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ABSTRACT 

 

HUMAN ACTIVITY RECOGNITION WITH CONVOLUTIONAL AND 

MULTI-HEAD ATTENTION LAYER BASED NEURAL NETWORKS 

 

ATLIHAN, Deniz Adalı 

Master of Science in Computer Engineering 

Supervisor: Prof.  Dr. Hasan OĞUL 

January 2022, 69 pages 

 

 Human Activity Recognition (HAR) refers to classifying human activities with 

time-series data generated by sensors. Although there are many different sensing 

techniques for HAR, this thesis uses wrist-worn accelerometer data provided by the 

HANDY dataset due to the recent development of mobile wearable sensing devices. 

In the proposed model, the feature extraction layer is connected to the attention layer, 

respectively, and this context is connected to the fully connected layer to classify the 

inputs. Due to its achievements in feature extraction, Convolutional Neural Network 

(CNN) was used in the feature extraction layer, Multi-Head Attention Layer was used 

after CNN to evaluate every dimension of the 3D time-series data coming from the 

acceleration sensor. After the feature extraction and attention layer, this model, which 

ended with a fully connected layer with the SoftMax classifier, reached 0. 935 

validation accuracy when evaluated with categorical cross-entropy loss. 

 

Keywords: Human Activity Recognition, Convolutional Neural Networks, Multi-

head attention 
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ÖZ 

 

EVRİŞİMLİ VE ÇOK KAFALI DİKKAT KATMANLI SİNİR AĞLARIYLA 

İNSAN AKTİVİTELERİNİ TANIMA 

 

ATLIHAN, Deniz Adalı 

Bilgisayar Mühendisliği Yüksek Lisans 

 Danışman: Prof. Dr. Hasan OĞUL 

Ocak 2022, 69 sayfa 

 

 İnsan Aktivitesi Tanıma (HAR), sensörler tarafından oluşturulan zaman serisi 

verileriyle insan aktivitelerinin sınıflandırılmasını ifade eder. HAR için birçok farklı 

algılama tekniği olmasına rağmen, bu tezde, mobil giyilebilir algılama cihazlarındaki 

son gelişmeler nedeniyle, HANDY veri seti tarafından sağlanan bileğe takılan 

ivmeölçer verileri kullanılmıştır. Önerilen modelde, öznitelik çıkarma katmanı 

sırasıyla dikkat katmanına bağlanmıştır ve bu bağlam girdileri sınıflandırmak için tam 

bağlantılı katmana bağlanmıştır. Öznitelik çıkarımdaki başarılarından dolayı öznitelik 

çıkarma katmanında Evrişimsel Sinir Ağı (CNN), ivme sensöründen gelen 3B zaman 

serisi verilerinin her boyutunu değerlendirmek için CNN'den sonra Çok Kafalı Dikkat 

Katmanı kullanılmıştır. Öznitelik çıkarma ve dikkat katmanından sonra SoftMax 

sınıflandırıcı ile tam bağlantılı katman ile sonlanan bu model, kategorik çapraz entropi 

kaybı ile değerlendirildiğinde 0,935 doğrulama oranına ulaşmıştır. 

 

 

Anahtar Kelimeler: İnsan Aktivitesi Tanıma, Evrişimli Sinir Ağları, Çok-kafalı 

dikkat. 
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  CHAPTER I  

 

INTRODUCTION 

 

1.1 PROBLEM & MOTIVATION 

 Human Activity Recognition (HAR) is a crucial term for sensing human 

activities with sensors and meaning them for different purposes such as health services, 

athletic performance tracking and human survey.  

 There are different ways of sensing techniques such as prominent vision-based 

[1], medical domain based [2] and radar-based [3] methods. However, in addition to 

recent development [4], the Internet of Things (IoT) and smart wearable devices like 

smartwatches have widespread usage and ease of using small wearable ones. For 

instance, this thesis focused on the measurement of the wrist-worn sensor.  

 

 

Figure 1.1: Simple HAR Application Process 
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 A simple HAR application process can be represented as illustrated in Figure 

1.1. The activity of a human can be sensed with a sensor and translated into digital 

data. The translated raw data is needed to be preprocessed for determining features. 

Due to collected sensor data being a time series, at least, this data must be segmented 

to time frames for classifying them. Generally, measured data is also normalized to 0 

– 1 range here. In addition, in some works which used Inertial Measurement Units 

(IMU) sensor data, the noise filtering process is also applied in this phase due to the 

noisy nature of IMU sensors 

 In many works [5] [6] [7] [8] [9] [10] [11] [12] handcrafted features generally 

generated by time and frequency domain digital signal processing techniques, in 

contrast, in some other works, convolution process is taken precedence over signal 

processing [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] 

[28]. In this thesis also, the convolutional process is used for feature extraction. 

 In the last part, classification can be performed with machine learning or deep 

learning techniques. There are successful works [6] [29] [8] [9] [10] [11] which are 

used machine learning techniques, fully connected layers ended with SoftMax 

classifier also performed satisfying results.  

 With recent technical developments of recurrent neural networks, the 

performance of classifying time series improved as like as collected data via sensors 

during a time. Some of recent works [13] [14] [15] [16] [17] [30] [31] [18] [19] [20] 

[32] [25] [26] [33] used attention mechanism firstly explained with Transformer by 

Vaswani et a [34] l, for boosting time series classification. In this thesis, an attention 

mechanism is also used for boosting classification performance. 

 

1.2 RECENT WORKS 

 Without a convolutional process, handcrafted feature extractions combined 

with machine learning techniques are used to classify human activities with sensor 

measurements.  

 In 2011, Chernbumroong et al. used time and frequency domain features of 

wrist-worn accelerometer data for classifying activities [29]. The work that they built 

Artificial Neural Network (ANN) and Decision Tree C4.5 shows that Decision Tree 

has better performance than ANN.  
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 In 2012, Scholl and van Laerhoven used wrist-worn accelerometer data for 

determining smoking habits with signal processing methods [6]. They applied a low 

pass filter to derive signal data then derived attributes of the signal as mean and 

variance. In the end, they have applied Gaussian Classifier to the features and reached 

51.2% success rate. Likewise, in 2016, Nguyen et al. used a wrist-worn accelerometer 

signal for classifying daily activities with time and frequency domain features [7]. 

Their work which used different machine learning techniques and combined also 

focused on sensor data generated from sensors positioned on both left and right wrists. 

