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Abstract In this manuscript, we study new solutions of generalized version of geophysical KdV

equation which is called generalized perturbed KdV (gpKdV) under time–space conformable oper-

ator. We implement two methods to get some novel waves solution of the gpKdV equation. First,

we use extended Tanh-method to extract new solutions of considered equations in the form of

trigonometric hyperbolic functions. To achieve Sine and Cosine hyperbolic solutions, we use gen-

eralized Kudryashov (GK) technique with Riccati equation. We show the behaviour of solutions

via 2D and 3D figures. Also, we analyze the Corioles effect on the evolution of waves solutions

of the considered equation.
� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

From past few centuries, nonlinear PDEs have been frequently
used in science and engineering problems [1,2]. There are sev-
eral famous nonlinear PDEs, which have been analyzed by
researchers in the current century [3]. Among them, KdV equa-
tion has gotten remarkable attention of the researchers from

the past several decades. In 1877, Boussinesq proposed KdV
equation and later reformulated by Korteweg and de Vries
in 1895. KdV is a dispersive PDE, typically used in the study

of waves produces in shallow water, dense oceans, plasma,
and crystal lattice [4,5]. The classical KdV equation:

@

@t
wðx; tÞ þ wðx; tÞ @

@x
wðx; tÞ þ @3

@x3
wðx; tÞ ¼ 0: ð1Þ

A KdV model has been utilized to explain several quantum
mechanics-related scientific research events. It is utilized as a
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model in the study of hydrodynamics, aerodynamics, and con-

tinuum physics.
KdV equation has large family and its several generalized

form has been introduced in the literature [3]. A few years

ago, Geyer et al. formulated another version of KdV by taking
into account equatorial two-dimensional one-layer ocean
dynamics [6]. Further, they consider the so-called Coriolis
effect, which becomes important for large-scale ocean waves,

in contrast to well-known shallow water models like KdV.
Geyer and his coauthor formulated the KdV equation as:

@

@t
wðx; tÞ �x

@

@x
wðx; tÞ þ 3

2
wðx; tÞ @

@x
wðx; tÞ þ 1

6

@3

@x3
wðx; tÞ ¼ 0:

ð2Þ
The above equation is called geophysical KdV equation. This

equation has been studied by several researchers [7,8]. Very
recently, Alquran et al. formulated a modified version of the
geophysical KdV Eq. (2), which they called gpKdV equation.

We consider the nonlinear perturbed KdV equation in the
form [9]

wt þ .wx þ Xwwx þ gwxxx ¼ 0; ð3Þ
w is a function of x and t. In the gpKdV Eq. (3) the . provides
perturbation parameter representing Coriolis effect which is is

the apparent deflection of moving objects, such as air and
water, due to the Earth’s rotation. X is the coefficient of
non-linearity and g represents dispersion which is the process

of separating a complex wave into its wavelengths etc. The
Eq. (3) is generalized version of the geophysical KdV Eq. (2)
and classical KdV Eq. (1). One can recover Eq. (2) by consid-

ering . ¼ �gx;X ¼ 3
2
and g ¼ 1

6
. Similarly one can get KdV Eq.

(1) from Eq. (3) by considering . ¼ 0;X ¼ 1 and g ¼ 1. The
gpKdV equation has applications in areas of mechanics, med-
ical engineering, acoustics and show the scientific explanations

of transmission of sound in fluid. Saifullah et al. studied lump
and its interacttions of the gpKdV Eq. (3) via Hirota bilinear
technique [10].

The generalized geophysical KdV equation is a mathemat-
ical model that describes the propagation of long waves in geo-
physical systems, such as oceanic and atmospheric waves.

