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ABSTRACT

In this article, we introduce a nonlinear Caputo-type snakebite envenoming model with memory. The well-known
Caputo fractional derivative is used to generalize the previously presented integer-order model into a fractional-
order sense. The numerical solution of the model is derived from a novel implementation of a finite-difference
predictor-corrector (L1-PC) scheme with error estimation and stability analysis. The proof of the existence and
positivity of the solution is given by using the fixed point theory. From the necessary simulations, we justify that
the first-time implementation of the proposed method on an epidemic model shows that the scheme is fully suitable
and time-efficient for solving epidemic models. This work aims to show the novel application of the given scheme
as well as to check how the proposed snakebite envenoming model behaves in the presence of the Caputo fractional
derivative, including memory effects.
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1 Introduction

Nowadays, fractional calculus [1–3] is being applied to solve various real-world problems in
terms of mathematical modeling. Different fractional derivatives [4] have been successfully used to
model various problems. More specifically, several deadly epidemics have been modeled by using
mathematical models in a fractional-order sense. It is a well-known fact that the fractional-order
operators are non-local in nature and may be more effective for modeling history (memory)-dependent
systems. Moreover, a fractional order can be fixed as any positive real number that better fits a real-
data. So, by using such an operator, an accurate adjustment can be done in a model to fit with real
data for better predicting the outbreaks of an epidemic. Recently, several applications of fractional
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derivatives have been recorded in epidemiology. In [5–7], the authors have studied the dynamics of
the COVID-19 epidemic by using fractional-order mathematical models. In [8], the authors used non-
singular Caputo-Fabrizio and Atangana-Baleanu fractional derivatives to study the dynamical nature
of a malaria epidemic model. Kumar et al. in [9] have solved canine distemper virus and rabies epidemic
models in the sense of generalized Caputo derivative. Kumar et al. [10] defined two different types of
fractional-order models to study the dynamics of mosaic disease. A novel application of the generalized
Caputo derivative in environmental infection dynamics can be seen in [11]. Sinan et al. [12] proposed
the mathematical modeling of typhoid fever in terms of fractional derivatives. In [13], some novel
analyses on the numerical modeling of biological systems using fractional derivatives have been given.
Rihan et al. [14] studied fractional-order predator-prey models, including delay with Holling type-II
functional response. In [15], some novel applications of delay differential equations were proposed.
Work on the application of fractional derivatives in ecology and psychology can be understood from
[16,17], respectively.

To analyze the various types of fractional-order systems, several computational schemes have
been proposed by researchers. Odibat et al. [18] derived a new generalized form of the predictor-
corrector (PC) scheme to investigate fractional initial value problems. Kumar et al. [19] introduced a
new method to simulate fractional-order systems with various examples. In [20], the PC method was
derived to simulate delay fractional differential equations. A modified form of the PC scheme in terms
of the generalized Caputo derivative to solve delay-type systems has been introduced in reference [21].
Odibat et al. [22] have derived the generalized differential transform method for solving fractional
impulsive differential equations. In [23], some computational schemes to solve delayed parabolic
and time-fractional partial differential equations have been proposed. Shah et al. [24] simulated the
dynamics of some important fractional order differential equations. In [25], some novel analyses of
the Cauchy-type fractional-order dynamical system in terms of piecewise equations have been given.
Some more applications of fractional derivatives can be seen in [26–28].

Jhinga et al. [29] introduced a novel finite-difference predictor-corrector (L1-PC) scheme to solve
fractional-order systems in the sense of the Caputo derivative. That L1-PC scheme is not yet applied
to any epidemic model to check how it will work and show the disease dynamics. In this paper, we fill
this research gap by implementing the given L1-PC method on a Caputo-type snakebite envenoming
(SBE) mathematical model, which was previously proposed in the integer-order sense in reference
[30]. Currently, SBE is a deathly neglected disease, mainly in developing nations. The World Health
Organization (WHO) recognized SBE as a fatal disease that generally results from the injection of a
combination of various toxins (venom) following a venomous snakebite. Mainly poor, rural societies
in tropical and subtropical nations all over the world are typically affected by SBE, which is a big
threat to the health and well-being of about 5.8 billion population [31]. More information on SBE
can be collected from the references [32–34]. To date, only a few research studies have gone into the
mathematical modeling of SBE. In [35], the authors introduced a model using the law of mass action
to analyze snakebite incidence. In [36], a mathematical model considering the socio-demographic
components that influence the death risk from SBE in India was proposed.

The motivation of this study is to justify the application of the aforementioned L1-PC scheme in
epidemiology by solving a mathematical model of SBE. Also, the aim is to check how the proposed
SBE model will behave in the presence of the Caputo fractional derivative, which is a non-local
differential operator that allows memory effects in the system. The given study is designed using
the following systems: Section 2 recalls some preliminaries of fractional calculus. The description of
the considered model of SBE in terms of the Caputo derivative is given in Section 3. The necessary
numerical analysis, like the solution algorithm, error estimation, and method stability, is performed in
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Section 4. A brief discussion of the proposed methodology, its novelty, and outputs is given in Section 5
with supporting conclusions.

