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Abstract: The class of symmetric function interacts extensively with other types of functions. One of
these is the class of positivity of functions, which is closely related to the theory of symmetry. Here,
we propose a positive analysis technique to analyse a class of Liouville–Caputo difference equations
of fractional-order with extremal conditions. Our monotonicity results use difference conditions(

LC
a∆µ f

)
(a + J0 + 1 − µ) ≥ (1 − µ) f (a + J0) and

(
LC

a∆µ f
)
(a + J0 + 1 − µ) ≤ (1 − µ) f (a + J0)

to derive the corresponding relative minimum and maximum, respectively. We find alternative
conditions corresponding to the main conditions in the main monotonicity results, which are simpler
and stronger than the existing ones. Two numerical examples are solved by achieving the main
conditions to verify the obtained monotonicity results.

Keywords: Liouville–Caputo fractional operators; positivity analysis; monotonicity analysis

MSC: 26A48; 33B10; 39A12; 39B62

1. Introduction

In discrete fractional calculus and monotonicity analysis, the following implication
holds.

f is increasing on {a, a + 1, a + 2, . . . } ⇐⇒ (∆ f )(x) ≥ 0 for x ∈ {a, a + 1, . . . }, (1)

where a ∈ R, f is assumed to be a function from {a, a + 1, a + 2, . . . } to R, and

(∆ f )(x) := f (x + 1)− f (x), x ∈ {a, a + 1, . . . }
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is the delta first-order difference operator. Therefore, the implication (1) tell us that there
exists a clear connection between the sign of the difference and the monotone behavior
(decreasing or increasing) of the function on which the difference acts.

It is well-known that fractional operators play important roles in discrete fractional
calculus theory. For example, Atici and Eloe [1–3] in 20107, as well as the subsequent work
of Abdeljaward et al. in the article [4], Abdeljawad and Atici in the Ref. [5], Abdeljawad
and Baleanu in the article [6], Abdeljawad and Madjidi in the Ref. [7], Chen et al. in the
article [8], Ferreira and Torres in the Ref. [9], Lizama et al. in the article [10], and Wu and
Baleanu in the Ref. [11] employed difference operators to develop the concept of discrete
fractional calculus. In particular, there has been increasing interest in a nonlocal version of
the difference calculus, that is, “discrete fractional calculus”. For this reason and a wealth
of additional information on a variety of nonlocal discrete operators and their properties,
we refer to the great monograph in the Ref. [12] by Goodrich and Peterson.

Furthermore, a particularly curious and mathematically nontrivial aspect of this theory
is that there is not a clean correlation between the sign of a discrete fractional operator
and the monotone (or positive or convex) behavior of the function on which the operator
acts. In fact, as has been shown time and time again, there is a highly complex and subtle
relationship. This mathematically rich behavior was first documented in the monotonicity
case by Dahal and Goodrich [13] in 2014. Since their initial work, numerous other studies
have been published, including those by Atici and Uyanik in the Ref. [14], Baoguo et al. in
the article [15], Bravo et al. in the article [16], Dahal and Goodrich in the Ref. [17], Du et al.
in the article [18], Erbe et al. in the article [19], Goodrich in the Ref. [20], Goodrich et al.
in the article [21], Goodrich and Lizama in the Ref. [22], Goodrich et al. in the article [23],
Goodrich and Muellner in the Ref. [24], Mohammed et al. in the article [25], Liu et al. in
the article [26], and Mohammed et al. in the article [27]. These papers investigate a variety
of questions surrounding the qualitative properties inferred from the sign of a fractional
difference acting on a function.

Discrete fractional calculus eventually developed into a suitable approach for de-
scribing the geometry of discrete operators with difference structures. Additionally, the
ability of the difference (or derivative) to detect when a function is increasing or decreasing
is of paramount importance in the application of both the continuous and the discrete
calculus. Consequently, clarifying this aspect of the theory of fractional difference operators
is important. This is particularly the case since there have been some initial attempts to
apply discrete fractional calculus to biological modeling—see, for example, Atici, Atici,
Nguyen, Zhoroev, and Koch in the Ref. [28], and Atici, Atici, Belcher, and Marshall in the
Ref. [29].

