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Abstract: In this manuscript, the concept of rational-type multivalued F−contraction mappings is
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1. Introduction and preliminaries

The study of nonlinear matrix equations has long attracted the attention of nonlinear analysis, which
includes control theory, dynamical programming, stochastic filtering, queuing theory, statistics, and a
number of other mathematical and practical disciplines.

Run and Reuring [1] extended the Banach contraction principle to the configuration of ordered
metric space, where some applications are examined. The problem of the existence and uniqueness of
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a fixed point for the contraction type operator on a partially ordered set has since been studied by a
number of scholars.

In the last few decades, Nadler [2] explored the idea of Banach contraction [3] in the case of
multivalued mapping. Let (X, d) be a complete metric space and T : X → CB (X) be a multivalued
mapping mapping so that

Hd (T x,Ty) ≤ γd (x, y) , for all x, y ∈ x, γ ∈ [0, 1),

where Hd is a Hausdorff with respect to metric d and CB (X) is a non-empty closed and bounded subset
of X. Then T admits a fixed point.

Recently, well known articles have been published in this direction which greatly assist readers in
finishing their works in the field of fixed point for multivalued mappings, see [4–7].

In recent research, many writers have developed new fixed point theorems by taking into
consideration some sophisticated contractive conditions on diffident spaces in order to close gaps in
the literature. As a result, we hope to fill one of the gaps in the literature on metric fixed point theory
with this study. Consequently, we present some fixed point theorems based on a recent contractive
approach known as “rational type multivalued F−contraction mapping on complete M−metric space”.

Now, we recall some basic concepts of M−metric space. Throughout this paper, the symbols, N, R
and R+ represent respectively set of all natural numbers, real numbers and positive real numbers.

Consider a nonempty set X and a mapping m : X × X → R+. Setting

mxy = min {m (x, x) ,m (y, y)} ,
Mxy = max {m (x, x) ,m (y, y)} .

Asadi et al. [8] presented the notion of an M−metric space as a real generalization of partial and
ordinary metric space as follows:

Definition 1.1. [8] Let X be a non-empty set. Then an M−metric is a mapping m : X × X → R+

fulfilling the assertions below, for all x, y, z ∈ X,

(i) m (x, y) = m (y, x);
(ii) mxy ≤ m(x, y);

(iii) m (x, x) = m (y, y) = m (x, y) iff x = y;
(iv) m (x, y) − mxy ≤ (m (x, z) − mxz) + (m (x, y) − mxy).

Then, the pair (X,m) is called M−metric space.

Remark 1.2. [8] For any x, y, z ∈ X, the observations below hold:

(i) 0 ≤ Mxy + mxy = m (x, x) + m (y, y);
(ii) 0 ≤ Mxy − mxy = |m (x, x) − m (y, y)|;

(iii) Mxy − mxy ≤ (Mxz − mxz) +
(
Myz − myz

)
.

Example 1.3. [8] Let X be an M−metric space. Define mw, ms : X × X → R+ by

mw (x, y) = m (x, y) − 2mxy + Mxy,
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and

ms =

{
m (x, y) − mxy, if x , y,
0, if x = y.

Then mw and ms define ordinary metrics.

In the context of M−metric space X, let Bm (x, ε) = {x ∈ X : m (x, y) < mxy + ε, ∀x ∈ X, ε > 0} be an
open ball with center x and radius ε. The collection {Bm (x, ε) : x ∈ X, ε > 0} represents a basis for the
T0 topology τm. For more details on the contributions of fixed points in the metric space, we present a
series of papers [9–11].

Definition 1.4. [8] Let {xn} be a sequence in M−metric space X

(i) {xn} is called m−convergent to x in X iff

lim
n→∞

(
m (xn, x) − mxn x

)
= 0.

(ii) If limn,m→∞
(
m (xn, xm) − mxn xm

)
and limn,m→∞

(
Mxn,xm − mxn xm

)
exist and are finite. Then, the

sequence {xn} is called M−Cauchy.
(iii) If every M−Cauchy {xn} is m−convergent with respect to τm to x in X such that

lim
n→∞

m (xn, x) − mxn x = 0, and lim
n→∞

(
Mxn,x − mxn x

)
= 0.

Then, X is called a complete M−metric space.

Lemma 1.5. [8] Let X be an M−metric space. Then

(i) {xn} is an M−Cauchy sequence in X iff {℘n} is a Cauchy sequence in a metric space (X,mw),
(ii) an M−metric space X is complete iff the metric space (X,mw) is complete. Moreover,

lim
n→∞

mw (xn, x) = 0 iff
(
lim
n→∞

(
m (xn, x) − mxn x

)
= 0, lim

n→∞

(
Mxn x − mxn x

)
= 0

)
.