Physically, it takes into account the effects of dispersion, non-
linearity, and dissipation in the wave dynamics, and it includes
additional terms that account for the background flow and the

effects of variable depth. The equation can be used to study the
behavior of waves under various conditions, such as the inter-
action between waves of different frequencies, the generation
of rogue waves, and the formation of coherent structures. Its

solutions provide insights into the dynamics of geophysical
systems and can be used to predict the occurrence of various
phenomena, such as storm surges, tsunamis, and internal

waves.
Nowadays, nonlocal operator have been used to study com-

plete information of a physical processes during their heredity

and memory features [11,12]. Nonlocal operators has several
applications in control theory and delay differential equations
[13–16], analysis [17–20], biomathematics and some other area

of applied sciences [21–24]. Conformable operator got tremen-
dous attention of the researchers of the current century. Some
theoretical and computational works on conformable operator
are listed in [25–29]. Mathematical physicist preferred to used

conformable operator to study solitary waves solutions of non-
linear PDEs. The conformable operator is a natural extension
of the integer order operators. The conformable operator has
several important features such as linearity, Liebnitz rule,

chain rule and quotient rule. Due to these features, we choose
conformable operator to study the gpKdV (3). Consider the
Eq. (3) under conformable operator as:

Dc
tPþ .Db

xPþ XPDb
xPþ gD3b

xxxP ¼ 0; ð4Þ

where 0 < c; b � 1. The solution of conformable PDEs have
been achieved by many methods in the literature. For instance,
Jacobi elliptic method has been utilized to investigate exact
solutions of conformable PDEs [30]. Similarly novel types of

solutions are obtained with different techniques in [31–34].
Bilal et al. used sinh-Gordan technique to extract solitary solu-
tions of Wazwaz-Benjamin-Bona-Mahony under conformable

FO [35]. The Hirota bilinear approach has been used to derive
lump and other rogue wave solutions of a nonlinear Schrodin-
ger equation under conformable FO [36]. Dual wave solutions

are studied in [37] of the Klein-Fock-Gordon equation under
conformable Caputo operator. Explicit rational solution of
equation describing the propagations of bidirectional waves
in a low-pass electrical lines in space time fractional form is

studied in [38]. Further, the solitonic and chaotic solutions
for a novel time-fractional dual-mode KdV equation are
reported in [39]. Various researchers have investigated soliton

solutions of different integrable systems via various analytical
methods [40–44]. The pgKdV is not studied under conformable
FO. Therefore, in this paper, we use conformable FO to

extract some solitary waves solutions of the gpKdV with help
of extended tanh-method and GK method. Also we consider
different values of the Coriolis effect and study its impact on

the dynamics of the obtained exact solutions.

2. Preliminaries

Here, we outline the conformable derivative’s fundamental
definition and features.

Definition 1. Consider a function G : ½0;1Þ ! R. G be q-
order ‘‘conformable derivative” can be expressed in the form

[45]:

KcðGðtÞÞ ¼ lim
�!0

Gðtþ �t1�cÞ � GðtÞ
�

: ð5Þ

For each t > 0; c 2 ð0; 1�. If G be c-differentiable in nearly

ð0; cÞ; c > 0 and lim�!0G
ðcÞðtÞ be real, next

GðcÞð0Þ ¼ limt!0þG
ðcÞðtÞ.

Theorem 1. Let c 2 ð0; 1� and at t > 0G;H be c-differentiable.
Then

1. KcðaGþ bF Þ ¼ aKcðGÞ þ bKcðHÞ; 8a; b 2 R.

2. KcðtjÞ ¼ jtj�1; 8 j 2 R

3. KcðpÞ ¼ 0; 8 constant functions GðtÞ ¼ p.
4. KcðGHÞ ¼ GKcðHÞ þHKcðGÞ.
5. Kc

G
H

� � ¼ HKcðGÞþGKcðHÞ
H2 .

6. Furthermore, when G is differentiable, then we can write

KcðGðtÞÞ ¼ t1�c dG
dt .
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The above properties and some other as well like
Gr€onwall’s inequality, chain law and Laplace transform etc
are presented in [47].

Theorem 2. In the context of conformable differentiation,
Gand H are c-differentiable, then [46]

KcðG �HÞðtÞ ¼ t1�cG0ðtÞHcðtÞ:
3. The extended tanh function technique

The extended tanh approach for getting numerous exact solu-
tions of fractional nonlinear equations (FNLEs) is presented

here. It was summarised by Wazwaz [48]. The essential concept
behind the suggested approach is to obtain the solution called
a polynomial with hyperbolic functions and solve the PDE first

by solving the procedure, which includes first-order ODEs and
the algebraic equations. In conformable sense this technique
has been used by various mathematicians and researchers

[49,50]. To start the technique, consider the FNLE related with
P ¼ Pðx; tÞ as:
WðP;Pc

t ;P
b
x;P

b
xP

c
t ;P

c
tt;P

b
xx; � � �Þ ¼ 0; 0 < b; c � 1; ð6Þ

where W is polynomial of Pðx; tÞ and its derivatives of differ-
ent orders in which the high order derivative and high order

nonlinear terms are interrelated. Consider the wave transfor-
mation in the form

f ¼ k
xb

b
þ c

tc

c
; PðfÞ ¼ Pðx; tÞ; 0 < b; c � 1; ð7Þ

where k and c are non-zero constants. Substituting Eq. (7) into
Eq. (6), one can obtain the following system of ODEs.

