁 =  4, 𝐾 =  4 and 𝐿 =  2. 
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This procedure is repeated at each level. At the bottom level, we have  𝐿 = 2 candidate 

paths, 0011 with a metric of 0.2 and 1000 with a metric of 0.36, and the path with larger 

metric is the winner.  

 

Based on SCL, another variant of SC called SC stack, SCS, SC stack, is proposed by 

Chen and others [6]. The authors proposed a stack instead of a list. They showed that SCS 

gives similar results as that of SCL. 

 

4.5.1.1 Performance of SCL decoding algortihm 

 

A larger list size results in better performance of the SCL decoder. In Fig.4.11 [4], the 

results of simulations for a block length N = 2048 bits and a rate 𝑅 =  1/2 are shown. 

List size of  𝐿 = 32 achieves the ML decoder's performance. 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. List decoding performance for length 𝑁 =  2048 and rate 𝑅 =  ½ [4] 

 

4.5.1.2 The complexity of SCL Decoding 

 

Since 𝐿 decode paths are maintained simultaneously, and each path has a complexity of 

𝑂(𝑁), then the complexity of the SCL decoder is 𝑂(𝐿𝑁). Since the code tree has 𝑁 levels, 

a direct implementation of the SCL decoder would need 𝑂(𝐿𝑁2) calculations. However, 

a smart choice of data structures and the recursive nature of the calculations inspired the 
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authors of [4] to develop a technique called “lazy copy”, a copy-on-write mechanism, 

based on the structure of memory sharing between candidate paths to reduce the 

complexity. They showed that the SCL decoder can be implemented with a computational 

complexity of 𝑂(𝑁 log𝑁). SCL decoder can also be implemented using LLR based 

metrics. 

 

4.5.1.3 LLR based SCL decoding 

 

The original SCL algorithm [4] is described using 𝐿𝑅𝑠, while most of the processing and 

storage modules in modern digital transmission systems are 𝐿𝐿𝑅 based [51]. Balatsoukas 

and others [52] shown that the SCL decoding algorithm can be formulated exclusively 

using 𝐿𝐿𝑅𝑠. They used some useful properties of the 𝐿𝐿𝑅 based formulation to reduce 

the complexity of the SCL decoding algorithm. The 𝐿𝐿𝑅 based SCL decoder can easily 

be incorporated into existing communication systems, while, the LR based decoder would 

require additional processing steps to convert the channel's 𝐿𝐿𝑅𝑠 to 𝐿𝑅𝑠. In addition, 

the 𝐿𝐿𝑅 based SCL decoding allows a space-efficient and numerically stable 

implementation, a significant reduction in the size of the previous hardware architecture 

as well as an increase in the maximum operating frequency [52]. Yuan and Parhi [51] 

proposed n 𝐿𝐿𝑅 based SCL algorithm by redefining the updating of path metrics using 

𝐿𝐿𝑅𝑠. The proposed approach can achieve both latency and hardware complexity 

reduction. 

 

4.5.1.4 SCL decoder concatenated with CRCs (Cyclic Redundancy Check) 

 

Tal and Vardy [4] observed in their simulations that in most cases when the SCL decoder 

fails, the transmitted codeword  was among the 𝐿 paths of the list, but it was not the most 

likely one, and therefore it was not chosen as the output of the decoder. 

A decoding error occurs because there is another more likely path that is selected as the 

output of the decoder. Note that in such a situation, the ML decoder would also fail. Tal 

and Vardy concluded that the performance of polar codes would be further improved 

significantly with a tool called "genie aided" capable of identifying the transmitted 
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codeword if it is in the list. This can easily be implemented using the cyclic redundancy 

check, CRC, precoding [4]. It consists of adding more non-frozen bits to the polar code. 

The SCL decoder first discards the paths among the 𝐿 candidates that do not pass the CRC 

and then chooses the most likely path from the remaining ones. However, there is a 

tradeoff between the length of the CRC and the performance gain. Indeed, the longer the 

CRC, the better it can detect incorrect code words, and the more it degrades the 

performance of the polar code due to the increase in its rate. The choice of CRC length is 

guided by the size 𝐿 of the SCL decoder list and the SNR value considered. We give three 

examples of different CRCs of lengths 4, 8, and 16 whose generator polynomials are 

 

  

𝑔(𝑥) = 𝑥4 + 𝑥 + 1                                       𝑓𝑜𝑟 𝐶𝑅𝐶 4𝑏𝑖𝑡𝑠

𝑔(𝑥) = 𝑥8 + 𝑥7 + 𝑥6 + 𝑥4 + 𝑥2 + 1     𝑓𝑜𝑟 𝐶𝑅𝐶 8 𝑏𝑖𝑡𝑠

𝑔(𝑥) = 𝑥16 + 𝑥15 + 𝑥2 + 1                       𝑓𝑜𝑟 𝐶𝑅𝐶 16 𝑏𝑖𝑡𝑠.