Inspired by the above results and the results in the Ref. [30], we mainly consider
analysing the discrete delta fractional difference operators of Liouville–Caputo type and
to obtain the increasing and decreasing monotone as an outcome of the analyses. These
allow us to establish the relative minimum and maximum of the functions at certain points.
In addition, by finding a new stronger and simpler condition the main lemmas will be
modified, and then the relative minimum and maximum results by considering the new
lemmas will be rearranged. Lastly, we will discuss our main results with two examples via
tables and figures. It is worth mentioning that this article is the Liouville–Caputo version
of our recently published article [30].

We now give a brief outline of the study. We discuss and present in Section 2 the mono-
tone increasing/decreasing and relative minimum/maximum of the discrete operators
of Liouville-Caputo type. In Section 3 we demonstrate the effectiveness of the proposed
method by means of numerical examples, and the conclusions of the article are collected in
Section 4.
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2. Discussions and Results

Throughout this study, we have the following identity:

xµ :=
Γ(x + 1)

Γ(x + 1− µ)
.

In this section, the outcomes of our main results are discussed for the monotone
decreasing and monotone increasing of the function f defined on Na := {a, a + 1, a + 2, . . .}
by analysing the delta fractional differences of Liouville–Caputo type of order µ, which is
expressed as follows (see [31] (Theorem 1 & Proposition 1)):

(
LC

a∆µ f
)
(x) =

1
Γ(−µ)

x+µ

∑
r=a

(x− r− 1)−µ−1 f (r)− (x− a)−µ

Γ(1− µ)
f (a), (2)

for x ∈ Na−µ+1 and 0 < µ < 1.

Lemma 1. Let 1 > µ > 0 and f be nonnegative. If the following conditions hold

(i)
(

LC
a∆µ f

)
(a + 1− µ) ≤ 0,

(ii)
(

LC
a∆µ f

)
(a + x− µ) ≤

(
x−1

∑
i=1

Γ(i + 1− µ)

Γ(−µ)(i + 1)!
− Γ(x + 1− µ)

Γ(1− µ)(x)!

)
f (a), x ∈ N2,

then f is decreasing on Na.

Proof. Firstly, we see that ∑x−1
i=1

Γ(i+1−µ)
Γ(−µ)(i+1)! is negative. For x ∈ N2, one can have

1
(i + 1)!

· Γ(i + 1− µ)

Γ(−µ)
=

(−µ)(1− µ) · · · (i− 1− µ)(i− µ)

(i + 1)!
< 0, (3)

because −µ < 0 and (1− µ), (i − 1− µ) and (i − µ) are all > 0. Computing the first
condition to have(

LC
a∆µ f

)
(a + 1− µ) =

1
Γ(−µ)

a+1

∑
r=a

(a− µ− r)−µ−1 f (r)− (1− µ) f (a)

= f (a + 1)− f (a)

⇓(
∆ f
)
(a) =

(
LC

a∆µ f
)
(a + 1− µ)

by
≤

condition (i)
0. (4)

Assume that (∆ f
)
(x) ≤ 0 for all x ∈ NJ0+a−1

a , when J0 ∈ N1. Then we are planning to
show that

(
∆ f
)
(a + J0) ≤ 0. To do this, we consider the definition (2) to have(

LC
a∆µ f

)
(a + J0 + 1− µ)

=
1

Γ(−µ)

a+J0+1

∑
r=a

(a + J0 − µ− r)−µ−1 f (r)− (J0 + 1− µ)−µ

Γ(1− µ)
f (a)

=
Γ(J0 + 1− µ)

Γ(−µ)(J0 + 1)!
f (a) +

Γ(J0 − µ)

Γ(−µ)J0!
f (a + 1) + · · ·+ (−µ)(1− µ)

2
f (a + J0 − 1)

+ (−µ) f (a + J0) + f (a + J0 + 1)− Γ(J0 + 2− µ)

Γ(1− µ)(J0 + 1)!
f (a).
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It follows that(
LC

a∆µ f
)
(a + J0 + 1− µ)−

(
∆ f
)
(a + J0)

=
Γ(J0 + 1− µ)

Γ(−µ)(J0 + 1)!
f (a) +

Γ(J0 − µ)

Γ(−µ)J0!
f (a + 1) + · · ·

+
(−µ)(1− µ)

2
f (a + J0 − 1) + (1− µ) f (a + J0)−

Γ(J0 + 2− µ)

Γ(1− µ)(J0 + 1)!
f (a), (5)

and consequently,(
∆ f
)
(a + J0) ≤

(
LC

a∆µ f
)
(a + J0 + 1− µ)

− Γ(J0 + 1− µ)

Γ(−µ)(J0 + 1)!
f (a)− Γ(J0 − µ)

Γ(−µ)J0!
f (a) + · · ·

− (−µ)(1− µ)

2
f (a)−(1− µ) f (a)︸ ︷︷ ︸

≤0

+
Γ(J0 + 2− µ)

Γ(1− µ)(J0 + 1)!
f (a)

≤
(

LC
a∆µ f

)
(a + J0 + 1− µ)

−
(

(J0+1)−1

∑
i=1

Γ(i + 1− µ)

Γ(−µ)(i + 1)!
− Γ(J0 + 2− µ)

Γ(1− µ)(J0 + 1)!