2 Preliminaries

Here we recall some preliminaries of fractional calculus.

Definition 1. A real function f (s), s > 0 belongs to the space

a) Cη, η ∈ R if there exists a real number q > η, such that f (s) = sqf1(s), f1 ∈ C[0, ∞). Clearly,
Cη ⊂ Cα if α ≤ η.

b) Cm
η

, m ∈ N ∪ {0} if f m ∈ Cη.

Definition 2. [2] The Riemann-Liouville fractional integral of f (t) ∈ Cη (η ≥ −1) is defined as
follows:

Jγ f (t) = 1
�(γ )

∫ t

0

(t − s)γ−1f (s)ds,

J0f (t) = f (t).

Definition 3. [2] The Caputo fractional derivative of f ∈ Cm
−1 is written by

Dγ

t f (t) =

⎧⎪⎪⎨
⎪⎪⎩

dmf (t)
dtm

, if γ = m ∈ N

1
�(m − γ )

∫ t

0
(t − ϑ)

m−γ−1 f (m) (ϑ) dϑ , if m − 1 < γ < m, m ∈ N.
(1)

Theorem 1. [37] Consider the function f such that f and CDγ

c+f are continuous for γ ∈ (0, 1]. Then,
∀ t ∈ (c, d], there exists some k ∈ (c, t) following the constraint

f (t) = f (c) + 1
�(γ + 1)

CDγ

c+f (k) (t − c)γ .

Therefore, from Theorem 1, we say that if CDγ

c+f (t) > 0, for all t ∈ [c, d], then f is strictly increasing,
and if CDγ

c+f (t) < 0, for all t ∈ [c, d], then the function f is strictly decreasing.

Lemma 1. [38] Let γ ∈ (0, 1), n ∈ N and define the vectors X := (x1, x2, . . . , xn) and Y :=
(y1, y2, . . . , yn). For each i = 1, 2, . . . , n, let us consider Gi : [c, d] × R

n → R be a continuous function
fulfils the Lipschitz condition with respect to the second variable such that

|Gi(t, X) − Gi(t, Y)| ≤ Li‖X − Y‖,

where Li is a constant. Let us write G := (G1, G2, . . . , Gn) and define the two fractional differential
equations

CDγ

c+X (t) = G (t, X) + 1
j

and CDγ

c+X (t) = G (t, X) , (2)

with the same initial constraints, where j is a positive integer. If jX ∗ := (jx∗
1, . . . ,j x∗

n) and X ∗ :=
(x∗

1, x∗
2, . . . , x∗

n) are the solutions of (2), simultaneously, then jX ∗(t) → X ∗(t) as j → ∞ for all t ∈ [c, d].
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3 Model Description

Here we introduce the generalized form of the previously published integer-order model [30] into
Caputo-type fractional-order sense (CDγ ). In our model, the total human population NH(t) at time
t is split out into the following mutual exclusive classes: unaware susceptible humans, (SU(t)), aware
susceptible humans, (SE(t)), SBE population, (I(t)), humans getting early remedy with antivenom,
(TE(t)), peoples getting late remedy with antivenom, (TL(t)), peoples suffering from early adverse
reaction (EAR) at the time of early remedy, (VE(t)), peoples facing EAR at the time of late remedy,
(VL(t)), recovered peoples with disabilities, (RD(t)), and recovered peoples without disabilities, (RW(t)).
Therefore, the total population size is defined as

N(t) = SU(t) + SE(t) + I(t) + TE(t) + TL(t) + VE(t) + VL(t) + RD(t) + RW(t).

The total snake population is defined by (NS(t)) and D(t) shows the total deaths caused by
snakebite. For taking the equal time-dimension day−γ on the both sides of the fractional-order model,
the power γ is applied to the parameters in time unit day−1 in the classical case. Therefore, the
fractional-order nonlinear model for SBE is given as follows:
CDγ SU = �γ