 (4.23) 

 

The empirical results of [4] show that a polar code of length, 𝑁 =  2048 and 𝑅 =  ½. 

decoded by SCL with 𝐿 = 32, assisted by 16-bit CRC, achieves better performance in 

terms of binary error rate BER than turbo-codes and LDPC codes with frame length 𝑁 =

 2304 used in the WiMAX standard with the same rate.  
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CHAPTER 5 

 
High-Performance Low Latency Parallel Successive Cancelation Decoder 

Structures for Polar Codes 

 

Polar codes are decoded using successive cancellation (SC) algorithm where likelihood 

ratios (LRs) for data bits are calculated sequentially, and decisions are made using the 

calculated LRs. During the decoding of an information bit, the decision results for the 

predecessor bits are used, and a wrongly decided predecessor bit has a negative effect on 

the accurate calculation of the LR for the information bit being decoded. In the SC 

algorithm, when LR=1, the information bit is decoded as 𝑢̂𝑖 = 0, however, such a 

decision has a 50% chance of being correct. In this chapter, we propose improved polar 

decoders utilizing a number of SC decoders. We consider the case of 𝐿𝑅 = 1 and propose 

polar decoder structures for the more accurate calculation of the 𝐿𝑅𝑠 of the successor bits. 

In this thesis, we propose a new decoding approach for polar codes considering the case 

of 𝐿𝑅 = 1. The proposed method employs multi-SC decoders constructed in parallel with 

enhanced decision functions to determine the erroneous bits that degrade the code 

performance leading to error propagation. The proposed technique provides a flexible 

configuration and leads to the pruning of unnecessary path searching operations, which 

reduce the decoding complexity. Multi-Parallel SC decoding shows a significant 

performance improvement compared to the original SC decoding.  

 

5.1 Notation and SC Decoding 

 

In this thesis, we write 𝑊:𝑋 → 𝑌 to denote a generic binary discrete memoryless channel, 

B-DMC with input alphabet 𝑋, output alphabet 𝑌 and transition probabilities 𝑊(𝑦|𝑥), 

𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌. For a BEC, the input alphabet 𝑋 is chosen from the binary set {0, 1} while 

𝑌 and the transition probabilities may take arbitrary values.  

𝑦1
𝑁 = (𝑦1, 𝑦2, … , 𝑦𝑁) are the observations of the code bits, the codeword 𝑥1

𝑁 =

(𝑥1, 𝑥2, … , 𝑥𝑁) is obtained via encoding of the information bits 𝑢1
𝑁 = (𝑢1, 𝑢2, … , 𝑢𝑁). 
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At the destination side, using the received word 𝑦1
𝑁 = (𝑦1, 𝑦2, … , 𝑦𝑁), information bits 

are estimated successively using the likelihood ratios of the bits appearing in code 

structure. In this thesis, binary erasure channel, BEC, is employed for performance 

evaluation. A bit transmitted through the binary erasure channel is either received 

correctly with probability 1 − 𝜖 or lost with probability 𝜖. It is shown in [1] that the 𝐿𝑅𝑠 

of the information bits can be calculated recursively as 
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The decision is made according to 

 

𝑢̂𝑖 = {
0  𝑖𝑓  𝐿𝑅(𝑢̂𝑖) ≥ 1 
1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

(5.3) 

where 𝐿𝑅(𝑢̂𝑖) is defined as 

𝐿𝑅(𝑢̂𝑖) =
𝑃𝑟𝑜𝑏(𝑢̂𝑖 = 0|𝑦)

𝑃𝑟𝑜𝑏(𝑢̂𝑖 = 1|𝑦)
. 

 

5.2 Proposed M-Parallel SC Decoding Algorithm 

 

In SC decoding of polar codes [1], whenever 𝐿𝑅(𝑢̂𝑖) = 1 the decision is made as 𝑢̂𝑖 = 0 

according to 5.3. However, in such an approach, we have a 50% chance of making a 

correct decision. A wrong decision will certainly have negative effects on the 

determination of the succeeding bits. Considering this issue, we propose multi- parallel 

structures for SC decoding operations. 
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5.2.1 Multi-Parallel SCD (MP-SCD) for M=2 

 

Successive cancelation decoding operation is a sequential decoding operation. The 

decoding decision for the 𝑖𝑡ℎ bit,  𝑢𝑖, affects the decoding decisions of the successive bits, 

i.e., bits 𝑢𝑗 , 𝑗 > 𝑖. The absolute value of the log-likelihood ratio, i.e., |𝐿𝐿𝑅|, is an indicator 

for the accuracy of the decision. Large |𝐿𝐿𝑅| implies a more robust decision. And a wrong 

estimation for the information bit 𝑢𝑖 will push the values of  |𝐿𝐿𝑅𝑠| towards 0 for the 

successive bits.  

To alleviate the information loss and improve the decision robustness, considering the 

case of 𝐿𝑅(𝑢𝑖) = 1, we propose a structure as depicted in Fig.5.1 where we utilize two 

SC decoders, one of which uses the decision logic 

𝑃𝐷1:  𝑢̂𝑖 = {
𝟎,   𝒊𝒇  𝑳𝑹(𝒖𝒊) = 𝟏

0,   𝑖𝑓  𝐿𝑅(𝑢𝑖) > 1 
1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

(5.4) 

whereas the other employs 

𝑃𝐷2:  𝑢̂𝑖 = {
 𝟏,   𝒊𝒇  𝑳𝑹(𝒖𝒊) = 𝟏

 0,   𝑖𝑓  𝐿𝑅(𝑢𝑖) > 1
 1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.       