Lemma 1.6. [8] Suppose that {xn} → x and {yn} → y as n→ ∞ in M−metric space X. Then, we have(
m (xn, yn) − mxnyn

)
→

(
m (x, y) − mx,y

)
as n→ ∞.

Lemma 1.7. [8] Assume that {xn} → x as n → ∞ in M−metric space X. Then, for all x ∈ X, we get(
m (xn, y) − mxny

)
→

(
m (x, y) − mx,y

)
as n→ ∞.

Lemma 1.8. [8] Suppose that {xn} → x and {xn} → y as n → ∞ in M−metric space X Then
m (x, y) = mx,y. Further, if m (x, x) = m (x, y) then x = y.

Definition 1.9. [12] Define Hm : CBm (X) ×CBm (X)→ [0,∞) by

Hm (K, X) = max {∇m (K, X) ,∇m (X,K)} ,

where

m (x, X) = inf {m (x, y) : y ∈ X} ,

∇m (K, X) = sup {m (x, X) : x ∈ K} .

AIMS Mathematics Volume 8, Issue 2, 3842–3859.



3845

Lemma 1.10. [12] Let K be any non-empty set in M−metric space X, then

x ∈ K iff m (x,K) = sup
x∈K
{mxy}.

Proposition 1.11. [12] If A, B,C ∈ CBm (X), then

(i) ∇m (A, A) = supx∈A

{
supy∈A mxy

}
,

(ii)
(
∇m (A, B) − supx∈A supy∈B mxy

)
≤ (∇m (A,C) − infx∈A infz∈C mxz) +

(
∇m (C, B) − infz∈C infy∈B mzy

)
.

Proposition 1.12. [12] If A, B,C ∈ CBm (X), then

(i) Hm (A, A) = ∇m (A, A) = supx∈A

{
supy∈A mxy

}
,

(ii) Hm (A, B) = Hm (B, A),
(iii) Hm (A, B) − supx∈A supy∈A mxy) ≤ Hm (A,C) + Hm (B,C) − infx∈A infz∈C mxz − infz∈C infy∈B myz.

Lemma 1.13. [12] Consider A, B ∈ CBm (X) and h > 1. Then, for each x ∈ A, there exists at the least
one y ∈ B such that

m (x, y) ≤ hHm (A, B) .

Lemma 1.14. [12] Consider A, B ∈ CBm (X) and l > 0. Then, for each x ∈ A, there exist at least one
y ∈ B such that

m (x, y) ≤ Hm (A, B) + l.

Theorem 1.15. [12] Let X be a complete M−metric space and T : X → CBm (X) be a set-valued
mapping. If there is h ∈ (0, 1) so that

Hm (T (x) ,T (y)) ≤ hm (x, y) , (1.1)

for all x, y ∈ X. Then, x∗ is a fixed point T.

Recently, Wardowski [13] consider the following family of function to give more general contractive
condition for fixed point theory on metric space:

∇F =
{
F : R+ → R : F satisfied (F1) , (F2) and F3

}
and

χ∗ = {F ∈ ∇F : F satisfied F4}

where the conditions presented as follows:

(F1) F is strictly increasing,
(F2) For all a sequence { jn} ⊆ R+, limn→∞ jn = 0 iff limn→∞ F ( jn) = −∞,

(F3) There exist 0 < k < 1 such that lim j→0+ jkF ( j) = 0, and
(F4) F (inf A) = inf F (A) for all A ⊂ (0,∞) with inf A > 0.

In the context of various spaces, a number of articles on F−contraction and associated fixed point
theorems were published. For more details, see [14–18].

AIMS Mathematics Volume 8, Issue 2, 3842–3859.
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In [1], two class of matrix equations have been investigated by Ran and Reurings as follows:

D = α ±

m∑
j=1

x∗jDx j

where α is an n × n positive definite matrix and the x j are n × n arbitrary matrices. Under some
hypotheses, they established the existence and uniqueness of positive definite solutions to the above
equation. Duan et al. [19] generalized the above system by making a small change as follows:

D = α ±

m∑
j=1

x∗jD
ρ j x j,

where 0 <
∣∣∣ρ j

∣∣∣ < 1. They investigated the existence and uniqueness of a positive definite solution to
such an equation on the basis of a fixed point theorem for mixed monotone mappings. This form of
matrix equation frequently occurs in a variety of fields, including ladder networks [20, 21], dynamic
programming [22, 23], control theory [24, 25], zeroing neural network methods for solving the Yang-
Baxter-like matrix equation and more results in this direction see [26–33] etc.