WðP;P0;P00;P000;P0000; � � �Þ ¼ 0; ð8Þ
where ‘‘0” represents the ordinary derivative. The integrate Eq.
(8) as long as all terms have derivatives but to consider integra-
tion constants as zeros. Further consider the general solution
in the following finite expansion

Pðx; tÞ ¼ PðfÞ ¼
X1

q¼0

aqw
q þ

X1

q¼1

Yqw
�q; w ¼ tanhðKfÞ; ð9Þ

where, Y represents wave number, leading to change of deriva-
tives, 1 represents positive integer, and its value can be found
with the Homogeneous balance method. Eq. (9) is reduces to

standard tanh method for Yq–0; 1 6 q 6 1. Plugging Eq. (9)

into the obtained ODE and then collecting the coefficients of
powers of w in the reduced equation, where coefficients need
to be disappeared. After this, we achieve system of equations

in the variables aq;Yq; f, and X. Solving the attained system

of equations, we achieve the exact solution Pðx; tÞ. The

acquired analytical solutions can be the soliton solution in

terms of sech2, or kink solutions. Moreover, this method can
also give the periodic and singular solution of the nonlinear

PDE under consideration.

3.0.1. Novel solutions of conformable geophysical KdV equation
with extended tanh technique

Here, we implement the suggested procedure to get some new
exact solutions of the conformable suggested Eq. (3). Let
f ¼ k
xb

b
� c

tc

c
; Pðx; tÞ ¼ PðfÞ; 0 < b; c � 1; ð10Þ

putting Eq. (10) into Eq. (3), we have

�cP0ðfÞ þ gP000ðfÞ � XPðfÞP0ðfÞ þ .P0ðfÞ ¼ 0: ð11Þ
Next, we integrate Eq. (11) w.r.t f, one gets

�cPðfÞ þ gP00ðfÞ � 1

2
XPðfÞ2 þ .PðfÞ ¼ 0: ð12Þ

To apply the suggested procedure, first we calculate the value
of 1. From homogeneity principle, one may obtain 1 ¼ 2. We
get:

PðfÞ ¼
X2

q¼0

aqw
q þ

X2

q¼1

Yqw
�q; ð13Þ

substituting Eq. (13) into Eq. (12), we obtain

�c a0 þ a1 tanhðKfÞ þ a2tanh
2ðKfÞ þY1 cothðKfÞ þY2coth

2ðKfÞ� �
� 1

2
Xk a0 þ a1 tanhðKfÞ þ a2tanh

2ðKfÞ þY1 cothðKfÞ þY2coth
2ðKfÞ� �2

þk. a0 þ a1 tanhðKfÞ þ a2tanh
2ðKfÞ þY1 cothðKfÞ þY2coth

2ðKfÞ� �
ð14Þ

þ �a1 þ a2 cothðKfÞ � 3a2 þY1coth
4ðKfÞ þ 3Y2coth

5ðKfÞ �Y2coth
3ðKfÞ� ��

2gk3K2 cothðKfÞ tanh2ðKfÞ � tanh4ðKfÞ� � ¼ 0;

consider the coefficients of each power of Q to zero in Eq. (14),

we get the following algebraic system of equations

�a0cþ2a2gk
3K2þ2Y2gk

3K2�a1Y1Xk�a2Y2Xk

� 1
2
a20Xkþa0k.¼ 0;

�Y1c�2Y1gk
3K2�a0Y1Xk�a1Y2XkþY1k.¼ 0;

�Y2c�8Y2gk
3K2�a0Y2Xk� 1

2
Y2

1XkþY2k.¼ 0;

2Y1gk
3K2�Y1Y2Xk¼ 0;