(5.5) 

Once the decoding operation for all information bits is complete, the sum of the absolute 

log-likelihood ratios, i.e. 𝐿𝐿𝑅𝑠, is performed according to 

𝑆𝑃𝐷1 = 𝐷1:∑ |𝐿𝐿𝑅𝑖|

𝑖

     𝑆𝑃𝐷2 = 𝐷2:∑ |𝐿𝐿𝑅𝑖|

𝑖

(5.6) 

where 𝐿𝐿𝑅𝑖 indicates the log-likelihood ratio for information bit 𝑢𝑖 for the corresponding 

decoders.  The winner decoder is chosen considering 

𝑃𝐷𝑤 = {
𝑃𝐷1     𝑖𝑓 𝑆𝑃𝐷1 ≥ 𝑆𝑃𝐷2
𝑃𝐷2    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.       

(5.7) 

 

The estimated bits of the winner decoder are accepted as the result of the decoding 

operation. The overall logic for the proposed decoding operation is illustrated graphically 

in Fig.5.1 and Fig.5.4. 
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Figure 5.1 Block diagram for 𝑀 = 2 parallel SC decoding operation. 

 

The structure is shown in Fig.5.1 corresponds to the case 𝑀 = 2 i.e., we have two parallel 

decoders. The sum of the absolute values of the LLRs is calculated for each decoder, and 

the decoder with a larger summation result is chosen for decision operation. Unlike the 

SC decoder where only one path is reserved at each level, the multi-parallel algorithm 

utilizes 𝑀 different searching paths. Therefore, it is more likely for the 𝑀-parallel 

algorithm to find the desired path than the SC algorithm. In Fig.5.2 and Fig.5.3, two 

examples for 𝑁 =  8 considering 𝐿𝑅 = 1 cases are depicted. 

 

The example depicted in Fig.5.2 illustrates the worst case. It is seen from the example 

that the decoded sequences can be 000 or 111, in this case just the first bit can be exactly 

correct and the number of paths is not greater than 𝑀 = 2. In the example depicted in 

Figure 25, the 1st,  3rd  bits are lost and the  2nd bit is normally detected as1. 
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Figure 5.2 Decoding procedure for case 1, where the 1𝑠𝑡 , 2𝑛𝑑 𝑎𝑛𝑑 3𝑟𝑑 bits are lost 

 

The possible decoded words can be {010,111}. In the decoded sequence, the first and 

second bits are true, but the third bit can be true with a probability of 0.5. 

In this case, we note that the path searching is changed by the second bit for which it is 

assumed that 𝐿𝑅 < 1. The path having the highest absolute logarithmic likelihood sum is 

chosen for the determination of the decoded sequence 

Figure 5.3 Decoding procedure for case 2, where the 1𝑠𝑡  and  3𝑟𝑑  bits are lost but the 

2𝑠𝑡  bit is normally detected as 1. 

  

𝑢̂3𝑟𝑑 = 0 

𝒊𝒇 (𝑳𝑹 = 𝟏) 

𝑢̂1𝑠𝑡 = 0 

𝑢̂2𝑛𝑑 = 1 

𝑢̂3𝑟𝑑 = 1 

𝑢̂2𝑛𝑑 = 1 

𝑢̂1𝑠𝑡 = 1 

𝑆1 =∑|𝐿𝐿𝑅(𝑢𝑖)|

𝑖

 𝑆2 =∑|𝐿𝐿𝑅(𝑢𝑖)|

𝑖

 

𝑢̂3𝑟𝑑 = 0 

𝒊𝒇 (𝑳𝑹 = 𝟏) 

𝑢̂1𝑠𝑡 = 0 

𝑢̂2𝑛𝑑 = 0 

𝑢̂3𝑟𝑑 = 1 

𝑢̂2𝑛𝑑 = 1 

𝑢̂1𝑠𝑡 = 1 

𝑆1 =∑|𝐿𝐿𝑅(𝑢𝑖)|

𝑖

 𝑆2 =∑|𝐿𝐿𝑅(𝑢𝑖)|

𝑖
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5.2.2 Multi-Parallel SCD (MP-SCD) for M=4 

 

To improve the decision accuracy, we can increase the number of parallel decoders, which 

handle 𝐿𝑅(𝑢𝑖) = 1 case in different ways. In Fig.5.4, the multi-parallel SCD structure for 

𝑀 = 4 is depicted. 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Block diagram for 𝑀 = 4 parallel SC decoding operation 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Decoding procedure in case 1, where the 1𝑠𝑡 , 2𝑛𝑑 
 and  3𝑟𝑑 

 bits are lost 
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In Fig.5.4, 𝑃𝐷1 always makes the decision '0' when 𝐿𝑅 = 1, 𝑃𝐷2 makes the decision '0' 

only once when 𝐿𝑅 =  1, and it makes the decision '1' for the other 𝐿𝑅 = 1 cases, 𝑃𝐷4 

always makes the decision '1', 𝑃𝐷3 makes the decision '1' only once when 𝐿𝑅 =  1, and 

it makes the decision '0' for the other 𝐿𝑅 = 1 cases. Two examples for 𝑀 = 4 are 

provided in Fig.5.5 and Fig.5.6. 

 

In Fig.5.5 for 𝑀 = 4, we consider the case where the first 3 bits are erased, and in this 

case, the candidate sequences for the decoder output are {000, 110, 001, 111}. For the 

example of Fig.5.6 for 𝑀 = 4, we consider the case where the 1st and 3rd  bits are lost 

but the  2nd  bit is normally decoded as 1, and in this case, the candidate sequences for 

the decoder output are {010, 110, 011, 111}. As it is seen from Fig.5.6 the second bit, 

which acts as a path corrector, alters that search path and the winner path has the largest 

absolute logarithmic likelihood sum. 

