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a b s t r a c t

In this work, the distributed-order time fractional version of the Schrödinger problem
is defined by replacing the first order derivative in the classical problem with this
kind of fractional derivative. The Caputo fractional derivative is employed in defining
the used distributed fractional derivative. The orthonormal piecewise Jacobi functions
as a novel family of basis functions are defined. A new formulation for the Caputo
fractional derivative of these functions is derived. A numerical method based upon
these piecewise functions together with the classical Jacobi polynomials and the Gauss–
Legendre quadrature rule is constructed to solve the introduced problem. This method
converts the mentioned problem into an algebraic problem that can easily be solved.
The accuracy of the method is examined numerically by solving some examples.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The precedent of fractional calculus dates back to more than 300 years ago [1]. This topic is an extension of the
raditional one that studies derivative and integral operators whose order may be non-integer. It has been shown that
ractional operators have diverse applications in science and engineering [1]. Indeed, the lucrative attributes of these
perators, such as a greater degree of freedom than the ordinary ones and their memory attributes have made it suitable
or these extensive applications [2–4]. In addition, a lot of attention has been paid to the numerical solution of fractional
quations in recent years. For instance, see [5–9].
As a generalization of the classical fractional derivatives, the distributed-order fractional derivatives are defined by the

ntegration of the classical ones over the order of the derivative within a specific domain [10,11]. These types of derivatives
lay a middle role between the ordinary and fractional derivatives [12]. Differential equations defined by these fractional
erivatives can be seen as generalizations of single- and multi-order fractional differential equations [11,13]. During the
ast years, such differential equations have been successfully applied to more accurately model diverse problems in the
ields of electrochemistry [14], signal processing [15], control [16], viscoelastic [17], diffusion [18] and etc.

The Schrödinger equation is an illustrious differential equation that mostly becomes manifest in physical problems [19]
t describes the quantum treatment alteration of disparate physical systems relative to time [19]. More precisely, this
quation explains the transmutation of a wave package of low rate alteration in amplitude in weak systems with very
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dispersive mediums [20]. The fractional models of this equation play a vital role in quantum mechanics [21]. Recently,
much attention has been paid to the numerical solution of fractional forms of this equation. In [22], the Legendre spectral
method is used to solve a fractional form of the one- and two-dimensional Schrödinger equations. A numerical method
based upon the reproducing kernel theory and collocation approach is developed in [23] for the time fractional form of
this problem. In [24], the linearized compact ADI algorithms are adopted for the time fractional version of this equation.
A hybrid approach based on the clique functions is proposed in [25] to solve space–time fractional form of this problem.

Due to the importance of the fractional form of this problem, in this paper, with the help of distributed-order fractional
erivatives, we introduce another fractional version of this equation and present a numerical method to solve it. So, we
oncentrate on the distributed-order time fractional problem

i
∫ 1

0
ρ(α) C0D

α
t Ψ (z, t)dα + σΨzz(z, t) + η|Ψ (z, t)|2Ψ (z, t) + w̃(z)Ψ (z, t) = G (z, t) , (z, t) ∈ [0, a] × [0, b] , (1.1)

under the conditions

Ψ (z, 0) = Ψ̂ (z), (1.2)

and

Ψ (0, t) = Ψ̃0(t), Ψ (a, t) = Ψ̃1(t), (1.3)

where i =
√

−1 is the imaginary unit, Ψ is the undetermined solution of the problem, w̃ is a real function (expresses the
rapping potential), G, Ψ̂ , Ψ̃0 and Ψ̃1 are known functions, and σ and η are real numbers. Also, C

0D
α
t Ψ (z, t) is the Caputo

ractional derivative of order α relative to t of Ψ . Moreover, the distribution function ρ : [0, 1] −→ R+ satisfies the
following conditions [26]:

∀ α ∈ [0, 1], ρ(α) > 0, and
∫ 1

0
ρ(α)dα = c0 > 0.

Piecewise basis functions manufactured by the orthogonal polynomials possess many lucrative properties, such as
exponential accuracy, orthogonality, and locality [27]. During the last years, these functions have been efficiently employed
to construct appropriate methods for solving diverse problems. The orthonormal piecewise functions constructed using
the Legendre cardinal polynomials are applied in [28] for the fractional version of the Riccati equation. The orthonormal
piecewise functions generated by the Chebyshev cardinal polynomials have been used in [29] to solve fractional
optimization problems. The orthonormal piecewise functions generated based on the Legendre polynomials are utilized
in [30] for partial differential equations, in [31] for integro-differential equations and in [32] for fractional differential
equations. The orthonormal piecewise functions defined using the Taylor polynomials are employed in [33] to construct
a numerical method for fractional delay optimization problems.

To solve the above expressed equation, we first define another class of the piecewise functions called the orthonormal
piecewise Jacobi functions (JFs) and then obtain some useful properties about them. After that, we proposed a hybrid
method based on the orthonormal Jacobi polynomials (JPs) and orthonormal piecewise Jacobi functions. In fact, we expand
the solution of the problem in terms of the orthonormal JPs (in the spatial domain) and orthonormal piecewise Jacobi
functions (in the temporal domain) simultaneously. By computing fractional derivative of the orthonormal piecewise
JFs, employing the Gauss–Legendre quadrature formula as well as applying the derivative operational matrix of the
orthonormal Jacobi polynomials and the collocation approach, we transform solving this problem into solving an algebraic
system. The credibility of the method is examined in some examples.

