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List of Abbreviations

The following abbreviations are used in this manuscript:

H-H Hermite-Hadamard
H-H-M Hermite-Hadamard-Mercer
H-H-F Hermite-Hadamard-Fejér

1. Introduction and preliminaries

In science, convex functions have a long and distinguished history, and they have been the focus
of study for almost a century. The rapid growth of convexity theory and applications of fractional
calculus has kept the interest of a number of researchers on integral inequalities. Inequalities such
as the H-H type, the Ostrowski-type, the H-H-M type, the Opial type, and other types, by using
convex functions have been the focus of research for many years. The H-H inequality given in [1]
has piqued the curiosity of most academics among all of these integral inequalities. Dragomir et
al. [2] and Kirmaci et al. [3] presented some trapezoidal type inequalities and also some applications
to special means. Following these articles, several mathematicians proposed new refinements of the
Hermite-Hadamard inequality for various classes of convex functions and mappings such as quasi
convex function [4], convex functions [5], m-convex functions [6], s-type convex functions of Raina
type [7], σ-s-convex function [8] and harmonically convex functions [9]. Recently, this inequality was
also investigated via different fractional integral operators, like Riemann-Liouville [10], ψ-Riemann-
Liouville [11], Proportional fractional [12, 13], k-Riemann-Liouville [14], Caputo-Fabrizio [15, 16],
generalized Atangana-Baleanu operator [17] to name a few.

It is important to emphasise that Leibniz and L’Hospital are credited with developing the idea
of fractional calculus (1695). Other mathematicians, such as Riemann, Liouville, Letnikov, Erdéli,
Grünwald, and Kober, have made significant inputs to the field of fractional calculus and its numerous
applications. Many physical and engineering experts are interested in fractional calculus because of
its behaviour and capacity to address a wide range of practical issues. Fractional calculus is currently
concerned with the study of so-called fractional order integral and derivative functions over real and
complex domains, as well as its applications. In many cases, fractional analysis requires the use of
arithmetic from classical analysis to produce more accurate conclusions. Numerous mathematical
models can be handled by differential equations of fractional order. Fractional mathematical models
have more conclusive and precise results than classical mathematical models because they are
particular examples of fractional order mathematical models. In classical analysis, integer orders do
not serve as an adequate representation of nature. By using mathematical modelling, it is possible
to identify the endemics’ unique transmission dynamics and get insight into how infection impacts
a new population. To enhance the actual phenomena to a higher degree of precision and accuracy,
non-integer order fractional differential equations (FDEs) are applied. Additionally, [18–22] use and
reference their utilization of fractional calculus. Other interesting results for fractional calclus can be
found in [23–25]. However, fractional computation enables us to consider any number of orders and
formulate far more measurable objectives. In recent years, mathematicians have become more and
more interested in presenting well-known inequalities using a variety of novel theories of fractional

AIMS Mathematics Volume 8, Issue 3, 5616–5638.



5618

integral operators. There are several different integral inequality results for fractional integrals. For
generalizing significant and well-known integral inequalities, these operators are helpful. The Hermite-
Hadamard integral inequality is a particular type of integral inequality. It is frequently used in the
literature and outlines the necessary and sufficient conditions for a function to be convex. The Hermite-
Hadamard inequalities were generalized by Sarikaya et al. [10] using Riemann-Liouville fractional
integrals. Işcan [26] expanded Sarikaya et al. [10] ’s findings to include Hermite-Hadamard-Fejer-
type inequalities. By utilizing the product of two convex functions, Chen [27] produced fractional
Hermite-Hadamard-type integral inequalities. Ögülmüs et al. [28] incorporated the Hermite-Hadamard
and Jensen-Mercer inequalities to present Hermite-Hadamard-Mercer type inequalities for Riemann-
Liouville fractional integrals. Motivated by the above articles, Butt et al. (see [29]), presented new
versions of Jensen and Jensen-Mercer type inequalities in the fractal sense. New fractional versions of
Hermite-Hadamard-Mercer and Pachpatte-Mercer type inclusions are established for convex [30] and
harmonically convex functions [31] respectively. Latif et al. [32] established Hermite-Hadamard-Fejér
type inequalities for convex harmonic and a positive symmetric increasing function. New refinements
of Hermite-Mercer type inequalities are presented in [33], Mercer-Ostrowski type inequalities are
presented in [34]. Further, the Hermite-Hadamard inequality is also generalized for convexity and quasi
convexity [35] and differentiable convex functions [36]. For further information on other fractional-
order integral inequalities, see the papers [37–41].

Definition 1.1. (see [42]) Let G : X→ R be a function and X be a convex subset of a real vector space
R. Then we say that the function G is convex if and only if the following condition:

G
(
Φr + (1 − Φ) s

)
≤ ΦG (r) + (1 − Φ) G (s) ,

holds true for all r, s ∈ X and Φ ∈ [0, 1].

For further discussion, we first present the classical Hermite-Hadmard (H-H) inequality, which
states that (see [1]):

If the function G : X ⊆ R → R is convex in X for r, s ∈ X and r < s, then

G
(
r + s

2

)
≤

1
s − r

∫ s

r

G (x)dx ≤
G (r) + G (s)

2
. (1.1)

Definition 1.2. (see [43]) Let there be a function G : [r, s] → [0,∞) and it is symmetric with respect
to r+s2 , if

G (r + s − x) = G (x).

In 1906, Fejér [44] preposed the following weighted variant of Hermite-Hadamard inequality
famously known as Hermite-Hadamard-Fejér inequality, given as

Theorem 1.1. Let there be a convex function G : [r, s] ⊆ R \ {0} → R with r < s. If D : [r, s] ⊆
R \ {0} → R be a convex symmetric and integrable function with respect to r+s2 . Then

G
(
r + s

2

)∫ s

r

D(x)dx ≤
1
s − r

∫ s

r

G (x)D(x)dx ≤
G (r) + G (s)

2

∫ s

r

D(x)dx, (1.2)

holds true.
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Definition 1.3. (see [9]) Let G : X→ R be a function and X be a subset of a real vector space R. Then
we say that the function G is harmonically convex if and only if the following condition

G

(
rs

Φr + (1 − Φ) s

)
≤ ΦG (s) + (1 − Φ) G (r) ,

holds true for all r, s ∈ X and Φ ∈ [0, 1].