 

 

 

 

 

 

 

 

 

Figure 5.6 Decoding and procedure  in case 2, where the 1𝑠𝑡  and  3𝑟𝑑 
 bits are lost and 

the 2𝑛𝑑  bit is decoded as 1. 

 

  

 

 



  

54 
 
 

5.3 Simulation Results 

 

Computer simulations are performed using frame lengths of 1024 and 128 for binary 

erasure channels having erasure probabilities 0.5, bit-error-rate (BER), and frame-error-

rate (FER) performance curves for moderate frame lengths are obtained as shown in Figs. 

5.7, 5.8, 5.9 and 5.10. It is seen from Fig.5.7 that two types of simulation curves are 

available. 

In Figures, the lines with label ‘*’ indicate the simulation results assuming that perfect 

channel knowledge is available at the receiver side, and if the sequence associating with 

one of the decoded paths matches the transmitted frame, it is accepted as the decoder 

result, otherwise, the path having the largest absolute LLR sum is chosen. It is seen from 

the performance curves that the code performance increases as the number of parallel 

branches increases, and when the parallel branch number is 4, the performance of the 

proposed method approaches to the performance for which perfect channel knowledge is 

available. We obtain significant performance improvement over SCD. 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 BER performance under different M-size for frame length P(1024) over 

binary erasure channel. 
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Figure 5.8 FER performance under different M-size for frame length P(1024) over 

binary erasure channel. 

 

Figure 5.9 BER performance under different M-size for frame length P(128) over 

binary erasure channel. 
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Figure 5.10 FER performance under different M-size for frame length P(128) over 

binary erasure channel. 

 

5.4 Conclusions 

 

In SC decoding of polar codes, when 𝐿𝑅 = 1 for an information bit, the decision is made 

in the favor of 0, however, in such a decision an uncertainty occurs, and in this instance 

polar decoder has a 50% chance of making a correct decision. Considering this 

circumstance, we proposed novel polar decoding methods, which consider two decisions 

i.e., '0' and '1', for 𝐿𝑅 = 1 at the node of the decoding tree.  

In one approach, path doubling is only done once when LR=1, which corresponds to two 

parallel decoders, i.e., 𝑀 = 2. Moreover, in the next approach, we considered path 

doubling twice, i.e., a path doubling is made when 𝐿𝑅 = 1 and another path doubling is 

made when 𝐿𝑅 = 1 and no more, which corresponds to four parallel decoders, i.e., 𝑀 =

4. Simulation results indicate that the proposed approaches show significant performance 

improvement over classical SC decoder.  
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CHAPTER 6 

 
 

Improving the Performance of Polar Decoders Using Virtual Random Channels. 

 

 

6.1 Background 

 

Noise is typically thought s an unwanted signal or disturbance that leads to less channel 

capacity, worse detection performance. Hence, noise is often removed or mitigated by a 

variety of filters and signal processing algorithms. The concept of stochastic perturbation 

opens a new perspective to benefit from adding virtually generated noise. Adding white 

noise to a non-linear system to reach a stable model is studied for the first time in [53]. It 

is shown that random noise can have a positive effect and plays an important constructive 

role in many information processing systems and algorithms [54]. Moreover, adding 

independent noise to the received data can improve the detectability of weak signals [55]. 

Random noise helps to enhance the detection of weak information signals in nonlinear 

systems under some type of threshold. Noise enhancement is used in many fields such as 

dithering in quantization, stochastic optimization techniques such as genetic algorithms 

or simulated annealing, and learning.  

The successive cancellation list, SCL, introduced in [4] shows significant performance 

improvement compared to SC decoding. In the SCL decoder, both 0 and 1 are considered 

as estimated bits and two decoding paths are generated at each decoding stage. The cyclic 

redundancy check, CRC, is used in [4] to select the correct decoding path in the SCL 

algorithm. However, SCL decoding has a much higher decoding complexity compared to 

SC.  

The SC-based decoding algorithm, called SC Bit-flipping, using the iterative decoding is 

introduced in [5], in order to reduce the computation complexity. The BF decoding 

algorithm contains a standard SC decoding and several additional flipping decoding 

attempts. The selection of the candidate bits is performed by comparing the absolute 

value of the 𝐿𝑅, and the bit with an index of the smallest |𝐿𝑅| is flipped firstly. In each 
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bit-flipping decoding attempt, the one-bit SCF decoding flips only one bit, i.e., 𝑤 = 1, in 

the decoded codeword of the initial SC. Then, the result of bit-flipping decoding is 

verified by the CRC check until the decoded codeword passes the CRC check or  

maximum iteration number, 𝑇𝑚𝑎𝑥, is reached. This decoding algorithm provides a gain of 

error-correcting performance matches to that of SC-List with 𝐿 = 2 with 𝑂(𝑁) memory 

complexity of the original SC algorithm and has an average computational complexity of 

𝑂(𝑁 𝑙𝑜𝑔𝑁) at high SNR. 

In this chapter, we propose iterative polar decoding as depicted in Fig.6.3, where a straight 

decoding operation is performed for the received frame and CRC check is performed, and 

if it is not satisfied, the first iteration is performed using virtual random channels through 

which received samples are passed before they are sent to the polar decoders employing 

successive cancellation decoding algorithm. Randomly generated noise is added to the 

inputs of the VRCs falling into a threshold interval, which contains unreliable information 

about the transmitted polar code-bit before they are sent to the polar decoder. For the 

decoded sequence, if the CRC check is not satisfied, a different randomly generated noise 

sequence is added to the unreliable inputs and the decoding operation is repeated. This 

procedure is repeated until a predefined maximum iteration number as long as CRC is not 

satisfied. 