6Y2gk
3K2� 1

2
Y2

2Xk¼ 0;

�a1c�2a1gk
3K2�a2Y1Xk�a0a1Xkþa1k.¼ 0;

�a2c�8a2gk
3K2� 1

2
a21Xk�a0a2Xkþa2k.¼ 0;

2a1gk
3K2�a1a2Xk¼ 0;

6a2gk
3K2� 1

2
a22Xk¼ 0:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð15Þ

Via Software, we solve (15) and obtain following sets of non-

trivial solutions of the suggested model with a1 ¼ Y1 ¼ 0 for
each case as:

1. a0 ¼ 3ðk.�cÞ
Xk ; a2 ¼ � 3ðk.�cÞ

Xk ; Y2 ¼ 0; K ¼ �
ffiffiffiffiffiffiffi
c�k.

p
2
ffiffi
g

p
k3=2

:

2. a0 ¼ 3ðk.�cÞ
Xk ; a2 ¼ 0; Y2 ¼ � 3ðk.�cÞ

Xk ; K ¼ �
ffiffiffiffiffiffiffi
c�k.

p
2
ffiffi
g

p
k3=2

:

3. a0 ¼ 3ðk.�cÞ
2Xk ; a2 ¼ � 3ðk.�cÞ

4Xk ; Y2 ¼ � 3ðk.�cÞ
4Xk ; K ¼ �

ffiffiffiffiffiffiffi
c�k.

p
4
ffiffi
g

p
k3=2

:

4. a0 ¼ k.�c
2Xk ; a2 ¼ 3ðk.�cÞ

4Xk ; Y2 ¼ 3ðk.�cÞ
4Xk ; K ¼ � i

ffiffiffiffiffiffiffi
c�k.

p
4
ffiffi
g

p
k3=2

:

5. a0 ¼ c�k.
Xk ; a2 ¼ 3ðk.�cÞ

Xk ; Y2 ¼ 0; K ¼ � i
ffiffiffiffiffiffiffi
c�k.

p
2
ffiffi
g

p
k3=2

:

6. a0 ¼ c�k.
Xk ; a2 ¼ 0; Y2 ¼ 3ðk.�cÞ

Xk ; K ¼ � i
ffiffiffiffiffiffiffi
c�k.

p
2
ffiffi
g

p
k3=2

:

After putting the above values of parameters one by one
into Eq. (13), we obtain the corresponding solution to each

case as:

1. P1ðx; tÞ ¼ 3ðk.�cÞ
Xk sech2

ffiffiffiffiffiffiffi
c�k.

p
kxb
b �ctc

c

� �
2
ffiffi
g

p
k3=2

� �� �
.
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2.

P2ðx; tÞ ¼ 3ðk.�cÞ
Xk �

3ðk.�cÞcoth2
ffiffiffiffiffiffi
c�k.

p kxb
b

�ctc
c

� �
2
ffiffi
g

p
k3=2

0
@

1
A

Xk

.

3.

P3ðx; tÞ ¼ 3ðk.�cÞ
2Xk 1�

tanh2

ffiffiffiffiffiffi
c�k.

p kxb
b

�ctc
c

� �
4
ffiffi
g

p
k3=2

0
@

1
A

2

0
BBBBB@

1
CCCCCA

� 3ðk.�cÞ
2Xk

coth2

ffiffiffiffiffiffi
c�k.

p kxb
b

�ctc
c

� �
4
ffiffi
g

p
k3=2

0
@

1
A

2

0
BBBBB@

1
CCCCCA

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

.

4.

P4ðx; tÞ ¼ k.�c
2Xk 1�

3tan2

ffiffiffiffiffiffi
c�k.

p kxb
b

�ctc
c

� �
4
ffiffi
g

p
k3=2

0
@

1
A

2

0
BBBBB@

1
CCCCCA

� k.�c
2Xk

3cot2

ffiffiffiffiffiffi
c�k.

p kxb
b

�ctc
c

� �
4
ffiffi
g

p
k3=2

0
@

1
A

2

0
BBBBB@

1
CCCCCA

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

.

5. P5ðx; tÞ ¼ c�k.
Xk �

3ðk.�cÞtan2
ffiffiffiffiffiffi
c�k.

p kxb
b

�ctc
c

� �
2
ffiffi
g

p
k3=2

0
@

1
A

Xk

.

