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This study analytically examines internally pressurized power-law functionally
graded variable thickness disk. The power-law consideration is applied to the
Young’s modulus and the Poisson’s ratio of the graded material as well as the
radial thickness profile variation of the disk. Under this scheme, the solution
yields to different Bessel functions including the first, second, and modified
types. Stress and displacement fields are investigated at the elastic limits by oper-
ating with these functions. The limits are calculated with the well-known von
Mises criteria. Following the analytical modeling, numerical examples are built.
Therein the examples, some noteworthy nuances have been achieved. It has been
observed that unlike the usual prediction in the literature, constant Poisson’s
ratio, the effect of variable Poisson’s ratio on stresses and displacements is still
evident, although not as much as variable Young’s modulus and disk geometry.
We suggest assigning it as a variable in similar applications to be more precise.
Additionally, according to the von Mises criterion, yielding may begin at the
inner radius, the outer radius, or both at the same time. Parameters in the simul-
taneous flow initiation state are critical. These parameters allow the disk to reach
the highest elastic limit pressure.

1 INTRODUCTION

Functionally graded materials can be described as a material type where the mechanical properties gradually alter at the
desired direction in accordance with the engineering application. The grading concept began in the early 1970s for poly-
mericmaterials, but the first application was in 1984 in the space shuttle project of Japan, wherein a thermal shielding that
is, able to withstand a 1000◦C-temperature difference at a 10mmwall thickness was needed. The purpose was tomanufac-
ture a material that can overcome this temperature gradient [1, 2]. Over the years, this material concept became popular
and since then it has been actively employed in various engineering sectors such as automotive, nuclear or biomedical.
Even though functionally gradedmaterials were designed for thermal resistance in the initiation phase, later it was used to
control stress fields in the pressurized elements as well. Various studies have been performed in this regard for pressurized
disks, cylinders, or spheres, yet there are still various questions to seek answers to. Herein, some of the interesting and
influential stress investigations on graded cylindrical or spherical components are compiled. In this context, internally
and/or externally pressurized annular disks made of functionally graded materials and their elastic state stresses have
been studied with closed-form [3–5] and finite element solutions [6]. Pressurized cylinders and tubes at the elastic-plastic
state are topics of previous examinations [7–9]. In a recent study, both exact and finite element solutions on the func-
tionally graded disk have been compared [10]. In the scientific literature, there are studies that consider graded cylinders
subjected to not only pressure loads but also thermal [8, 11] or magnetic fields [12]. Investigations concerning functionally
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graded pressure vessels under different loading conditions are also present, which are cylindrical [13–15] and spherical
[16–20]. Regarding the references mentioned in the previous sentence, it is to be mentioned that some studies only took
mechanical loads into account [13, 15, 16]. On the other hand, some investigations have considered both thermal and
mechanical loading conditions in pressure vessels [14, 17–20]. Since cylindrical and spherical components resemble, some
researchers have proposed a mathematical technique, which is called complementary functions method, for uniformly
pressurized functionally graded components [21]. In some industrial applications, instead of manufacturing the whole
pressurized axisymmetric component with the graded material, combining homogeneous material with graded coating is
another engineering design method. In this respect, the following two researches can be looked into [22, 23].
In mathematical solution procedures, there are some studies that implement power series technique as well. For

instance, the authors proposed an elastic solution for pressurized graded cylindrical and spherical pressure vessels where
the Young’smodulus is modeled withE(r) = Eo exp[𝛽(r − a)∕(b − a)] [24]. The power series solutionwith the stress func-
tion approach is implemented thereat. By the same token, the researcher propounded a stress analysis with the method
of Frobenius for pressurized thick-walled graded cylinders wherein the Young’s modulus is an exponential function as
E(r) = Eo exp[βr] [25]. The thermo-mechanically loaded short cylinder of graded material has been handled at another
related research, where the stresses in the geometry are modeled via using the Fourier series [26]. While the Young’s mod-
ulus and thermal expansion coefficients are considered as power-law functions, Poisson’s ratio was taken as constant. In
a similar vein, applying the Legendre series to poro-piezo hollow spheres of graded material, thermo-mechanical stresses
are investigated [27].
Except for an additional body force term to the equilibrium equation and change of the applied boundary conditions,

rotating axisymmetric graded components share a parallel solution procedure with pressurized ones. Hence, some of
these studies can be mentioned as well. Correspondingly, various studies can be checked for stresses of rotating function-
ally graded hollow shafts [28–30] and cylinders [31]. In addition, rotating graded disks have been extensively examined.
Functionally graded rotating annular hollow disks at the elastic region have been a topic of some investigations [32, 33].
When the disk thickness variation is considered, there exists plenty of examinations [34–39]. Moreover, there are some
extended stress studies for variable profile rotating graded disks at elastic-plastic state under thermo-mechanical loads
[40, 41].
Following the exhibition of related investigations in the existing literature, wemay return to the purpose of this research.

In this study, at the elastic limits, stress and displacement states of the internally pressurized disk are going to be discussed
thoroughly. Additionally, unlike the common assumption in related researches, which is the constant Poisson’s ratio con-
sideration, we have taken it as a variable. In examinations that consider power-law as a grading rule [3, 5, 14–15, 17, 19, 23,
26–30, 42], none of them have taken Poisson’s ratio as a variable. Moreover, at the current state of the literature most disk
investigations often focus on the elastic state stresses not the elastic limits. By paying attention to the limits, this paper
may broaden the current state. It should be noted that there are investigations that considers above elastic state stress
fields. However, in these fields generally the interest is given to elastic-plastic or fully plastic zones not the elastic limits.
Due to these reasons, this work might be considered as an alternative to the research area. Herein, the grading and disk
thickness vary along radius r by the power-law. Young’s modulus (E(r)), Poisson’s ratio (v(r)), and disk profile (h(r)) are
modeled accordingly. These properties are

E (r) = Eo

[ r
b

]𝛼
, (1)

v (r) = vo

[ r
b

]𝛽
, (2)

h (r) = hb

[ r
b

]g
, (3)

in which Eo and vo are the reference values of the corresponding properties and 𝛼, 𝛽 are the grading parameters. In Equa-
tion (3), hb is the thickness of the disk at r = b and g is the geometric parameter. The disk is demonstrated pictorially in
Figure 1.While developing this research, one comment we receivedwas grading parameters (α, β) of Young’smodulus and
Poisson’s ratio should be related. In a way, this comment is both agreeable and disagreeable. It is true that grading param-
eters should be connected. However, the direct relationship between grading parameters is not clear. In some articles such
as [19], grading parameters of various material properties have been taken as equal. So, one parameter homogenization
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F IGURE 1 Disk’s (a) top view and (b) side profile illustrations.