The proposed method is used for additive white Gaussian noise, AWGN, and Rayleigh 

fading channels. We proposed techniques for the determination of threshold intervals.  

It is shown via computer simulations that the proposed technique achieves the 

performance of the state of art CRC-aided SCL polar decoder, CA-SCL, with much 

smaller complexity at the practical region of interest.  

 

6.2 Notation and SC Decoding 

 

In this chapter, 𝑢1
𝑁 = (𝑢1, 𝑢2, … , 𝑢𝑁) is used to represent 𝑁-bit information vector. After 

polar encoding operation, the code-bit vector 𝑥1
𝑁 = (𝑥1, 𝑥2, … , 𝑥𝑁) is obtained and it is 
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transmitted through a communication channel after digital modulation. At the output of 

the communication channel the vector 𝑦1
𝑁 = (𝑦1, 𝑦2, … , 𝑦𝑁) is observed.  

At the destination side, using the received word 𝑟1
𝑁 = (𝑟1, 𝑟2, … , 𝑟𝑁), information bits are 

estimated successively using the likelihood ratios, 𝐿𝑅𝑠, of the bits appearing in code 

structure. AWGN and Rayleigh fading channels are employed for performance 

evaluation. The log-likelihood ratio (LLR) for 𝑊𝑛
𝑖(𝑟1

𝑁 , 𝑢̂1
𝑖−1|𝑢𝑖) is defined as 

𝐿𝑛
𝑖 (𝑦1

𝑁 , 𝑢̂1
𝑖−1|𝑢𝑖) ≜ ln

𝑊𝑛
𝑖(𝑟1

𝑁 , 𝑢̂1
𝑖−1|𝑢𝑖 = 0)

𝑊𝑛
𝑖(𝑟1

𝑁 , 𝑢̂1
𝑖−1|𝑢𝑖 = 1)

(6.1) 

Decisions are made according to 

𝑢̂𝑖 = {
0  𝑖𝑓  𝐿𝑛

𝑖 (𝑟1
𝑁 , 𝑢̂1

𝑖−1|𝑢𝑖) ≥ 0   

  1   𝑖𝑓  𝐿𝑛
𝑖 (𝑟1

𝑁 , 𝑢̂1
𝑖−1|𝑢𝑖) < 0.    

(6.2) 

The node 𝐿𝐿𝑅𝑠 are calculated from preceding nodes, having LLRs, denoted by 𝐿1 and 

𝐿2. The LLRs for f and g nodes are calculated from preceding node LLRs as  

𝑓(𝐿1, 𝐿2) = 𝑠𝑖𝑔𝑛(𝐿1)𝑠𝑖𝑔𝑛(𝐿2)min(|𝐿1|, |𝐿2|) , (6.3) 

𝑔(𝐿1, 𝐿2, 𝑢) = (−1)
𝑢𝐿1 + 𝐿2 (6.4) 

 

6.2.1 AWGN Channel 

 

Let 𝑢𝑖 , 𝑥𝑖 ∈ {0,1 }  𝑖 = 1,… ,𝑁 be the information and polar code bits.  The output of the 

discrete additive white Gaussian noise (AWGN) channel can be written as 

 

𝑟𝑖 = 𝑦𝑖 + 𝑛𝑜 

 

where 𝑦𝑖 are obtained by digitally modulating polar code bits 𝑥𝑖, and 𝑛𝑜 is a random 

variable with zero mean and variance 𝜎2. Using the received word 𝑟1
𝑁 = (𝑟1, 𝑟2, … , 𝑟𝑁) at 

the destination side, information bits 𝑢𝑖 are estimated successively. For BPSK modulated 

code-bits, i.e., 𝑦𝑖 = 2 × 𝑥𝑖 − 1 and 𝑦𝑖 ∈ {−1, 1}, the conditional probability density 

functions, i.e., maximum likelihood probabilities, at the receiver side can be calculated as 
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𝑝(𝑟𝑖|𝑦𝑖 = ±1) =
1

√2𝜋𝜎2
exp [−

(𝑟𝑖 ∓ 1)
2

2𝜎2
] . (6.5) 

 

For BPSK modulation, likelihood ratio (𝐿𝑅) for 𝑦𝑖 is defined as  

𝐿𝑅(𝑦𝑖) =
𝑝(𝑟𝑖|𝑦𝑖 = −1)

𝑝(𝑟𝑖|𝑦𝑖 = 1)
 

whose logarithmic form, i.e., log-likelihood ratio (𝐿𝐿𝑅), is calculated as 

𝐿𝐿𝑅(𝑟𝑖) = ln (
𝑝(𝑟𝑖|𝑦𝑖 = −1)

𝑝(𝑟𝑖|𝑦𝑖 = 1)
)  → 𝐿𝐿𝑅(𝑟𝑖) =

2𝑟

𝜎2
.  (6.6) 

 

6.2.2 Rayleigh Fading Channel 

 