Motivated by the above works, this paper is devoted to discussing a positive definite solution of a
nonlinear matrix equation in the form of

D = α +

p∑
i=1

E∗i Ψ (D) Ei,

where α is a positive definite matrix which that belongs to (J (n) ⊆ Q (n)) , and the mapping Ψ : J (n)→
J (n) is continuous in the trace norm. To implement this strategy, we use the fixed point-method under
rational type multivalued F−contraction mapping in the context of complete M−metric space and
ordered M−metric space. Our results generalize the results of Altun et al. [34] and Kumar et al. [35].
Finally, we give non-trivial extensive examples to show that our concepts are meaningful and to support
our results.

2. Main results

We begin with the following definition.

Definition 2.1. Let X be an M−metric space and T : X → CBm (X) be a mapping. Then, T is said to
be multivalued F−contraction if F ∈ ∇F and there exists τ > 0 such that

Hm (T x,Ty) > 0⇒ τ + F (m (T x,Ty)) ≤ F (m (x, y)) . (2.1)

Example 2.2. Consider X = [0, 1] endowed with m (x, y) = 1
2 |x + y| + 1

2 min {x, y} for all x, y ∈ X.
Clearly (X,m) be a complete M−metric space. Describe a mapping T : X → CBm (X) as

T (x) =


{

1
2 ,

1
4

}
, if x = 1{

1
2

}
, if x , 1.

AIMS Mathematics Volume 8, Issue 2, 3842–3859.
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Clearly, T is a multivalued mapping. Define a function F : R+ → R by F (x) = ln (x) for all x ∈ R+ and
τ = ln

(
4
3

)
. Now, we claim that T fulfills (2.1). First, for x , 1, we have

ln
(
4
3

)
+ ln (Hm (T (x) ,T (1))) = ln

(
4
3

)
+ ln

max

 ∇m

{{
1
2

}
,
{

1
4 ,

1
2

}}
,

∇m

{{
1
4 ,

1
2

}
,
{

1
2

}} 


= ln
(
4
3

)
+ ln

(
max

{
inf

{
5
8
,

3
4

}}
, sup

{
3
4
,

1
2

})
= ln

(
4
3

)
+ ln

(
max

{
5
8

}
,

{
3
4

})
≤ ln

(
4
6

)
+ ln

(
3
4

)
≤ ln (m (x, 1))

≤ ln
(
1
2

)
≤ ln

(
1
2
|x + y| +

1
2

min {x, y}
)
.

Hence, the condition (2.1) is true.

Definition 2.3. Let X be an M−metric space and T : X → CBm (X) be a given mapping. We say that
T is rational type multivalued F−contraction mapping if F ∈ ∇F and there exist τ > 0 such that

Hm (T (x) ,T (y)) > 0⇒ τ + F (Hm (T (x) ,T (y))) ≤ F (AM (x, y)) , (2.2)

where

AM (x, y) = max
{

m (x, y) ,M (x,T (x)) ,M (y,T (y)) ,
M (y,T (y)) [1 + M (x,T (x))]

1 + m (x, y)

}
.

Lemma 2.4. Let X be an M−metric space and K (X) be a compact subset of X. Consider A ⊆ K (X)
and f : A→ K (X) . The, following statements are equivalent:

(I) f is continuous.
(II) Since K (X) is compact, then for any convergence subsequence xnk → c, f

(
xnk

)
→ f (c) for any

point x ∈ A.

Proof. (I)⇒ (II).
Assume that f is continuous. For any ε > 0, there exist δ > 0 such that

f (Bm (c, δ)) ⊆ f (Bm (c, ε)) ,

m (x, c) < mxc + δ⇒ m ( f (x) , f (c)) < m f (x)( f (c)) + ε,

and
m (x, c) − mxc < δ⇒ m ( f (x) , f (c)) − m f (x)( f (c)) < ε.

Now, we want to prove that f
(
xnk

)
→ f (c) . Suppose that xnk → c in tm, so lim

(
m

(
xnk , c

)
− mxnk c

)
= 0.

Then
m

(
xnk , c

)
− mxnk c < δ⇒ m

(
f
(
xnk

)
, f (c)

)
− m f(xnk)( f (c)) < ε,

AIMS Mathematics Volume 8, Issue 2, 3842–3859.
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which implies that f
(
xnk

)
→ f (c) .

(II)⇒ (I).
Using the method of contradiction, we want to prove that f is continuous. So, suppose not, then

there exists ε > 0 such that

m (x, c) − mxc < δ⇒ m ( f (x) , f (c)) − m f (x)( f (c)) ≥ ε.