This article is arranged as follows: Required preliminaries about fractional calculus are given in Section 2. The
orthonormal JPs and piecewise Jacobi functions are defined in Section 3. Some matrix relationships regarding the
orthonormal JPs and orthonormal piecewise JFs are obtained in Section 4. The numerical technique is explained in
Section 5. Some examples are provided in Section 6. The conclusion of this study is provided in Section 7.

2. Definitions and preliminaries

Here, we provide some preparations about fractional calculus that are needed in this study.

Definition 2.1 ([1]). The Mittag-Leffler function is defined as

Eµ(t) =

∞∑
j=0

t j

Γ (jµ + 1)
, µ ∈ R+, t ∈ C. (2.1)

efinition 2.2 ([1]). Let g is a differential function over [c1, c2] and 0 < α ≤ 1 is a real number. The Caputo fractional
derivative of order α of g is given by

C
c1
Dα
t g(t) =

⎧⎨⎩
1

Γ (1 − α)

∫ t

c1

(t − s)−αg ′(s)ds, 0 < α < 1,

′

(2.2)

g (t), α = 1.

2
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Note that for α = 0, we have C
c1
D0
t g(t) = g(t).

Property 2.3 ([1]). For 0 < α < 1 and k ∈ N ∪ {0}, we have

C
c1
Dα
t (t − c1)k =

⎧⎨⎩
0, k = 0,

k! (t − c1)k−α

Γ (k − α + 1)
, k = 1, 2, . . . .

(2.3)

. Orthonormal Jacobi polynomials and piecewise Jacobi functions

Here, we introduce the orthonormal JPs and employ them to define piecewise JFs.

.1. Orthonormal Jacobi polynomials

The JPs are defined on [0, b] as follows [34]:

Ĵ (β,γ )
b,0 (t) = 1,

Ĵ (β,γ )
b,1 (t) =

1
2

(β + γ + 2)
(
2
b
t − 1

)
+

1
2

(β − γ ) ,

Ĵ (β,γ )
b,j+1(t) =

(
a(β,γ )
j

(
2
b
t − 1

)
γ − b(β,γ )

j

)
Ĵ (β,γ )
b,j (t) − c(β,γ )

j Ĵ (β,γ )
b,j−1(t), j ≥ 1,

where β > −1 and γ > −1 are given constants, and

a(β,γ )
j =

(2j + β + γ + 1)(2j + β + γ + 2)
2(j + 1)(j + β + γ + 1)

,

b(β,γ )
j =

(
γ 2

− β2
)
(2j + β + γ + 1)

2(j + 1)(j + β + γ + 1)(2j + β + γ )
,

c(β,γ )
j =

(j + β)(j + γ )(2j + β + γ + 2)
(j + 1)(j + β + γ + 1)(2j + β + γ )

.

The above polynomials can also be generated as follows [34]:

Ĵ (β,γ )
b,j (t) =

j∑
k=0

ĥ(β,γ )
b,jk tk, j ≥ 0, (3.1)

here

ĥ(β,γ )
b,jk =

⎧⎨⎩
1, j = 0,

(−1)j+k Γ (j + γ + 1)Γ (j + k + β + γ + 1)
bkk!(j − k)!Γ (k + γ + 1)Γ (j + β + γ + 1)

, j > 0.

The set {Ĵ (β,γ )
b,j (t)}∞j=0 produces an orthogonal set over [0, b] with respect to the weigh function

w
(β,γ )
b (t) =

(
2
b

)β+γ

(b − t)β tγ .

In addition, the orthogonal property of these polynomials is as follows:∫ b

0
Ĵ (β,γ )
b,i (t)Ĵ (β,γ )

b,j (t)w(β,γ )
b (t)dt = δijσ

(β,γ )
b,i , (3.2)

here δij is the Kronecker delta, and

σ
(β,γ )
b,i =

b
2

⎧⎪⎪⎨⎪⎪⎩
2β+γ+1Γ (β + 1)Γ (γ + 1)

Γ (β + γ + 2)
, i = 0,

2β+γ+1Γ (i + β + 1)Γ (i + γ + 1)
(2i + β + γ + 1)i!Γ (i + β + γ + 1)

, i > 0.

ased on the JPs, we define the orthonormal JPs over [0, b] by the following formula:

J (β,γ )
b,j (t) =

j∑
h(β,γ )
b,jk tk, j ≥ 0, (3.3)
k=0

3
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where

h(β,γ )
b,jk =

ĥ(β,γ )
b,jk√
σ

(β,γ )
b,j

.

Any function f ∈ L2wb
([0, b]) can be expanded via the orthonormal JPs as follows:

f (t) ≃

M̂−1∑
j=0

f (β,γ )
b,j J (β,γ )

b,j (t) ≜
(
F(β,γ )
M̂

)T
J(β,γ )
b,M̂

(t), (3.4)

here M̂ ∈ Z+,

F(β,γ )
M̂

=

[
f (β,γ )
b,0 f (β,γ )

b,1 . . . f (β,γ )
b,M̂−1

]T
,

ith

f (β,γ )
b,j =

∫ b

0
w(β,γ )(t)f (t)J (β,γ )

b,j (t)dt,

and

J(β,γ )
b,M̂

(t) =

[
J (β,γ )
b,0 (t) J (β,γ )

b,1 (t) . . . J (β,γ )
b,M̂−1

(t)
]T

. (3.5)