The output of the discrete Rayleigh fading is expressed as 

𝑟𝑖 = ℎ𝑖𝑦𝑖 + 𝑛𝑜 

where ℎ𝑖 is a random variable with Rayleigh distribution, 𝑦𝑖 and 𝑛𝑜 are the same signals 

as defined in the previous sub-section. Maximum likelihood probability for 𝑟𝑖 can be 

calculated using 

𝑝(𝑟𝑖|𝑦𝑖, ℎ𝑖) =
1

√2𝜋𝜎2
exp [−

(𝑟𝑖 − ℎ𝑖𝑦𝑖)
2

2𝜎2
] . (6.7) 

 

Assuming that the Rayleigh channel coefficient ℎ𝑖 are perfectly known at the receiver 

and BPSK modulation is used, log-likelihood ratio, 𝐿𝐿𝑅, for 𝑟𝑖 can be calculated as 

𝐿𝐿𝑅(𝑟𝑖) = ln (
𝑝(𝑟𝑖|ℎ𝑖 , 𝑦𝑖 = −1)

𝑝(𝑟𝑖|ℎ𝑖 , 𝑦𝑖 = 1)
) → 𝐿𝐿𝑅(𝑟𝑖) =

2ℎ𝑟

𝜎2
. (6.8) 

6.3 Threshold Determination 

For the determination of threshold [56, 57], we consider two approaches. In the first 

method, a predefined constant threshold is determined for received signal values 
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following a mathematical analysis. In the second approach, we propose the calculation of 

the threshold values using received values. In the second approach, threshold values are 

dynamic and they may change from frame to frame. 

 

6.3.1 Threshold 𝝁𝒕 determination for AWGN channel 

 

We assume that data bits 𝑢𝑖 are encoded, and the obtained polar code bits 𝑥𝑖 are BPSK 

modulated resulting in 𝑦𝑖 which are transmitted over the AWGN channel. The frame 

length is 𝑁, and 𝑟𝑖 are the received symbols. The conditional probability density function  

𝑝(𝑟𝑖|𝑦𝑖) given by 

𝑝(𝑟𝑖|𝑦𝑖) =
1

√2𝜋𝜎2
exp [−

(𝑟𝑖 − 𝑦𝑖)
2

2𝜎2
] . (6.9) 

The graphs of 𝑝(𝑟𝑖|𝑦𝑖 = −1) and 𝑝(𝑟𝑖|𝑦𝑖 = 1) are depicted in Fig.6.1. We define the 

absolute difference function 𝛿(𝑟) between the two conditional probability density 

functions as  

𝛿(𝑟) = |𝑝(𝑟|𝑦 = 1) − 𝑝(𝑟|𝑦 = −1)|. (6.10) 

 

The received symbol is considered as the least reliable symbol if its value 𝑟𝑖 approaches 

the zero point or 𝜇0(𝛿 = 0). Furthermore, the value of 𝑟 with maximum difference 𝛿𝑚𝑎𝑥 

can be taken as a second point 𝜇𝑚 for which the received symbol is considered as most 

reliable symbol if its value 𝑟𝑖 approaches 𝜇𝑚. The absolute value of the second point |𝜇𝑚| 

is the same for both ∓𝑟𝑖 values as the two density functions are symmetric around zero 

point. 

The maximum value of 𝛿(𝑟), i.e., 𝛿𝑚𝑎𝑥, can be determined taking the derivative of  𝛿(𝑟) 

and equating it to zero as in 

𝛿(𝑟) =
1

√2𝜋𝜎2
[𝑒
−(𝑟−1)2

2𝜎2 − 𝑒
−(𝑟+1)2

2𝜎2 ] → (6.11) 

https://www.wordhippo.com/what-is/another-word-for/instead.html
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dδ(𝑟)

𝑑𝑟
|
𝑟=𝜇𝑚

= 0 →

1

√2𝜋𝜎2
[
1 − 𝑟

𝜎2
𝑒−(𝑟−1)

2/2𝜎2 −
−(1 + 𝑟)

𝜎2
𝑒−(𝑟+1)

2/2𝜎2] = 0. (6.12)

 

 

Figure 6.1 Determination of 𝜇𝑡 for AWGN channel. 

 

From 6.12, we obtain 

(1 − 𝜇𝑚)𝑒
𝜇𝑚
𝜎2 = −(1 + 𝜇𝑚)𝑒

−𝜇𝑚
𝜎2 (6.13) 

which can be solved numerically by using the Newton Raphson method [57] and for 

various values of 𝜎2(0.1 → 0.9). The value of 𝑟 at which δ(𝑟) is maximum is found as 

𝜇𝑚 ≈ 1.04 which is almost equal to the mean value of 𝑝(𝑟|𝑦 = 1).  

 

6.3.2 Generating Random Noise and Threshold Estimation 

 

The maximum threshold is determined in subsection (6.3.1) which is almost equal to the 

mean value of 𝑝(𝑟|𝑦 = 1). The threshold level 𝜇𝑡, can be calculated using 

𝜇𝑡(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) =
1

𝐶𝑜 ∗ 𝑁
×∑|𝑟𝑖|

𝑁

𝑖=1

. (6.14) 
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Where the summation part (∑ |𝑟𝑖|
𝑁
𝑖=1 /𝑁) is the arithmetic average of the sum of the 

absolute values of the received symbols, and this part has a dynamic value, which depends 

on the SNR and it’s approximately equal to 1. The maximum value of the selected 

threshold 𝜇𝑡 have to be less than 𝜇𝑚, on the other word, the maximum value has to be in 

the range of (−𝜇𝑚 < 𝜇𝑡 < 𝜇𝑚) where  𝜇𝑚 = 1. By specifying the constant value 𝐶𝑜 

which is found as the best value as 2, which leads to the optimal threshold value which is 

approximately 𝜇𝑡 ≅ 0.5 as shown in Fig.6.4.  