For further discussion, we first present the classical Hermite-Hadmard (H-H) inequality, which
states that (see [9]):

If the function G : X ⊆ R → R is harmonically convex in X for r, s ∈ X and r < s, then

G
( 2rs
r + s

)
≤
rs

s − r

∫ s

r

G (x)
x2 dx ≤

G (r) + G (s)
2

. (1.3)

Definition 1.4. (see [45]) Let there be a function G : [r, s] → [0,∞) and it is harmonically symmetric
with respect to 2rs

r+s
, if

G (Φ) = G

 1
1
r

+ 1
s
− 1

Φ

 .
In the year 2014, Chen and Wu [46] proposed the following weighted variant of Hermite-Hadamard

inequality for harmonically convex function, given as

Theorem 1.2. Let there be a convex function G : [r, s] ⊆ R \ {0} → R with r < s. If D : [r, s] ⊆
R \ {0} → R be a convex symmetric and integrable function with respect to r+s2 . Then,

G
( 2rs
r + s

)∫ s

r

D(x)
x2 dx ≤

rs

s − r

∫ s

r

G (x)D(x)
x2 dx ≤

G (r) + G (s)
2

∫ s

r

D(x)
x2 dx, (1.4)

holds true.

Definition 1.5. (see, for details, [10,47]; see also [48]) Let G ∈ L [r, s]. Then, the Riemann-Liouville
fractional integrals of the order α > 0, are defined as follows:

Iαr+G (x) =
1

Γ(α)

∫ x

r

(x −m)α−1 G (m) dm (x > r) ,

and

Iαs−G (x) =
1

Γ(α)

∫ s

x
(m − x)α−1 G (m) dm (x < s),

respectively, where Γ (α) =
∫ ∞

0
Φα−1e−ΦdΦ is the Euler gamma function.

Definition 1.6. (see, [49] for details) Let G ∈ L [r, s]. Then, the new left and right fractional integrals
Iα
r+

and Iα
s−

of order α > 0 are defined as

Iαr+G (x) :=
1
α

∫ x

r

e−
1−α
α (x−m) G (m) dm (0 ≤ r < x < s),

and

Iαs−G (x) :=
1
α

∫ s

x
e−

1−α
α (m−x) G (m) dm (0 ≤ r < x < s),

respectively.
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It should be noted that

lim
α→1
Iαr+G (x) =

∫ x

r

G (m) dm and lim
α→1
Iαs−G (x) =

∫ s

x
G (m) dm.

Sarikaya et al. [37], in their article proved some interesting mid-point type Hermite-Hadamard
inequalities. Here, we present one of his main results as follows:

Theorem 1.3. (see [37]) Let G : [r, s] −→ R be a convex function with 0 ≤ r ≤ s. If G ∈ L[r, s], then
the following inequality for Riemann-Liouville fractional integral operator holds true:

G
(
r + s

2

)
≤

2α−1Γ(α + 1)
(s − r)α

[
Iα( r+s2 )+G (s) + Iα( r+s2 )−G (r)

]
≤

G (r) + G (s)
2

.

The major goal of this paper is to establish Fejér type fractional inequalities using differintegrals
of the

(
r+s
2

)
type for both convex and harmonically convex functions via a novel fractional integral

operator. In order to derive those inequalities, first we prove two new lemmas i.e., Lemmas 2.1 and 3.1
for convex and harmonic convex functions respectively.

In this study, we used a new fractional integral operator to achieve more generalized results. This is
caused by the exponential function that makes up the kernel of this fractional operator. Our results
differ from prior generalizations in that they do not lead to the aforementioned fractional integral
inequalities. Numerous experts have suggested utilizing different fractional integral operators to
extend the Hermite-Hadamard and Fejér type inequalities, however, none of their findings exhibit an
exponential property. This study generated interest in using an exponential function as the kernel
to create more generalized fractional inequalities. Furthermore, the application of symmetric and
harmonically symmetric functions to the main results gives the study of inequalities a new path. For
other generalization regarding exponential kernel interested reader can see e.g., on distributed-order
fractional derivative in [50]. There are many research gaps to be filled for integral inequalities involving
fractional calculus for different types of convex functions, despite the fact that there exist many different
forms of research on the growth of fractional integral inequalities. As a result, the main purpose of this
research is to find new Hermite-Hadamard and Fejér type inequalities for positive symmetric functions
using fractional integral operators.

Our present investigation is structured as follows. In Sections 2 and 3, we discuss two additional
characteristics of the relevant fractional operator before proving some enhanced versions (mid-point
types) of the Fejér and Hermite-Hadamard type inequalities for convex and harmonically convex
functions respectively. Some applications are also taken into consideration in Section 4 to determine
whether the predetermined results are appropriate. Section 5 explores a brief conclusion and possible
areas for additional research that is related to the findings in this paper are discussed in Section 6.

2. Improved Fejér type results for convex functions

In this section for simplicity, we denote ρc = 1−α
α

(s − r). If α→ 1, then ρc = 1−α
α

(s − r)→ 0.

Lemma 2.1. Let D : [r, s] ⊆ R \ {0} → R be a symmetric convex function with respect to r+s2 . Then for
α > 0, the following equality holds true:

I r+s
2 +D(s) = I r+s

2 −
D(r) =

1
2

[
I r+s

2 −
D(r) + I r+s

2 +D(s)
]
.

AIMS Mathematics Volume 8, Issue 3, 5616–5638.