3.2. Orthonormal piecewise Jacobi functions

The orthonormal piecewise JFs can be defined over [0, b] as

ϕ
(β,γ )
b,nm (t) =

⎧⎨⎩
√
NJ (β,γ )

b,m (Nt − nb) , t ∈

[
nb
N

,
(n + 1)b

N

]
,

0, otherwise,
(3.6)

here N,M ∈ Z+, n = 0, 1, . . . ,N −1 and m = 0, 1, . . . ,M−1. They are orthonormal with respect to the weigh function

w
(β,γ )
b,n (t) =

⎧⎨⎩
(
2
b

)β+γ

((n + 1)b − Nt)β (Nt − nb)γ , t ∈

[
nb
N

,
(n + 1)b

N

]
,

0, otherwise,
(3.7)

here n = 0, 1, . . . ,N − 1. The orthonormal piecewise JFs can be employed to express a function g(t) ∈ L2wb,n
[0, b] as

ollows:

g(t) ≃

N−1∑
n=0

M−1∑
m=0

g (β,γ )
nm ϕ

(β,γ )
b,nm (t) ≜

(
G(β,γ )
NM

)T
Φ

(β,γ )
b,NM (t), (3.8)

here

G(β,γ )
NM =

[
g (β,γ )
00 g (β,γ )

01 . . . g (β,γ )
0(M−1)|g

(β,γ )
10 g (β,γ )

11 . . . g (β,γ )
1(M−1)| . . . |g (β,γ )

(N−1) 0 g (β,γ )
(N−1) 1 . . . g (β,γ )

(N−1) (M−1)

]T
,

ith

g (β,γ )
nm =

∫ b

0
w

(β,γ )
b,n (t)ϕ(β,γ )

b,nm (t)g(t)dt,

and

Φb,NM (t) =

[
ϕ
(β,γ )
b,00 (t) ϕ

(β,γ )
b,01 (t) . . . ϕ

(β,γ )
b,0(M−1)(t)|ϕ

(β,γ )
b,10 (t) ϕ

(β,γ )
b,11 (t) . . . ϕ

(β,γ )
b,1(M−1)(t)| . . .

|ϕ
(β,γ )
b,(N−1) 0(t) ϕ

(β,γ )
b,(N−1) 1(t) . . . ϕ

(β,γ )
b,(N−1) (M−1)(t)

]T
. (3.9)

.3. Hybrid approximation

A function u(z, t) defined on [0, a]×[0, b] may be approximated via the above two classes of basis functions as follows:

u(z, t) ≃

M̂−1∑ NM∑
u(β,γ )
ij J (β,γ )

a,i (z)ϕ̂(β,γ )
b,j (t) ≜

(
J(β,γ )
a,M̂

(z)
)T

U(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t), (3.10)
i=0 j=1

4
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where ϕ̂
(β,γ )
b,j (t) = ϕ

(β,γ )
b,nm (t) with j = nM + m + 1 for n = 0, 1, . . . ,N − 1 and m = 0, 1, . . . ,M − 1, and U(β,γ )

M̂×NM
=

[
u(β,γ )
ij

]
is an M̂ × NM matrix with entries

u(β,γ )
ij =

∫ b

0

∫ a

0
w(β,γ )

a (z)w(β,γ )
b,n (t)J (β,γ )

a,i (z)ϕ̂(β,γ )
b,j (t)u(z, t)dzdt, 0 ≤ i ≤ M̂ − 1, 1 ≤ j ≤ NM.

4. Operational matrices

In this section, some matrix relationships regarding the ordinary and fractional derivatives of the basis functions
introduced in the previous section are expressed.

Theorem 4.1. The differentiation of the vector J(β,γ )
b,M̂

(t) in (3.5) can be represented as

dJ(β,γ )
b,M̂

(t)

dt
= D(1,β,γ )

b,M̂
J(β,γ )
b,M̂

(t), (4.1)

here D(1,β,γ )
b,M̂

is an M̂ × M̂ matrix as

D(1,β,γ )
b,M̂

= A(β,γ )
b,M̂

D̂(1)
M̂

(
A(β,γ )
b,M̂

)−1
,

with

[
A(β,γ )
b,M̂

]
ij

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
2Γ (β + γ + 2)

b2β+γ+1Γ (β + 1)Γ (γ + 1)
, i = j = 1,

B(β,γ )
b,ij , 2 ≤ i ≤ M̂, 1 ≤ j ≤ i,

0, otherwise,

(4.2)

n which

B(β,γ )
b,ij = (−1)i+j Γ (i + γ )Γ (i + j + β + γ − 1)

bj−1(j − 1)!(i − j)!Γ (j + γ )Γ (i + β + γ )

√
2(2i + β + γ − 1)(i − 1)!Γ (i + β + γ )

b2β+γ+1Γ (i + β)Γ (i + γ )
,

nd [
D̂(1)

M̂

]
ij

=

{
i − 1, 2 ≤ i ≤ M̂, 1 ≤ j ≤ i − 1, i = j + 1,
0, otherwise.

(4.3)

roof. From (3.3) and (3.5), it is obvious that J(β,γ )
b,M̂

(t) can be rewritten as

J(β,γ )
b,M̂

(t) = A(β,γ )
b,M̂

⎛⎜⎜⎜⎜⎜⎝
1
t
t2
...

tM̂−1

⎞⎟⎟⎟⎟⎟⎠ ,

here the entires of the matrix A(β,γ )
b,M̂

are calculated using (4.2). Thus, we have

dJ(β,γ )
b,M̂

(t)

dt
= A(β,γ )

b,M̂

d
dt

⎛⎜⎜⎜⎜⎜⎝
1
t
t2
...

tM̂−1

⎞⎟⎟⎟⎟⎟⎠ = A(β,γ )
b,M̂

⎛⎜⎜⎜⎜⎝
0
1
2t
...