The equation 6.14 takes the form 

𝜇𝑡(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) =
1

2 ∗ 𝑁
×∑|𝑟𝑖|

𝑁

𝑖=1

. (6.15) 

At the output of the VRC, noise is added to the inputs falling into the threshold interval 

[−𝜇𝑡  𝜇𝑡] and the noise has the Gaussian distribution 𝑁̃(0, 𝜎(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)
2 ). 

The average received signal power can be calculated as 

𝑃̂𝑠+𝑛𝑜 =
1

𝑁
∑|𝑟(𝑖)|2
𝑁

𝑖=1

 

where 𝑛̂𝑜(𝑖) is the estimated noise. Hence, the estimated average noise power can be 

calculated as  

𝑃̂𝑛𝑜 =
1

𝑁
∑|𝑛̂𝑜(𝑖)|

2

𝑁

𝑖=1

. 

Average SNR can be calculated as  

𝑆𝑁̂𝑅 =∑
|𝑟(𝑖)|2 − |𝑛̂𝑜(𝑖)|

2

|𝑛̂𝑜(𝑖)|2

𝑁

𝑖=1

=∑
|𝑟(𝑖)|2

|𝑛̂𝑜(𝑖)|2
− 1

𝑁

𝑖=1

. (6.16) 

From 6.16, the average noise power can be obtained as 

𝑃̂𝑛𝑜 =
1

𝑁 ∗ (𝑆𝑁̂𝑅 + 1)
∑|𝑟(𝑖)|2
𝑁

𝑖=1

. (6.17) 
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At the output of the VRC, noise has the Gaussian distribution 𝑁̃(0, 𝜎(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)
2 ) is only 

added to the inputs falling into the threshold interval [−𝜇𝑡   𝜇𝑡], the estimated noise 

variance has to be less than the channel noise variance 𝜎(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)
2 < 𝜎(𝑐ℎ𝑎𝑛𝑛𝑒𝑙)

2 , where 

the additional noise is applied only on the received symbol that falling into the threshold 

interval. On the other hand, treating the least reliable received symbols will decrease the 

probability of the transmitted symbol error. 

Using the Shannon capacity of AWGN channel for BPSK modulation as 𝐶𝐴𝑊𝐺𝑁 = 0.8, 

the SNR for this channel capacity can be calculated using  

𝐶𝐴𝑊𝐺𝑁 =
1

2
𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅) 

as 3dB.  

Using 𝑆𝑁̂𝑅 = 3𝑑𝐵, an approximate estimation for noise variance can be written as 

𝜎(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)
2 =

1

3 ∗ 𝑁
∗∑|𝑟𝑖|

2

𝑁

𝑖=1

. (6.18) 

In this study, equations 6.15 and 6.18 are used in our simulations. 

 

6.4 Virtual Random Channel 

 

Information bits are polar encoded and transmitted through a continuous channel, such as 

AWGN or Rayleigh, after digital modulation. At the receiver side, before starting the 

decoding operation, we consider a virtual random channel (VRC) and pass the received 

signal through a virtual random channel as illustrated in Fig.6.2. VRC takes the inputs 

from the continuous channel (AWGN/Rayleigh) and produces its outputs. The operation 

of a virtual random channel is described in 

 

𝑟̃𝑖 = {
𝑟𝑖 + 𝑟̂𝑖,      if − 𝜇𝑡 ≤ 𝑟𝑖 ≤ +𝜇𝑡 
𝑟𝑖,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

(6.19)  
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where 𝜇𝑡 is the threshold value, 𝑟𝑖 are the inputs of the VRC and 𝑟̃𝑖 are the outputs of 

VRC. 𝑟̂𝑖 are the noise samples generated by a normal random variable, i.e., 𝑁(0, 𝜎2). 

Equation 6.19 implies that noise is added to those unreliable inputs falling into a threshold 

interval. 

 

AWGN VRC
iy

ir
~

ir

Channel 

Input
AWGN 

Channel 

Output

Virtual Random 

Channel Output

 

Figure 6.2 AWGN concatenated with VRC. 

 

6.5 The Proposed System 

 

The proposed iterative structure is depicted in Fig.6.3. First, a straight decoding operation 

is performed for the received frame and a CRC check is performed, and if it is not 

satisfied, the first iteration is performed. In the next iteration, noise is added to the inputs 

falling into the threshold interval, and a decoding operation followed by a CRC check is 

performed. If CRC is not satisfied, iteration is performed. We use a limit, named as 

maximum iteration number, for the total number of iterations in a decoding stage. If the 

maximum iteration number is reached, the loop is terminated and the first decoded result 

before the iteration starts is accepted as the decision of the decoder.  

The number of iterations performed for the decoding of each frame is recorded as in 

Fig.6.5, and the average iteration number considering the total number of frames used for 

the simulation is calculated. The average iteration number is used to measure the 

complexity of the iterative structure for comparison to state of art studies. 
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Figure 6.3 Proposed structure. 