has been considered thereat. On the other hand, in another related papers [5, 42], different values have been assigned
to grading parameters. Therefore, it is appropriate to state that grading parameters should be related, yet, the degree of
this relation is not clear. It could be equal, proportional, or not related at all. In the numerical examples of this paper, we
have kept one grading parameter constant and varied the other to observe the effect of the particular grading parameter.
Another important point is the disk thickness profile. Herein, in order to be in harmony with the properties, power-law
is applied to the disk profile. The profile can be any reasonable function since material grading and disk profile are two
separate quantities. Depending on the design parameters of the project, disk profile should be considered accordingly. In
the literature, assigning both properties and disk thickness profile to similar functions is a common practice, for instance
reference [36]. Additionally, it should be pointed out that profile variation function highly changes the solution procedure
to be followed. Different profiles may yield to analytical, semi-analytical or fully numerical approaches.

2 ANALYTICAL SOLUTION

In the fundamental elastic relations, infinitesimal deformations and the state of plane stress are considered.While exhibit-
ing such relations, the cylindrical polar coordinate system is used. Elastic strain-displacements relations can be designated
as

∈r =
du

dr
, ∈𝜃 =

u

r
, (4)

in which ∈r = ∈r (r) and ∈𝜃 = ∈𝜃 (r) express elastic strains in r and 𝜃 directions. Also, u = u(r) denotes radial
displacement. From the generalized Hooke’s law, strain-stress relations are introduced below

∈r =
du

dr
=

1

E (r)
[𝜎r − v (r) 𝜎𝜃] , (5)

∈𝜃 =
u

r
=

1

E (r)
[𝜎𝜃 − v (r) 𝜎r] , (6)

where 𝜎r = 𝜎r (r) and 𝜎𝜃 = 𝜎𝜃 (r) terms are the stress components in the related directions. For the mechanical analysis
herein, equilibrium equation is

d

dr
[h (r) r𝜎r] − h (r) 𝜎𝜃 = 0, (7)
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and the compatibility condition is of the form

d

dr
[r∈𝜃] − ∈r = 0. (8)

Using the equilibrium equation, tangential stress can be written as

𝜎𝜃 = 𝜎r + r
d𝜎r
dr

+ r
𝜎r
h (r)

dh (r)

dr
. (9)

Inserting Equation (9) into (6) and multiplying the equation by r, the radial displacement is obtained

u =
r

E (r)

[
{1 − v (r)} 𝜎r + r

d𝜎r
dr

+ r
𝜎r
h (r)

dh (r)

dr

]
. (10)

As can be seen from Equations (9) and (10), we have connected tangential stress and radial displacement to the radial
stress and its derivative. This means that when the radial stress is found, one is able to achieve tangential stress and radial
displacement as well. In this context, let’s plug in Equations (1)–(3), and (9) into directional strains in Equations (5) and
(6). After this operation, the corresponding ∈r and ∈𝜃 are substituted into the compatibility condition, which yields to

r2
d2𝜎r
dr2

+ k1r
d𝜎r
dr

+
[
k2r

𝛽 + k3
]
𝜎r = 0. (11)

The following terms are determined to exhibit the above equation in a compact form

k1 = 3 + g − 𝛼, k2 = vo b
−𝛽 (g + 𝛼 − 𝛽) , k3 = g (1 − 𝛼) − 𝛼. (12)

The governing equation (11) is a Bessel type differential equation and has various solutions depending on its parameters.
Each possible solution is given separately:
Case 1: k2 > 0 and n is a non-integer number
In this case, the radial stress emerges as

𝜎r = r(1−k1)∕2
[
C1Jn

(
Ωr𝛽∕2

)
+ C2J−n

(
Ωr𝛽∕2

)]
. (13)

Herein, Jn(Ωr𝛽∕2) and J−n(Ωr𝛽∕2) are the Bessel functions of the first kind, n is the order, and Ω is the argument of the
functions. Additionally, C1 and C2 are the arbitrary constants. The function can be presented in series form

Jn
(
Ωr𝛽∕2

)
=

∞∑
m=0

(−1)
m

m!Γ (m + n + 1)

[
Ωr𝛽∕2

2

]2m+n
, (14)

where Γ is the gamma function. If the n term in the above equation is replaced by -n, J−n(Ωr𝛽∕2) can simply be found. The
order and the argument are calculated with

n =

√
(k1 − 1)

2
− 4k3

𝛽
, Ω =

2
√
k2

𝛽
. (15)

Using Equations (3) and (13) with (9), tangential stress is obtained as

𝜎𝜃 =
r(1−k1)∕2

2

[
C1

{
r𝛽∕2βΩJn−1

(
Ωr𝛽∕2

)
+ (k4 − nβ) Jn

(
Ωr𝛽∕2

)}
+ C2

{
r𝛽∕2βΩJ−n−1

(
Ωr𝛽∕2

)
+ (k4 + nβ) J−n

(
Ωr𝛽∕2

)}]
.

(16)
Similar to the previous kj terms, k4 is determined

k4 = 3 + 2g − k1. (17)
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Combining Equations (1)–(3), (10) and (13), radial displacement is acquired

u =
r(3−k1)∕2

2Eo

[ r
b

]−𝛼 [
C1

{
r𝛽∕2βΩ Jn−1

(
Ωr𝛽∕2

)
+

(
k4 − nβ − 2vo

[ r
b

]𝛽)
Jn

(
Ωr𝛽∕2

)}

+C2

{
r𝛽∕2βΩ J−n−1

(
Ωr𝛽∕2

)
+

(
k4 + nβ − 2vo

[ r
b

]𝛽)
J−n

(
Ωr𝛽∕2

)}]
. (18)

In this study, the disk is subjected to internal pressure only. Thus, 𝜎r(𝑎) = −P, 𝜎r(b) = 0 boundary conditions are
applied to find C1 and C2. Here, 𝑎, b and P denote disk’s inner radius, outer radius and the implemented pressure.
Employing these conditions to Equation (13), we get C1 and C2 as