Since f
(
xnk

)
→ f (c) , and choosing any δ = 1

℘nk
for any n ∈ N such that

m
(
xnk , c

)
− mxnk c <

1
xnk

⇒ m
(
f
(
xnk

)
f (c)

)
− m f(xnk)( f (c)) ≥ ε,

which implies that xnk → c while f
(
xnk

)
9 f (c) , this contradicts the fact that f

(
xnk

)
→ f (c) . Hence

f is continuous. �

Theorem 2.5. Let X be a completeM−metric space, T : X → K (X) be rational type multivalued
F−contraction mapping and F ∈ ∇F . Then T possesses a fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point. Since T (x) is non-empty for all x ∈ X, we can choose
x1 ∈ T (x0) . If x1 ∈ T (x1) then x1 is a fixed point of T and the proof is finished. Now, consider
x1 < T (x1) . Since T (x1) is closed andM (x1,T (x1)) > 0, we have M (x1,T (x1)) ≤ Hm (T (x0) ,T (x1)).
Using (F1), we get F (M (x1,T (x1))) ≤ F (Hm (T (x0) ,T (x1))) .

Applying (2.2) one can write

F (M (x1,T (x1))) ≤ F (Hm (T (x0) ,T (x1))) ≤ F (AM (x0, x1)) − τ (2.3)

= F
(

max m(x0, x1),M(x0,T (x0)),M(x1,T (x1)),
M(x1,T (x1))[1+M(x0,T (x0))]

1+m(x0,x1)

)
− τ

= F(max m(x0, x1),M(x1,T (x1)) − τ. (2.4)

Since

AM (x0, x1) = max
{

m (x0, x1) ,M (x0,T (x0)) ,M (x1,T (x1)) ,
m(x1,T (x1))[1+M(x0,T (x0))]

1+m(x0,x1)

}
≤ max

{
m (x0, x1) ,m (x1,T (℘1)) ,

m(x1,T (x1))[1+m(x0,T (x0))]
1+m(x0,x1)

}
≤ max

{
m (x0, x1) ,m (x1,T (x1)) ,

m(x1,T (x1))[1+m(x0,x1)]
1+m(x0,x1)

}
= max {m (x0, x1) ,M (x1,T (x1))} .

Now, if m (x0, x1) ≤ M (x1,T (x1)) then from (2.4) , we get

F (M (x1,T (x1))) ≤ F (M (x1,T (x1))) − τ,

which is a contradiction. Thus M (x1,T (x1)) < m (x0, x1) and so from (2.3) , one has

F (M (x1,T (x1))) ≤ F (m (x0, x1)) − τ. (2.5)

AIMS Mathematics Volume 8, Issue 2, 3842–3859.
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Since T (x1) is compact, then there exists x2 ∈ T (x1) such that m (x1, x2) = M (x1,T (x1)) , using (2.4),
we obtain that

F (m (x1, x2)) ≤ F (m (x0, x1)) − τ for all n ∈ N.

Because x1 ∈ T (x0) and x2 ∈ T (x1) with M (x1,T (x1)) ≤ Hm (T (x0) ,T (x1)). Then, we have

F (M (x2,T (x2))) ≤ F (Hm (T (x1) ,T (x2))) ≤ F (AM (x1, x2)) − τ. (2.6)

By considering the same way, we deduce that

AM (x1, x2) ≤ max {m (x1, x2) ,m (x1,T (x2))} .

Thus, from (2.6) one gets
F (m (x2,T (x2))) ≤ F (m (x1, x2)) − τ. (2.7)

As T (x2) is compact, then there exists ℘3 ∈ T (x2) such that m (x2, x3) = M (x2,T (x2)) . Hence, we
have

F (M (x2, x3)) ≤ F (m (x1, x2)) − τ.

Impermanent this procedure in the same fashion. We get {xn} ∈ U such that

F (m (xn, xn+1)) ≤ F (m (xn−1, xn)) − τ for all n ∈ N. (2.8)

If there exists n0 ∈ N so that xn0 ∈ T
(
xn0

)
, then xn0 is a FP of T and the proof is over. Now, suppose

that for every n ∈ N, xn < T (xn) . Set δn = m (xn, xn+1) for all n ∈ N. Then δn > 0 for all n ∈ N, and
using (2.7) we deduce that

F (δn) ≤ F (δn−1) − τ ≤ F (δn−1) − 2τ ≤ ... ≤ F (δ0) − nτ. (2.9)

From the above inequality, we get limn→∞ F (δn) = −∞ then by (F2) we have limn→∞ δn = 0. Then by
(F3), there exist k ∈ (0, 1) so that limn→∞ δ

k
nF (δn) = 0. From (2.8) the following is true for all n ∈ N.