 

6.6 Simulation Results 

We evaluate the effect of different threshold intervals on the FER performance, for polar 

code length P(128,64), on an AWGN channel with BPSK modulation at different 𝐸𝑏/𝑁0 

levels. The effect of threshold on the FER performance of proposed algorithm is depicted 

in Fig. 6.4. Where four threshold intervals are used in simulations using 6.15. 

Constant values Co = 4, 3, 2 and 1 which give the threshold intervals frontiers 

(±0.25, ±0.33, ±0.5, ±1) are used. One can observe that for any value of 𝐸𝑏/𝑁0, the 

performance for the threshold frontiers (±1) is the worst. It is also seen that the best 

performance is obtained with threshold interval [-0.5 0.5], with Co = 2, for 𝐸𝑏/𝑁0= 3dB.  
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Figure 6.4 The effect of different threshold intervals on the FER performance, for 

P(128,64), on an AWGN channel 

 

Also, we evaluate the performance of the proposed iterative polar code decoding structure 

for frame lengths 𝑁 =  128 and 256 for AWGN and Rayleigh channels with code rate 

𝑅 = 0.5. For CRC-8, the generator polynomial 𝑔(𝑥) = 𝑥8 + 𝑥7 + 𝑥6 + 𝑥4 + 𝑥2 + 1 is 

used.  
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A set of predefined maximum iteration numbers (𝐼𝑚𝑎𝑥) is used. We compare our 

simulation results to that of the state-of-the-art studies CRC-aided successive cancellation 

list with list size 𝐿 = 32, i.e., compare to CS-SCL32. The average iteration number w.r.t. 

𝐸𝑏/𝑁0 for P(128,64) and P(256,128) over AWGN is depicted in Fig.6.5 where it is seen 

that the average iteration number decreases as 𝐸𝑏/𝑁0 increases, and the average 

complexity of the iterative structure decreases as 𝐸𝑏/𝑁0 increases. 

 

Figure 6.5 Average iteration number versus 𝐸𝑏/𝑁0 for polar codes P(128,64) and 

P(256,128) over the AWGN channel using the proposed iterative structure. 

 

In Fig.6.6, the performance of the proposed system is measured for frame length 𝑁 =

128 and P(128, 64).  It is seen from Fig.6.6 that as the maximum iteration number 

increases, the performance of the iterative structure increases as well. And the iterative 

structure over performs the state of the artwork CA-SCL32 in terms of FER for the 

maximum iteration number 𝐼𝑚𝑎𝑥 ≥ 50. If we consider Fig.6.5 and Fig.6.6 together, it is 

seen that the performance of CA-SCL32 is almost achieved when the largest value of 

maximum iteration number 𝐼𝑚𝑎𝑥 = 50 is used, however, the average iteration number 

gets its smallest value, i.e., the computational complexity of the iterative structure 
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decreases. In Fig.6.7, the performance of the proposed structure for frame length 𝑁 =

256, and P(256, 128)  is compared to that of the state of the artwork CA-SCL32. It is seen 

from Fig.6.7 that the performance of the proposed structure increases as the maximum 

iteration number is increased, the proposed structure over performs the state-of-the-art 

works CA-SCL32. In Fig.6.6 and Fig.6.7, the performance of the proposed decoding 

algorithm is also compared with SC flip decoding, for both frame lengths P(128,64) and 

P(256,128). We observe that the performance of the proposed scheme with 𝐼𝑚𝑎𝑥 = 20, 

has much throughput compared with the one Bit- flipping decoder (𝑤 = 1) with 𝑇 = 42 . 

In Fig.6.8 the simulation results for P(128, 64) over Rayleigh fading channels are 

depicted. It is seen from Fig.6.8 that significant performance is obtained for SC polar 

decoder for Rayleigh fading channels with the proposed iterative polar decoder. 

 

Figure 6.6 Performance improvement for the proposed structure for different maximum 

iteration numbers for P(128,64) for AWGN channel versus CA-SCL32 performance. 
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Figure 6.7 Performance improvement for the proposed structure for different maximum 

iteration numbers for P(256, 128) for AWGN channel versus CA-SCL32 performances. 

 

Figure 6.8 Performance improvement for the proposed structure for different maximum 

iteration numbers for P(128,64) for Rayleigh fading channels. 
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6.7 Complexity Comparison 

 

 

For AWGN channels, the SNR region of interest can be accepted as 3dB and beyond. At 

3dB, it is seen from Fig.6.5 that the average iteration number is less than 2. This indicates 

that the complexity of the proposed system can be roughly estimated as 2 times the 

complexity of the SC polar decoder. On the other hand, for the state-of-the-art works CA-

SCL32, the complexity is at least 32 times the complexity of the SC polar decoder. From 

this discussion, it is seen that the complexity of our proposed structure is less than that of 

any state-of-the-artwork CA-SCL. 

 

6.8 Conclusion 

 

In this chapter, we introduce the use of virtual random channels for the decoding of polar 

codes. Virtual random channels add noise to their low reliable inputs. To benefit from the 

idea of replacing low reliable inputs with high reliable ones, we propose an iterative 

structure and considered the use of CRC for the termination of the loop structure when 

successful decoding is detected. It is shown that the proposed structure boosts the 

performance of the SC polar decoder, and even achieves the performance of state-of-the-

art works CA-SCL polar decoders. The complexity of the proposed structure is less than 

that of the state-of-the-art works CA-SCL. The proposed iterative structure can also be 

employed to increase the performance of state-of-the-artwork CA-SCL as well. 
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