They reached 91.2% success rate for the Random Forest method and offered the 

combination of the Random Forest and k-Nearest Neighbors method to improve 

performance. They also worked with Multi-Layer Perceptron but could not achieved a 

better score than Random Forest Method. Same year, Konak et al. classified daily 

activities with accelerometer data collected by mobile phone using time and frequency 

domain features [11]. In addition, they offered the Random Forest method for best 

accuracy and proposed using only accelerometer data over accelerometer and 

gyroscope data for battery usage advantage in real-life applications.   

 In 2018 Mehrang et al. used wristband accelerometer data and heart rate 

measurement together [8]. Their Random Forest based classification method reached 

89.4% success rate with using handcrafted signal features.  

 Same year, Hegde et al. tried to classify daily living activities with combination 

of wrist-worn accelerometer and SmartStep sensor together [10]. Their measurement 

was processed with Max Relevance, Min Redundancy Algorithm [28] and classified 

with Multinomial Logistic Discrimination Method and reached to 94% success rate. 

 In 2019, Konsig et al. proposed S-PAR [35] which uses both accelerometer and 

angular velocity data derived from wrist-worn device. Their model focused on 

determining energetic activities with Support Vector Machine and dormant activities 

with Linear Discriminant Analysis. Both techniques have shown better performance 

than Random Forest for their works and S-PAR reached %88.62 ± 11.71 F-score. 

 Even though recent progress in Deep Learning, Machine Learning methods are 

still thriving for HAR applications. In 2021 Arani et al. combined wrist-worn 

accelerometer and electrocardiogram measurements and generated handcrafted 

features [9]. Their Random Forest based approach reached 94% for subject dependent 

and 86.1% for subject independent F1-scores. 
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 In 2019 Abbas et al. applied four stages approach for HAR, as shown in Figure 

1.2. The handcrafted signal features used in the ANN classifier reached 98.41% 

accuracy [5]. 

 

 

Source: [5] 

Figure 1.2: 4 Stages Approach of Abbas et al. 

  

 

Source: [28] 

Figure 1.3: CNN Architecture Offered by Zeng et al. 

 

 Instead of using handcrafted methods for feature extraction Convolutional 

Neural Network (CNN) was also used. Zeng et al. refer to CNN's advantages for HAR 

applied three-dimensional accelerometer data to CNN and classified with SoftMax 

layer at the end of the ANN [28] as shown in Figure 1.3. In the study where each 

accelerometer dimension is passed through a different convolutional lane, 96.8% 

success rate is achieved with Actitracker [36] dataset. 
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 Moreover, as shown in Figure 1.4, a different architecture was offered by 

Panwar et al. in 2017 [37]. Those who used the SoftMax layer for classification also 

noticed that more complex data needs more convolution layers.  

 

 

Source: [37] 

Figure 1.4: CNN Architecture Offered by Panwar et al. 

 

 Due to the time series classification specialty of Recurrent Neural Networks 

(RNN), they have also started to use them in HAR applications.  

 

 

Source: [23] 

Figure 1.5: DeepSense Framework Architecture 
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 In 2017, Yao et al. applied the architecture as shown in Figure 1.5 [23], which 

has convolutional layers for feature extraction, two-level Gated Recurrent Unit layers 

and SoftMax layer for classification. This architecture named with DeepSense 

achieved 95% F1-score on Heterogeneous Human Activity Recognition. 

 

 

Source: [21] 

Figure 1.6: Architecture Offered by Mekruksavanich and Jitpattanakul 

 

 In 2021, Mekruksavanich and Jitpattanakul offered the CNN-BiGRU model 

[21], as shown in Figure 1.6, and they reached average 0.974 F1-Score only using 

accelerometer data of the UTwente dataset [38]. 

 Unlike the work of Mekruksavanich and Jitpattanakul above, in 2021, 

Nunavath et al. offered an RNN-only model for classification [39]. Their method 

achieved 98.75% accuracy for basic activities and 96.52% accuracy for specific 

activities on the UCI HAR dataset [40] using 10 seconds length sliding windows. 
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Source: [41] 

Figure 1.7: LSTM Architecture Offered by Tarasevičius and Serackis 

 

 Similarly, in 2020 Tarasevičius and Serackis proposed a method with Long-

Short Term Memory (LSTM) input blocks, as shown in Figure 1.7 [41]. This Bi-LSTM 

organized method is used to classify swimming style with accelerometer, gyroscope 

and magnetometer data collected from the wrist-worn sensor of swimmers. This model 

where the inputs are signal features reached 91.39% F1-Score.  

 Same year, Chen et al. also offered the LSTM model [12], which has parallel 

fully connected layers for applying handcrafted signal features to the LSTM layer, as 

shown in Figure 1.8. Their fusion model reached 0.9644 accuracy rate. The Maximum 

Full a Posteriori approach derived from this model reached 0.9885 accuracy rate on 

the public dataset [40], which has wrist-mounted smartphone accelerometer and 

gyroscope data for human activity recognition. 

 In 2019 He et al. offered four levels of the network, as shown in Figure 1.9. 

Their model extracts the features with context vector and transfers them to the 

controller network built with location and recurrent network. Also, the glimpse 

network detects local features and transfers them to the classification network [27]. 

Their framework achieved 94.8% accuracy on the UCI HAR dataset and 95.35% 

accuracy rate in the Weakly Labeled dataset they have collected from the three-axis 

acceleration sensor of iPhone, which out on users trousers right pocket. 
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Source: [12] 

Figure 1.8: LSTM Model Offered by Chen et al. 

 

 

Source: [27] 

Figure 1.9: Framework Offered by He et al. 
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Source: [22] 

Figure 1.10: HAR Model of Heydarian et al. 

 

 In 2020, Heydarian et al. proposed a model as shown in Figure 1.10 using CNN 

and LSTM [22]. Unlike the models offered above, they used accelerometer and 

gyroscope data taken from sensors worn on the right and left wrist and removed gravity 

effect additionally at the preprocessing phase. Then they reached 0.77 F1-Score with 

this method. 

 Same year, Kiprijanovska et al. used their smartwatch data collected from the 

accelerometer, gyroscope, magnetometer and rotation vector sensor [24]. Their work 

to detect gait abnormalities for falling risk proposed two different approaches, as 

shown in Figure 1.11, where the left-hand side data level network and the right-hand 

side decision level networks are represented. They reached an 83.7% accuracy rate 

using only accelerometer data and fusion of both decision and data level networks. 

However, their model showed maximum performance using accelerometer, gyroscope 

and rotation vector sensor combination with 88.9% accuracy rate. 
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Source: [24] 

Figure 1.11: The Model Offered by Kiprijanovska et al. 