H − (λ + K1)SU ,
CDγ SE = εγ SU + φγ

1 RD + φγ

2 RW − (
1λ + K2)SE,
CDγ I = (
1SE + SU)λ − K3I ,
CDγ TE = τ γ kI − K4TE,
CDγ TL = τ γ 
2I − K5TL,
CDγ VE = αγ

1 TE − K6VE, (3)
CDγ VL = αγ

2 TL − K7VL,
CDγ RD = σ γ

1 ρ1TL + σ γ

2 ρ2VL − K8RD,
CDγ RW = rγ

1 TE + rγ

2 VE + σ γ

1 
3TL + σ γ

2 
4VL − K9RW ,

CDγ NS = �γ

SNS

(
1 − NS

KS

)
− μγ

SNS,

CDγ D = δγ

1 I + (TL + VL)δ
γ

2 ,

λ (t) = βγ NS

NH + NS

,

where,

K1 = εγ +μ
γ

H , K2 = μ
γ

H , K3 = τ γ +δ
γ

1 +μ
γ

H , K4 = α
γ

1 +rγ

1 +μ
γ

H , K5 = α
γ

2 +σ
γ

1 +δ
γ

2 +μ
γ

H , K6 = rγ

2 +
μ

γ

H , K7 = σ
γ

2 +δ
γ

2 +μ
γ

H , K8 = φ
γ

1 +μ
γ

H , K9 = φ
γ

2 +μ
γ

H , 
1 = 1−θ , 
2 = 1−k, 
3 = 1−ρ1, 
4 = 1−ρ2,
with the initial conditions

SU(0) > 0, SE(0) ≥ 0, I(0) ≥ 0, TE(0) ≥ 0, TL(0) ≥ 0, VE(0) ≥ 0, VL(0) ≥ 0, RD(0) ≥ 0, (4)

RW(0) ≥ 0, NS(0) ≥ 0, D(0) ≥ 0.

The definitions of the model parameters alongwith their numerical values are given in Table 1.
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Table 1: Description of model parameters [30]

Parameter Description Values

�H Birth rate of unaware susceptible humans 1324
�S Growth rate of snake population 0.1925
μH Natural death rate of humans 5.04 × 10−6

μS Natural death rate of snakes 2.283 × 10−4

β Snakebite envenomation rate 0.0742
ε Public health awareness campaign rate 0.0051
θ Public health awareness campaign’s efficacy 1.7729 × 10−4

τ Rate of treatment with antivenom received by SBE individuals 0.9997
k SBE individuals proportion getting early remedy with antivenom 0.8073
δ1 SBE induced death rate in I compartment 0.0025
δ2 SBE induced death rate in TL and VL compartments 4.2564 × 10−4

α1 Rate at which humans getting remedy with antivenom
suffering from EAR in TE compartment 0.1215

α2 Rate at which humans getting remedy with antivenom
suffering from EAR in TL compartment 0.1708

r1 Recovery rate of TE class without disability 0.9310
r2 Recovery rate of VE class without disability 0.9310
σ1 Recovery rate of TL class with disability 0.9924
σ2 Recovery rate of VL class with disability 0.9924
ρ1 Proportion of humans recovered with disabilities in TL class 0.1500
ρ2 Proportion of humans recovered with disabilities in VL class 0.9985
φ1 Transition rates of individuals in RD class to SE 0.5233
φ2 Transition rates of individuals in RW class to SE 0.9416
KS Carrying capacity of snake 6.6604 × 104

SU(0) Initial size of unaware susceptible individuals 2.1459 × 107

SE(0) Initial size of aware susceptible individuals 6.5132 × 103

I(0) Initial size of SBE individuals 99
TE(0) Initial size of humans getting early treatment with antivenom 76
TL(0) Initial size of humans getting late treatment with antivenom 7
VE(0) Initial size of humans facing EAR during early treatment 8
VL(0) initial size of humans facing EAR during late treatment 0
RD(0) Initial size of individuals recovered with disabilities 4
RW(0) Initial size of individuals recovered without disabilities 93
NS(0) Initial population of snakes 1.2250 × 104

D(0) Initial cumulative number of deaths due to snakebite 2
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Theorem 2. There exists a unique solution for the model (3) and (4) which belongs to (R+
0 )11 :=

{(S∗
U , S∗

E, I ∗, T ∗
E, T ∗

L, V ∗
E, V ∗

L, R∗
D, R∗

W , N∗
S, D∗) ∈ R

+11}.
Proof. By using the Theorem 3.1 and Remark 3.2 of [39], the global existence of the unique

solution can easily be proved. Now to prove the non-negativity of the solution, let us write the following
auxiliary system of fractional differential equations:

CDγ SU = �γ

H − (λ + K1) SU + 1
k

,

CDγ SE = εγ SU + φγ

1 RD + φγ

2 RW − (
1λ + K2) SE + 1
k

,

CDγ I = (
1SE + SU) λ − K3I + 1
k

,

CDγ TE = τ γ kI − K4TE + 1
k

,

CDγ TL = τ γ 
2I − K5TL + 1
k

,

CDγ VE = αγ

1 TE − K6VE + 1
k

, (5)