δk
n (F (δn) − F (δ0)) ≤ −δk

nnτ ≤ 0. (2.10)

Letting n→ ∞ in (2.10), we get
lim
n→∞

nδk
n = 0. (2.11)

From (2.11), there exists n1 ∈ N such that nδk
n ≤ 1 for all n ≥ n1, then we

δn ≤
1

n
1
k

for all n ≥ n1. (2.12)

In order to show that {xn} is a Cauchy sequence in MM−space. Consider m, n ∈ N such that m > n ≥ n1.

Then from (2.12) and triangle inequality of MM−space, one can obtain

m (xn, xm) − mxn,xm ≤ m (xn, xn+1) − mxn,xn+1 + m (xn+1, xn+2) − mxn+1,℘n+2 +

... + m (xm−1, xm) − mxm−1,xm

≤ m (xn, xn+1) + m (xn+1, xn+2) + ... + +m (xm−1, xm)

≤ δn + δn+1 + ... + δm−1

AIMS Mathematics Volume 8, Issue 2, 3842–3859.



3850

=

m−1∑
i=n

δi ≤

∞∑
i=n

δi ≤

∞∑
i=n

1

i
1
k

.

The convergence of the series
∑∞

i=n
1

i
1
k

leads to the limit goes to 0 as n→ ∞.Hence m (xn, xm)−mxn,xm →

0. Thus {xn} is an M-Cauchy sequence in X. Since X is an m-complete, there exists ξ ∈ X so that {xn}

converges to ξ that is m (xn, ξ) − mxn,ξ → 0 as n → ∞. Now suppose that F is continuous. In this
case, we claim that ξ ∈ T (ξ) . Assume the contrary, that is ξ is not contained in T (ξ) . Then there exist
n0 ∈ N and a subsequence

{
xnk

}
of {xn} such that M

(
xnk ,T (ξ)

)
> 0 for all nk ≥ n0. On the other hand,

there exist n ∈ N such that ℘n ∈ T (ξ) for all n ≥ n1 which implies that a contradiction, because ξ is not
in T (ξ) since H

(
T

(
xnk

))
,T (y) > 0 for all nk ≥ n0. Hence, we get

τ + F
(
M

(
xnk+1 ,T (ξ)

))
≤ F

(
Hm

(
xnk+1 ,T (ξ)

))
≤ F

(
AM

(
xnk , ξ

))
, (2.13)

where

AM
(
xnk , ξ

)
= max

 m
(
xnk , ξ

)
,M

(
xnk ,T

(
xnk

)
,M (ξ,T (ξ))

)
,

M(ξ,T (ξ))[1+M(xnk ,T(xnk))]
1+m(xnk ,ξ)


= max

 m
(
xnk , ξ

)
,m

(
xnk , ℘nk+1

)
,M (ξ,T (ξ)) ,

M(ξ,T (ξ))[1+m(xnk ,xnk+1)]
1+m(xnk ,ξ)

 .
Letting k → ∞, we have

lim
k→∞

AM
(
xnk , ξ

)
= M (ξ,T (ξ)) . (2.14)

Passing k → ∞ in (2.13) and using (2.14) and from the continuity of F, we get

τ + F (M (ξ,T (ξ))) ≤ F (M (ξ,T (ξ))) ,

a contradiction. Therefore = ∈ T
(
=
)

= T
(
=
)
. Hence = is a fixed point of T. �

The next results in this part is to obtain fixed point consequences for rational type multivalued
F−contraction mapping under Wordoski’s axioms (F1 − F4) by considering CBm (X) instead of K (X) .

Theorem 2.6. Let X be a complete M−metric space and T : X → CBm (X) be a rational type
multivalued F−contraction mapping. If F ∈ χ∗ so that

F (inf A) = inf F (A) for all A ⊂ (0,∞) with inf F (A) > 0. (2.15)

Then T owns a fixed point.

Proof. In same of the proof of Theorem (2.5) and using the assertion (F4), we have

F (M (x1,T (x1))) = F (inf {m (x1, y) : y ∈ T (x1)})

= inf {F (m (x1, y) : y ∈ T (x1))} .

Using (2.15) , we get
inf {F (m(x1, y) : y ∈ T (x1))} < F (m (x0, x1)) −

τ

2
.
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Thus, there is x2 ∈ T (x1) so that

F (m (x1, x2)) ≤ F (m (x0, x1)) −
τ

2
.