C1 = −
P𝑎(k1−1)∕2J−n

(
Ωb𝛽∕2

)
J−n

(
Ωb𝛽∕2

)
Jn

(
Ω𝑎𝛽∕2

)
− J−n

(
Ω𝑎𝛽∕2

)
Jn

(
Ωb𝛽∕2

) , (19a)

C2 =
P𝑎(k1−1)∕2Jn

(
Ωb𝛽∕2

)
J−n

(
Ωb𝛽∕2

)
Jn

(
Ω𝑎𝛽∕2

)
− J−n

(
Ω𝑎𝛽∕2

)
Jn

(
Ωb𝛽∕2

) . (19b)

When k2 > 0 and n is a non-integer number, the above stated solution occurs. In this case, Jn(Ωr𝛽∕2) and J−n(Ωr𝛽∕2)
are the linearly independent solutions of the governing differential equations. However, these functions are no longer
independent if integer n is the case.
Case 2: k2 > 0 and n is an integer number
When n is an integer value, the second solution of the radial stress changes from J−n(Ωr

𝛽∕2) to Yn(Ωr
𝛽∕2). The

term Yn(Ωr
𝛽∕2) is the Bessel function of the second kind. Once again, the order and the argument are obtained with

Equation (15). So, the radial stress is

𝜎r = r(1−k1)∕2
[
C1Jn

(
Ωr𝛽∕2

)
+ C2Yn

(
Ωr𝛽∕2

)]
. (20)

The Yn(Ωr𝛽∕2) is given by

Yn
(
Ωr𝛽∕2

)
=
Jn

(
Ωr𝛽∕2

)
cos (nπ) − J−n

(
Ωr𝛽∕2

)
sin (nπ)

. (21)

Utilizing Equations (3), (9) and (20), tangential stress yields to

𝜎𝜃 =
r(1−k1)∕2

2

[
C1

{
r𝛽∕2βΩJn−1

(
Ωr𝛽∕2

)
+ (k4 − nβ) Jn

(
Ωr𝛽∕2

)}
+ C2

{
r𝛽∕2βΩYn−1

(
Ωr𝛽∕2

)
+ (k4 − nβ) Yn

(
Ωr𝛽∕2

)}]
.

(22)
By using Equations (1)–(3), (10) and (20), radial displacement term is achieved

u =
r(3−k1)∕2

2Eo

[ r
b

]−𝛼 [
C1

{
r𝛽∕2βΩ Jn−1

(
Ωr𝛽∕2

)
+

(
k4 − nβ − 2vo

[ r
b

]𝛽)
Jn

(
Ωr𝛽∕2

)}

+C2

{
r𝛽∕2βΩ Yn−1

(
Ωr𝛽∕2

)
+

(
k4 − nβ − 2vo

[ r
b

]𝛽)
Yn

(
Ωr𝛽∕2

)}]
. (23)

Following a similar vein, with the conditions 𝜎r(𝑎) = −P, 𝜎r(b) = 0, arbitrary constants are obtained

C1 =
P𝑎(k1−1)∕2Yn

(
Ωb𝛽∕2

)
Jn

(
Ωb𝛽∕2

)
Yn

(
Ω𝑎𝛽∕2

)
− Jn

(
Ω𝑎𝛽∕2

)
Yn

(
Ωb𝛽∕2

) , (24a)

C2 = −
P𝑎(k1−1)∕2Jn

(
Ωb𝛽∕2

)
Jn

(
Ωb𝛽∕2

)
Yn

(
Ω𝑎𝛽∕2

)
− Jn

(
Ω𝑎𝛽∕2

)
Yn

(
Ωb𝛽∕2

) . (24b)
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Up to this point, k2 terms has been a positive value. Yet, when it is negative, one obtains two more cases depending on
whether n is integer or not.
Case 3: k2 < 0 and n is a non-integer number
For the constrains we have, radial stress yields to

𝜎r = r(1−k1)∕2
[
C1In

(
Ωr𝛽∕2

)
+ C2I−n

(
Ωr𝛽∕2

)]
. (25)

Herein, In(Ωr𝛽∕2) and I−n(Ωr𝛽∕2) are the modified Bessel functions of the first kind of order n and -n respectively. In a
similar way, n andΩ are introduced. The calculation of the order n remains the same to Equation (14) butΩ alters slightly

n =

√
(k1 − 1)

2
− 4k3

𝛽
, Ω = −i

2
√
k2

𝛽
. (26)

The series form of In(Ωr𝛽∕2) is

In
(
Ωr𝛽∕2

)
=

∞∑
m=0

1

m!Γ (m + n + 1)

[
Ωr𝛽∕2

2

]2m+n
, (27)

and I−n(Ωr𝛽∕2) is achieved by inserting -n into the place of n in the above summation. Following a similar process to
the previous cases, but this time operating with Equation (25), tangential stress and radial displacement equations are
exhibited

𝜎𝜃 =
r(1−k1)∕2

2

[
C1

{
r𝛽∕2βΩIn−1

(
Ωr𝛽∕2

)
+ (k4 − nβ) In

(
Ωr𝛽∕2

)}
+ C2

{
r𝛽∕2βΩI−n−1

(
Ωr𝛽∕2

)
+ (k4 + nβ) I−n

(
Ωr𝛽∕2

)}]
,

(28)

u =
r(3−k1)∕2

2Eo

[ r
b

]−𝛼 [
C1

{
r𝛽∕2βΩ In−1

(
Ωr𝛽∕2

)
+

(
k4 − nβ − 2vo

[ r
b

]𝛽)
In

(
Ωr𝛽∕2

)}

+C2

{
r𝛽∕2βΩ I−n−1

(
Ωr𝛽∕2

)
+

(
k4 + nβ − 2vo

[ r
b

]𝛽)
I−n

(
Ωr𝛽∕2

)}]
. (29)

The closed forms of the arbitrary constants are

C1 = −
P𝑎(k1−1)∕2I−n

(
Ωb𝛽∕2

)
I−n

(
Ωb𝛽∕2

)
In

(
Ω𝑎𝛽∕2

)
− I−n

(
Ω𝑎𝛽∕2

)
In

(
Ωb𝛽∕2

) , (30a)

C2 =
P𝑎(k1−1)∕2In

(
Ωb𝛽∕2

)
I−n

(
Ωb𝛽∕2

)
In

(
Ω𝑎𝛽∕2

)
− I−n

(
Ω𝑎𝛽∕2

)
In

(
Ωb𝛽∕2

) . (30b)