 

 

Source: [33] 

Figure 1.12: The Model Proposed by Zeng et al. 
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 In 2018, Zeng et al. proposed a sequential model based on attention mechanism 

[33] as shown in Figure 1.12, which has at the end of the model, in the temporal 

attention phase, they aimed to teach the network whole signal instead of a single piece. 

Moreover, in the sensor attention phase, they aimed to catch all critical modalities of 

sensor input with attention blocks. They tested their models with three different 

datasets and achieved the best F1-score results using sensor attention and temporal 

attention on the PAMAP2 dataset [42] with 0.899, but temporal attention without the 

Skoda dataset [43] sensor attention was achieved as 0.938. 

 In 2019, Sun et al. proposed the Attention Based LSTM Network model as 

represented in Figure 1.13 [31]. Sliding data windows at the input layer applied to the 

LSTM layer for getting high-level features is aimed. Also, at the attention layer, 

learning inner relations is aimed. At the end of the model, SoftMax classifier is used 

and reaches 90.9% F1-score 

 

 

Source: [31] 

Figure 1.13: Model Offered by Sun et al. 

 

 The same year, Wang et al. worked with UCI HAR and Weakly Labeled 

datasets. They offered a model with parallel-connected attentions blocks to the 

convolutional pipeline where each output has a ReLU function, as shown in Figure 

1.14. Their model, which also has a fully connected layer, used SoftMax classifier at 

the end achieved 93.41% accuracy on the UCI HAR dataset when they used two 

attention blocks with parameterized compatibility and tanh function at the end of the 

block. For the Weakly Labeled dataset, the same conditions but three attention blocks 

achieved 93.83% accuracy. 
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Source: [17] 

Figure 1.14: Model Architecture Proposed by Wang et al. 

 

 Ma et al. proposed AttnSense [18]. As shown in Figure 1.15, their model trained 

with in addition to the test data, Gaussian Noise added augmented data, and Fast 

Fourier Transform (FFT) applied frequency spectrum data. Batch normalization is 

applied at the Individual Convolutional Subnet in the model to reduce covariance 

shifting. At Attention-Based Fusion Subnet, self-attention is determined, and at the 

Attention-Based GRU Subnet, GRU’s are used for determining long-term 

dependencies instead of LSTM due to its complexity. The model has fully connected 

SoftMax function-based classification layer at the end, achieved F1-scores as 0.965 

for Heterogenous [44], 0.931 for Skoda and 0.893 for PAMAP2 datasets. 

 

 

Source: [18] 

Figure 1.15: AttnSense Model 
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 Zhang et al. proposed another attention-based network as given in Figure 1.16 

[14]. They filtered noisy data at the input and segmented it with specific window sizes. 

Three-dimensional input data is applied to a multi-headed CNN layer and concatenated 

at the end. After the parallel attention layer at the end of concatenating, the SoftMax 

classifier was applied. This multi-head attention approach achieved 0.954 F-measure 

on the WISDM dataset. 

 

 

Source: [14] 

Figure 1.16: Multi-head Attention Network Proposed by Zhang et al. 

 

 Chen et al. proposed a semi-supervised network for HAR applications for 

training with labeled and unlabeled data together [15]. As shown in Figure 1.17, their 

offering for imbalanced data type distribution aimed to classify multiple activities. At 

the Glimpse Network, they aligned input sensor data to matrices for keeping the 

relation between features and at the Convolutional Network, they aimed to extract 

high-level features. Then after Glimpse Representation Layer, which performs linear 

transformation, at the Recurrent Attention Unit, LSTM sets the relation between time 

sequences up and transferred information to Action and Location subnetworks. 

Location network feeds data back, and Action network tries to predict activity label. 

They also used the Partially Observable Markov Decision Process (POMDP) 

technique to overcome training problems. This network named with Recurrent 

Attention Model (RAM) has shown 0.9425 for MHEALTH [45] with 13000 labeled 

samples, 0.8342 for PAMAP2 with 20000 labeled samples, 0.8184 for UCI HAR with 

13000 labeled samples. 
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Source: [15] 

Figure 1.17: The Proposed Model of Chen et al. 

 

 

Source: [25] 

Figure 1.18: DeepConvAttn Model 
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Zhang et al. proposed an attention network [25] with modifying 

DeepConvLSTM [46] network and named with DeepConvAttn as shown in Figure 

1.18. The model designed to eliminate parallel computing problems of LSTM with 

replacing Attention layers achieved 0.928 F1-score for gestures and 0.906 F1-score for 

locomotives using the Opportunity dataset [47]. 

 

 

Source: [32] 

Figure 1.19: Model Proposed by Betancourt et al. 

 

Betancourt et al.applied sliding windows of UCI HAR to their model [32] as 

illustrated in Figure 1.19, where NA, self-attention layer size is 20 and NR, recurrent 

layer size, is 3. They also used positional encoding for identifying the most appropriate 

time steps. With and without positional encoding, their two approaches achieved 

97.1% and 94.1% accuracy, respectively. 

 Wang and Zhu used the UCI HAR dataset on a hybrid approach [26], shown 

in Figure 1.20. After denoising input data, handcrafted signal features were applied to 

the Bi-LSTM Attention Layer in addition to the created output by the CNN pipeline 

and achieved 95.58% accuracy. 
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Source: [26] 

Figure 1.20: Hybrid Approach by Wang and Zhu 

 

 In 2021, Buffelli and Vandin replaced the GRU layer of DeepSense with the 

Attention layer for defining temporal dependencies and named their model with 

TrASenD [30]. In addition to TrASenD, the TrASenD-BD method used substitution 

of attention block with bidirectional-RNN offered by Schuster and Paliwal [48] 

achieved 0.798 for HHAR [44], 0.650 for PAMAP2, and 0.681 for USC-HAD [49] F1 

scores. TrASenD-CA model where the GRU layer used with attention mechanism like 

Xu et al. [50] achieved  0.797 for HHAR 0.659 for PAMAP2 and 0.687 for USC-HAD 

F1 scores.  

 However, TrASenD achieved 0.848 for HHAR, 0.723 for PAMAP2, and 0.702 

for USC-HAD F1 scores. They improved their models with users’ feedback also. This 

personalized experiment increased the performance of TrASenD, which has maximum 

accuracy to 0.889 for HHAR, 0.749 for PAMAP2 and 0.759 USC-HAD. 