)
f (a)

≤ 0, (6)

where we have used condition (ii), (3), x = J0 + 1 ∈ N2, and the hypothesis nonnegativity
of f :

f (a + J0 − 1) ≤ f (a + J0 − 2) ≤ · · · ≤ f (a).

Hence, the inequality (4) combined with (6) gives us the required result.

Lemma 2. Let 1 > µ > 0 and f be nonpositive. If the following conditions hold

(i)
(

LC
a∆µ f

)
(a + 1− µ) ≥ 0,

(ii)
(

LC
a∆µ f

)
(a + x− µ) ≥

(
x−1

∑
i=1

Γ(i + 1− µ)

Γ(−µ)(i + 1)!
− Γ(x + 1− µ)

Γ(1− µ)(x)!

)
f (a), x ∈ N2,

then f is increasing on Na.

Depending on the Lemma 1, we can obtain the following relativity (min) result.

Theorem 1. Let 1 > µ > 0 and f be nonnegative. If the following conditions hold

(i)
(

LC
a∆µ f

)
(a + 1− µ) ≤ 0,

(ii)
(

LC
a∆µ f

)
(a + x− µ) ≤

(
x−1

∑
i=1

Γ(i + 1− µ)

Γ(−µ)(i + 1)!
− Γ(x + 1− µ)

Γ(1− µ)(x)!

)
f (a), x ∈ NJ0

2 ,

(iii)
(

LC
a∆µ f

)
(a + J0 + 1− µ) ≥ (1− µ) f (a + J0),

for a fixed J0 ∈ N3, then f is a relative minimum at a + J0.

Proof. Collecting the Conditions (i) and (ii) in Lemma 1, we have that
(
∆ f
)
(x) ≤ 0 for each

x ∈ Na+J0−1
a , when J0 ≥ 1, specifically, we have

(
∆ f
)
(a + J0 − 1) ≤ 0. In order to show
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that f is a relative minimum at a + J0 + 1, we shall claim that
(
∆ f
)
(a + J0) ≥ 0. Rewrite (5)

to get (
∆ f
)
(a + J0)−

(
LC

a∆µ f
)
(a + J0 + 1− µ)

=
Γ(J0 + 2− µ)

Γ(1− µ)(J0 + 1)!
f (a)− Γ(J0 + 1− µ)

Γ(−µ)(J0 + 1)!
f (a)− Γ(J0 − µ)

Γ(−µ)J0!
f (a + 1)

− · · · − (−µ)(1− µ)

2
f (a + J0)− (1− µ) f (a + J0 − 1)

≥ −(1− µ) f (a + J0), (7)

where we have used Γ(J0+2−µ)
Γ(1−µ)(J0+1)! f (a) ≥ 0 and

− Γ(J0 + 1− µ)

Γ(−µ)(J0 + 1)!
f (a)− Γ(J0 − µ)

Γ(−µ)J0!
f (a + 1)− · · · − (−µ)(1− µ)

2
f (a + J0 − 1) ≥ 0,

according to (3) and the nonnegativity of f . Rearrange (7) to have the required result
as follows: (

∆ f
)
(a + J0) ≥

(
LC

a∆µ f
)
(a + J0 + 1− µ)− (1− µ) f (a + J0)

by
≥

Condition (iii)
0.

This implies that f is a relative minimum at a + J0.

Theorem 2. Let 1 > µ > 0 and f be nonpositive. If the following conditions hold

(i)
(

LC
a∆µ f

)
(a + 1− µ) ≥ 0,

(ii)
(

LC
a∆µ f

)
(a + x− µ) ≥

(
x−1

∑
i=1

Γ(i + 1− µ)

Γ(−µ)(i + 1)!
− Γ(x + 1− µ)

Γ(1− µ)(x)!

)
f (a), x ∈ NJ0

2 ,

(iii)
(

LC
a∆µ f

)
(a + J0 + 1− µ) ≤ (1− µ) f (a + J0),

for a fixed J0 ∈ N3, then f is a relative maximum at a + J0.