Due to non-integer n, In(Ωr𝛽∕2) and I−n(Ωr𝛽∕2) are linearly independent solutions to the radial stress function. If n is
an arbitrary integer number, the solution becomes the subsequent case.
Case 4: k2 < 0 and n is an integer number
Under the given conditions, solution of the governing differential equation results in

𝜎r = r(1−k1)∕2
[
C1In

(
Ωr𝛽∕2

)
+ C2Kn

(
Ωr𝛽∕2

)]
. (31)

Hereinabove, Kn(Ωr𝛽∕2) is the modified Bessel function of the second kind of order n. The n and Ω are equal to the
expressions in Equation (26). Moreover, Kn(Ωr𝛽∕2) can be connected to In(Ωr𝛽∕2) with the subsequent equation

Kn
(
Ωr𝛽∕2

)
=
𝜋

2

I−n
(
Ωr𝛽∕2

)
− In

(
Ωr𝛽∕2

)
sin (nπ)

. (32)
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Following a similar fashion to the previous cases, therein using Equation (31), tangential stress, radial displacement,
and arbitrary constants are found.

𝜎𝜃 =
r(1−k1)∕2

2

[
C1

{
r𝛽∕2βΩIn−1

(
Ωr𝛽∕2

)
+ (k4 − nβ) In

(
Ωr𝛽∕2

)}

+C2
{
−r𝛽∕2βΩKn−1

(
Ωr𝛽∕2

)
+ (k4 − nβ)Kn

(
Ωr𝛽∕2

)}]
, (33)

u =
r(3−k1)∕2

2Eo

[ r
b

]−𝛼 [
C1

{
r𝛽∕2βΩ In−1

(
Ωr𝛽∕2

)
+

(
k4 − nβ − 2vo

[ r
b

]𝛽)
In

(
Ωr𝛽∕2

)}

+C2

{
−r𝛽∕2βΩ Kn−1

(
Ωr𝛽∕2

)
+

(
k4 − nβ − 2vo

[ r
b

]𝛽)
Kn

(
Ωr𝛽∕2

)}]
, (34)

C1 =
P𝑎(k1−1)∕2Kn

(
Ωb𝛽∕2

)
In

(
Ωb𝛽∕2

)
Kn

(
Ω𝑎𝛽∕2

)
− In

(
Ω𝑎𝛽∕2

)
Kn

(
Ωb𝛽∕2

) , (35a)

C2 = −
P𝑎(k1−1)∕2In

(
Ωb𝛽∕2

)
In

(
Ωb𝛽∕2

)
Kn

(
Ω𝑎𝛽∕2

)
− In

(
Ω𝑎𝛽∕2

)
Kn

(
Ωb𝛽∕2

) . (36b)

Term k2 has been either a positive or negative number to this stage. However, there is one more possibility which is the
following:
Case 5: k2 = 0

Let’s take a deeper look into k2 which is equal to k2 = vo b
−𝛽(g + 𝛼 − 𝛽). In this expression, vo is the reference Poisson’s

ratio and b is the outer radius of the disk. Neither of them can be zero. Thus, in order for k2 = 0 to happen, g + 𝛼 − 𝛽 term
must be equal to zero. Moreover, this occurrence causes a change in the solution procedure of the governing differential
equation. The governing equation reduces to

r2
d2𝜎r
dr2

+ k1r
d𝜎r
dr

+ k3 𝜎r = 0. (36)

This equation is a second order homogeneous Cauchy-Euler type. Solving this equation gives the following radial stress
function

𝜎r = C1 r
(1−k1−

√
(k1−1)

2
−4k3)∕2 + C2r

(1−k1+

√
(k1−1)

2
−4k3)∕2. (37)

Substituting Equations (3) and (37) into (9) provides the tangential stress

𝜎𝜃 = C1
k4 −

√
(k1 − 1)

2
− 4k3

2
r(1−k1−

√
(k1−1)

2
−4k3)∕2 + C2

k4 +

√
(k1 − 1)

2
− 4k3

2
r(1−k1+

√
(k1−1)

2
−4k3)∕2. (38)

A straightforward combination of Equations (1)–(3), (10) and (37) renders to

u =
1

2Eo

[ r
b

]−𝛼 [
C1

(
k4 −

√
(k1 − 1)

2
− 4k3 − 2vo

[ r
b

]𝛽)
r(3−k1−

√
(k1−1)

2
−4k3)∕2

+C2

(
k4 +

√
(k1 − 1)

2
− 4k3 − 2vo

[ r
b

]𝛽)
r(3−k1+

√
(k1−1)

2
−4k3)∕2

]
. (39)
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FARUKOĞLU et al. 8 of 20

TABLE 1 Analytical solution methods to be followed based on parameters k1, k2 and k3.

Constrains Solution method
k1 = 0 Depending on k2 and n, among Cases 1–4, one of them occurs
k2 = 0 Case 5
k3 = 0 Depending on k2 and n, among Cases 1–4, one of them occurs
k1 = k2 = 0 Appendix Case A.1
k1 = k3 = 0 Appendix Case A.2, this case in not possible for real numbers of 𝛼.
k2 = k3 = 0 Appendix Case A.3
k1 = k2 = k3 = 0 Appendix Case A.4, this case in not possible for real numbers of 𝛼.

Solving Equation (37) for the internal pressure case boundary conditions, one acquires

C1 =
P𝑎

(
k1−1+

√
(k1−1)

2
−4k3

)
∕2
b

√
(k1−1)

2
−4k3

𝑎

√
(k1−1)

2
−4k3 − b

√
(k1−1)

2
−4k3

, (40a)

C2 = −
P𝑎

(
k1−1+

√
(k1−1)

2
−4k3

)
∕2

𝑎

√
(k1−1)

2
−4k3 − b

√
(k1−1)

2
−4k3

. (40b)