(M̂ − 1)tM̂−2

⎞⎟⎟⎟⎟⎠ = A(β,γ )
b,M̂

D̂(1)
M̂

⎛⎜⎜⎜⎜⎜⎝
1
t
t2
...

tM̂−1

⎞⎟⎟⎟⎟⎟⎠ ,

where the entires of the matrix D̂(1)
M̂

are computed using (4.3). Thus, from the above two relations, we get

dJ(β,γ )
b,M̂

(t)

dt
=

(
A(β,γ )
b,M̂

D̂(1)
M̂

(
A(β,γ )
b,M̂

)−1
)
J(β,γ )
b,M̂

(t) ≜ D(1,β,γ )
b,M̂

J(β,γ )
b,M̂

(t),

which completes the proof. □
5



M.H. Heydari, M. Razzaghi and D. Baleanu Communications in Nonlinear Science and Numerical Simulation 116 (2023) 106873

A

T

w

a

P
m

I

Corollary 4.2. From the above Theorem, we have

d2J(β,γ )
b,M̂

(t)

dt2
= D(1,β,γ )

b,M̂
× D(1,β,γ )

b,M̂
J(β,γ )
b,M̂

(t) ≜ D(2,β,γ )
b,M̂

J(β,γ )
b,M̂

(t). (4.4)

s a numerical example, for M̂ = 5, we have

D(1,1,1)
b,5 =

1
b

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

2
√
5 0 0 0 0

0
√
70 0 0 0

3
5

√
30 0

6
5

√
105 0 0

0 2
√
11 0 2

√
66 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, D(2,1,1)

b,5 =
1
b2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0

10
√
14 0 0 0 0

0 42
√
6 0 0 0

56
√
55

5
0

36
√
770

5
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

heorem 4.3. Assume ϕ
(β,γ )
b,nm (t) are the functions expressed in (3.6) and 0 ≤ α ≤ 1 is a real number. Then, we have

C
0D

α
t ϕ

(β,γ )
b,nm (t) ≜ ϕ̃

(β,γ )
b,nm (t, α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ
(β,γ )
b,nm (t), α = 0,

dϕ(β,γ )
b,nm (t)
dt

, α = 1,

ϕ
(α,β,γ )
b,nm (t), 0 < α < 1,

(4.5)

here

dϕ(β,γ )
b,nm (t)
dt

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, m = 0,⎧⎪⎨⎪⎩N

3
2

m∑
k=1

k h(β,γ )
b,mk (Nt − nb)k−1 , t ∈

[
nb
N

,
(n + 1)b

N

]
,

0, otherwise,

m = 1, 2, . . . ,M − 1,
(4.6)

and

ϕ
(α,β,γ )
b,nm (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, m = 0,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ
(α,β,γ )
b,nm (t), t ∈

[
nb
N

,
(n + 1)b

N

]
,

ϑ
(α,β,γ )
b,nm (t), t ∈

[
(n + 1)b

N
, b
]

,

0, otherwise,

m = 1, 2, . . . ,M − 1,
(4.7)

with

θ
(α,β,γ )
b,nm (t) = Nα+

1
2

m∑
k=1

k!h(β,γ )
b,mk

Γ (k − α + 1)
(Nt − nb)k−α , (4.8)

nd

ϑ
(α,β,γ )
b,nm (t) =

Nα+
1
2

Γ (1 − α)

m∑
k=1

kh(β,γ )
b,mk

{
k∏

l=1

1
l − α

k−1∏
l=1

(k − l) (Nt − nb)k−α

−

k∑
r=1

r∏
l=1

1
l − α

r−1∏
l=1

(k − l)

[
Nk−r

(
b
N

)k−r

(Nt − (n + 1)b)r−α

]}
. (4.9)

roof. For α = 0, the proof is obvious. For α = 1, from (3.3) and (3.6), we get
dϕ(β,γ )

b,n0 (t)
dt = 0. Meanwhile, for

= 1, 2, . . . ,M − 1, we have

dϕ(β,γ )
b,nm (t)
dt

=

⎧⎪⎨⎪⎩N
3
2

m∑
k=1

k h(β,γ )
b,mk (Nt − nb)k−1 , t ∈

[
nb
N

,
(n + 1)b

N

]
,

0, otherwise.

n the case of 0 < α < 1, from Property 2.3 and relations (3.3) and (3.6), we get
CDαϕ

(β,γ )(t) = 0,
0 t b,n0

6
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and for m = 1, 2, . . . ,M − 1, we obtain

C
0D

α
t ϕ

(β,γ )
b,nm (t) =

1
Γ (1 − α)

∫ t

0
(t − s)−α

dϕ(β,γ )
b,nm (s)
ds

ds

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
N

Γ (1 − α)

∫ t

nb
N

(t − s)−α d
ds

(
J (β,γ )
b,m (Ns − nb)

)
ds, t ∈

[
nb
N

,
(n + 1)b

N

]
,

√
N

Γ (1 − α)

∫ (n+1)b
N

nb
N

(t − s)−α d
ds

(
J (β,γ )
b,m (Ns − nb)

)
ds, t ∈

[
(n + 1)b

N
, b
]

,

0, otherwise.

(4.10)

sing (3.3) and (4.10), we obtain

C
0D

α
t ϕ

(β,γ )
b,nm (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N
1
2

Γ (1 − α)

m∑
k=1

kh(β,γ )
b,mk N

k
∫ t

nb
N

(t − s)−α

(
s −

nb
N

)k−1

ds, t ∈

[
nb
N

,
(n + 1)b

N

]
,

N
1
2

Γ (1 − α)

m∑
k=1

kh(β,γ )
b,mk N

k
∫ (n+1)b

N

nb
N

(t − s)−α

(
s −

nb
N

)k−1

ds, t ∈

[
(n + 1)b

N
, b
]

,

0, otherwise.