CDγ VL = αγ

2 TL − K7VL + 1
k

,

CDγ RD = σ γ

1 ρ1TL + σ γ

2 ρ2VL − K8RD + 1
k

,

CDγ RW = rγ

1 TE + rγ

2 VE + σ γ

1 
3TL + σ γ

2 
4VL − K9RW + 1
k

,

CDγ NS = �γ

SNS

(
1 − NS

KS

)
− μγ

SNS + 1
k

,

CDγ D = δγ

1 I + (TL + VL) δγ

2 + 1
k

,

with k ∈ N. We will show that solution of (5) (S∗
Uk

(t), S∗
Ek

(t), I ∗
k (t), T ∗

Ek
(t), T ∗

Lk
(t), V ∗

Ek
(t), V ∗

Lk
(t),

R∗
Dk

(t), R∗
Wk

(t), N∗
Sk

(t), D∗
k(t)) belongs to (R+

0 )11, ∀ t ≥ 0. For obtaining a contradiction, we opine that
there exists a point of time where the condition fails. Let t0 := inf{t > 0|(S∗

Uk
(t), S∗

Ek
(t), I ∗

k (t), T ∗
Ek

(t),
T ∗

Lk
(t), V ∗

Ek
(t), V ∗

Lk
(t), R∗

Dk
(t), R∗

Wk
(t), N∗

Sk
(t), D∗

k(t)) ∈ (R+
0 )11}. Thus, (S∗

Uk
(t0), S∗

Ek
(t0), I ∗

k (t0), T ∗
Ek

(t0),
T ∗

Lk
(t0), V ∗

Ek
(t0), V ∗

Lk
(t0), R∗

Dk
(t0), R∗

Wk
(t0), N∗

Sk
(t0), D∗

k(t0)) ∈ (R+
0 )11 and one of the quantities (S∗

Uk
(0),

S∗
Ek

(0), I ∗
k (0), T ∗

Ek
(0), T ∗

Lk
(0), V ∗

Ek
(0), V ∗

Lk
(0), R∗

Dk
(0), R∗

Wk
(0), N∗

Sk
(0), D∗

k(0)) is zero. Suppose that I∗
k (t0) =

0. Since

CDγ I ∗
k (t0) =

(

1S∗

Uk
(t0) + S∗

Ek
(t0)

)
λ + 1

k
> 0

by continuity of CDγ

0+I ∗
k , we conclude that CDγ

0+I ∗
k ([t0, t0 + ξ) ⊂ R

+, for some ξ > 0. By Theorem 1,
I ∗

k ([t0, t0 + ξ) ⊂ R
+
0 and so I∗

k is non negative. In an analogous way we can justify that the remaining
functions S∗

Uk
, S∗

Ek
, T ∗

Ek
, T ∗

Lk
, V ∗

Ek
, V ∗

Lk
, R∗

Dk
, R∗

Wk
, N∗

Sk
, and D∗

k are non-negative, establishing a contradic-
tion. Using Lemma 1 as k → ∞, we get that the solution (S∗

Uk
(t), S∗

Ek
(t), I ∗

k (t), T ∗
Ek

(t), T ∗
Lk

(t), V ∗
Ek

(t),
V ∗

Lk
(t), R∗

Dk
(t), R∗

Wk
(t), N∗

Sk
(t), D∗

k(t)) of (5) belongs to (R+
0 )11, ∀ t ≥ 0, giving the required result.
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Now before performing the further numerical simulations on the proposed fractional-order model
(3), we rewrite the model into a compact form by representing it in terms of an initial value problem,
defined as follows:

Let us consider⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(t, SU , . . . , D) = �
γ

H − (λ + K1)SU ,
f2(t, SU , . . . , D) = εγ SU + φ

γ

1 RD + φ
γ

2 RW − (
1λ + K2)SE,
f3(t, SU , . . . , D) = (
1SE + SU)λ − K3I ,
f4(t, SU , . . . , D) = τ γ kI − K4TE,
f5(t, SU , . . . , D) = τ γ 
2I − K5TL,
f6(t, SU , . . . , D) = α

γ

1 TE − K6VE,
f7(t, SU , . . . , D) = α

γ

2 TL − K7VL,
f8(t, SU , . . . , D) = σ

γ

1 ρ1TL + σ
γ

2 ρ2VL − K8RD,
f9(t, SU , . . . , D) = rγ

1 TE + rγ

2 VE + σ
γ

1 
3TL + σ
γ

2 
4VL − K9RW ,

f10 (t, SU , . . . , D) = �
γ

SNS

(
1 − NS

KS

)
− μ

γ

SNS,

f11(t, SU , . . . , D) = δ
γ

1 I + (TL + VL)δ
γ

2 .