6. P6ðx; tÞ ¼ c�k.
Xk �

3ðk.�cÞcot2
ffiffiffiffiffiffi
c�k.

p kxb
b

�ctc
c

� �
2
ffiffi
g

p
k3=2

0
@

1
A

Xk

.

Fig. 1 Graphs of w1ðx; tÞ for k ¼ 1; g ¼ 0:1; . ¼
3.0.2. Simulations and Discussion

In this section, we present numerical simulations of six exact

solutions ½w1ðx; tÞ � w6ðx; tÞ� obtained through the extended
tanh technique. These solutions exhibit various wave behav-
iors, including dark soliton, singular solutions, hyperbolic

traveling wave solutions, and singular periodic type solutions.
We consider b ¼ 1 in the numerical simulations. The exact
solution w1ðx; tÞ is shown in Fig. 1 with varying fractional
order c, which displays dark soliton behavior. It should be

noted that c is inversely proportional to the separation of the
dark soliton. Fig. 2 demonstrates the physical behavior of
exact solution w2ðx; tÞ, where singular solutions are observed.

Here, decreasing c increases the gap between the waves. To
further clarify, the convex hyperbolic traveling waves in
w3ðx; tÞ refer to wave shapes that are arched and bulging

upwards, while the concave hyperbolic traveling waves in
w4ðx; tÞ are shaped like an inverted arch, bulging downwards.
As the fractional order c decreases, both the number and

amplitude of these waves in w3ðx; tÞ and w4ðx; tÞ decrease,
meaning that there are fewer and smaller waves. Moreover,
the two singular solitons in w5ðx; tÞ refer to wave patterns that
resemble spikes or peaks, with only one peak present at higher

values of c, and two peaks at lower values of c. As c decreases,
the distance between these two peaks increases, causing the
periodic waves to move farther apart. (see Figs. 3–5).

4. Generalized Kudryashov Method

In determining the analytical soliton solutions to the NLEEs,

the generalized Kudryashov (GK) technique is important
and useful. In order to construct typical and diverse exact solu-
0:1;X ¼ 1;c ¼ 1, presents the dark soliton.



Fig. 2 Graphs of w2ðx; tÞ for k ¼ 1; g ¼ 0:6; . ¼ 0:1;X ¼ 1;c ¼ 1, portrays the singular solution.

Fig. 3 Graphs of w3ðx; tÞ for k ¼ 1; g ¼ �0:1; . ¼ 0:1;X ¼ 1;c ¼ 1,demonstrates the convex hyperbolic waves.
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tions to NLEEs in terms of conformable in space and time, we

present the general procedure of GK in this section. The solu-
tion general form is evaluated in accordance with GK method
as follows:

PðtÞ ¼
n0 þ

Xs

r¼1

nrV
rðfÞ

-0 þ
Xw
r¼1

-rV
rðfÞ

; ð16Þ
where s and m2 Zþ; nrðr ¼ 1; 2; 3; � � � ; sÞ and
-rðr ¼ 1; 2; 3; � � � ;mÞ are undetermined coefficients which are
to be determined later and f is presented in Eq. (9). Further

we have

VðfÞ ¼ 1

1þAexpðfÞ ; ð17Þ

where A represents the integral constant and VðfÞ is the gen-
eral solution of the Riccati equation as



Fig. 4 Graphs of w4ðx; tÞ for k ¼ 1; g ¼ 0:05; . ¼ 0:1;X ¼ 1;c ¼ 1, demonstrates the concave hyperbolic waves.

Fig. 5 Graphs of w5ðx; tÞ for k ¼ 1; g ¼ 2; . ¼ 0:1;X ¼ 1;c ¼ 1, presents the two singular solitons.
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V0ðfÞ ¼ V2ðfÞ �VðfÞ; ð18Þ
where ‘‘0” represents the ordinary derivative with respect to f.
With the help of homogeneous balance principle in Eq. (8), on
can obtain the values of s and m. Then inserting solution (16)
along with Eq. (18) into Eq. (8) a polynomial in the powers of
VðfÞ can be obtained. Further equating various powers of

VðfÞ into zero an algebraic system can be obtained. After solv-
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ing the algebraic system and obtaining the values of nr and -r

and other parameters present in the considered model one may
obtain exact solutions.