In the next couple of lemmas, we state a new condition stronger than the existing
Condition (ii) in Lemmas 1 and 2.

Lemma 3. If 1 > µ > 0 and f is a nonnegative function, then the Condition (ii) in Lemma 1 can
be replaced with

(
LC

a∆µ f
)
(a + x− µ) ≤

{
µ (x− 1) + 2− µ

}
(µ− 1)

2
f (a),

for x ∈ N2.

Proof. First, for i = 1, we see that Γ(i+1−µ)
Γ(−µ)(i+1)! leads to

Γ(3− µ)

Γ(−µ)(3!)
=

(−µ)(1− µ)(2− µ)

6
>

(−µ)(1− µ)

2
,

for µ > −1. We proceed with it to show that

0 >
Γ(i + 1− µ)

(i + 1)!Γ(−µ)
>

(1− µ)(−µ)

2
, (8)
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for all i ≥ 2. The first inequality is clear by (3). For the second one, we assume that

Γ(i0 + 1− µ)

Γ(−µ)(i0 + 1)!
>

(−µ)(1− µ)

2
,

for all i0 ≥ 2. Then we see that

Γ(i0 + 2− µ)

Γ(−µ)(i0 + 2)!
>

i0 + 1− µ

i0 + 2
· Γ(i0 + 1− µ)

Γ(−µ)(i0 + 1)!

≥ i0 + 1− µ

i0 + 2︸ ︷︷ ︸
0<↑<1

· (−µ)(1− µ)

2︸ ︷︷ ︸
<0

>
(−µ)(1− µ)

2
.

Therefore, the inequalities (8) hold true for all i ≥ 2 as we claimed. We know that
f (a + 1) > 0, and hence,

0 >

(
x−1

∑
i=1

Γ(i + 1− µ)

Γ(−µ)(i + 1)!
− Γ(x + 1− µ)

Γ(1− µ)(x)!

)
f (a)

>

(
x−1

∑
i=1

(−µ)(1− µ)

2
− Γ(x + 1− µ)

Γ(1− µ)(x)!

)
f (a)

=

(
(−µ)(1− µ)

2
(x− 1)− Γ(x + 1− µ)

Γ(1− µ)(x)!

)
f (a)

>

{
µ (x− 1) + 2− µ

}
(µ− 1)

2
f (a),

where we used

Γ(x + 1− µ)

Γ(1− µ)(x)!
<

Γ(3− µ)

Γ(1− µ) 2!
=

(1− µ)(2− µ)

2
.

Hence, we conclude that if(
LC

a∆µ f
)
(a + x− µ) ≤

{
µ (x− 1) + 2− µ

}
(µ− 1)

2
f (a),

then Condition (ii) in Lemma 1 is satisfied. Thus, the result is obtained.

Lemma 4. If 1 > µ > 0 and f is a nonpositive function, then the Condition (ii) in Lemma 2 can
be replaced with

(
LC

a∆µ f
)
(a + x− µ) ≥

{
µ (x− 1) + 2− µ

}
(µ− 1)

2
f (a),

for x ∈ N2.

Corollary 1. Let for 1 > µ > 0 and f be nonnegative. If the following conditions hold

(i)
(

LC
a∆µ f

)
(a + 1− µ) ≤ 0,

(ii)
(

LC
a∆µ f

)
(a + x− µ) ≤

{
µ (x− 1) + 2− µ

}
(µ− 1)

2
f (a), x ∈ NJ0

2 ,

(iii)
(

LC
a∆µ f

)
(a + J0 + 1− µ) ≥ (1− µ) f (a + J0 + 1),

for a fixed J0 ∈ N3, then f is a relative minimum at a + J0.
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Proof. The proof obviously follows from Theorem 1 and Lemma 3.

Corollary 2. Let for 1 > µ > 0 and f be nonpositive. If the following conditions hold

(i)
(

LC
a∆µ f

)
(a + 1− µ) ≥ 0,

(ii)
(

LC
a∆µ f

)
(a + x− µ) ≥

{
µ (x− 1) + 2− µ

}
(µ− 1)

2
f (a), x ∈ NJ0

2 ,

(iii)
(

LC
a∆µ f

)
(a + J0 + 1− µ) ≤ (1− µ) f (a + J0 + 1),

for a fixed J0 ∈ N3, then f is a relative maximum at a + J0.