(6)

By using (6), we have
CDγA(t) = �(t,A(t)), t ∈ [0, T ], 0 < γ ≤ 1,

A(0) = A0, (7)

where

A (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SU(t)
SE(t)
I(t)
TE(t)
TL(t)
VE(t)
VL(t)
RD(t)
RW(t)
NS(t)
D(t)

, A0 (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SU0
(t)

SE0
(t)

I0(t)
TE0

(t)
TL0

(t)
VE0

(t)
VL0

(t)
RD0

(t)
RW0

(t)
NS0

(t)
D0(t)

, �(t,A (t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(t, SU , . . . , D)

f2(t, SU , . . . , D)

f3(t, SU , . . . , D)

f4(t, SU , . . . , D)

f5(t, SU , . . . , D)

f6(t, SU , . . . , D)

f7(t, SU , . . . , D)

f8(t, SU , . . . , D)

f9(t, SU , . . . , D)

f10(t, SU , . . . , D)

f11(t, SU , . . . , D)

. (8)

4 Numerical Analysis on the Model

In this section, we perform the necessary numerical simulations (solution derivation, error
estimation and stability) to derive the solution of the proposed fractional-order model (3) by using
the L1-predictor-corrector scheme [29].



2494 CMES, 2023, vol.136, no.3

Consider the above given initial value problem (IVP) for 0 < γ < 1,
CDγA(t) = �(t,A(t)), t ∈ [0, T ],

A(0) = A0. (9)

where CDγ represents the Caputo derivatives and � : [0, T ] × D → R, D ⊂ R. Split the time span

[0, T ] into N subintervals. Take an uniform grid with step size of h = T
N

with tk = kh, k = 0, 1, . . . , N.

4.1 Derivation of the Solution
According to the L1-PC method, the Caputo fractional derivative is numerically defined by

[
CDγA (t)

]
t=tn

= 1
�(1 − γ )

∫ tk

0

(tn − s)−γA′ (s) ds

= 1
�(1 − γ )

n−1∑
k=0

∫ tk+1

tk

(tn − s)−γA′ (s) ds (10)

≈ 1
�(1 − γ )

n−1∑
k=0

∫ tk+1

tk

(tn − s)−γ
A(tk+1) − A(tk)

h
ds

=
n−1∑
k=0

bn−k−1 (A (tk+1) − A (tk)) ,

where,

bk = h−γ

�(2 − γ )

[
(k + 1)

1−γ − k1−γ
]

.

We approximate CDγA(t) by the Eq. (10) and put it into (9) to get

[CDγA (t)]t=tn =
n−1∑
k=0

bn−k−1 (A (tk+1) − A (tk)) = �(tn,An) , (11)

where Ak defines the approximate value of the solution of (9) at t = tk and

bn−k−1 = h−γ

�(2 − γ )

[
(n − k)

1−γ − (n − k−)
1−γ

]
.

(11) can be rewritten as

bn−1(A1 − A0) + bn−2(A2 − A1) + · · · + b0(An − An−1) = �(tn,An). (12)

After rewriting the terms (12), we get the following from:

b0An = b0An−1 −
n−2∑
k=0

bk+1An−1−k +
n−1∑
k=1

bkAn−1−k + �(tn,An) . (13)

Substituting

b0 = h−γ

�(2 − γ )
and bk = h−γ

�(2 − γ )

[
(n − k)

1−γ − (n − k−)
1−γ

]
.
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in (12), we get

An = An−1 − (
21−γ − 11−γ

)
An−1 −

n−2∑
k=1

(
(2 + k)

1−γ − (1 + k)
(1−γ )

)
An−1−k

+
n−2∑
k=1

(
(1 + k)

1−γ − (k)
(1−γ )

)
An−1−k + (

n1−γ − (n − 1)
1−γ

)
A0

+ �(2 − γ )hγ �(tn,An) (14)

= (
n1−γ − (n − 1)

1−γ
)
A0 +

n−1∑
k=1

[
2 (n − k)

1−γ − (n + 1 − k)
(1−γ ) − (n − 1 − k)

(1−γ )
]
Ak

+ �(2 − γ )hγ �(tn,An).

Define

ak := k + 1(1−γ ) − k(1−γ ). (15)

Remark that a′
ks have the following characteristics:

• ak > 0, k = 0, 1, . . . , n − 1.

• a0 = 1 > a1 > · · · > ak, and ak → 0 as k → ∞.

• ∑n−1

k=0 (ak − ak+1) + an = (1 − a1) + ∑n−2

k=1 (ak − ak+1) + an−1 = 1.

Given Eqs. (14) and (15), the following form can be obtained:

An = an−1A0 +
n−1∑
k=1

(an−1−k − an−k)Ak + � (2 − γ ) hγ � (tn,An) . (16)

We can see that Eq. (16) is of the form An = g + N(An), if we identify

g = an−1A0 +
n−1∑
k=1

(an−1−k − an−k)Ak

and

N(An) = �(2 − γ )hγ �(tn,An).