 Gao et al. proposed a sequential dual attention model named Dual Attention 

Network (DanHAR) [20] for combining temporal and channel attention as shown in 

Figure 1.21, where BN is Batch Normalization. Their two-dimensional convolution-

based channel attention module is used for determining input features. Max pooling 

technique in this layer provided channel-wise attention finer. Moreover, six 

convolutional layers with a short-cut connection for adding residual mapping are used. 

In contrast, two concatenated pooled features are convolved at the temporal attention 

layer, multiple sensors are unified, and information is saved. In the end, their approach 

boosted feature discrimination. They reached test accuracy of 98.85% for WISDM, 

79.03% for UNIMIB SHAR, 93.16% for PAMAP2, 82.75% for OPPORTUNITY, and 

94.86% for Weakly Labeled datasets. 
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Source: [20] 

Figure 1.21: DanHar Model 

 

 Khan and Ahmad worked with fixed-size windows of normalized data [16]. 

Their model has a one-dimensional convolutional layer for crafting input features. 

After the Convolutional layer, a non-linear ReLU function is used for reducing the 

vanishing gradient problem.  

 As shown in Figure 22, Multi-head CNN architecture improved the 

classification results. Also, the squeeze & extraction [51] module provides an attention 

mechanism. The proposed model achieved 0.9818 accuracy performance on the 

WISDM dataset and 0.9538 on the UCI HAR dataset. 

 



 

18 

 

 

Source: [16] 

Figure 1.22: Multi-head CNN Offered by Khan and Ahmad 

 

 

Source: [19] 

Figure 1.23: CARTMAN Model 

 

 Chandrasekaran et al. proposed a model for classifying complex activities 

named CARTMAN,s shown in Figure 1.23 [19]. Their model used the Latent Dirichlet 

Allocation (LDA) [52] model to extract features. The input data is clustered with k-

Means Clustering for segmentation, and 5 minutes length windows are passed through 

the LDA layer. LDA modeled data and pure sensor data channels are passed through 

DeepConvLSTM for using its self-attention mechanism. This CARTMAN approach 

used the Ubicomp 08 Complex Activity dataset [53] and achieved a 0.95 F1-score 

weighted average. 



 

19 

 

 Xiao et al. developed a model with parallel convolutional and LSTM pipes, as 

shown in Figure 1.24, named with Perceptive Extraction Network (PEN). The PEN 

has a parallel feature network for local feature extraction and a relation network for 

sensing global input patterns.[13] 

 

 

Source: [13] 

Figure 1.24: Architecture of PEN 

 

 In Figure 25, the LSTM-based Attention Layer is represented used in the 

Relation Network of PEN. This parallel network layer to Feature Network Layer 

improves multivariate time series classification results. As a result, the PEN model 

achieved F1-scores, 98.97 for WISDM, 96.33 for UCI_HAR, 97.78 for PAMAP2, and 

96.89 for OPPORTUNITY.  

 

 

Source: [13] 

Figure 1.25: Relation Network of Pen 
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1.3 BACKGROUND & THEORY  

1.3.1 Artificial Intelligence & Machine Learning 

 Artificial Intelligence (AI) concept was born in the 50s. With the increasing 

computing power of hardware and the number of datasets in different areas, machine 

learning and deep learning methods are gained popularity for different reasons such as 

classification, recommendation and prediction operations. 

 While Artificial Intelligence refers to mimicking human behaviors, Machine 

Learning (ML), a part of the AI, is specified for changing decisions concerning past 

data provided to the system. The system referred to here is mentioned as Machine 

Learning Paradigm by Chollet, as shown in Figure 26 [54]. While traditional 

algorithms designed for searching answers for questions try to find out system rules 

against input (data) and output (answers). 

 

 

Source: [54] 

Figure 1.26: Machine Learning Paradigm 

  

 Chollet also said that Machine Learning algorithms are generally performed 

with statistical approaches, specified ways of ML, and deep learning (DL) methods 

have one or more layers used for the empirical learning process. 

 In ML and DL methods,  a model is created then data and its answers are 

related. This process is calling as training. While the training process, the model learns 

how to process and answer input data. After the training phase, the model will respond 

to the input data. 
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1.3.2 Deep Learning 

 Deep Forward Network, Feedforward Neural Network, or Multilayer 

Perceptron(MLP) represent the same AI models [55].  

 For mathematically, they can be represented as illustrated in Equation 1.1, 

where x is input, f (n) is the function of the n’th layer of the network, and y is the mapped 

category of x. Each f function represents a hidden layer that learns how to use its inputs 

to reach the desired output. 

 

Y=(f(n-1)(…f(2)(f(1)(x))…))  

 

 In Figure 1.27, a schematic view of a simple MLP with a single hidden layer 

containing two units is illustrated at the left-hand side and, a simplified representation 

is represented at the right-hand side. 

 

 

Source: [55] 

Figure 1.27: Simple MLP Scheme 

 

 Chollet [54] summarized the anatomy of Neural Networks, inputs, layers, loss 

function, which refers to learning feedback function and Optimizer for determining 

learning proceeds. As shown in Figure 28, loss function and Optimizer can be defined 

for the simplified learning process. A differentiable loss function compares actual 

Feed-forward prediction results and accurate results during the learning process, then 

calculates a loss score. The iterative Gradient Descent algorithm is used for 

minimizing losses. Derivative of the differentiable loss function gives the minimum 

point of this function with finding where the derivative is zero. For neural networks, 

finding combinations of the smallest weights leads to finding the minor loss function.  

  

 

(1.1) 
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 The Optimizer is generally built with Stochastic Gradient Descent(SGD), 

which starts with a random initial value if not determined and found the slope of the 

loss function; in other words, it computes the gradient [55] and then updates the 

gradient until it is closest to zero. At the end of the SGD algorithm, layers' weights are 

updated for better results, so Back Propagation has happened. 

 

 

Source: [54] 

Figure 1.28: Simplified Learning Scheme 

 

1.3.3 SoftMax Classifier 

 The SoftMax function, as defined in Equation 1.2, is generally used in the last 

part of the networks due to predicting probabilities in multinomial distribution over n 

different possible values. The SoftMax function output cannot change by adding a 

scalar to the input vector. As a result of this increase of the unit affects others as 

decreasing too. 

 

SoftMax(x)i=
exp(xi)

∑ exp(xj)
n
j=i

 

 

  

(1.2) 
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1.3.4 Convolutional Neural Networks 

 Convolution Neural Networks (CNN) specializes in processing data as grids 

[55], where the convolution operation is applied at least in one of the layers. 