5621

Proof. Since D : [r, s] ⊆ R \ {0} → R is integrable and symmetric to r+s2 we have D(r + s − x) = D(x).
Also, Setting Φ = r + s − x and dΦ = −dx, we have

I r+s
2 +D(s) =

1
α

∫ s

r+s
2

e−
1−α
α (s−Φ)D(Φ)dΦ

= −
1
α

∫ r

r+s
2

e−
1−α
α (s−(r+s−x))D(r + s − x)dx

=
1
α

∫ r+s
2

r

e−
1−α
α (x−r)D(r + s − x)dx

=
1
α

∫ r+s
2

r

e−
1−α
α (x−r)D(x)dx

= Iαr+s
2 −

D(r).

=⇒ I r+s
2 +D(s) = I r+s

2 −
D(r) =

1
2

[
I r+s

2 −
D(r) + I r+s

2 +D(s)
]
.

This led us to the desired equality. �

First, we prove both the first and second kind Fejér type inequalities in a different approach. Then,
we also prove the Hermite-Hadamard inequality using symmetric convex functions.

Theorem 2.1. Let there be a convex function G : [r, s] ⊆ R \ {0} → R with r < s. If D : [r, s] ⊆
R \ {0} → R be a convex symmetric and integrable function with respect to r+s

2 . Then for α > 0, the
following inequality holds true:

G
(
r + s

2

) [
Iαr+s

2 −
D(r) + Iαr+s

2 +
D(s)

]
≤

[
Iαr+s

2 −
(G D)(r) + Iαr+s

2 +
(G D)(s)

]
.

Proof. Using the convexity of G on [r, s], we have

2G
(
r + s

2

)
≤ G (Φr + (1 − Φ)s) + G (Φs + (1 − Φ)r) . (2.1)

Upon multiplication of both sides of the inequality (2.1) by e−
1−α
α (s−r)ΦD (Φs + (1 − Φ)r) and then

integrating the resultant over
[
0, 1

2

]
, we obtain

2G
(
r + s

2

) ∫ 1
2

0
e−

1−α
α (s−r)ΦD (Φs + (1 − Φ)r) dΦ

≤

∫ 1
2

0
e−

1−α
α (s−r)ΦG (Φr + (1 − Φ)s) D (Φs + (1 − Φ)r) dΦ

+

∫ 1
2

0
e−

1−α
α (s−r)ΦG (Φs + (1 − Φ)r) D (Φs + (1 − Φ)r) dΦ. (2.2)

Since D is symmetric with respect to r+s2 , we have D(x) = D(r + s − x).
Moreover, setting x = Φs + (1 − Φ)r and dx = (s − r)dΦ in (2.2), we have

2G
(
r + s

2

) 1
s − r

∫ r+s
2

r

e−
1−α
α (x−r)D(x)dx = 2G

(
r + s

2

)
α

s − r

[
Iαr+s

2 −
D(r)

]
AIMS Mathematics Volume 8, Issue 3, 5616–5638.
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≤
1
s − r

∫ r+s
2

r

e−
1−α
α (x−r)G (r + s − x)D(x)dx +

1
s − r

∫ r+s
2

r

e−
1−α
α (x−r)G (x)D(x)dx

=
1
s − r

∫ s

r+s
2

e−
1−α
α (s−x)G (x)D(r + s − x)dx +

1
s − r

∫ r+s
2

r

e−
1−α
α (x−r)G (x)D(x)dx

=
α

s − r

1
α

∫ s

r+s
2

e−
1−α
α (s−x)G (x)D(x)dx +

1
α

∫ r+s
2

r

e−
1−α
α (x−r)G (x)D(x)dx

 .
It follows from the above developments and Lemma 2.1 that,

α

s − r
G

(
r + s

2

) [
Iαr+s

2 −
D(r) + Iαr+s

2 +
D(s)

]
≤

α

s − r

[
Iαr+s

2 −
(G D)(r) + Iαr+s

2 +
(G D)(s)

]
.

This concludes the proof of the required result. �

Example 2.1. Let G (m) = em, m ∈ [1, 9] and D (m) = (5 −m)2, is non-negative symmetric about
m = 5. Let 0 < α < 1, then

G
(
r + s

2

) [
Iαr+s

2 −
D(r) + Iαr+s

2 +
D(s)

]
= e5

[
Iα5−D(1) + Iα5+D(9)

]
= e5

[
1
α

∫ 5

1
e−

1−α
α (m−1) (5 −m)2 dm +

1
α

∫ 9

5
e−

1−α
α (9−m) (5 −m)2 dm

]
.

and

Iαr+s
2 −

(G D)(r) + Iαr+s
2 +

(G D)(s)

= Iα5−(G D)(1) + Iα5+(G D)(9)

=
1
α

∫ 5

1
e−

1−α
α (m−1) em (5 −m)2 dm +

1
α

∫ 9

5
e−

1−α
α (9−m) em (5 −m)2 dm.

The graphical representation of Theorem 2.1 is shown in the graph below (see Figure 1) for 0 <

α < 1:

Left term

Right term
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Figure 1. The graphical representation of Theorem 2.1 for 0 < α < 1.
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Theorem 2.2. Let there be a convex function G : [r, s] ⊆ R \ {0} → R with r < s. If D : [r, s] ⊆
R \ {0} → R be a convex symmetric and integrable function with respect to r+s

2 . Then for α > 0, the
following inequality holds true:[

Iαr+s
2 −

(G D)(r) + Iαr+s
2 +

(G D)(s)
]
≤

G (r) + G (s)
2

[
Iαr+s

2 −
(D)(r) + Iαr+s

2 +
(D)(s)

]
.

Proof. Since G is convex function, we have

G (Φr + (1 − Φ)s) + G (Φs + (1 − Φ)r) ≤ G (r) + G (s). (2.3)

Multiplying both side of the above inequality (2.3) by e−
1−α
α (s−r)ΦD (Φs + (1 − Φ)r) and upon integration

of the obtained result over
[
0, 1

2

]
, one has∫ 1

2

0
e−

1−α
α (s−r)ΦG (Φr + (1 − Φ)s) D (Φs + (1 − Φ)r) dΦ

+

∫ 1
2

0
e−

1−α
α (s−r)ΦG (Φs + (1 − Φ)r) D (Φs + (1 − Φ)r) dΦ

≤ [G (r) + G (s)]
∫ 1

2

0
e−

1−α
α (s−r)ΦD (Φs + (1 − Φ)r) dΦ.