As can be seen, the solution revolves around the parameter k2. It can significantly alter the procedures to be followed.
This situation has led us to examine the importance of other parameters (k1, k3) as well. Therefore, other conditions that
could be critical such as k1 = 0 or k3 = 0 are investigated. It has been observed that some of these conditionsmay change
the solution procedure slightly but not as much as k2.Moreover, for instance, the case k1 = k3 = 0 is not possible for real
values of𝛼. In order to keep the conciseness of this research, thesemathematically possible but quite rare cases are given in
theAppendix section. Also, the necessary solution techniques are presented in Table 1 for a clearer understandability. After
these elaborations, there is one possibility left, which is β = 0. When this occurs the term r𝛽 in the governing equation
becomes one and the differential equation’s last term turns out as k2 + k3. The solution of this case is highly similar to
Case 5. Furthermore, from an engineering point, β = 0 means that the Poisson’s ratio does not vary along direction r.
This is a case we frequently observe in the literature, which is taken into account in the articles to simplify the solution
methods, see ref. [3, 5, 15, 42]. It reduces the problem to a classical Cauchy-Euler type equation. Yet, these simplifications
result in some accuracy issues which we are going to discuss in the numerical examples.
In this study, further to stress and displacement functions, elastic limits of the stresses are also considered. The von

Mises yield criterion (𝜎vm) is utilized for this purpose

𝜎vm =
√
𝜎2r − 𝜎r𝜎𝜃 + 𝜎2

𝜃
= 𝜎𝑦, (41)

in which 𝜎y is the yield strength of the material. Furthermore, in the subsequent numerical examples, unless otherwise
stated the following dimensionless expressions are used

σ̄vm =
𝜎vm
𝜎𝑦

, σ̄r =
𝜎r
𝜎𝑦

, σ̄𝜃 =
𝜎𝜃
𝜎𝑦

, ū =
uEo
b𝜎𝑦

, r̄ =
r

b
, P̄ =

P

𝜎𝑦
. (42)

Hereabove, the overbar symbol denotes the dimensionless normalized quantities.

3 NUMERICAL EXAMPLES

Before getting into the numerical examples, we would like to exhibit the preciseness of the analytical model. For this
reason, our results are compared with a related study [43]. In that reference, the author has taken the Young’s modu-
lus as E(r) = Eo (r∕𝑎)

𝛼. Therefore, Equation (1) is swapped with this identity and the subsequent dimensionless terms
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9 of 20 FARUKOĞLU et al.

TABLE 2 Comparison of the dimensionless stresses and radial displacements.

�̄�𝐫 �̄�𝜽 �̄�

�̄� Present Ref. [43] % Difference Present Ref. [43] % Difference Present Ref. [43] % Difference
0.6 −1. −1. 0 2.9217569 2.9215247 −0.0079479 1.9330541 1.9329148 −0.0072067
0.7 −0.5193136 −0.5193327 0.0036778 1.9109654 1.9109177 −0.0024961 1.7741597 1.7738076 −0.0198599
0.8 −0.2542305 −0.2542463 0.0062144 1.3419100 1.3419577 0.0035545 1.6600641 1.6597794 −0.0171529
0.9 −0.0975499 −0.0975569 0.0071753 0.9966404 0.9967111 0.0070933 1.5784954 1.5784672 −0.0017865
1.0 0. 0. 0 0.7745855 0.7746334 0.0061835 1.5217854 1.5221546 0.0242551

are used:

σ̄r =
𝜎r

𝜌𝜔2b2 + P
, σ̄𝜃 =

𝜎𝜃

𝜌𝜔2b2 + P
, ū =

uEo

𝜌𝜔2b3 + bP
, r̄ =

r

b
, (43)

in which 𝜌 and 𝜔 denote density and angular velocity. In order to be consistent with the reference, we used the above
dimensionless terms in the verification procedure instead of Equation (42). The verification is made with the following
reference values: Eo= 393 GPa, α = −1.322, vo= 0.30, β = 0.01, 𝑎∕b = 0.6, ω = 0, g = 0. In ref. [43], the researcher has
preferred the usual constant Poisson’s approach (β = 0). In the verification procedure, if 𝛽 is set to be zero, we obtain
an identical analytical solution to the reference (Cauchy-Euler type). However, our purpose is testing the Bessel function
approach presented herein. In the case of setting β = 0, the order of the Bessel function n becomes indefinite, see Equa-
tions (15) and (26). For the purpose of avoiding this issue, we used a small number β = 0.01 which is close enough to
zero. Following these arrangements, compared results are noted in Table 2. As can be seen from the table, we obtained
highly closed numerical results by selecting β = 0.01. If 𝛽 is chosen to be a number much closer to zero such as 0.000001,
the less than 1% difference between the compared results gets even smaller. However, assign a number with this many
digits to 𝛽 considerably increases the computation time. Since the values at the table are almost perfectly matching with
small fractional differences at the thousandths digit, it can be expressed that the constructed methods in this study are
convenient. The percentage differences between computed stresses and displacements can be seen in the table as well. In
these differences, we have simply used 100*(Reference-This study)/Reference formulation. Another interpretation comes
to the surface from this comparison, and that is, if correct values are assigned to Bessel type equations, then one may get
close enough solutions to Cauchy-Euler type equations as well. After this validation, we may begin numerical examples.
In this section, based on the numerical samples, stress and displacement fields are going to be analyzed from different

perspectives. The following reference values are used throughout the examples: Eo= 300 GPa, 𝜎𝑦= 400 MPa, vo= 0.25,
𝑎∕b = 0.5 and the dimensionless quantities in Equation (42) are utilized. We would like to state some points about the
reference values. For instance, 𝑎∕b ratio should be less than one since b > 𝑎. Poisson’s ratio is selected as 0.25 because it
varies within 0 to 0.5 for most materials. The numbers assigned for the Young’s modulus and yield strength are generic
values. Unless a specific material type is indicated, it is convenient to use these reference values. In the case of particular
material selection then its properties must be followed. After these clarifications, firstly, we shall examine the effect of
the geometry of the disk on the mentioned stress fields. The profile of the variable thickness disk is manipulated with
the geometric parameter g. The component is investigated at the elastic limits for various values of g. Accordingly, the
dimensionless von Mises stress variation along radius is stated in Figure 2a. When σ̄vm = 1, yielding commences at the
internally pressurized disk. It is sufficient to look at Equation (41) to grasp the reason for this. If both sides of the equation
are divided by 𝜎𝑦 , the right-hand side of the equation becomes 1. Additionally, σ̄vm was previously determined as σ̄vm =