Convolution operation(∗) as given in Equation 1.3 is generally used for generating 

features at the output(s) from input data(x) with a kernel(w). 

 

s(t)=(x * w)(t) 

 

 A simple convolution process can be performed in 2-D space as illustrated in 

Figure 1.29. 

 

Source: [55] 

Figure 1.29: Simple 2D Convolution Operation 

 

 In traditional neural networks, global patterns are extracted in layers, despite 

that in CNNs, convolution layers extracted local patterns. These extracted patterns can 

be recognized anywhere by convolutional layers [54].  

 While adding more convolution layers to CNN, the network learns more 

complex features, as shown in Figure 1.30. However, adding more layers reduce the 

trainability of the model. 

 

(1.3) 
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Source: [54] 

Figure 1.30: CNN Spatial Hierarchy Example 

 

 The convolution process can be performed in single-dimensional space and 

two-dimensional space. A convolution process in a single-dimensional space can be 

exampled as represented in Figure 1.31, where the time is a spatial dimension. This 

figure shows that 1D convolution applies to the time series data, and the subsequence 

data is generated. This process reduces input length and creates local patterns for 

recognition after the model training phase.  

 

 

Source : [54] 

Figure 1.31: 1D Convolution Example 
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 Goodfellow et al. pointed out three ideas of Convolution Neural Networks: 

sparse interactions, parameter sharing, and equivariant representations [55].  

 While in traditional neural network layers, each input and output interacted 

with each other, there is sparse interaction or lightweights in CNN due to the kernels 

making input smaller. So fewer parameters are stored, the efficiency of the network 

increases, and the memory requirements decrease. 

 In neural networks, each weight of a layer is used once when computing. 

However, in CNN, each kernel cell is used in every possible input with parameter 

sharing meta and provides learning more related features in one set instead of separate 

sets. 

 The parameter sharing attribute of CNN provides equivariance to the 

translation process; thus, output changes when the input change. Goodfellow et al. also 

pointed out the equivariance in time series with convolution [55]. 

 Goodfellow et al. modeled CNN with three steps, as shown in Figure 1.32. At 

the first step, different convolution processes are performed parallel; at the second step, 

non-linear activation functions are performed, also called the detector stage. The 

pooling function is applied at the last step, and output is modified while summarizing 

nearby data cells for the following uses. 
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Source: [55] 

Figure 1.32: The CNN Model Referred by Goodfellow et al. 

 

 Convolution layers are generally good at generating features for short-time 

dependencies. Although their performance can be increased with Max Pooling, a 

residual connection represented in Figure 1.33 transfers previous downstream data to 

a later next layer for maintaining dependencies. In addition to Max Pooling and 

residual connection methods, graph-based networks such as RNNs can also be used.  

 Like residual connections, Batch Normalization can prepare deeper network 

models. The data was maintained batch-wise with an exponential moving average 

during training and increased gradient propagation performance. 
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Source: [54] 

Figure 1.33: Residual Connection 

 

1.3.5 Recurrent Neural Networks 

 When1D Convolution Networks are investigated on time series, and the 

network shares parameters across the time; however, this is shallowed. Although the 

parameters sharing method of CNN, in Recurrent Neural Networks (RNN) internal 

loop feedback to the output of the layer to its input. 

 Figure 1.34 shows that simple RNN application over time. The current time is 

represented with the t value. The output of the RNN block is held and directed to the 

RNN block at t+1 time. So the state is covered and transferred. Thus each state memory 

of the previous block is transmitted to the future while the network is working. 

However, long-term dependencies are missing in RNNs. 

 

 

Source: [54] 

Figure 1.34: Simple RNN Application Over Time 
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1.3.5.1 Vanishing Gradient 

 For Feedforward Neural Networks, adding more layers makes the network 

untrainable [54]. In contrast, RNNs are good at learning for short periods. 

Untrainability occurs with Vanishing Gradient Problem as happened in Feedforward 

Networks. The feedback data provided with the Back Propagation algorithm become 

weak or completely lost deeper or longer propagation, then the network becomes 

untrainable.  

 

1.3.5.2 Lstm & Gru 

  Hochreiter and Schmidhuber developed the Long Short-Term Memory 

(LSTM) algorithm to solve The Vanishing Gradient Problem [56]. In Figure 1.35, a 

block diagram of the LSTM is represented. In the given figure, forget gate determines 

what to forget at the last data, the input gate determines what will be written to the 

internal cell state, and the output gate is responsible for extracting features for the 

output of the cell whether the block is used in the last sequence or not. 

 

 

Figure 1.35: LSTM Block Diagram 
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Figure 1.36: GRU Model 

 

 Gated Recurrent Unit (GRU), one of the LSTM variations, does not need to 

maintain an internal state instead of the original LSTM. The information stored in the 

internal state is wide into the hidden state of GRU.  

 As shown in Figure 1.36, there are also three gates in GRU Model as like 

LSTM. Reset gate(rt) at the first phase, a combination of input and forgets gate of 

LSTM, determines how much memory will be forgotten and how much information 

will be passed from the previous block. Update gate (zt) decides how much data will 

be transferred to the next block, like the output gate of LSTM. Furthermore, the 

Current Memory Gate is responsible for what will be forgotten from the previous 

block's data at the last phase. 

 

1.3.6 Transformers 

 In 2017 Vaswani et al. proposed a Transformer model [34], as illustrated in 

Figure 1.37. Their sequence to sequence model is built with an encoder and decoder 

structure. In their autoregression model, While the encoder maps the input sequence, 

the decoder generates an output sequence both they have multi-head self-attention 

layers. Their work named “Attention is All You Need” described the attention function 

with mapping queries with related key and value paired vectors. The output of the 

attention function is generated with the summing of values computed by the 

compatibility function of the query and its corresponding key. 
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Source: [34] 

Figure 1.37: Transformer Model 

 

1.3.6.1 Scaled Dot-Product Attention 

 In Scaled Dot-Product Attention, as given in Figure 1.38, the attention is 

calculated with a formula illustrated in Equation 1.4. The dot product is applied to 

Query(Q) and Key(K) matrices, and the result is scaled with the square root of the Key 

matrix’s dimension. Then Softmax function is applied for defining weight values. 

Vaswani et al. pointed out that attention of queries is computed and packed with query 

matrix simultaneously and packing keys and Values(V) together. 

 

Attention(Q,K,V)=SoftMax(
QKT

√dK

)V (1.4) 
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Source: [34] 

Figure 1.38: Scaled Dot Product Attention 

 

 Unlike the additive attention offered by Bahdanau et al. [57], dot-product 

attention is faster and more efficient for matrix multiplication [34]. 