It follows
α

s − r

[
Iαr+s

2 −
(G D)(r) + Iαr+s

2 +
(G D)(s)

]
≤ α

[G (r) + G (s)]
s − r

[
Iαr+s

2 −
(D)(r)

]
.

Furthermore, using the Lemma 2.1, we obtain

α

s − r

[
Iαr+s

2 −
(G D)(r) + Iαr+s

2 +
(G D)(s)

]
≤

G (r) + G (s)
2

α

s − r

[
Iαr+s

2 −
(D)(r) + Iαr+s

2 +
(D)(s)

]
.

This concludes the proof of the desired result. �

Example 2.2. Let G (m) = em, m ∈ [1, 9] and D (m) = (5 −m)2, is non-negative symmetric about
m = 5. Let 0 < α < 1, then

e + e9

2

[
Iαr+s

2 −
(D)(r) + Iαr+s

2 +
(D)(s)

]
=

e + e9

2

[
Iα5−D(1) + Iα5+D(9)

]
=

e + e9

2

[
1
α

∫ 5

1
e−

1−α
α (m−1) (5 −m)2 dm +

1
α

∫ 9

5
e−

1−α
α (9−m) (5 −m)2 dm

]
.

And

Iαr+s
2 −

(G D)(r) + Iαr+s
2 +

(G D)(s)

= Iα5−(G D)(1) + Iα5+(G D)(9)

=
1
α

∫ 5

1
e−

1−α
α (m−1) em (5 −m)2 dm +

1
α

∫ 9

5
e−

1−α
α (9−m) em (5 −m)2 dm.
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The graphical representation of Theorem 2.2 is shown in the graph below (see Figure 2) for 0 < α < 1:

Left term

Right term
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80000

100000

120000

140000

160000
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V
a
lu
e
s

Figure 2. The graphical representation of Theorem 2.2 for 0 < α < 1.

Theorem 2.3. Let there be a convex function G : [r, s] ⊆ R \ {0} → R with r < s. Then for α > 0, the
following fractional integral inequality holds true:

G
(
r + s

2

)
≤

1 − α

2(1 − e−
ρc
2 )

[
Iαr+s

2 −
G (r) + Iαr+s

2 +
G (s)

]
≤

G (r) + G (s)
2

. (2.4)

Proof. By the hypothesis of convexity, we have

G
(
r + s

2

)
= G

(
Φr + (1 − Φ)s + Φs + (1 − Φ)r

2

)
≤

G (Φr + (1 − Φ)s) + G (Φs + (1 − Φ)r)
2

. (2.5)

Upon multiplication of both sides of the inequality (2.5) by 2e−
1−α
α (s−r)Φ and then integrating the obtained

result over
[
0, 1

2

]
, we have

2G
(
r + s

2

) ∫ 1
2

0
e−

1−α
α (s−r)ΦdΦ

≤

∫ 1
2

0
e−

1−α
α (s−r)ΦG (Φr + (1 − Φ)s) dΦ +

∫ 1
2

0
e−

1−α
α (s−r)ΦG (Φs + (1 − Φ)r) dΦ. (2.6)

Furthermore, let m = Φs + (1 − Φ)r =⇒ dΦ = dm
s−r

. Then inequality (2.6) gives

2(1 − e−
ρc
2 )

ρ
G

(
r + s

2

)
≤

 1
s − r

∫ r+s
2

r

e−
1−α
α (s−r)m−r

s−r G (r + s −m) dm +
1
s − r

∫ r+s
2

r

e−
1−α
α (s−r)m−r

s−r G (m) dm


=
α

s − r

1
α

∫ s

r+s
2

e−
1−α
α (s−m)G (m) dm +

1
α

∫ r+s
2

r

e−
1−α
α (m−r)G (m) dm


=

α

s − r

[
Iαr+s

2 −
G (r) + Iαr+s

2 +
G (s)

]
. (2.7)
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This concludes the proof of the first part of the inequality (2.4). To prve the next part of inequality,
under the given hypothesis, we have

G (Φr + (1 − Φ)s) + G (Φs + (1 − Φ)r) ≤ G (r) + G (s). (2.8)

Upon multiplication of both sides of the inequality (2.8) by e−
1−α
α (s−r)Φ and integrating over

[
0, 1

2

]
, we

have ∫ 1
2

0
e−

1−α
α (s−r)ΦG (Φr + (1 − Φ)s) dΦ +

∫ 1
2

0
e−

1−α
α (s−r)ΦG (Φs + (1 − Φ)r) dΦ

≤ [G (r) + G (s)]
∫ 1

2

0
e−

1−α
α (s−r)ΦdΦ.

Consequently, we obtain

α

s − r

[
Iαr+s

2 −
G (r) + Iαr+s

2 +
G (s)

]
≤

G (r) + G (s)
2

2(1 − e−
ρc
2 )

ρc
. (2.9)

Consequently, it follows from the above developments (2.7) and (2.9) that

G
(
r + s

2

)
≤

1 − α

2(1 − e−
ρc
2 )

[
Iαr+s

2 −
G (r) + Iαr+s

2 +
G (s)

]
≤

G (r) + G (s)
2

.

This concludes the proof of the required result. �

Remark 2.1. If one chooses α→ 1 i.e., ρc
2 → 0, then

lim
α→1

1 − α

2(1 − e−
ρc
2 )

=
1
s − r

and hence Theorem 2.3 retrieves the classical Hermite-Hadamard inequality (1.1).