4.0.3. New solutions of conformable geophysical KdV equation
with GK method

Here we apply the suggested GK method to the conformable
perturbed KdV Eq. (3) to obtain different soliton solutions.

Therefore, first we need to calculate the values of s and m.
In Eq. (12), we balance the highest power of nonlinear term
and the highest order derivative so we can write
� c n1VðfÞþn2VðfÞ2þn3VðfÞ3þn0ð Þ
-1VðfÞþ-0

� gk3 1

ð-1VðfÞþ-0Þ3
h

�
2-2

1 VðfÞ2 �VðfÞ
� �2

n1VðfÞ þ n2VðfÞ2 þ n
�

� -1

ð-1VðfÞþ-0Þ2
�VðfÞ2 þ 2 VðfÞ2 �VðfÞ

� �
VðfÞ

�2 VðfÞ2 �VðfÞ
� �

n1 VðfÞ2 �VðfÞ
� �� ��

�2 VðfÞ2 �VðfÞ
� �

3n3 VðfÞ4 �VðfÞ3
� �� �

þ n1
-1VðfÞþ-0

�VðfÞ2 þ 2 VðfÞ3 �VðfÞ2
� �

þVð
�

�VðfÞ2 þ 2n2 �VðfÞ2 þ 2 VðfÞ2 �VðfÞ
� �

Vð
�

þ3n3 �VðfÞ2 þ 2 VðfÞ2 �VðfÞ
� �

VðfÞ þVðf
�

�VðfÞ2VðfÞ �
Xk n1VðfÞ þ n2VðfÞ2 þ n3VðfÞ3 þ

�
2ð-1VðfÞ þ -0Þ2

Fig. 6 Dynamics of w1GKðx; tÞ for k ¼ 1; g ¼ 1; . ¼ 2
s ¼ mþ 2; ð19Þ
where m is a nonzero free parameter. Particularly, when m ¼ 1,

we obtain from Eq. (19), that m ¼ 3. So the solution (16) turns
out to be in the form

VðfÞ ¼ n0 þ n1VðfÞ þ n2V
2ðfÞ þ n3V

3ðfÞ
-0 þ -1VðfÞ ; ð20Þ

where n0; n1; n2; n3;-0 and -1are to be determined later. Now
substituting Eq. (20) along with Eq. (18) into Eq. (8) one get

the following polynomials in different powers of VðfÞ in the
form
3VðfÞ3 þ n0
��

þVðfÞ n1VðfÞ þ n2VðfÞ2 þ n3VðfÞ3 þ n0
� �

�2 VðfÞ2 �VðfÞ
� �

2n2 VðfÞ2 �VðfÞ
� �

VðfÞ
� �

fÞ
�
þ 2n2VðfÞ2

fÞ þVðfÞ
�
VðfÞ

Þ
�
VðfÞ2 þ 6n3VðfÞ2

n0
�2

þ
k. n1VðfÞ þ n2VðfÞ2 þ n3VðfÞ3 þ n0

� �
-1VðfÞ þ -0

¼ 0: ð21Þ

;X ¼ 1;c ¼ 1;A ¼ 1, showing the bright soliton.



Fig. 7 Hybrid solitonic behavior of w2GKðx; tÞ for k ¼ 1; g ¼ 4; . ¼ 1;X ¼ �1;c ¼ 1;A ¼ 2,.

Fig. 8 Affects of . on exact solution w1ðx; tÞ with k ¼ 1; g ¼ 0:1; c ¼ 1;X ¼ 1;c ¼ 1.

Fig. 9 Affects of . on exact solution w2ðx; tÞ with k ¼ 1; g ¼ 0:6; c ¼ 0:99;X ¼ 1;c ¼ 1.

658 S. Saifullah et al.



Analysis of a conformable generalized geophysical KdV equation with Coriolis effect 659
After putting the coefficients of distinct exponents of VðfÞ to
zero in Eq. (21), one can obtain:

�2cn0-
2
0 þ Xð�kÞn20-0 þ 2kn0-

2
0. ¼ 0;

�4cn0-0-1 � 2cn1-
2
0 þ 2gk3-0ðn0-1 � n1-0Þ

�Xkn20-1 � 2Xkn0n1-0 þ 4kn0-0-1.þ 2kn1-2
0. ¼ 0;

�2cn0-2
1 � 4cn1-0-1 � 2cn2-2

0 � 2gk3n0
�2gk3-0ðn0-1 � n1-0Þ-1ð2-0 þ -1Þ þ 2kn2-2

0.