 

1.3.6.2 Multi-Head Attention 

 Vaswani et al. applied their attention mechanism for linearly projected queries 

parallel for extracting essential information from different subspaces. These extracted 

information concentrates these attention layers’ results, as illustrated in Figure 1.39. 

They also pointed out that reducing dimension in attention heads provides similar 

computational costs like single attention used fully dimensional data.   

 

 

Source: [34] 

Figure 1.39: Multihead Attention 
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1.3.6.3 Advantages of Attention 

 Advantages of self-attention can be summarized concerning the work of 

Vaswani et al. [34] 

• Keys, Queries and Values are coming from the same place so that each position 

can be related to previous positions, in other words, all positions. 

• Scaled dot-product attention by masking values at the input for preventing 

unwanted connections. 

• Attention computation can be parallelized, and this operation shows the exact 

cost as fully dimensional single attention 

• Long-term dependencies can be learned with shorter paths. 

• Self-attention computations are faster than recurrent layers, so they can be 

trained faster. 

• The convolution operation is expensive when compared with the recurrent 

process. However, Self-Attention and pointwise Neural networks have the 

same complexity and are faster. 

 

1.4 CONTRIBUTION OF THESIS 

 Although there are only accelerometer data used works, unlike many other 

works used combination of different wearable sensor data. In this thesis, only 

accelerometer data is used. The proposed method shows its performance on the 

HANDY dataset for classifying the person’s activities and the person. 

 Concerning the proposed model by different researchers as mentioned above 

in the Previous Work section, a lightweight model is aimed in this thesis. 3 

Convolution Layers are used for feature extraction, and a single Multi-Head Attention 

Layer is used for relating long-term dependencies in the time series data provided at 

the input stage. The model finalized with SoftMax classifier ended Neural Network. 

 The proposed model gave more successful results than the methods proposed 

by Açıcı et al. Instead of LSTM or RNN, the attention mechanism used in this work 

showed faster performance. 
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  CHAPTER II  

 

METHODS 

 

 In this thesis, the HANDY dataset collected by Açıcı et al. was used for 

classifying participants’ activities. The HANDY dataset has different sensor data, 

which is explained in detail in the next chapter. However, only accelerometer data is 

used in this work due to the advantages of only-accelerometer data. 

 Sampled accelerometer data is positioned in the participant’s wrist divided into 

fixed-length sequence chunks for training and testing.  

 There are some assumptions are made for experiencing the HAR process with 

HANDY in this thesis: 

• Nine different activities are evaluated, and 4 seconds length windows are used 

for each activity for every unique person are used as input. It is thought that all 

unique features for activities in a length of 4 seconds can be determined. 

• Not all signal data for an activity and the participant who performs it are used. 

It is assumed that periodic movements have occurred during all the collecting 

phases. Despite that, a part of the collection has to be enough. 

• In the dataset, data rows whose data is missing are ignored. Due to the 

periodicity of the activity. It is assumed that ignored data row can be 

maintained during the training phase with its periodic representation due to the 

long-term dependency performance of attention layers. 

• As mentioned before, accelerometer data is noisy. Another assumption is made 

regarding ignoring the confusing effect of noise in the CNN layer.  

 

 

 

 

 

 



 

34 

 

2.1 MODEL ARCHITECTURE 

 

 

Figure 2.1: Proposed Model 

 

2.2 PREPROCESSING 

 As mentioned before, at the preprocessing step in training, input data is divided 

into sub-segments, and these segments are labeled according to the activity type or 

person they belong to. Low noise accelerometer data is extracted with x, y and z axes 

in the HANDY dataset. Also, in case of missing data, in this step, missing data is 

ignored. Relying upon the periodicity of input data and long-term maintaining 

specification of attention layer, missing data sequences are ignored. 
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 Four seconds length subsequences are derived from the chunk data. It means 

that 208 samples were derived from multiplying of 4 seconds and 52Hz sample rate. 

The input data is augmented with a 208 sample length sliding sample window one by 

one sample. 

 

2.3 CONVOLUTION LAYER 

 The proposed model has three levels of one-dimensional convolutional layers. 

From the first to last layer, learning more abstract to more complex features is aimed 

at Chollet mentioned before [54]. Max Pooling is also used in these layers for down-

streaming data and maintaining dependencies. As mentioned in DanHAR [20] before, 

also fine-tuning channel-wise attention is aimed too. Also, Dropout Algorithm applied 

in each convolution block for generating randomization, thus making a more general 

method is aimed. 

 

2.4 ATTENTION LAYER 

 At the attention layer using the Multi-Head Attention mechanism, maintaining 

long-term dependencies is aimed. Instead of LSTM or RNN, attention mechanisms 

performed faster too.  

 

2.5 FEED FORWARD LAYER 

 A traditional Feed Forward Neural Network ended with Softmax classifier is 

used for meaning output of sequences. The Dropout process is used in hidden layers 

for overcoming the overfitting problem. 
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  CHAPTER III  

 

EXPERIMENTAL SETUP 

 

3.1 DATASET 

 Açıcı et al. [58] drew attention to the widespread use of wearable devices and 

the advantages of identifying the different contexts of people who use them. They 

collected motion data from wrist-worn sensors and classified these data for different 

contexts such as activity recognition and person recognition 

 Activities are collected with a 52Hz sample rate, and there are 28 attributes for 

each sample as raw and calibrated. Timestamp (milliseconds), low noise and wide 

range accelerometer samples for x, y and z axes(m/s2), gyroscope samples for x, y and 

z axes (°/s2), magnetometer samples for x, y and z axes (°/s2) and voltage sample (mV) 

types are contained with their raw data. 

 Their dataset contains time series of wrist-worn accelerometer, gyroscope and 

magnetometer sensor data collected from 30 different people(aysu, bahadir, baris, 

berrak, denizhan, didem, dilara, doguhan, ezgi, furkan, hande, hasan, hatice, kenan, 

mert, mertdem, merve, nazli, nihal, nusret, onder, onur, onurbes, ozkan, sahika, salih, 

selcuk, sena, seren, tolga) whose names replaced with fake ones perform nine different 

activities listed below.  

• Chopping: Chopping thick Doug with a small knife for about 60 seconds. 

• Cleaning Table: Wiping the 150 cm×110 cm table with a small cloth for 30 

seconds, starting from the upper left corner two times without holding hands. 