In the same way as for the proof of Theorem (2.5), we can reach the end of the proof. �

Corollary 2.7. Let X be a complete M−metric space and T : X → CBm (X) be a rational type
multivalued F−contraction mapping. If F ∈ χ∗ so that

F (inf A) = inf F (A) for all A ⊂ (0,∞) with inf F (A) > 0

τ + F (Hm (T (x) ,T (y))) ≤ F
(
1
2

[
m (x,T (x)) + m (y,T (y))

])
. (2.16)

Then T has a fixed point.

Corollary 2.8. Let X be an complete M−metric space and let T : X → X be rational type
F−contraction, if F ∈ ∇F and there exist τ > 0 such that

τ + F (Hm (T (x) ,T (y))) ≤ F (AM (x, y))

where

AM (x, y) = max
{

m (x, y) ,m (x,T (y)) ,m (y,T (y)) ,
m (y,T (y)) [1 + m (x,T (x))]

1 + m (x, y)

}
for allx, y ∈ X. Then T has a fixed point.

Now, we shall introduce a multivalued F−contraction in ordered M−metric spaces.
Let X , φ. If (X,�) is a partially ordered set on M−metric space X, then (X,�,m) is called ordered

M−metric space. We say that x, y ∈ X are comparable if x � y or y � x hold. Moreover, a mapping
T : X → X is said to be non-decreasing if T (x) � T (y) whenever x � y, for all x, y ∈ X. Further, an
ordered M−metric space (X,m,�) is regular if for every non-decreasing sequence {xn} in X, convergent
to x ∈ X, we have xn � x for all n ∈ N ∪ {0} .

Definition 2.9. Let (X,�) be a partial ordered and K, L be two non-empty subset of X. Then we define
two relation between K and L as follows:

(i) K ≺1 L if for each x ∈ K, there exist y ∈ L such that x � y,
(ii) K ≺2 L if for each x ∈ K and y ∈ L, we have x � y.

Theorem 2.10. Let (X,m,�) be an ordered complete M−metric space and T : X → K (X) be a rational
type multivalued F−contraction mapping, if F ∈ ∇F and there is τ > 0 so that

Hm (T (x) ,T (y)) > 0⇒ τ + F (Hm (T (x) ,T (y))) ≤ F (AM (x, y)) , (2.17)

where

AM (x, y) = max
{

m (x, y) ,M (x,T (x)) ,M (y,T (y)) ,
M (y,T (y)) [1 + M (x,T (x))]

1 + m (x, y)

}
for all comparable x, y ∈ X. If the assertions below hold:

(i) There exist x0 ∈ X such that {x0} ≺1 T (x0).
(ii) For x, y ∈ X, x � y implies that T (x) ≺2 T (y).
(iii) X is regular, then T owns a fixed point in X.
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Proof. Based on assertion (i), there exists x1 ∈ T (x0) such that x0 � x1. According to assertion (ii) , we
have T (x0) ≺2 T (x1). If x1 ∈ T (x1) then x1 is a FP of T and the proof is finished. So, suppose that x1 <

T (x1) . Since T (x1) is closed and M (x1,T (x1)) > 0. Then, we get M (x1,T (x1)) ≤ Hm (T (x0) ,T (x1)).
Again by (F1), we obtain that F (M (x1,T (x1))) ≤ F (Hm (T (x0) ,T (x1))) .

Now, using (2.17) , we have

F (M (x1,T (x1))) ≤ F (Hm (T (x0) ,T (x1))) ≤ F (AM (x0, x1)) − τ

= F
(
max

{
m (x0, x1) ,M (x0,T (x0)) ,M (x1,T (x1)) ,

M(x1,T (x1))[1+M(x0,T (x0))]
1+m(x0,x1)

}
− τ

)
= F (max {m (x0, x1) ,M (x1,T (x1)})) − τ, (2.18)

where

AM (x0, x1) = max
{

m (x0, x1) ,M (x0,T (x0)) ,M (x1,T (x1)) ,
m(x1,T (x1))[1+M(x0,T (x0))]

1+m(x0,x1)

}
≤ max

{
m (x0, x1) ,m (x1,T (x1)) ,

m(x1,T (x1))[1+m(x0,T (x0))]
1+m(x0,x1)

}
≤ max

{
m (x0, x1) ,m (x1,T (x1)) ,

m(x1,T (x1))[1+m(x0,x1)]
1+m(x0,x1)

}
= max {m (x0, x1) ,M (x1,T (x1))} .