Example 2.3. Let G (m) = em, m ∈ [1, 9] and 0 < α < 1, then

G (r) + G (s)
2

=
e + e9

2
,

G
(
r + s

2

)
= e5

and

1 − α

2(1 − e−
ρc
2 )

[
Iαr+s

2 −
G (r) + Iαr+s

2 +
G (s)

]
=

1 − α

2
(
1 − e−

4(1−α)
α

) [
Iα5−(G )(1) + Iα5+(G )(9)

]
=

1 − α

2
(
1 − e−

4(1−α)
α

) [
1
α

∫ 5

1
e−

1−α
α (m−1) emdm +

1
α

∫ 9

5
e−

1−α
α (9−m) emdm

]
.

The graphical representation of Theorem 2.3 is shown in the graph below (see Figure 3) for 0 < α < 1:
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Figure 3. The graphical representation of Theorem 2.3 for 0 < α < 1.

3. Improved inclusions via harmonically convex functions

The family of Lebesgue measurable functions is represented here by L [r, s]. In this section, for
brevity we use, ρh = 1−α

α
s−r

rs
wherever needed. If α→ 1, then ρh = 1−α

α
s−r

rs
→ 0.

Lemma 3.1. Let D : [r, s] ⊆ R \ {0} → R be a harmonically symmetric and integrable function with
respect to 2rs

r+s
. Then for α > 0, the following equality holds true:

Iαr+s
2rs +

D ◦ K

(
1
r

)
= Iαr+s

2rs −
D ◦ K

(
1
s

)
=

1
2

[
Iαr+s

2rs +
D ◦ K

(
1
r

)
+ Iαr+s

2rs −
D ◦ K

(
1
s

)]
,

where K(x) = 1
x , x ∈

[
1
s
, 1
r

]
.

Proof. Let D be a harmonically symmetric function with respect to 2rs
r+s

. Then using the harmonically

symmetric property of D , given as D
(

1
Φ

)
= D

(
1

1
r
+ 1
s
−Φ

)
for α > 0.

Iαr+s
2rs +

D ◦ K

(
1
r

)
=

1
α

∫ 1
r

r+s
2rs

e−
1−α
α ( 1

r
−Φ)D

(
1
Φ

)
dΦ

=
1
α

∫ 1
r

r+s
2rs

e−
1−α
α ( 1

r
−Φ)D

 1
1
r

+ 1
s
− Φ

 dΦ

= −
1
α

∫ 1
s

r+s
2rs

e−
1−α
α (x− 1

s )D
(
1
x

)
dx

=
1
α

∫ r+s
2rs

1
s

e−
1−α
α (x− 1

s )D
(
1
x

)
dx

= Iαr+s
2rs −

D ◦ K

(
1
s

)
.

Consequently, it follows from the above developments that

Iαr+s
2rs +

D ◦ K

(
1
r

)
= Iαr+s

2rs −
D ◦ K

(
1
s

)
=

1
2

[
Iαr+s

2rs +
D ◦ K

(
1
r

)
+ Iαr+s

2rs −
D ◦ K

(
1
s

)]
,
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where K(x) = 1
x , x ∈

[
1
s
, 1
r

]
. �

Now, we use the above result to produce new Hadamard-Fejér type inequalities of both first and
second kind for harmonically convex functions.

Let us begin with the Hadamard-Fejér type inequality of the first kind.

Theorem 3.1. Let there be a harmonically convex function G : [r, s] ⊆ R \ {0} → R with r < s. If
D : [r, s] ⊆ R\ {0} → R be a harmonically symmetric and integrable function with respect to 2rs

r+s
. Then

for α > 0, the following inequality holds true:

G

(
2rs
r + s

) [
Iαr+s

2rs −
D ◦ K

(
1
s

)
+ Iαr+s

2rs +
D ◦ K

(
1
r

) ]
≤

[
Iαr+s

2rs −
G D ◦ K

(
1
s

)
+ Iαr+s

2rs +
G D ◦ K

(
1
r

) ]
.

Proof. Since G is harmonically convex function on [r, s], we have

G

(
2rs
r + s

)
≤

G
(

rs

Φr+(1−Φ)s

)
+ G

(
rs

Φs+(1−Φ)r

)
2

.

Multiplying both side by 2e−
1−α
α
s−r
rs

ΦD
(

rs

Φs+(1−Φ)r

)
and then integrating over [0, 1

2 ], we find

2G

(
2rs
r + s

) ∫ 1
2

0
e−

1−α
α
s−r
rs

ΦD

(
rs

Φs + (1 − Φ)r

)
dΦ

≤

∫ 1
2

0
e−

1−α
α
s−r
rs

ΦD

(
rs

Φs + (1 − Φ)r

)
G

(
rs

Φr + (1 − Φ)s

)
dΦ

+

∫ 1
2

0
e−

1−α
α
s−r
rs

ΦD

(
rs

Φs + (1 − Φ)r

)
G

(
rs

Φs + (1 − Φ)r

)
dΦ.

Since, D is harmonically symmetric with respect to 2rs
r+s

i.e

D

(
1
x

)
= D

 1
1
r

+ 1
s
− x

 .
Also, setting x =

Φs+(1−Φ)r
rs

=⇒ dΦ = rs

s−r
dx the above developments proceed as follows:

α
2rs
s − r

G

(
2rs
r + s

)
1
α

∫ r+s
2rs

1
s

e−
1−α
α (x− 1

s )D
(
1
x

)
dx

≤ α
rs

s − r

[1
α

∫ r+s
2rs

1
s

e−
1−α
α (x− 1

s )G
 1

1
r

+ 1
s
− x

D

(
1
x

)
dx +

1
α

∫ r+s
2rs

1
s

e−
1−α
α (x− 1

s )G
(
1
x

)
D

(
1
x

)
dx

]
= α

rs

s − r

[1
α

∫ 1
r

r+s
2rs

e−
1−α
α ( 1

r
−x)G

(
1
x

)
D

 1
1
r

+ 1
s
− x

 dx +
1
α

∫ r+s
2rs

1
s

e−
1−α
α (x− 1

s )G
(
1
x

)
D

(
1
x

)
dx

]
= α

rs

s − r

[1
α

∫ 1
r

r+s
2rs

e−
1−α
α ( 1

r
−x)G

(
1
x

)
D

(
1
x

)
dx +

1
α

∫ r+s
2rs

1
s

e−
1−α
α (x− 1

s )G
(
1
x

)
D

(
1
x

)
dx

]
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= α
rs

s − r

[
Iαr+s

2rs −
G D ◦ K

(
1
s

)
+ Iαr+s

2rs +
G D ◦ K

(
1
r

) ]
.