• Cleaning Window: Wiping the 140 cm×55 cm table with a small cloth for 30 

seconds, starting from the upper left corner two times without holding hands. 

• Drinking Water: Drinking all water from a 33 cc porcelain glass in 

approximately

30 seconds. 

• Eating Soup: Eating soup with a spoon for about 50 seconds from a 33 cc 

porcelain cup. For the measurements, water was used instead of soup. 
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• Kneading Dough: Kneading about 30g of dough for 60 seconds. 

• Using  a  Tablet  Computer:   Playing the first level of inflating balloons game 

on the tablet in 60 seconds. 

• Using a Computer Mouse:  Moving 20 files in a folder on the left of the 

computer screen to another folder on the right of the screen within 60 seconds 

by dragging and dropping using the mouse. 

• Writing with a Pen: Writing 359 characters of text on A4 paper in 100 to 120 

seconds using a standard pen. 

• Writing with a Keyboard: Writing 359 characters of text with the keyboard 

in 80 to 100 seconds. 

 These listed activities have a satisfying number of labels for each activity 

sample, as shown in Figure 3.1. 

 

 

Figure 3.1: Number of Labels for Activities of HANDY Dataset 

 

 Furthermore, labels of different persons for different activities are given the 

heatmap represented in Figure 3.2. 
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Figure 3.2: Number of Labels for Person vs. Activity in HANDY Dataset 

 

 

Figure 3.3: Accelerometer Data of Cleaning Window Activity by Aysu 
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3.1.1 Dataset Usage 

 In this thesis, only low noise accelerometer data values are used for 

classification. Sample accelerometer measurement data is given below in Figure 3.3, 

which is cleaning activity performed by aysu, where accx is accelerometer data of x-

axis and other lines representing corresponding axes values. 

 

3.2 HARDWARE SPECIFICATIONS 

 With the power of Tensorflow, the proposed model was developed with Python 

language in Windows Operating System. The development media have 16 GB Ram 

and 2.60GHz i7-6700HQ CPU. Although GPU support of Tensorflow, the model 

performance in less capable hardware configuration is examined. 

 

3.3 EXPERIMENTS 

 There are two different experiment groups performed. One is for activity 

classification, and the other is for person classification concerning specific activities. 

For all experiments offered, the model was tested with the following modifications:  

• Using LSTM layer instead of Attention Layer, 

• Using file levels Convolution Layer instead of three, 

• Without Optimization in Feed Forward network. 

 For the first experiment group, all accelerometer data rows are processed. 

These rows are labeled concerning activity and the person who performed the related 

activity, and then two label sets are generated for each row. Only related activity data 

is processed and labeled with persons who performed the related activity for the second 

experiment group. 

 There are wrong formatted data cells in the accelerometer columns in the 

HANDY dataset. During the data preprocessing, the rows containing incorrectly 

formatted data are ignored. Also, test and train data split in the preprocessing phase. 

75% of the time series at the beginning is used for generating training data, and the 

other 25% is used to generate test data. This process is used for each person-activity 

pair for the first experimental group and each name for the second experiment group.  

 Because investigating the four-second length data, 75%-25% splitting means 

that 3 seconds continuous data is used for training, and the following one-second 

length continuous data is used to test the model.  



 

40 

 

 This thesis assumed one-second length accelerometer data is enough to classify 

with this approach. So test data is generated by collecting one-second length windows 

with one data point shifted, and about 1/52Hz = 0.019 second shifted one-second 

length data frames are generated. 

 Performed experiments are designed to investigate fastly trainable networks 

for this purpose; 16 epochs are performed for the fitting model with the data. 

Moreover, the main objective of the models is classifying activities and persons who 

performed specific activities. For this cause, a categorical cross-entropy loss 

performance parameter is used to measure the proposed model's success. Finally, the 

computational efficiency, performance for noisy data benefits, adam optimization 

algorithm is used at the end of the model. 
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  CHAPTER IV  

 

RESULTS 

 

4.1 EXPERIMENTAL RESULTS 

 All experiments are performed with modified models in addition to the 

proposed model. The modified model replaced Attention Layer with LSTM Layer 

annotated the tables with ‘Lstm Replaced’. The model has a five-level Convolution 

Layer annotated with ‘5 Level Convolution’ and without Adam Optimizer 

modifications of the reference, model annotated with ‘No Optimization’ in the 

following tables. 

 For the first experiment group, activity classification was performed with all 

persons and activities for the proposed model and its modifications. At the following 

Table 4.1, accuracy results and training times are represented. 

 

Table 4.1: Results of First Experiment Group 

Results of First Experiment Group 

  

Elapsed Time 

(s) 

Validation 

Loss 

Validation 

Accuracy 

A
ct

iv
it

y
 Reference Model 808.176 0.359 0.935 

Lstm Replaced 917.023 0.33 0.954 

5 Level Convolution 791.041 0.3 0.924 

No Optimization 832.544 0.883 0.948 

P
er

so
n

 Reference Model 810.578 1.964 0.485 

Lstm Replaced 918.615 0.654 0.857 

5 Level Convolution 788.742 1.006 0.741 

No Optimization 825.85 3.685 0.11 

 

 As shown in Table 4.1, for activity classification, regardless of who performed 

it, the Lstm Replaced model has the best performance. Moreover, the 5 Level 

Convolution model has less elapsed time. However, the Reference model has 

satisfying validation accuracy compared with the Lstm Replaced model and better 

Elapsed Time result.  
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 At the same time, instead of higher elapsed time when compared to 5 Level 

Convolution modification, the proposed model has better Validation Accuracy. At last, 

the ‘No Optimization’ model has slightly better Validation Accuracy but has worse 

training time performance and higher Validation Loss. The proposed model without 

any modification has optimal performance when considering these implications. 

 

 

Figure 4.1: Reference Model Performace for Activity Classification 

 

 The training history of the proposed model is given in Figure 4.1. The figure 

shows that the loss increases suddenly at the eleventh epoch besides spikes on loss 

curves, which slightly decreases the accuracy at the same epoch. However, the training 

process maintained its accuracy in the following epochs. 
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Figure 4.2: Validation Accurices of Proposed and Modified Models 

 

  As shown in Figure 4.2, 5 Level Convolution modification has more smooth 

accuracy performance than others; however, other models have better validation 

accuracy rates at the end of the training. Nevertheless, as shown in Figure 4.3, the ‘No 

Optimizer’ version of the proposed model has unexpected loss function spikes. This 

nature can be repeated for any epoch when using more epochs. The risks of the ‘No 

Optimizer’ version and training time of the ‘Lstm Replaced’ version of the proposed 

model are not ideal compared with the reference model. 