Hence using the scheme of the DGJ method gives approximate value of An, given by

An,0 = g = an−1A0 +
n−1∑
k=1

(an−1−k − an−k)Ak,

An,0 = N(An,0) = �(2 − γ )hγ �(tn,An),

An,2 = N(An,0 + An,1 − N(An,0).
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The three term approximation of An ≈ An,0 + An,0 + An,2. Therefore, this approximated solution
of DGJ scheme gives the following predictor-corrector algorithm called as L1-PCM.

Ap
n = an−1A0 +

n−1∑
k=1

(an−1−k − an−k)Ak,

zp
n = N(An) = �(2 − γ )hγ �(tn,Ap

n), (17)

Ac
n = Ap

n + �(2 − γ )hγ �(tn,Ap
n + zp

n),

where Ap
n and zp

n are predictors and Ac
n is the corrector.

Using the above given methodology, the approximation equations of the proposed model (3) in
terms of L1-PC method are derived as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SU
c
n = SU

p
n + �(2 − γ )hγ f1(tn, SU

p
n + zp

1n, . . . , Dp
n + zp

11n),
SE

c
n = SE

p
n + �(2 − γ )hγ f2(tn, SU

p
n + zp

1n, . . . , Dp
n + zp

11n),
Ic

n = Ip
n + �(2 − γ )hγ f3(tn, SU

p
n + zp

1n, . . . , Dp
n + zp

11n),
TE

c
n = TE

p
n + �(2 − γ )hγ f4(tn, SU

p
n + zp

1n, . . . , Dp
n + zp

11n),
TL

c
n = TL

p
n + �(2 − γ )hγ f5(tn, SU

p
n + zp

1n, . . . , Dp
n + zp

11n),
VE

c
n = VE

p
n + �(2 − γ )hγ f6(tn, SU

p
n + zp

1n, . . . , Dp
n + zp

11n),
VL

c
n = VL

p
n + �(2 − γ )hγ f7(tn, SU

p
n + zp

1n, . . . , Dp
n + zp

11n),
RD

c
n = RD

p
n + �(2 − γ )hγ f8(tn, SU

p
n + zp

1n, . . . , Dp
n + zp

11n),
RW

c
n = RW

p
n + �(2 − γ )hγ f9(tn, SU

p
n + zp

1n, . . . , Dp
n + zp

11n),
NS

c
n = NS

p
n + �(2 − γ )hγ f10(tn, SU

p
n + zp

1n, . . . , Dp
n + zp

11n),
Dc

n = Dp
n + �(2 − γ )hγ f11(tn, SU

p
n + zp

1n, . . . , Dp
n + zp

11n),

(18)

where,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SU
p
n = an−1SU0

+ ∑n−1

k=1 (an−1−k − an−k) SUk
,

SE
p
n = an−1SE0

+ ∑n−1

k=1 (an−1−k − an−k) SEk
,

Ip
n = an−1I0 + ∑n−1

k=1 (an−1−k − an−k) Ik,
TE

p
n = an−1TE0

+ ∑n−1

k=1 (an−1−k − an−k) TEk
,

TL
p
n = an−1TL0

+ ∑n−1

k=1 (an−1−k − an−k) TLk
,

VE
p
n = an−1VE0

+ ∑n−1

k=1 (an−1−k − an−k) VEk
,

VL
p
n = an−1VL0

+ ∑n−1

k=1 (an−1−k − an−k) VLk
,

RD
p
n = an−1RD0

+ ∑n−1

k=1 (an−1−k − an−k) RDk
,

RW
p
n = an−1RW0

+ ∑n−1

k=1 (an−1−k − an−k) RWk
,

NS
p
n = an−1NS0

+ ∑n−1

k=1 (an−1−k − an−k) NSk
,

Dp
n = an−1D0 + ∑n−1

k=1 (an−1−k − an−k) Dk,

(19)
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and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zp
1n = N(SUn) = �(2 − γ )hγ f1(tn, SU

p
n, . . . , Dp

n),
zp

2n = N(SEn) = �(2 − γ )hγ f2(tn, SU
p
n, . . . , Dp

n),
zp

3n = N(In) = �(2 − γ )hγ f3(tn, SU
p
n, . . . , Dp

n),
zp

4n = N(TEn) = �(2 − γ )hγ f4(tn, SU
p
n, . . . , Dp

n),
zp

5n = N(TLn) = �(2 − γ )hγ f5(tn, SU
p
n, . . . , Dp

n),
zp

6n = N(VEn) = �(2 − γ )hγ f6(tn, SU
p
n, . . . , Dp

n),
zp

7n = N(VLn) = �(2 − γ )hγ f7(tn, SU
p
n, . . . , Dp

n),
zp

8n = N(RDn) = �(2 − γ )hγ f8(tn, SU
p
n, . . . , Dp

n),
zp

9n = N(RWn) = �(2 − γ )hγ f9(tn, SU
p
n, . . . , Dp

n),
zp

10n = N(NSn) = �(2 − γ )hγ f10(tn, SU
p
n, . . . , Dp

n),
zp

11n = N(Dn) = �(2 − γ )hγ f11(tn, SU
p
n, . . . , Dp

n).