From the above developments and Lemma 3.1, we have

α
rs

s − r
G

(
2rs
r + s

) [
Iαr+s

2rs −
D ◦ K

(
1
s

)
+ Iαr+s

2rs +
D ◦ K

(
1
r

) ]
≤ α

rs

s − r

[
Iαr+s

2rs −
G D ◦ K

(
1
s

)
+ Iαr+s

2rs +
G D ◦ K

(
1
r

) ]
.

This concludes the proof of the required result. �

Example 3.1. Let G (m) = m2, m ∈ [1, 4], D (m) =
(

5m−8
8m

)2
and 0 < α < 1, then

G

(
2rs
r + s

) [
Iαr+s

2rs −
D ◦ K

(
1
s

)
+ Iαr+s

2rs +
D ◦ K

(
1
r

)]
=

64
25

1
α

∫ 5
8

1
4

e−
1−α
α (m− 1

4 )
(
5 − 8m

8

)2

dm +
1
α

∫ 1

5
8

e−
1−α
α (1−m)

(
5 − 8m

8

)2

dm


and

Iαr+s
2rs −

G D ◦ K

(
1
s

)
+ Iαr+s

2rs +
G D ◦ K

(
1
r

)
= Iα5

8−
G D ◦ K

(
1
4

)
+ Iα5

8 +
G D ◦ K (1)

=
1
α

∫ 5
8

1
4

e−
1−α
α (m− 1

4 )
(

1
m

)2 (
5 − 8m

8

)2

dm +
1
α

∫ 1

5
8

e−
1−α
α (1−m)

(
1
m

)2 (
5 − 8m

8

)2

dm.

The graphical representation of Theorem 3.1 is shown in the graph below (see Figure 4) for 0 < α < 1:
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Figure 4. The graphical representation of Theorem 3.1 for 0 < α < 1.

Now, we will establish the Fejér type inequality of the second kind.
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Theorem 3.2. Let there be a harmonically convex function G : [r, s] ⊆ R \ {0} → R with r < s. If
D : [r, s] ⊆ R\ {0} → R be a harmonically symmetric and integrable function with respect to 2rs

r+s
. Then

for α > 0, the following inequality holds true:[
Iαr+s

2rs −
G D ◦ K

(
1
s

)
+ Iαr+s

2rs +
G D ◦ K

(
1
r

) ]
≤

G (r) + G (s)
2

[
Iαr+s

2rs −
D ◦ K

(
1
s

)
+ Iαr+s

2rs +
D ◦ K

(
1
r

) ]
.

Proof. Since G is harmonically convex function

G

(
rs

Φr + (1 − Φ)s

)
+ G

(
rs

Φs + (1 − Φ)r

)
≤ G (r) + G (s).

Multiplying both side by e−
1−α
α
s−r
rs

ΦD
(

rs

Φs+(1−Φ)r

)
and then integrating the resultant over

[
0, 1

2

]
, we find∫ 1

2

0
e−

1−α
α
s−r
rs

ΦG

(
rs

Φr + (1 − Φ)s

)
D

(
rs

Φs + (1 − Φ)r

)
dΦ

+

∫ 1
2

0
e−

1−α
α
s−r
rs

ΦG

(
rs

Φs + (1 − Φ)r

)
D

(
rs

Φs + (1 − Φ)r

)
dΦ

≤ [G (r) + G (s)]
∫ 1

2

0
e−

1−α
α
s−r
rs

ΦD

(
rs

Φs + (1 − Φ)r

)
dΦ. (3.1)

Setting x =
Φs+(1−Φ)r
rs

and D
(

1
x

)
= D

(
1

1
r
+ 1
s
−x

)
in (3.1), we have

rs

s − r

[ ∫ r+s
2rs

1
s

e−
1−α
α (x− 1

s )G
 1

1
r

+ 1
s
− x

D

(
1
x

)
dx

∫ r+s
2rs

1
s

e−
1−α
α (x− 1

s )G
(
1
x

)
D

(
1
x

)
dx

]
= α

rs

s − r

[1
α

∫ 1
r

r+s
2rs

e−
1−α
α ( 1

r
−x)G

(
1
x

)
D

(
1
x

)
dx +

1
α

∫ r+s
2rs

1
s

e−
1−α
α (x− 1

s )G
(
1
x

)
D

(
1
x

)
dx

]
= α

rs

s − r

[
Iαr+s

2rs −
G D ◦ K

(
1
s

)
+ Iαr+s

2rs +
G D ◦ K

(
1
r

) ]
. (3.2)

Also,

[G (r) + G (s)]
∫ 1

2

0
e−

1−α
α
s−r
rs

ΦD

(
rs

Φs + (1 − Φ)r

)
dΦ

= α
rs

s − r
[G (r) + G (s)]

1
α

∫ r+s
2rs

1
s

e−
1−α
α (x− 1

s )D
(
1
x

)
dx

= α
rs

s − r
[G (r) + G (s)]

[
Iαr+s

2rs −
D ◦ K

(
1
s

) ]
. (3.3)

From the above developments (3.2), (3.3) and Lemma 3.1, we have

α
rs

s − r

[
Iαr+s

2rs −
G D ◦ K

(
1
s

)
+ Iαr+s

2rs +
G D ◦ K

(
1
r

) ]
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≤ α
rs

s − r

G (r) + G (s)
2

[
Iαr+s

2rs −
D ◦ K

(
1
s

)
+ Iαr+s

2rs +
D ◦ K

(
1
r

) ]
.