(4.11)

n addition, Property 2.3 yields∫ t

nb
N

(t − s)−α

(
s −

nb
N

)k−1

ds =
(k − 1)!Γ (1 − α)

Γ (k − α + 1)

(
t −

nb
N

)k−α

, (4.12)

nd integration by parts gives∫ (n+1)b
N

nb
N

(t − s)−α

(
s −

nb
N

)k−1

ds =

k∏
l=1

1
l − α

k−1∏
l=1

(k − l)
(
t −

nb
N

)k−α

−

k∑
r=1

r∏
l=1

1
l − α

r−1∏
l=1

(k − l)

[(
b
N

)k−r (
t −

(n + 1)b
N

)r−α
]

. (4.13)

ubstituting (4.12) and (4.13) into (4.11) gives

C
0D

α
t ϕ

(β,γ )
b,nm (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ
(α,β,γ )
b,nm (t), t ∈

[
nb
N

,
(n + 1)b

N

]
,

ϑ
(α,β,γ )
b,nm (t), t ∈

[
(n + 1)b

N
, b
]

,

0, otherwise,

where θ
(α,β,γ )
b,nm (t) and ϑ

(α,β,γ )
b,nm (t) are introduced in (4.8) and (4.9), respectively. Thus, the proof is completed. □

5. The proposed method

For gaining a numerical solution for the distributed-order time fractional problem introduced in (1.1)–(1.3), we let

Ψ (z, t) = Ψ1(z, t) + iΨ2(z, t), G(z, t) = G1(z, t) + i G2(z, t), Ψ̂ (z) = Ψ̂1(z) + i Ψ̂2(z),

Ψ̃0(t) = Ψ̃01(t) + i Ψ̃02(t), Ψ̃1(t) = Ψ̃11(t) + i Ψ̃12(t),
(5.1)

where Ψ1, Ψ2, G1, G2, Ψ̂1, Ψ̂2, Ψ̃01, Ψ̃02, Ψ̃11 and Ψ̃12 are real functions. This leads to the equivalent problem

i
(∫ 1

0
ρ(α) C0D

α
t Ψ1(z, t)dα + σΨ2zz(z, t) + η

(
Ψ 2

1 (z, t) + Ψ 2
2 (z, t)

)
Ψ2(z, t) + w̃(z)Ψ2(z, t) − G2(z, t)

)
−

(∫ 1

0
ρ(α) C0D

α
t Ψ2(z, t)dα − σΨ1zz(z, t) − η

(
Ψ 2

1 (z, t) + Ψ 2
2 (z, t)

)
Ψ1(z, t) − w̃(z)Ψ1(z, t) + G1(z, t)

)
= 0, (5.2)

or equivalently∫ 1

0
ρ(α) C0D

α
t Ψ1(z, t)dα + σΨ2zz(z, t) + η

(
Ψ 2

1 (z, t) + Ψ 2
2 (z, t)

)
Ψ2(z, t) + w̃(z)Ψ2(z, t) − G2(z, t) = 0,∫ 1

ρ(α) C0D
α
t Ψ2(z, t)dα − σΨ1zz(z, t) − η

(
Ψ 2

1 (z, t) + Ψ 2
2 (z, t)

)
Ψ1(z, t) − w̃(z)Ψ1(z, t) + G1(z, t) = 0.

(5.3)
0

7
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under the conditions

Ψ1(z, 0) = Ψ̂1(z), Ψ2(z, 0) = Ψ̂2(z), (5.4)

nd
Ψ1(0, t) = Ψ̃01(t), Ψ2(0, t) = Ψ̃02(t),

Ψ1(a, t) = Ψ̃11(t), Ψ2(a, t) = Ψ̃12(t).
(5.5)

o solve the system extracted in (5.3)–(5.5), we assume

Ψ1(z, t) ≃

M̂−1∑
i=0

NM∑
j=1

u(β,γ )
ij J (β,γ )

a,i (z)ϕ̂(β,γ )
b,j (t) ≜

(
J(β,γ )
a,M̂

(z)
)T

U(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t),

Ψ2(z, t) ≃

M̂−1∑
i=0

NM∑
j=1

v
(β,γ )
ij J (β,γ )

a,i (z)ϕ̂(β,γ )
b,j (t) ≜

(
J(β,γ )
a,M̂

(z)
)T

V(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t),

(5.6)

where U(β,γ )
M̂×NM

=

[
u(β,γ )
ij

]
and V(β,γ )

M̂×NM
=

[
v
(β,γ )
ij

]
are undetermined M̂ × NM matrices. Using (4.5) and (5.6), we have

∫ 1

0
ρ(α) C0D

α
t Ψ1(z, t)dα ≃

M̂−1∑
i=0

NM∑
j=1

u(β,γ )
ij J (β,γ )

a,i (z)
∫ 1

0
ρ(α) ˜̃ϕ(β,γ )

b,j (t, α)dα,

∫ 1

0
ρ(α) C0D

α
t Ψ2(z, t)dα ≃

M̂−1∑
i=0

NM∑
j=1

v
(β,γ )
ij J (β,γ )

a,i (z)
∫ 1

0
ρ(α) ˜̃ϕ(β,γ )

b,j (t, α)dα,

(5.7)

where ˜̃ϕ
(β,γ )
b,j (t, α) = ϕ̃

(β,γ )
b,nm (t, α) with j = nM + m + 1 for n = 0, 1, . . . ,N − 1 and m = 0, 1, . . . ,M − 1. The integrals in