(20)

The above given algorithm is coded in Mathematica and the bunch of Figs. 1 and 2 plotted to
explore the outputs of the scheme at various fractional-order values. From the Figs. 1c–1f, we identify
when the fractional order decreases, the population of the SBE humans; I(t), peoples getting early
and late treatment with antivenom; TE(t) and TL(t), respectively, and the humans facing EAR at
the time of early treatment; VE(t) increases, respectively. The time-respective variations in the rest
of the model classes can be seen from the Figs. 2a–2e. Overall, we can say that the proposed L1-PC
scheme performed well to explore the proposed model dynamics in the sense of the Caputo fractional
derivative. The accuracy and stability of the given scheme are now discussed in our further analysis.

Figure 1: (Continued)
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Figure 1: Dynamics of the model classes SU , SE, I , TE, TL, VE at fractional orders γ = 1 (solid), γ =
0.95 (dashed), γ = 0.90 (dot-dashed), and γ = 0.85 (dotted)

Figure 2: (Continued)
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Figure 2: Dynamics of the model classes VL, RD, RW , NS, D at fractional orders γ = 1 (solid), γ = 0.95
(dashed), γ = 0.90 (dot-dashed), and γ = 0.85 (dotted)

4.2 Error Analysis
The brief analysis on the error estimation of L1-PC scheme has been given in the studies [29,40,41]

and now investigated below. The error estimate is given by∣∣∣∣∣[CDγA (t)
]

t=tn
−

n−1∑
k=0

bn−k−1 (Ak+1 − Ak)

∣∣∣∣∣ ≤ Ch2−γ , (21)

here C is a positive constant depends on γ and A.

Derive rn by

rn := � (2 − γ ) hγ

[[
CDγA (t)

]
t=tn

−
n−1∑
k=0

bn−k−1 (Ak+1 − Ak) ‖
]

. (22)

In view of (21)

|rn| = � (2 − γ ) hγ

∣∣∣∣∣[CDγA (t)
]

t=tn
−

n−1∑
k=0

bn−k−1 (Ak+1 − Ak) ‖
∣∣∣∣∣ ≤ � (2 − γ ) Ch2. (23)

To derive the error estimation, we will use the lemmas given below:
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Lemma 2. [42] For 0 < γ < 1 and a′
ks (as given in Eq. (15)), we have

k−γ a−1
k−1 ≤ 1

1 − γ
, k = 1, 2, . . . , N.

Lemma 3. [29] Consider A(tk) as exact solution of the proposed IVP and Ap
k be the approximate

solution calculated from the algorithm (17). Then for 0 < γ < 1, we have

|A(tk) − Ap
k| ≤ Ca−1

k−1, k = 1, 2, . . . N,

where a′
ks are given in Eq. (15).

Lemma 4. [29] Consider A(tk) as exact solution of the proposed IVP and Ap
k be the approximate

value evaluated from Eq. (17). Then for 0 < γ < 1, we have

|A(tk) − Ap
k| ≤ Cγ T γ h2−γ , k = 1, 2, · · · N,

where Cγ = C/(1 − γ ).

Theorem 3. ConsiderA(t) as exact solution of the proposed IVP (9), �(t,A(t)) satisfies the Lipschitz
property respect to the variable A with a constant L, and �(t,A(t)),A(t) ∈ C1[0, T ]. Also, Ac

k defines
the approximate solutions at t = tk calculated by using L1-PC method. Then for 0 < γ < 1, we have

|A(tk) − Ac
k| ≤ C1T γ h2−γ , k = 1, 2, . . . N, (24)

where C1 = d/(1 − γ ) and d is a constant.

Proof . Let ek = A(tk) − Ac
k and ep

k = A(tk) − Ap
k. Using Eqs. (9), (17), and (22), we get

en = ep
n + �(2 − γ )hγ (�(tn,A(tn)) + N(A(tn))) − �(tn,Ap

n + N((Ap
n))).

Further observe that

|en| ≤ |ep
n| + �(2 − γ )hγ |�(tn,A(tn)) + N(A(tn))) − �(tn,Ap

n + N((Ap
n)))|

≤ |ep
n| + L�(2 − γ )hγ |A(tn) − Ap

n + N(A(tn))) − N((Ap
n))|

≤ |ep
n| + L�(2 − γ )hγ |ep

n| + L2(�(2 − γ ))2h2γ |A(tn) − Ap
n| (25)

≤ |ep
n| + L�(2 − γ )hγ |ep

n| + L2(�(2 − γ ))2h2γ |ep
n|

≤ [1 + L�(2 − γ )hγ + L2(�(2 − γ ))2h2γ ]|ep
n|.