 

 

Figure 4.3: Validation Accurices of Proposed and Modified Models 
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Figure 4.4: Reference Model Performance for Person Classification 

 

 The proposed model has poor performance for person classification without 

splitting activities, as shown in Figure 4.4. Loss values are too high, and accuracy 

values are not satisfied. However, the ‘Lstm Replaced’ version model has satisfying 

accuracy values but high validation loss values as shown in Figure 4.5. Nevertheless, 

all four models have worse validation losses; as a result, the proposed model is not 

available for person classification for using different activity types together. 

 

 

Figure 4.5: Lstm Replaced Model Performance for Person Classification 

 

 Activity-specific person classification results are shown in Table 2. Tablet 

refers to ‘Using a  Tablet  Computer’ activity, Pen refers to ‘Writing with a Pen’ 

activity, and Keyboard refers to ‘Writing with a Keyboard’ activity. 
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Table 4.2: Results of Second Experiment Group 

Results  of Second Experiment Group 

  

Elapsed Time 

(s) 

Validation 

Loss 

Validation 

Accuracy 
T

a
b

le
t 

Reference Model 90.003 0.011 0.995 

Lstm Replaced 101.406 0.722 0.887 

5 Level Convolution 87.919 0.262 0.966 

No Optimization 91.64 2.38 0.273 

P
en

 

Reference Model 89.98 2.019 0.368 

Lstm Replaced 101.897 0.551 0.921 

5 Level Convolution 87.895 0.377 0.844 

No Optimization 91.596 3.128 0.1 

K
ey

b
o
a

rd
 Reference Model 90.165 0.421 0.903 

Lstm Replaced 101.982 0.875 0.877 

5 Level Convolution 87.914 0.378 0.908 

No Optimization 91.767 1.622 0.49 

  

 For Tablet experiments, the proposed model has the best Validation accuracy 

with satisfying training time. For Pen experiments, the surprisingly proposed model 

has worse Validation Accuracy. However, the Lstm Replaced version has satisfying 

Validation Accuracy but has bad Validation Loss. The proposed model has satisfying 

results for Keyboard experiments, and 5 Level Convolution modification has the best 

results. 

 When all the experiment results are examined, it can be concluded that the 

proposed model has the most relevant results for training time validation accuracy and 

validation loss parameters except Pen experiments. For a detailed explanation, model 

training histories can be investigated. 
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Figure 4.6: Person Classification Performance of the Proposed Model for Writing with a 

Pen Activity 

 

 The proposed model has poor person identification performance for the 

‘Writing with a Pen’ activity, as shown in Figure 4.6, causes of high loss rates and low 

accuracy rates. However, the ‘5 Level Convolution’ modification has a smooth loss 

curve and acceptable accuracy rate at the end of the model as shown in Figure 4.7. 

Nevertheless, unexpected spikes in the high loss curve whose mean value is high. 

 

 

Figure 4.7: Person Classification Performance of the ‘5 Level Convolution’ Modification 

for ‘Writing with a Pen’ Activity 
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Figure 4.8: Person Classification Performance of the Proposed Model for 'Using a Tablet 

Computer' Activity 

 

 Person identification performance of the proposed model for 'Using a Tablet 

Computer' activity has enough good learning curves without validation loss value in 

the fifth epoch, as shown in Figure 4.8. Moreover, as shown in Figure 4.9, the proposed 

model has acceptable learning performance values for the ‘Writing with a Keyboard’ 

activity. Although the loss curve is relatively smooth, the validation loss curve has 

spikes.  

 

 

Figure 4.9: Person Classification Performance of the Proposed Model for 'Writing with a 

Keyboard' Activity 
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4.2 EMPIRICAL RESULTS 

 When the proposed model results are compared with the work of Açıcı et al., 

whose work is the first for using the HANDY dataset, the proposed model has better 

performance except person identification for ‘Writing with a Pen’ activity shown in 

Table 3,4,5 and 6. However, increasing the Convolution Layers from three to five, the 

modified version of the proposed model shows better performance against the work of 

Açıcı et al.. 

 

Table 4.3: Activity Classification Accuracies 

Model Accuracy (%) 

kNN 44.7 

AdaBoost 21.2 

Decision Tree 54.1 

Random Forest 72.2 

Proposed Method 93.5 

 

Table 4.4: Person Identification Accuracies for Using a Tablet Computer Activity 

Model Accuracy (%) 

kNN 26.4 

AdaBoost 6.3 

Decision Tree 59.9 

Random Forest 78.4 

Proposed Method 99.5 

 

Table 4.5: Person Identification Accuracies for Writing with a Pen Activity 

Model Accuracy (%) 

kNN 22.1 

AdaBoost 8.2 

Decision Tree 82.7 

Random Forest 82.9 

Proposed Method 36.8 

Modified Method  

(5 Level Convolution) 

84.4 

 

Table 4.6: Person Identification Accuracies for Writing with a Keyboard Activity 

Model Accuracy (%) 

kNN 20.3 

AdaBoost 8.9 

Decision Tree 55.1 

Random Forest 67.8 

Proposed Method 90.3 

 

 

 



 

49 

 

  CHAPTER V  

 

CONCLUSION 

 

5.1 ACHIEVEMENTS 

 As given in Results Section, the proposed model has better performance than 

the Machine Learning models used in the work of Açıcı et al. except for the person 

identification for ‘Writing with a Pen Activity’. Nevertheless, the number of 

Convolutional Layers increased from three to five for improving the model, and the 

modified version of the proposed model shows better results against the work of Açıcı 

et al.. 

 Using single-dimensional convolution layers for feature extraction of time 

series data and relating these data with Multi-Head Attention Layer with covering 

long-term dependencies before Feed Forward Neural Network improved activity 

classification and identification of person performance for the HANDY dataset. 

 

5.2 LIMITATIONS OF MODEL 

 Due to the performance of the proposed model having satisfying results, as 

shown in validation loss graphics, there are overshoot points. During the training phase 

of the model, in the worst-case scenarios where the epoch number coincides with these 

over-shoot points, the success of the model will decrease considerably. 

 

5.3 FUTURE WORKS 

 The proposed model can be modified for future works to eliminate overshoots 

during the training phase, and more consistent models can be trained. Also, as in the 

given works in the Recent Works section, input data can be concentrated to the output 

of the attention layer before Feed Forward Neural Network can improve the model 

performance, especially for long-term dependencies
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