Now, if m (x0, x1) ≤ M (x1,T (x1)) then from (2.18) , we obtain that

F (M (x1,T (x1))) ≤ F (M (x1,T (x1))) − τ

which is a contradiction. Thus M (x1,T (x1)) < m (x0, x1) and so from (2.3) , we have

F (M (x1,T (x1))) ≤ F (m (x0, x1)) − τ. (2.19)

Because T (x1) is compact, then there exists x2 ∈ T (x1) with x1 � ℘2 such that
m (x1, x2) = M (x1,T (x1)) , from (2.19) , we get

F (m (x1, x2)) ≤ F (m (x0, x1)) − τ for all n ∈ N.

Since x1 ∈ T (x0) and x2 ∈ T (x1) with M (x1,T (x1)) ≤ Hm (T (x0) ,T (x1)). Then, we get

F (M (x2,T (x2))) ≤ F (Hm (T (x1) ,T (x2))) ≤ F (AM (x1, x2)) − τ. (2.20)

Considering the same way, we deduce that

AM (x1, x2) ≤ max {m (x1, x2) ,m (x1,T (x2))} .

It follows from (2.20) that
F (m (x2,T (x2))) ≤ F (m (x1, x2)) − τ. (2.21)
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The compactness of T (x2) leads to with the assumption (ii), there exists x3 ∈ T (x2) with x1 � x2 such
that m (x2, ℘3) = M (x2,T (x2)) . Therefore, we have

F (M (x2, x3)) ≤ F (m (x1, x2)) − τ.

continuing this process in the same manner in the proof of Theorem (2.5), in the view of condition (ii),
we can construct a monotone non-decreasing sequence in X such that xn+1 ∈ T (xn) for all n ∈ N∪ {0} ,
and

x0 � x1 � ... � xn...,

which implies that xn and xn+1 are comparable and hence T (xn) ≺2 T (xn+1) for all n ∈ N ∪ {0} . Next,
proceeding as in the proof of Theorem (2.5) , we get {xn} is m-Cauchy sequence. So, there exist ξ ∈ X
such that {xn} converges to ξ that is m (xn, ξ) − mxn,ξ → 0 as n → ∞. From condition (iii) we deduce
that xn � ξ for all n ∈ N ∪ {0} . From now, the rest of the proof can be completed as in the proof of
Theorem (2.5) . �

Example 2.11. Let X = [0,∞) endowed with m (x, y) =
x+y
2 for all x, y ∈ X. Clearly (X,m) be a

complete M−metric space. Define the mapping T : X → CBm (X) by

T (x) =


[
℘
3 ,

℘
2

]
, if x ∈ [0, 3] ∩ [0,∞) ,[

2℘
3 ,

4℘
9

]
, if x ∈ (0, 3) ∩ [0,∞) .

Clearly, T is a multivalued mapping. Define a function F : R+ → R by F (x) = ln (x) for all x ∈ R+ and
τ =

(
0, 8

90

]
. Now, we want to prove that T satisfies the condition (2.2). First, from main contraction,

we can write

τ + ln (Hm (T (x) ,T (y))) = τ + ln
(
max

{
sup

p∈T (x)
m (p,T (y)) , sup

q∈T (y)
m (T (x) , q)

})
= τ + ln

max

 supp∈T (x) m
(
p,

[
2=
3 ,

4=
9

])
,

supq∈T (y) m
([

x
3 ,

x
2

]
, q

) 


= τ + ln
(
max

{
m

(
x
3
,

2y
3

)
,m

(
2y
3
,

x
2

)})
= τ + ln

max


 x

3 +
2y
3

2

 ,  2y
3 + x

2

2





= τ + ln
(
max

{(
x + 2y

6

)
,

(
4y + 3x

12

)})
≤ ln

(
max

{
m (x, y) ,M (x,T (x)) ,M (y,T (y)) ,

M(y,T (y))[1+M(x,T (x))]
1+m(x,y)

})
.

Thus, all the axioms of Theorems (2.5) and (2.6) are satisfied and 0 is a fixed point of T .

AIMS Mathematics Volume 8, Issue 2, 3842–3859.



3854

3. Application to nonlinear matrix equations

In this part, we use the theoretical results obtained in the above part to find the existence of the
positive definite solution to the following nonlinear matrix equation in equation:

D = α +

p∑
i=1

E∗i Ψ (D) Ei (3.1)

where α is a positive definite matrix , E1, E2, ...Em are n × n matrices, Ψ is a self map on the set of all
n × n Herniation matrices, which maps set of all n × n Herniation positive definite into itself matrices.
Set

J (n) = {D : D is n × n Herniation matrix} .