�8gk3n2-2
0 � 2Xkn0n1-1 � 2Xkn0n2-0 þ 2kn0-2

1.

�Xkn21-0 þ 4kn1-0-1.þ 2gk3n1-0ð2-0 þ -1Þ ¼ 0;

2kn1-
2
1.� 2cn1-

2
1 � 2cn3-

2
0 þ 2gk3n0-1ð2-0 þ -1Þ

�2Xkn1n2-0 þ 6gk3-0ð2n2-0 � n2-1 � 3n3-0Þ
þ8gk3n2-

2
0 � 2Xkn0n2-1 � 4cn2-0-1 þ 4kn2-0-1.

þ2kn3-2
0.� 2gk3n1-0ð2-0 þ -1Þ � 2Xkn0n3-0

�Xkn21-1 ¼ 0;

�2cn2-2
1 � 4cn3-0-1 � 6gk3-0ð2n2-0 � n2-1 � 3n3-0Þ

þ2gk3n3-0ð12-0 � 11-1Þ � 2Xkn0n3-1 � 2Xkn1n2-1

�2Xkn1n3-0 � Xkn22-0 þ 2gk3n2-1ð6-0 � -1Þ
þ2kn2-

2
1.þ 4kn3-0-1. ¼ 0;

�2cn3-
2
1 � 2gk3n2-1ð6-0 � -1Þ þ 4gk3n2-

2
1

þ32gk3n3-0-1 � 2gk3n3-0ð12-0 � 11-1Þ � 8gk3n3-
2
1

�2Xkn1n3-1 � Xkn22-1 � 2Xkn2n3-0 þ 2kn3-2
1. ¼ 0;

�4gk3n2-2
1 � 32gk3n3-0-1 þ 20gk3n3-2

1

�2Xkn2n3-1 � Xkn23-0 ¼ 0;

�12gk3n3-2
1 � Xkn23-1 ¼ 0;

ð22Þ

solving the above system of algebraic equation we obtain the

following different cases of parameters values
Fig. 10 Affects of . on exact solution w3ðx; t

Fig. 11 Affects of . on exact solution w4ðx;
1. c ¼ k.� gk3; n0 ¼ 0; n1 ¼ 12gk2n0
X ;

n2 ¼ � 12 gk2n0�gk2-1ð Þ
X ; n3 ¼ � 12gk2-1

X :

2.
c ¼ k gk2 þ .

� �
; n0 ¼ � 2gk2n0

X ; n1 ¼ 2 6gk2n0�gk2-1ð Þ
X ;

n2 ¼ � 12 gk2n0�gk2-1ð Þ
X ; n3 ¼ � 12gk2-1

X :

The solutions obtained by putting the above values in Eq.
(16) are presented as follows.

1. w1GKðx; tÞ ¼
12gk2A sinh kxb

b �
tc k.�gk3ð Þ

c

� �
þcosh kxb

b �
tc k.�gk3ð Þ

c

� �� �
X Asinh kxb

b �tc k.�gk3ð Þ
c

� �
þAcosh kxb

b �tc k.�gk3ð Þ
c

� �
þ1

� �2 : ,

2.

w2GKðx;tÞ¼�
2gk2 ð�A2þ4AÞsinh kxb

b �
tc k.�gk3ð Þ

c

� �� �
X �Asinh kxb

b �tc k.�gk3ð Þ
c

� �
þAcosh kxb

b �tc k.�gk3ð Þ
c

� �
þ1

� �2

þ
2gk2 ðA2�4AÞcosh kxb

b �
tc k.�gk3ð Þ

c

� �� �
X �Asinh kxb

b �tc k.�gk3ð Þ
c

� �
þAcosh kxb

b �tc k.�gk3ð Þ
c

� �
þ1

� �2 :

.