(5.7) can be calculated by an N̂-point Gauss–Legendre integration formula as∫ 1

0
ρ(α) ˜̃ϕ(β,γ )

b,j (t, α)dα ≃
1
2

N̂∑
r=1

ŵrρ

(
1
2

(
t̂r + 1

))
˜̃ϕ
(β,γ )
b,j

(
t,

1
2

(
t̂r + 1

))
, (5.8)

where

ŵr =
2(

1 − t̂2r
) (

L′

N̂

(
t̂r
))2 ,

and
{
t̂r
}N̂
r=1 are the Gauss–Legendre integration nodes in [−1, 1]. For more details, see [35]. Substituting (5.8) into (5.7),

results in∫ 1

0
ρ(α) C0D

α
t Ψ1(z, t)dα ≃ U (β,γ )(z, t),∫ 1

0
ρ(α) C0D

α
t Ψ2(z, t)dα ≃ V (β,γ )(z, t),

(5.9)

where

U (β,γ )(z, t) =
1
2

M̂−1∑
i=0

NM∑
j=1

u(β,γ )
ij J (β,γ )

a,i (z)
N̂∑

r=1

ŵrρ

(
1
2

(
t̂r + 1

))
˜̃ϕ
(β,γ )
b,j

(
t,

1
2

(
t̂r + 1

))
,

V (β,γ )(z, t) =
1
2

M̂−1∑
i=0

NM∑
j=1

v
(β,γ )
ij J (β,γ )

a,i (z)
N̂∑

r=1

ŵrρ

(
1
2

(
t̂r + 1

))
˜̃ϕ
(β,γ )
b,j

(
t,

1
2

(
t̂r + 1

))
.

rom (4.4) and (5.6), we get

Ψ1zz(z, t) ≃

(
J(β,γ )
a,M̂

(z)
)T (

D(2,β,γ )
a,M̂

)T
U(β,γ )

M̂×NM
Φ

(β,γ )
b,NM (t),

Ψ2zz(z, t) ≃

(
J(β,γ )
a,M̂

(z)
)T (

D(2,β,γ )
a,M̂

)T
V(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t).

(5.10)

Substituting (5.6), (5.9) and (5.10) into (5.3) yields

U (β,γ )(z, t) +

(
J(β,γ )

ˆ
(z)
)T [

σ

(
D(2,β,γ )

ˆ

)T
V(β,γ )

ˆ
+ w̃(z)V(β,γ )

ˆ

]
Φ

(β,γ )
b,NM (t)
a,M a,M M×NM M×NM

8
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E

+ η

{((
J(β,γ )
a,M̂

(z)
)T

U(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t)

)2

+

((
J(β,γ )
a,M̂

(z)
)T

V(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t)

)2
}

×

(
J(β,γ )
a,M̂

(z)
)T

V(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t) − G2(z, t) ≜ Λ

(β,γ )
1 (z, t) ≃ 0, (5.11)

V (β,γ )(z, t) −

(
J(β,γ )
a,M̂

(z)
)T [

σ

(
D(2,β,γ )

a,M̂

)T
U(β,γ )

M̂×NM
+ w̃(z)U(β,γ )

M̂×NM

]
Φ

(β,γ )
b,NM (t)

− η

{((
J(β,γ )
a,M̂

(z)
)T

U(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t)

)2

+

((
J(β,γ )
a,M̂

(z)
)T

V(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t)

)2
}

×

(
J(β,γ )
a,M̂

(z)
)T

U(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t) + G1(z, t) ≜ Λ

(β,γ )
2 (z, t) ≃ 0 (5.12)

rom (5.4)–(5.6), we get(
J(β,γ )
a,M̂

(z)
)T

U(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (0) − Ψ̂1(z) ≜ R(β,γ )

1 (z) ≃ 0,(
J(β,γ )
a,M̂

(z)
)T

V(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (0) − Ψ̂2(z) ≜ R(β,γ )

2 (z) ≃ 0,
(5.13)

nd (
J(β,γ )
a,M̂

(0)
)T

U(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t) − Ψ̃01(t) ≜ S(β,γ )

1 (t) ≃ 0,(
J(β,γ )
a,M̂

(0)
)T

V(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t) − Ψ̃02(t) ≜ S(β,γ )

2 (t) ≃ 0,(
J(β,γ )
a,M̂

(a)
)T

U(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t) − Ψ̃11(t) ≜ S(β,γ )

3 (t) ≃ 0,(
J(β,γ )
a,M̂

(a)
)T

V(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t) − Ψ̃12(t) ≜ S(β,γ )

4 (t) ≃ 0.

(5.14)

From (5.11)–(5.14), we extract the following 2(M̂ × NM) system:⎧⎪⎨⎪⎩
Λ

(β,γ )
l

(
zi, tj

)
= 0, l = 1, 2, 2 ≤ i ≤ M̂ − 1, 2 ≤ j ≤ NM,

R(β,γ )
l (zi) = 0, l = 1, 2, 2 ≤ i ≤ M̂ − 1,

S(β,γ )
l (tj) = 0, l = 1, 2, 3, 4, 1 ≤ j ≤ NM,

(5.15)

where

zi =
a
2

(
1 − cos

(
(2i − 1)π

2M̂

))
,

tj =
b
2

(
1 − cos

(
(2j − 1)π

2NM

))
.