Using Lemma 4 in Eq. (25), we get

|en| ≤ [1 + L�(2 − γ )hγ + L2(�(2 − γ ))2h2γ ]Cγ T γ h2−γ

≤ [1 + L�(2 − γ ) + L2(�(2 − γ ))2]Cγ T γ h2−γ .

Therefore

|en| ≤ Cγ T γ h2−γ ,

where C1 is a constant.

The behaviour of the absolute remainder error is plotted in the bundle of Figs. 3 and 4 at the
previously used fractional-order values γ = 1, 0.95, 0.90, 0.85. For all classes, when the fractional order
γ increases the error decreases as we move away from the left endpoint, namely 0. For SU , SE, VL, RD,
and D classes, very small errors are obtained at the other points of the considered interval while the
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errors deteriorate at points very close to the origin for TE, RW and NS classes. Moreover, it is obvious
that quite small errors are obtained for the integer-order case.

Figure 3: Absolute remainder error in the solution of the model classes SU , SE, I , TE, TL, VE at fractional
orders γ = 1 (solid), γ = 0.95 (dashed), γ = 0.90 (dot-dashed), and γ = 0.85 (dotted)



2502 CMES, 2023, vol.136, no.3

Figure 4: Absolute remainder error in the solution of the model classes VL, RD, RW , NS, D at fractional
orders γ = 1 (solid), γ = 0.95 (dashed), γ = 0.90 (dot-dashed), and γ = 0.85 (dotted)

4.3 Stability Analysis
The term stability means that small deviations in the initial values do not make the big changes in

the numerical solutions. Consider that Ac
n and vc

n (n = 1, 2 . . . , N) are two solutions calculated by the
numerical scheme (17). For δ0 = |A0 − v0|, there exists two positive quantities k and h’, such that
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|Ac
n − vc

n| ≤ kδ0 for h ∈ (0, h′), 1 ≤ n ≤ N,

here h is the step size given in Eq. (9).

Theorem 4. Suppose �(t,A) follows the Lipschitz property respect to the variable A with a constant
L and Ac

n (n = 1, 2 . . . , N) are the solutions established from the scheme (17), then the scheme (17) is
stable.

Proof. We have to prove that

|Ac
n − vc

n| ≤ C|A0 − v0|.
Denote by η0 := (1 + (L�(2 − γ )) + L2(�(2 − γ ))2hγ ). Note that

|Ac
n − vc

n| ≤ |Ap
n − vp

n| + L�(2 − γ )hγ (|Ap
n − vp

n| + |N(Ap
n) − N(vp

n)|). (26)

Further observe that

|Ac
n − vc

n| =
∣∣∣∣∣an−1 (A0 − v0) +

n−1∑
k=1

(an−1−k − an−k) (Ak − vk)

∣∣∣∣∣
≤ an−1|A0 − v0| +

n−1∑
k=1

(an−1−k − an−k) |Ak − vk|

≤ |A0 − v0| +
n−1∑
k=1

(an−1−k − an−k) |Ak − vk|.

Using discrete form of Gronwalls inequality and Eq. (15), we obtain

|Ap
n − vp

n| ≤ c|A0 − v0|, (27)

where c is a constant and

|N(Ap
n) − N(vp

n)| = |�(2 − γ )hγ (�(tn,Ap
n)) − �(tn, vp

n))|
≤ L�(2 − γ )hγ |Ap

n − vp
n|. (28)

Using (27) and (28) in (26), we get

|Ac
n − vc

n| ≤ |Ap
n − vp

n| + L�(2 − γ )hγ |Ap
n − vp

n| + L2(�(2 − γ ))2h2γ |Ap
n − vp

n|
≤ |Ap

n − vp
n| + L�(2 − γ )hγ |Ap

n − vp
n| + L2(�(2 − γ ))2hγ |Ap

n − vp
n|

≤ (1 + L�(2 − γ ) + L2(�(2 − γ ))2)hγ |Ap
n − vp

n|
≤ η0c|A0 − v0|
≤ C|A0 − v0|,

where C is a constant.

5 Conclusion

In this research work, we have performed a novel implementation of a finite-difference predictor-
corrector scheme on a fractional-order nonlinear snakebite envenoming model in terms of the Caputo
fractional derivative. The numerical solution of the model has been plotted by using several graphs
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to justify the behavior of the model at various fractional-order values. The analysis related to the
error estimation and stability of the scheme has also been derived from exploring method’s accuracy.
In the error estimation, the fractional order γ increases and the error decreases which justifies that
our fractional-order analysis should not be performed at small values of order γ . From the given
observations, it is clear that the proposed method can easily be implemented on various epidemic
models, and the algorithm is time-efficient for more accurate solutions. In the future, the given scheme
can be widely used to solve various nonlinear mathematical models related to real-life phenomena.
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