𝜎vm ∕𝜎𝑦 . Thus, when the stress variation goes to 1, one may say the disk reaches its elastic limits. It is monitored from
the figure that the disk geometry yields at its inner radius for different thickness profiles. Yet, the critical question to be
asked here is whether this is always the case. The answer to this question is simply ‘no’. The disk may yield at different
positions. This topic is going to be later discussed in further details. When the disk thickness transitions from convex (g
< 0) to concave (g > 0), the yield stresses in the figure tend to decrease along the radius. Moreover, for g equals to −1,
−0.5, 0, 0.5 and 1, the calculated elastic limit internal pressure (P̄) values are 0.42314, 0.46942, 0.51915, 0.57129, and 0.62444
respectively. In Figure 2b, the corresponding radial stresses are presented. At the elastic limits, since the distributions have
negative values, these stress components are compressive. Also, at the inner radius, due to the boundary condition𝜎r(𝑎) =

−P, these components are equal to P̄ for each g value. It is observed by the figure that the thickness of the disk slightly
changes the stresses in direction r. Followingly, in Figure 2c, the tangential stresses are exhibited. This figure shows highly
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FARUKOĞLU et al. 10 of 20

F IGURE 2 Effect of parameter g on (a) von Mises, (b) radial, (c) tangential stresses, and (d) radial displacement, where α = β = 1.

resembling distributions with the von Mises stress. Since the von Mises stress is the combination of radial and tangential
stress components and the magnitudes of the tangential stresses are greater than the radial ones, the resemblance is
unsurprising. Contrary to radial stresses, tangential ones are tensile. In the last constituent, radial displacements are given
in Figure 2d. Applying limit internal pressure to the disk results in radial expansion. This expansion is higher for the disk
with convex profile.
The material grading parameters (𝛼, β) have been kept constant in the previous analysis. Here, we continue with the

convex disk profile (g = −0.5) and examine the grading parameters by altering them. Let’s begin with parameter 𝛼. In
Figure 3a, von Mises stress distributions are illustrated for various 𝛼 values. Once again, yielding occurs at the inner
radius. As the values of 𝛼 increase, the stress distributions tend to get lower through radial positions closer to the outer
radius. The limit pressure values are obtained as 0.30939, 0.34302, 0.38092, 0.42314, and 0,46942 for 𝛼 −1, −0.5, 0, 0.5 and
1 respectively. In the next step, in Figure 3b, radial stresses are displayed. Comparing this figure with the previous radial
stress figure, Figure 2b, reveals that g and 𝛼 may cause different stress distribution profiles. At the elastic limits, even
though in both cases these distributions are compressive, their variations along the disk radius are considerably different.
From this outcome, another interpretation can be made as well. Since it is hard to manipulate the material properties in
realistic engineering cases, in order to achieve the desired stress field, one should attempt to change the disk geometry
instead. In the ensuing Figure 3c tangential stresses are observed for various 𝛼 values. Once again, this component and
the von Mises stress are tensile and similar to each other. In this stress direction, small modifications in parameter 𝛼may
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11 of 20 FARUKOĞLU et al.

F IGURE 3 Effect of parameter 𝛼 on (a) von Mises, (b) radial, (c) tangential stresses, and (d) radial displacement, where
β = 1, g = −0.5.

result in prominent stress magnitude differences. In order to perceive this, the stress differences between the inner and
outer radius of the disk can be checked. In the last constituent, Figure 3d, radial displacements are illustrated. Altering
parameter 𝛼 immensely changes the magnitude of the radial displacement. Thus, it is important to state that for cases
where the displacement is a priority in themechanical design of such components, grading of the Young’smodulus should
be paid attention to.
In the next examination, the effect of grading parameter 𝛽 is focused on. Herein, Young’s modulus grading param-

eter (α = 1) and geometric parameter (g = −0.5) are kept constant. Stress and displacement fields are investigated for
different β values. For 𝛽 −0.99, −0.5, 0, 0.5 and 1, limit pressures are computed as 0.50261, 0.48759, 0.47813, 0.47268, and
0.46942 respectively. As can be seen from the constituents of Figure 4, directional stresses and radial displacement moder-
ately change with parameter 𝛽. It is apparent that parameters 𝛼 and g have much more importance than β. Therefore, as
far as we know, almost all similar studies in the literature have taken Poisson’s ratio as constant or in other words β = 0.
This consideration delivers both positive and negative consequences. On the one hand, in terms of mathematical model-
ing, the problem turns out as a simple Cauchy-Euler type when 𝛽 = 0. So, the solution technique can be handled without
much effort. On the other hand, this consideration causes accuracy problems. When all parts of Figure 4 are examined, it
is apparent that parameter 𝛽 influences both the stresses and displacement to some degree. Since including the effect of
parameter 𝛽 in the analytical model of the problem is not a simple task, variable Poisson’s ratio has been avoided in the
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FARUKOĞLU et al. 12 of 20

F IGURE 4 Effect of parameter 𝛽 on (a) von Mises, (b) radial, (c) tangential stresses, and (d) radial displacement, where
α = 1, g = −0.5.

scientific literature for the power-law graded disk. Therefore, the fact that parameter β is assigned as a variable is related
to how precise the study is. If variable Poisson’s ratio path is followed, there emerges a technical matter to be considered
when assigning values to β. As knownPoisson’s ratio varies between 0 and 1/2 formostmaterials. In order not to pass these
boundaries, Equation (2) should be solved within this range. For the reference values in the numerical examples ( vo=
0.25, 𝑎∕b = 0.5), if 0< v(r)< 1/2 inequality is solved, one finds that 𝛽must be greater than−1. Therefore, formathematical
correctness purposes, in Figure 4,−0.99 is assigned to 𝛽 instead of−1. If β is equal to−1 then v(r) becomes 1/2 at the inner
radius of the disk. For 𝛽 values smaller than −1, v(r) pass 1/2 and this may cause incorrect interpretations. Moreover, in
ref. [3], the inequality for v(r) has been taken with a slight boundary difference as 0≤v(r) < 1/2. It is true that for some
materials such as cork, Poisson’s ratio could be equal to zero. However, if Equation (2) is considered, having a boundary
equal to zero is not likely. In this study, v(r)=vo (r∕b)𝛽 , and for v(r) to be zero, reference Poisson’s ratio (vo) must be equal
to zero since (r∕b)𝛽 term cannot be zero due to the geometry. If there is no inner hole in the disk (a= 0), (r∕b)𝛽 term can be
equal to zero when r = a. However, the geometry of the disk contains an inner hole (a≠0), this possibility is disregarded,
see Figure 1. Under these circumstances, one may conclude that having a variable Poisson’s ratio brings both analytical
and numerical difficulty to the investigation while increasing the accuracy. When β = 0 case is taken as reference point
then compared with high and low 𝛽 values, 1 and −0.99, we have observed around 3% to 9% differences in the distribu-
tions of all figure constituents of Figure 4. While 𝛽 is a positive value, distribution differences are towards the smaller
side. However, in the case of negative values of 𝛽, differences in the distributions tend to rise. As a concluding remark,
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13 of 20 FARUKOĞLU et al.