The spectral norm is denoted by ‖.‖1, i.e.,

‖E‖1 =
(
µ+ (E∗E)

) 1
2 ,

where µ+ (E∗E) is the greatest eigenvalue of the matrix E∗E. The Ky Fan norm is given as

‖E‖1 =

n∑
i=1

S i (E) ,

where {S 1 (E) , S 2 (E) , S 3 (E) , ...S n (E)} is the set of the singular value of E. Further more,

‖E‖ = tr
(
(E∗E)

1
2
)
,

which is tr (E) for (Hermitian) nonnegative matrices and

Q (n) =
{
D ∈ Q (n) : D is positive definite

}
.

Then, F ∈ ∇ f Assume that (J (n) ,m) is a complete M−metric space, where

m (D, P) =
1
2
‖D + P‖1 =

1
2

(tr (D + P)) . (3.2)

Theorem 3.1. Let α ∈ Q (n) and Ψ : J (n) → J (n) be a mapping which maps Q (n) to Q (n) . Suppose
the following two axioms hold

(i) there exist a positive number N so that
m∑

i=1
EiE∗i < NIn and

m∑
i=1

E∗i Ψ (α) Ei > 0,

(ii) for all D, P ∈ Q (n), we have

m (Ψ (D) ,Ψ (P)) ≤
1
N

AM (D, P) e
−

(
2+ 1

2 ‖D+P‖

2. 12 ‖D+P‖

)

where

AM (D, P) = max
{

m (D, P) ,m (D,Ψ (D)) ,m (P,Ψ (P)) ,
m (P,Ψ (P)) [1 + m (D,Ψ (D))]

1 + m (D, P)

}
.

Then Eq (3.1) has a solution in Q (n).
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Proof. Define σ : Q (n)→ Q (n) and F : R+ → R+ by

σ (D) = α +

m∑
i=1

E∗i Ψ (D) Ei,

and F (r) = ln r, respectively. Then a FP of σ is a solution of (3.1) . Let D, P ∈ Q (n) with D , P. Then,
for m (D, P) > 0, we deduce that τ (t) = 1

t
2

+ 1
2 , and

m (σ (D) , σ (P)) =
1
2
‖σ (D) + σ (P)‖1

=
1
2

(tr (σ (D) + σ (P)))

=

m∑
i=1

1
2

(
tr

(
EiE∗i (σ (D) + σ (P))

))
=

1
2

tr

 m∑
i=1

EiE∗i

σ (D) + σ (P)


≤

∥∥∥∥∥∥∥
m∑

i=1

EiE∗i

∥∥∥∥∥∥∥ 1
2
‖σ (D) + σ (P)‖1

≤

∥∥∥∥∥ m∑
i=1

EiE∗i

∥∥∥∥∥
N

AM (D, P) e
−

2+ 1
2 ‖D+P‖

2. 12 ‖D+P‖

< AM (D, P) e
−

2+ 1
2 ‖D+P‖

2. 12 ‖D+P‖ .

Hence

ln
(
1
2
‖σ (D) + σ (P)‖

)
< ln

AM (D, P) e
−

2+ 1
2 ‖D+P‖

2. 12 ‖D+P‖

 = ln

AM (D, P) e
−

2+ 1
2 ‖D+P‖

2. 12 ‖D+P‖

 ,
which implies that

1
1
2 ‖D + P‖

+
1
2

+ ln
(
1
2
‖σ (D) + σ (P)‖

)
< ln (AM (D, P)) .

Consequently,
τ (m (D, P)) + F (m (σ (D) , σ (P))) < F (AM (D, P)) .

Hence, all requirements of Corollary (2.9) immediately hold. Thus, σ have a fixed point which is a
solution to the system (3.1) in Q (n) . �

Example 3.2. Consider the following matrix equation:

D = α +

2∑
i=1

E∗i Ψ (D) Ei, (3.2)
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where

α =


0.1 0.01 0.01

0.01 0.1 0.01
0.01 0.01 0.1

 ,
E1 =


0.4 0.01 0.01
0.01 0.4 0.01
0.01 0.01 0.4

 ,
E2 =


0.6 0.01 0.01
0.01 0.6 0.01
0.01 0.01 0.6

 ,
Define Ψ : σ (3)→ σ (3) , by

Ψ (D) =
D
3
.

Define a mapping σ : σ (3)→ σ (3) by

σ (D) = α +

m∑
i=1

E∗i Ψ (D) Ei.

Hence, all conditions of Theorem (3.1) are satisfied with N = 6
10 . Therefore, the problem (3.2) has a

solution.

4. Conclusions

In this article, we have achieved fixed point results for modified multivalued rational type
F−contraction in complete M−metric spaces and ordered M−metric spaces. Our generalized results
are based on two fixed point results for multivalued M−metric metric space of Altun et al. [34] and
Kumar et al. [35]. Finally, we present an application dealing with the existence of positive definite
solutions for non-linear matrix equations.
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