4.1. Simulations and Discussion

In this section, we provide graphical representations of the
exact solutions w1GKðx; tÞ and w2GKðx; tÞ for confirmable pKdV

Eq.(3), while considering different values of c and fixing b ¼ 1.
We employ the generalized GK method, which allows us to
observe soliton and hybrid type solutions. Fig. 6 displays the

dynamics of the exact solution w1GKðx; tÞ with varying c,
Þ with k ¼ 1; g ¼ �0:1; c ¼ 1;X ¼ 1;c ¼ 1.

tÞ with k ¼ 1; g ¼ 0:1; c ¼ 1;X ¼ 1;c ¼ 1.



Fig. 12 Affects of . on exact solution w5ðx; tÞ with k ¼ 1; g ¼ 2; c ¼ 1;X ¼ 1;c ¼ 1.

Fig. 13 Affects of . on exact solution w6ðx; tÞ with k ¼ 1; g ¼ 0:1; c ¼ 1;X ¼ 1;c ¼ 1.

Fig. 14 Affects of . on exact solution w1GKðx; tÞ with k ¼ 1; g ¼ 1; c ¼ 1;X ¼ 1;c ¼ 1;A ¼ 1.

Fig. 15 Affects of . on exact solution w2GKðx; tÞ with k ¼ 1; g ¼ 4; c ¼ 1;X ¼ �1;c ¼ 1;A ¼ 2.
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revealing an increase in the separation between waves at small
fractional order. Similarly, Fig. 6 illustrates the behavior of the
exact solution w2GKðx; tÞ with varying c, where the hybrid solu-

tion exhibits a kink and a dark soliton when c ¼ 1. Upon
decreasing the value of c, we observe a breather wave on top
of the kink while the dark soliton moves away from its initial

position. The use of the generalized GK method allows us to
gain insights into the behavior of these solutions and their
dependence on the value of c. (see Fig. 7).

5. Dynamics of the exact solutions with varying Coriolis effect

The purpose of this part of the article is to observe the impact

of the Coriolis effect . on the evolution of different exact solu-
tions obtained with both extended tanh and generalized GK
method. In Fig. 8 w1ðx; tÞ is presented with varying ., where
we see that with increase in Coriolis effect increase the separa-
tion of the wave. Further, in Fig. 9 w2ðx; tÞ is presented with
varying ., where increase in . shows the transition from one
to many hyperbolic waves. Fig. 10 presents w3ðx; tÞ, here we

see that increasing . deacreses the number of hyperbolic waves
to single hyperbolic wave. Also Fig. 11 and 13 depicts the
dynamics of w4ðx; tÞ and w6ðx; tÞ respectively where it can be

observed that the Coriolis effect . plays important rule in
reduction of the waves from many to one. Furthermore,
Fig. 12 presents w5ðx; tÞ, where the transion from two periodic

to one dark soliton solution is observed. In the similar way,
Fig. 14 and 15 demonstrates the physical behaviour of the
solutions w1GKðx; tÞ and w2GKðx; tÞ respectively with varying ..

6. Conclusion

The conformable operators have been extensively used by

mathematical physicists in the analysis of solitary wave solu-
tions of nonlinear PDEs. In this work, conformable operators
were applied to study the gpKdV equation, which is the gener-
alization of geophysical and standard KdV equations. Two

reliable and easy analytical methods, the extended tanh-
method and generalized GK method, were used to extract
some novel solutions of the considered gpKdV equation in

the form of trigonometric hyperbolic functions. The acquired
solutions were simulated via 2D and 3D graphs using Mathe-
matica. Important solutions such as bright and dark solitons,

singular solutions, hyperbolic travelling wave solutions, singu-
lar periodic type solutions, and other hybrid solutions were
observed. The Coriolis effect on the dynamics of the travelling
wave solutions was also shown. Furthermore, the conformable

operator’s great effect on the solitons behavior was demon-
strated. Variation in the wave solutions was observed by
changing the space and time fractional order.

Future directions in this area of research could involve the
application of the conformable operator to study other nonlin-
ear PDEs, as well as exploring new analytical methods for

extracting novel solutions. Additionally, investigating the
physical implications of the observed solutions and their
potential practical applications in fields such as oceanography,

coastal engineering, and fluid mechanics could be an interest-
ing direction for future research. Finally, incorporating exper-
imental data and comparing the results of simulations with
real-world observations could further validate the effectiveness

of the conformable operator in analyzing wave behavior.
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