F IGURE 5 Location of the disk yielding commencement for various disk thickness profiles and 𝛼 values, where β = 1 and at (a)
g = −0.5, (b) g = 0, and (c) g = 0.5.

F IGURE 6 Dimensionless limit internal pressure alteration for various 𝛼 and g parameters, where β = 1.

depending on the value of 𝛽, roughly around 10% increase in the predicted results with the variable 𝛽 consideration can be
observed.
We have investigated thematerial and geometric parameters to this point. Let’s switch our focal point to yielding and its

position. At the beginning of the numerical examples, it has beenmentioned that yieldingmay occur at different locations.
According to the von Mises criterion, yielding can commence at the inner radius, outer radius, or both simultaneously.
For disk of convex (g = −0.5), annular (g = 0) and concave (g = 0.5) profiles, all these yielding positions are possible
for different 𝛼 values. The von Mises stress distributions of these disk profiles are given in Figure 5. Whilst searching
for yielding positions, an interesting topic has been noticed. When the disk yields at the inner and outer radius at the
same time, the highest possible pressure values are reached. Thus, the 𝛼 value at this point is called critical 𝛼 (𝛼𝑐𝑟). In
order to illustrate this, Figure 6 is plotted for the same disk geometries used in the last figure. Prior to or after 𝛼𝑐𝑟, limit
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FARUKOĞLU et al. 14 of 20

F IGURE 7 Dimensionless (a) von Mises, (b) radial, (c) tangential stresses, and (d) radial displacement for different 𝛼 values before, at,
and after critical level, where β = 1, g = −0.5.

internal pressures are considerably lower than at 𝛼𝑐𝑟. For this reason, one may interpret that if higher limit pressures
are the priority in the design of such structural elements, one should pay attention to these critical values. Let’s return
to the previous analyses of g, 𝛼, and 𝛽. Therein these exemplifying figures, all values of 𝛼 are values smaller than 𝛼𝑐𝑟.
Therefore, we decided to investigate stress and displacement fields at 𝛼𝑐𝑟 and after 𝛼𝑐𝑟 values. Constituents of Figure 7
serve this purpose. Wherein g = −0.5 and β = 1, and for 𝛼 1, 2, 2.28268, 3, and 4, limit pressures are found as 0.46942,
0.57129, 0.60132, 0.49214, and 0.38343. In Figure 7a, one observes different yielding positions. For 𝛼 values smaller than
𝛼𝑐𝑟, the disk yields at the inner radius. When α =𝛼𝑐𝑟 , disk yields at the inner and outer radius simultaneously. When 𝛼 is
greater than 𝛼𝑐𝑟, disk tends to yield at the outer radius. Depending on the values of 𝛼, stress distribution of the von Mises
stress highly alters. In Figure 7b, the highest-pressuremagnitude at the inner radius is observed for the diskwith 𝛼𝑐𝑟 value.
Moreover, if this figure and Figure 3b are compared, one can see that before and after the critical value of𝛼, the curvature of
the stress distribution profiles alters. In Figure 7c, the corresponding tangential stresses are demonstrated. Therefrom the
figure, obvious differences in the stress distribution profiles can be easily identified. Hence, we can, without a doubt, state
that 𝛼𝑐𝑟 is a noticeably important parameter at the elastic limits. In the final constituent, Figure 7d, radial displacements
are illustrated. Herein, under this mechanical load, disk radially expands. For higher values of 𝛼, this expansion increases.
Nevertheless, at some point, the degree of this expansion reduces especially for values greater than 𝛼𝑐𝑟.
To this point in the research, all numerical examples have been displayed for the disk at the elastic limits. In the final

example, before closure,wewould like to demonstrate a casewhere the disk is arbitrarily loaded below the limits.Wherein,
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15 of 20 FARUKOĞLU et al.

F IGURE 8 Dimensionless (a) von Mises, (b) radial, (c) tangential stresses, and (d) radial displacement for different 𝛼, where the disk is
subjected to an arbitrary internal pressure, P̄ = 0.25.

once again, the common parameters g = −0.5 and β = 1 are selected. The applied pressure load is kept constant, P̄= 0.25,
and 𝛼 is altered. In Figure 8a, none of the von Mises distributions reach to 1, so the disk is loaded below the limits, just
the case 𝛼 = −2 gets closer to its limit. When the figure and Figure 7a are compared for 𝛼 1, 2, 2.28268, 3, and 4, one
can visually identify that stress variation profiles change to some extent according to the magnitude of the applied load.
Also, this interpretation is valid for the radial and tangential stresses in Figure 8b,c if these figures are compared with
the corresponding Figure 7b,c. Additionally, the comparison of Figures 7d and 8d for 𝛼 1, 2, 2.28268, 3, and 4 reveals that
the magnitude of the applied pressure highly influences the elastic radial displacement magnitudes. Furthermore, one
may reach to another outcome: 𝛼𝑐𝑟 is an important parameter at or near limit loads since 𝛼𝑐𝑟 does not make a significant
change in the components of Figure 8.

4 CONCLUDING REMARKS

Disks are important components used vastly in different engineering sectors. In this examination, the elastic solution
of the power-law functionally graded variable thickness disk is investigated with analytical methods. Depending on the
parameters, the solution mostly yields Bessel type functions but occasionally one may deal with Cauchy-Euler type equa-
tions as well. In instances where Bessel functions occur, Case 1 and Case 3 are the ones we solve since the order of the
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Bessel function is non-integer for most possibilities. Mathematically infrequent cases are shown in the appendix as well.
After analytical procedures, in the numerical examples, some important details were found:

1. Parameter g can be used to control the desired stress field. In engineering component design, it is easier to alter the
geometry while physically manufacturing the disk than to alter material grading parameters.

2. Overall, grading parameter α is the most significant parameter since it prominently affects both stresses and displace-
ments. If the component is used at or close to the limit loads, the grading of the material should be as close as possible
to 𝛼𝑐𝑟.