Proof. The proof follows from Theorem 2 and Lemma 4 directly.

3. Test Examples

Let us denote the main points in Section 2 by the following notations:

A1(x) :=
(

LC
a∆µ f

)
(a + x− µ), x ∈ N1,

and

A2(x) :=

{
0, if x = 1,(

∑x−1
i=1

Γ(i+1−µ)
Γ(−µ)(i+1)! −

Γ(x+1−µ)
Γ(1−µ)(x)!

)
f (a), if x ∈ N2.

Then we present here some examples of application of the main results.

Example 1. Let µ = 0.9, a = 0, and the nonnegative function f be defined by

f (x) =
(

4
5

)x−a
, for x ∈ Na.

Condition (i) is trivially valid due to

(
LC

a∆µ f
)
(1− µ) =

1
Γ(−µ)

1

∑
r=0

(−µ− r)−µ−1 f (r)

= f (1)− f (0) = −1
5
≤ 0.

On the other hand, according to Table 1 and Figure 1, we can observe that

(
LC

0∆µ f
)
(a + x− µ) ≤

(
x−1

∑
i=1

Γ(i + 1− µ)

Γ(−µ)(i + 1)!
− Γ(x + 1− µ)

Γ(1− µ)(x)!

)
f (a),

for x = 1, 2, 3, 4. Thus, all the conditions of the statement of Lemma 1 are verified, and hence the
function will be decreasing on {1, 2, 3, 4}.

Table 1. Comparison of A1(x) and A2(x) values.

x = a + 1 x = a + 2 x = a + 3 x = a + 4 · · ·
A1(x) −0.2000 −0.1800 −0.1550 −0.1317 · · ·

A2(x) 0 −0.0748 −0.0913 −0.1000 · · ·
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1.5 2 2.5 3 3.5

x

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

A
1
(x)

A
2
(x)

Figure 1. Plot of A1(x) and A2(x) in the interval [1, 4].

Example 2. Assume that µ = 0.95, a = 0, and the nonpositive function f is defined by

f (x) = −
(

11
20

)x−a
, for x ∈ Na.

It is obvious that (
LC

a∆µ f
)
(1− µ) =

1
Γ(−µ)

1

∑
r=0

(−µ− r)−µ−1 f (r)

= f (1)− f (0) =
9

20
≥ 0.

Moreover, the numerical results reported in Table 2 and Figure 2 tell us that(
LC

0∆µ f
)
(a + x− µ) ≥

(
x−1

∑
i=1

Γ(i + 1− µ)

Γ(−µ)(i + 1)!
− Γ(x + 1− µ)

Γ(1− µ)(x)!

)
f (a),

for x = 1, 2, 3, 4. Thus, the entire conditions of the statement of Lemma 2 hold. Therefore, the given
function is increasing on the set {1, 2, 3, 4}.

Table 2. The values of A1(x) and A2(x).

x = a + 1 x = a + 2 x = a + 3 x = a + 4 · · ·

A1(x) 9
20

27
100

513
3200

597
6203 · · ·

A2(x) 0 103
2752

634
13861

1
20 · · ·

1.5 2 2.5 3 3.5 x

-0.1

0

0.1

0.2

0.3

0.4

0.5

A
1
(x)

A
2
(x)

Figure 2. Plot of A1(x) and A2(x) in the interval [1, 4].
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4. Concluding Remarks

In the present work, the positivity analysis technique was applied to investigate the
monotonicity behavior of delta fractional differences of Liouville–Caputo type. Although
the procedures are general, due to the limitation of singular and nonsingular kernels
employed, for application purposes, we restricted the present work to a Liouville–Caputo
difference operator of a nonsingular kernel. A condition corresponding to the original
condition (ii) in both Lemmas 1 and 2 was found as an alternative condition. This condition
was derived, and it was found that it is simpler and easier to use.

On the other hand, approximations of the solutions were computed by using the defi-
nition of a Liouville–Caputo difference operator. The numerical results were in agreement
with the main Lemmas 1 and 2. The monotonicity and relativity results in this problem
can be extended to study other, and more complicated types of fractional sums, and also
to other types of difference operators, where singular and nonsingular kernels are both
involved in the discrete operators—see the Refs. [32,33]. Furthermore, the importance of
discrete fractional differences is increasing daily due to their high capabilities in modeling
physical problems of the real world. Thus, one may develop our results in this paper and
apply them in physical problems, as numerous generalizations of this model have recently
been developed and explored in the published articles [34,35].
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