After solving system (5.15) and obtaining matrices U(β,γ )
M̂×NM

and V(β,γ )
M̂×NM

, a numerical solution for the problem is found via
(5.6). The ‘‘fsolve’’ command in Maple 18 (with 25 decimal digits) is used to solve the system (5.15).

6. Numerical examples

In this section, we have applied the method stated in the previous section for some examples. The accuracy of the
derived results is evaluated by the formulae

eΨ1 =

(∫ b

0

∫ a

0

(
Ψ1(z, t) −

(
J(β,γ )
a,M̂

(z)
)T

U(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t)

)2

dzdt

)1/2

,

eΨ2 =

(∫ b

0

∫ a

0

(
Ψ2(z, t) −

(
J(β,γ )
a,M̂

(z)
)T

V(β,γ )
M̂×NM

Φ
(β,γ )
b,NM (t)

)2

dzdt

)1/2

,

here Ψ1 and Ψ2 are respectively the real and imaginary parts of the exact solution. For numerical integration, we put
ˆ = 15.

xample 1. Consider the problem

i
∫ 1

Γ (4 − α) C0D
α
t Ψ (z, t)dα + Ψzz(z, t) + |Ψ (z, t)|2Ψ (z, t) + cos(z)Ψ (z, t) = G (z, t) , (z, t) ∈ [0, 2] × [0, 2] ,
0

9
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Table 1
The results obtained for errors via (M = 4,N = 2) and several M̂ in Example 1.

M̂ M N β = γ = 0.0 β = γ = −
1
2 β = γ =

1
2 β = −

1
2 , γ =

1
2

eΨ 1 eΨ 2 eΨ 1 eΨ 2 eΨ 1 eΨ 2 eΨ 1 eΨ 2

5 4 2 2.2657E−03 1.4715E−03 2.2657E−03 1.4715E−03 2.2657E−03 1.4715E−03 2.2657E−03 1.4715E−03
7 1.2471E−05 8.0589E−06 1.2471E−05 8.0589E−06 1.2471E−05 8.0589E−06 1.2471E−05 8.0589E−06
9 4.1630E−08 2.6836E−08 4.1630E−08 2.6836E−08 4.1630E−08 2.6836E−08 4.1630E−08 2.6836E−08
11 9.2514E−11 5.9561E−11 9.2514E−11 5.9561E−11 9.2514E−11 5.9561E−11 9.2514E−11 5.9561E−11

Fig. 1. Approximate solution Ψ1(z, t) (1(a)) and corresponding absolute error function (1(b)) with (M̂ = 11,M = 4,N = 2) and β = γ = 0.0 in
Example 1.

where

G (z, t) =

{
6i t2(t − 1)

ln(t)
+
(
t9 − t3

)
+ t3 cos(z)

}
eiz,

with

Ψ (z, 0) = 0,

and

Ψ (0, t) = t3, Ψ (2, t) = t3e2i.

The exact solution is

Ψ (z, t) = t3eiz .

The results derived from applying the proposed method with some values of β and γ are shown in Table 1 and Figs. 1
nd 2. It can be seen from Table 1 that by increasing the basis functions, the accuracy of the results improves. Moreover,
or all selected values of β and γ , the same results are obtained.

xample 2. Consider the problem

i
∫ 1

0
ρ(α) C0D

α
t Ψ (z, t)dα + 2Ψzz(z, t) + |Ψ (z, t)|2Ψ (z, t) + ezΨ (z, t) = G (z, t) , (z, t) ∈ [0, 1] × [0, 1] ,

where

G (z, t) =

{
i
∫ 1

0
ρ(α)t1−αE2,2−α

(
−t2

)
dα +

(
sin2(t) + ez − 2

)
sin(t)

}
e−iz,

with

Ψ (z, 0) = 0,
10
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T

Fig. 2. Approximate solution Ψ2(z, t) (2(a)) and corresponding absolute error function (2(b)) with (M̂ = 11,M = 4,N = 2) and β = γ = 0.0 in
Example 1.

Table 2
The results obtained for errors via N = 1 and several M̂ and M whenever β = γ = −

1
2 in Example 2.

M̂ M N ρ(α) = Γ (2 − α) ρ(α) = Γ (3 − α) ρ(α) = Γ (4 − α) ρ(α) = Γ (5 − α)

eΨ 1 eΨ 2 eΨ 1 eΨ 2 eΨ 1 eΨ 2 eΨ 1 eΨ 2

4 4 1 3.3017E−04 1.7287E−04 3.0228E−04 1.3646E−04 2.8389E−04 1.3203E−04 2.6342E−04 1.4181E−04
5 5 3.3703E−05 1.8539E−05 2.9360E−05 1.4819E−05 2.6690E−05 1.3883E−05 2.3928E−05 1.4524E−05
6 6 8.5375E−07 4.5519E−07 7.3668E−07 3.5183E−07 6.6749E−07 3.2166E−07 6.0390E−07 3.3258E−07
7 7 6.1384E−08 3.3727E−08 5.1297E−08 2.5878E−08 4.5428E−08 2.3557E−08 4.0207E−08 2.4045E−08
8 8 1.1263E−09 6.0369E−10 9.3815E−10 4.5546E−10 8.3125E−10 4.0873E−10 7.4143E−10 4.1401E−10

and

Ψ (0, t) = sin(t), Ψ (1, t) = sin(t)e−i.

The exact solution is

Ψ (z, t) = sin(t)e−iz .