This concludes the proof of the required result. �

Example 3.2. Let G (m) = m2, m ∈ [1, 4], D (m) =
(

5m−8
8m

)2
and 0 < α < 1, then

17
2

[
Iαr+s

2rs −
D ◦ K

(
1
s

)
+ Iαr+s

2rs +
D ◦ K

(
1
r

)]
=

17
2

1
α

∫ 5
8

1
4

e−
1−α
α (m− 1

4 )
(
5 − 8m

8

)2

dm +
1
α

∫ 1

5
8

e−
1−α
α (1−m)

(
5 − 8m

8

)2

dm


and

Iαr+s
2rs −

G D ◦ K

(
1
s

)
+ Iαr+s

2rs +
G D ◦ K

(
1
r

)
= Iα5

8−
G D ◦ K

(
1
4

)
+ Iα5

8 +
G D ◦ K (1)

=
1
α

∫ 5
8

1
4

e−
1−α
α (m− 1

4 )
(
5 − 8m

8

)4

dm +
1
α

∫ 1

5
8

e−
1−α
α (1−m)

(
5 − 8m

8

)4

dm.

The graphical representation of Theorem 3.2 is shown in the graph below (see Figure 5) for 0 < α < 1:

Left term
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1.6
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Figure 5. The graphical representation of Theorem 3.2 for 0 < α < 1.

Theorem 3.3. Let there be a harmonically convex function G : [r, s] ⊆ R \ {0} → R with r < s. Then
for α > 0,

G

(
2rs
r + s

)
≤

(1 − α)

2
(
1 − e

ρh
2

)[Iαr+s
2rs +

G ◦K

(
1
r

)
+ Iαr+s

2rs −
G ◦K

(
1
s

) ]
≤

G (r) + G (s)
2

, (3.4)

holds true.
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Proof. Since G is harmonically convex function on [r, s], we have

G

(
2rs
r + s

)
= G

 2
(

rs

Φr+(1−Φ)s

) (
rs

Φs+(1−Φ)r

)(
rs

Φr+(1−Φ)s

)
+

(
rs

Φs+(1−Φ)r

) ≤ G
(

rs

Φr+(1−Φ)s

)
+ G

(
rs

Φs+(1−Φ)r

)
2

. (3.5)

Multiplying both side of the inequality (3.5) by 2e−
1−α
α
s−r
rs

Φ and integrating over [0, 1
2 ], we obtain

2G

(
2rs
r + s

) ∫ 1/2

0
e−

1−α
α
s−r
rs

ΦdΦ ≤

∫ 1/2

0
e−

1−α
α
s−r
rs

ΦG

(
rs

Φr + (1 − Φ)s

)
dΦ

+

∫ 1/2

0
e−

1−α
α
s−r
rs

ΦG

(
rs

Φs + (1 − Φ)r

)
dΦ.

Let m =
Φs+(1−Φ)r
rs

, then dm = s−r

rs
dΦ

2(1 − e−
ρh
2 )

ρh
G

(
2rs
r + s

)
≤

∫ r+s
2rs

1
s

e−
1−α
α
s−r
rs
rs
s−r (m− 1

s )
(
rs

s − r

)
G

 1
1
r

+ 1
s
−m

 dm +

∫ r+s
2rs

1
s

e−
1−α
α
s−r
rs
rs
s−r (m− 1

s )
(
rs

s − r

)
G

(
1
m

)
dm

=
rs

s − r

[ ∫ r+s
2rs

1
s

e−
1−α
α (m− 1

s )G
 1

1
r

+ 1
s
−m

 dm +

∫ r+s
2rs

1
s

e−
1−α
α (m− 1

s )G
(

1
m

)
dm

]
=
rs

s − r

[ ∫ 1
r

r+s
2rs

e−
1−α
α ( 1

r
−m)G

(
1
m

)
dm +

∫ r+s
2rs

1
s

e−
1−α
α (m− 1

s )G
(

1
m

)
dm

]
= α

rs

s − r

[
Iαr+s

2rs +
G ◦K

(
1
r

)
+ Iαr+s

2rs −
G ◦K

(
1
s

) ]
. (3.6)

This gives us the first part of the inequality (3.4). Now, for the next part, we use the hypotheses of
harmonically convex function i.e.

G

(
rs

Φr + (1 − Φ)s

)
+ G

(
rs

Φs + (1 − Φ)r

)
≤ G (r) + G (s). (3.7)

Multiplying both side of the above inequality (3.7) by e−
1−α
α
s−r
rs

Φ and then integrating the resultant over
[0, 1], we obtain∫ 1

2

0
e−

1−α
α
s−r
rs

ΦG

(
rs

Φr + (1 − Φ)s

)
dΦ +

∫ 1
2

0
e−

1−α
α
s−r
rs

ΦG

(
rs

Φs + (1 − Φ)r

)
dΦ

≤ [G (r) + G (s)]
∫ 1

2

0
e−

1−α
α
s−r
rs

ΦdΦ

=
2(1 − e−

ρh
2 )

ρh

G (r) + G (s)
2

.

Consequently from the first inequality (3.6), we have∫ 1
2

0
e−

1−α
α
s−r
rs

ΦG

(
rs

Φr + (1 − Φ)s

)
dΦ +

∫ 1
2

0
e−

1−α
α
s−r
rs

ΦG

(
rs

Φs + (1 − Φ)r

)
dΦ
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= α
rs

s − r

[
Iαr+s

2rs +
G ◦K

(
1
r

)
+ Iαr+s

2rs −
G ◦K

(
1
s

) ]
≤

2(1 − e−
ρh
2 )

ρh

G (r) + G (s)
2

. (3.8)

From the above developments (3.6) and (3.8), it follows

G

(
2rs
r + s

)
≤

(1 − α)

2
(
1 − e

ρh
2

)[Iαr+s
2rs +

G ◦K

(
1
r

)
+ Iαr+s

2rs −
G ◦K

(
1
s

) ]
≤

G (r) + G (s)
2

.