3. The grading parameter 𝛽 is the most neglected parameter in the design of power-law functionally graded disk compo-
nents. It is true that including this parameter in the problem brings a significant amount of difficulty, yet, it rises the
predicted accuracy. Therefore, thismatter could be remarked as a finishing touch to amechanicalmodeling. Depending
on the value of 𝛽, differences between variable 𝛽 and β = 0 cases change between 3 to 9% in the numerical examples.
For different values, thementioned differencemay increase or decrease. So, from a general perspective, roughly around
10% increase in accuracy with variable 𝛽 can be expected.

4. The cases that are shown in the Appendix have not been revealed before due to the absence of parameter 𝛽 consider-
ation. From a mathematical perspective, these singular cases should be handled carefully to have correct closed-form
solutions.

5. Bringing parameter 𝛽 into the problem has broadened the available analytical solutionmethods. In this way, instead of
the classical Cauchy-Euler type differential equation solutions, one may utilize Bessel-type functions as well. It should
be expressed that for different grading rules that include variable Poisson’s ratio approach, closed-form solutions may
not always be reached.

6. Although the results have been verified by comparison, analytical solutions can be extended with other appropriate
numerical techniques as well.

Apart from the above remarks, the methods in this study can be further developed for different purposes including
weight optimization or stress field optimization. The reason for pinpointing these topics is due to the importance of func-
tionally graded material applications. In most engineering designs, standard isotropic materials like steel are utilized.
In cases that need special attention functionally graded materials or other special counterpart materials are generally
employed. In these special cases, weight or stress fields might be prioritized. Additionally, fatigue behavior of similar
structures can be investigated by modeling with time dependency. Another option is above elastic limit load conditions
such as elastic-plastic or fully plastic zones. These stress zones can be further investigated in future studies.
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APPENDIX

The governing differential equation is given below

r2
d2𝜎r
dr2

+ k1r
d𝜎r
dr

+
[
k2r

𝛽 + k3
]
𝜎r = 0, (A1)

where

k1 = 3 + g − 𝛼, k2 = vo b
−𝛽 (g + 𝛼 − 𝛽) , k3 = g (1 − 𝛼) − 𝛼. (A2)

Case A.1 k1 = k2 = 0

For k1 and k2 to be equal to zero simultaneously, the following two conditions must occur

g = α − 3, β = 2𝛼 − 3. (A3)

Under these circumstances, k1 = k2 = 0 and k3 becomes

k3 = −𝛼2 + 3𝛼 − 3. (A4)

The governing equation simplifies to

r2
d2𝜎r
dr2

+ k3 𝜎r = 0, (A5)

and the solutions are acquired as

𝜎r = C1 r

(
1−

√
1−4k3

)
∕2
+ C2r

(
1+

√
1−4k3

)
∕2
, (A6)

𝜎𝜃 = C1
1

2

(
3 + 2g −

√
1 − 4k3

)
r

(
1−

√
1−4k3

)
∕2
+ C2

1

2

(
3 + 2g +

√
1 − 4k3

)
r

(
1+

√
1−4k3

)
∕2
, (A7)

u =
1

2Eo

[ r
b

]−𝛼 [
C1

{
3 + 2g −

√
1 − 4k3 − 2vo

[ r
b

]𝛽}
r

(
3−

√
1−4k3

)
∕2

+C2

{
3 + 2g +

√
1 − 4k3 − 2vo

[ r
b

]𝛽}
r

(
3+

√
1−4k3

)
∕2
]
. (A8)
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Utilizing 𝜎r(𝑎) = −P, 𝜎r(b) = 0, arbitrary constants are found

C1 =
P𝑎

(√
1−4k3−1

)
∕2
b
√
1−4k3

𝑎
√
1−4k3 − b

√
1−4k3

, C2 = −
P𝑎

(√
1−4k3−1

)
∕2

𝑎
√
1−4k3 − b

√
1−4k3

. (A9)

Case A.2 k1 = k3 = 0

In order for k1 and k3 to be equal to zero together, let’s set the first and third constituent of (A2) to zero. What we end
up is then

g = α − 3, g =
𝛼

1 − 𝛼
. (A10)

Accordingly, the geometric parameter g must satisfy the above conditions. Solving the condition for 𝛼, one finds

𝛼 − 3 =
𝛼

1 − 𝛼
→ α =

1

2

(
3 ± i

√
3
)
. (A11)

As can be seen, 𝛼 turns out as imaginary number. This reveals that for a realistic mechanical modeling of the problem
k1 = k3 = 0 cannot occur.
Case A.3 k2 = k3 = 0

In a similar way, second and third constituent of (A2) are set to zero to acquire the necessary constrains

g =
𝛼

1 − 𝛼
, β =

𝛼 (2 − 𝛼)

1 − 𝛼
. (A12)

If the above constrains are satisfied, k2 = k3 = 0 and k1 happens to be

k1 = 3 +
𝛼2

1 − 𝛼
. (A13)

The main equation is then

r2
d2𝜎r
dr2

+ k1r
d𝜎r
dr

= 0. (A14)

Stress and displacement field functions are obtained as follows for the above equation

𝜎r = C1
1

1 − k1
r1−k1 + C2, (A15)

𝜎𝜃 = C1
2 + g − k1
1 − k1

r1−k1 + C2 (1 + g) , (A16)

u =
1

Eo

[ r
b

]−𝛼 [
C1

1

1 − k1

{
2 + g − k1 − vo

[ r
b

]𝛽}
r2−k1 + C2

{
1 + g − vo

[ r
b

]𝛽}
r

]
, (A17)

C1 =
P (1 − k1) 𝑎

k1bk1

𝑎k1b − 𝑎bk1
, C2 = −

P𝑎k1𝑏

𝑎k1b − 𝑎bk1
. (A18)

Case A.4 k1 = k2 = k3 = 0

For k1 = k2 = k3 = 0 to happen, all constituents of (A2) are set to zero, and the following expressions are obtained

g = α − 3, β = g + 𝛼, g =
𝛼

1 − 𝛼
. (A19)

 15214001, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202200506 by C

ankaya U
niversity, W

iley O
nline L

ibrary on [29/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FARUKOĞLU et al. 20 of 20

From the first and the third component of the above conditions, we find the same results presented in (A11)

𝛼 − 3 =
𝛼

1 − 𝛼
→ α =

1

2

(
3 ± i

√
3
)

(A20)

Hence, we conclude that k1 = k2 = k3 = 0 is not possible for real 𝛼 parameter as well.
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