The results derived for this system using different choices of ρ(α) whenever
(
β = γ = −

1
2

)
are provided in Table 2.

hese results show the high accuracy of the method. Figs. 3 and 4 are shown the obtained results with (M̂ = M = 8,N =

1) and ρ(α) = Γ (5− α). Note that we have utilized the first 25 terms of the Mittag-Leffler function in the computations.
Moreover, the appeared integral is computed using a 15-point Gauss–Legendre integration formula. This work is also
made in the below example.

Example 3. Consider the problem

i
∫ 1

0
ρ(α) C0D

α
t Ψ (z, t)dα +

1
3
Ψzz(z, t) +

1
2
|Ψ (z, t)|2Ψ (z, t) + sin(z)Ψ (z, t) = G (z, t) , (z, t) ∈ [0, 1] × [0, 3] ,

where

G (z, t) =

⎛⎜⎝i
∫ 1

0
F (t, α)dα +

⎡⎢⎣1
3

+
1
2

(
e−2z

+ e2z
)⎧⎪⎨⎪⎩

t6, 0 ≤ t <
3
2
,

t4,
3
2

≤ t ≤ 3,

⎤⎥⎦
⎧⎪⎨⎪⎩
t3, 0 ≤ t <

3
2
,

t2,
3
2

≤ t ≤ 3,

⎞⎟⎠(e−z
+ iez

)
,

in which

F (t, α) = ρ(α)

⎧⎪⎪⎨⎪⎪⎩
6t3−α

Γ (4 − α)
, 0 ≤ t <

3
2
,

ĝ(t, α),
3

≤ t ≤ 3,

2

11
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i

u

a

Fig. 3. Approximate solution Ψ1(z, t) (Fig. 3(a)) and corresponding absolute error function (Fig. 3(b)) with (M̂ = M = 8,N = 1) and ρ(α) = Γ (5−α)
n Example 2.

Fig. 4. Approximate solution Ψ2(z, t) (4(a)) and corresponding absolute error function (Fig. 4(b)) with (M̂ = M = 8,N = 1) and ρ(α) = Γ (5 − α)
in Example 2.

and

ĝ(t, α) =
3

Γ (1 − α)

(
3∏

l=1

1
l − α

2∏
l=1

(3 − l)t3−α
−

3∑
r=1

r∏
l=1

1
l − α

r−1∏
l=1

(3 − l)

[(
3
2

)3−r (
t −

3
2

)r−α
])

+
2

Γ (2 − α)

(
3
2

(
t −

3
2

)1−α

+
1

2 − α

(
t −

3
2

)2−α
)

,

nder the conditions

Ψ (z, 0) = 0,

nd

Ψ (0, t) = (1 + i)

⎧⎪⎨⎪⎩
t3, 0 ≤ t <

3
2
,

t2,
3

≤ t ≤ 3,
Ψ (1, t) =

(
e−1

+ ie
)⎧⎪⎨⎪⎩

t3, 0 ≤ t <
3
2
,

t2,
3

≤ t ≤ 3,

2 2

12
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E

E

T

Table 3
The results obtained for errors via (M = 4,N = 2) and several M̂ whenever β = γ = 1 in Example 3.

M̂ M N ρ(α) = Γ (2 − α) ρ(α) = Γ (3 − α) ρ(α) = Γ (4 − α) ρ(α) = Γ (5 − α)

eΨ 1 eΨ 2 eΨ 1 eΨ 2 eΨ 1 eΨ 2 eΨ 1 eΨ 2

5 4 2 6.2522E−05 1.6995E−04 6.2522E−05 1.6995E−04 6.2522E−05 1.6995E−04 6.2522E−05 1.6995E−04
6 2.4672E−06 6.7066E−06 2.4672E−06 6.7066E−06 2.4672E−06 6.7066E−06 2.4672E−06 6.7066E−06
7 8.4871E−08 2.3070E−07 8.4871E−08 2.3070E−07 8.4871E−08 2.3070E−07 8.4871E−08 2.3070E−07
8 2.5815E−09 7.0173E−09 2.5815E−09 7.0173E−09 2.5815E−09 7.0173E−09 2.5815E−09 7.0173E−09
9 7.0281E−11 1.9104E−10 7.0281E−11 1.9104E−10 7.0281E−11 1.9104E−10 7.0281E−11 1.9104E−10

Fig. 5. Approximate solution Ψ1(z, t) (5(a)) and corresponding absolute error function (5(b)) with (M̂ = 5,M = 4,N = 2) and ρ(α) = Γ (2 − α) in
xample 3.

Fig. 6. Approximate solution Ψ2(z, t) (6(a)) and corresponding absolute error function (6(b)) with (M̂ = 5,M = 4,N = 2) and ρ(α) = Γ (2 − α) in
xample 3.

he exact solution is

Ψ (z, t) =
(
e−z

+ iez
)⎧⎪⎨⎪⎩

t3, 0 ≤ t <
3
2
,

t2,
3
2

≤ t ≤ 3.

Table 3 and Figs. 5 and 6 are used to show the accuracy of the method whenever β = γ = 1 in solving this example.
13
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7. Conclusion

In this work, the orthonormal piecewise Jacobi functions were defined. A formulation for the Caputo fractional
erivative of these functions was provided. These basis functions together with the classical Jacobi polynomials and
he Gauss–Legendre quadrature rule were applied to construct a hybrid method for solving the distributed-order time
ractional version of the nonlinear Schrödinger equation. The established method converts solving the expressed problem
nto solving an algebraic system of equations. Some examples were studied to show the accuracy of the method. The
erived results confirmed the high accuracy of the method.
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