This concludes the proof of the required result. �

Remark 3.1. If one chooses α→ 1 i.e., ρh
2 → 0, then

lim
α→1

1 − α

2(1 − e−
ρh
2 )

=
rs

s − r

and hence Theorem 2.3 retrieves the classical Hermite-Hadamard inequality (1.3) for harmonically
convex function.

Example 3.3. Let G (m) = m2, m ∈ [1, 4], K (m) = 1
m

and 0 < α < 1, then

G

(
2rs
r + s

)
=

64
25
,

(1 − α)

2
(
1 − e

ρh
2

) [
Iαr+s

2rs +
G ◦K

(
1
r

)
+ Iαr+s

2rs −
G ◦K

(
1
s

)]
=

(1 − α)

2
(
1 − e

3(1−α)
8α

) [
Iα5

8 +
G ◦K

(
1
r

)
+ Iα5

8−
G ◦K

(
1
s

)]

=
(1 − α)

2
(
1 − e

3(1−α)
8α

) 1
α

∫ 5
8

1
4

e−
1−α
α (m− 1

4 )
(

1
m

)2

dm +
1
α

∫ 1

5
8

e−
1−α
α (1−m)

(
1
m

)2

dm


and

G (r) + G (s)
2

=
17
2
.

The graphical representation of Theorem 3.3 is shown in the graph below (see Figure 6) for 0 < α < 1:

Left term

Right term

Middle term

0.2 0.4 0.6 0.8 1.0

3

4

5

6

7

8

Figure 6. The graphical representation of Theorem 3.3 for 0 < α < 1.
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4. Applications

Example 4.1. Let Cn be the set of n × n complex matrices, Mn denote the algebra of n × n complex
matrices, andM+

n denote the strictly positive matrices inMn. That is, for any nonzero u ∈ Cn, A ∈ M+
n

if
〈
Au, u

〉
> 0.

Sababheh [51], proved that G (κ) =‖ AκXB1−κ + A1−κXBκ ‖, A,B ∈ M+
n ,X ∈ Mn is convex for all

κ ∈ [0, 1].
Then, by using Theorem 2.3, we have

‖ A
r+s
2 XB1−( r+s2 ) + A1−( r+s2 )XB

r+s
2 ‖

≤
1 − α

2(1 − e−
ρc
2 )

[
Iαr+s

2
+ ‖ AsXB1−s + A1−sXBs ‖ + Iαr+s

2
− ‖ ArXB1−r + A1−rXBr ‖

]
≤
‖ ArXB1−r + A1−rXBr ‖ + ‖ AsXB1−s + A1−sXBs ‖

2
.

Example 4.2. The q-digamma(psi) function ψΦ given as (see [52]):

ψΦ(ζ) = − ln (1 − Φ) + ln Φ

∞∑
k=0

Φk+ζ

1 − Φk+ζ

= − ln (1 − Φ) + ln Φ

∞∑
k=1

Φkζ

1 − Φkζ .

For Φ > 1 and ζ > 0, Φ-digamma function ψΦ can be given as:

ψΦ(ζ) = − ln (Φ − 1) + ln Φ

[
ζ −

1
2
−

∞∑
k=0

Φ−(k+ζ)

1 − Φ−(k+ζ)

]
= − ln (Φ − 1) + ln Φ

[
ζ −

1
2
−

∞∑
k=1

Φ−kζ

1 − Φ−kζ

]
.

If we set G (ζ) = ψ′
Φ

(ζ) in Theorem 2.3, then we have the following inequality.

ψ′Φ

(
r + s

2

)
≤

1 − α

2α(1 − e−
Φc
2 )

∫ s

r+s
2

e−
1−α
α (s−m)ψ′Φ (m) dm +

∫ r+s
2

r

e−
1−α
α (m−r)ψ′Φ (m) dm

 ≤ ψ′
Φ

(r) + ψ′
Φ

(s)
2

.

Modified Bessel functions

Example 4.3. Let the function Jρ : R → [1,∞) be defined [52] as

Jρ(m) = 2ρΓ(ρ + 1)m−ρIρ(m), m ∈ R.

Here, we consider the modified Bessel function of first kind given in

Jρ(m) =

∞∑
n=0

(
m

2

)ρ+2n

n!Γ(ρ + n + 1)
.
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The first and second order derivative are given as

J ′
ρ (m) =

m

2(ρ + 1)
Jρ+1(m).

J ′′
ρ (m) =

1
4(ρ + 1)

[
u2

(ρ + 1)
Jρ+2(m) + 2Jρ+1(m)

]
.

If we use, G (m) = J ′
ρ (m) and the above functions in Theorem 2.3, we have

r + s

2
Jρ+1

(
r + s

2

)
≤

1 − α

2α(1 − e−
ρc
2 )

∫ s

r+s
2

e−
1−α
α (s−m)

mJρ+1 (m) dm +

∫ r+s
2

r

e−
1−α
α (m−r)

mJρ+1 (m) dm


≤
rJρ+1 (r) + sJρ+1 (s)

2
.

5. Concluding remarks

The use of fractional calculus for finding various integral inequalities via convex functions has
skyrocketed in recent years. This paper addresses a novel sort of Fejér type integral inequalities. In
order to generalize some H-H-F (Hermite-Hadamard-Fejér) type inequalities, a new fractional integral
operator with exponential kernel is employed. New midpoint type inequalities for both convex and
harmonically convex functions are studied. Applications related to matrices, q-digamma and modifed
Bessel functions are presented as well.

6. Future scopes

We will use our theories and methods to create new inequalities for future research by combining
these new weighted generalized fractional integral operators with Chebyshev, Simpson, Jensen-Mercer
Markov, Bullen, Newton, and Minkowski type inequalities. Quantum calculus, fuzzy interval-valued
analysis, and interval-valued analysis can all be used to establish these kinds of inequalities. The idea
of Digamma functions and other special functions will be integrated with this kind of inequality as
the major focus. We also aim to find other novel inequalities using finite products of functions. In
future, we will employ the concept of cr-order defined by Bhunia and Samanta [53] to present different
inequalities for cr-convexity and cr-harmonically convexity [54].
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