
Research Article

Danish Ali, Aftab Hussain, Erdal Karapinar*, and Prasit Cholamjiak

Efficient fixed-point iteration for generalized
nonexpansive mappings and its stability in
Banach spaces

https://doi.org/10.1515/math-2022-0461
received May 28, 2021; accepted April 14, 2022

Abstract: The aim of this article is to design a new iteration process for solving certain fixed-point problems.
In particular, we prove weak and strong convergence theorems for generalized nonexpansive mappings in
the framework of uniformly convex Banach spaces. In addition, we discuss the stability of the solution
under mild conditions. Further, we provide some numerical examples to indicate that the proposed method
works properly.
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1 Introduction and preliminaries

In the last few decades, metric fixed-point theory is one of the hot topics for researchers in mathematics and
applied sciences due to its wide application potential in nonlinear systems. The power of the metric fixed-
point theory is to combine functional analysis, topology, and geometry, in a unique way. Accordingly, the
problems in qualitative science (engineering, biology, chemistry, economics, technology, game theory,
computer science, etc.) can be transformed and solved in the context of metric fixed-point theory. The
pioneering work of the theory was announced by Banach in 1922, which guarantees both the existence and
uniqueness of the fixed point. Indeed, it also shows a way to obtain the desired fixed point. Notice that
finding a fixed point is equivalent to saying that the transferred real-world problem has a unique solution.

On the basis of this motivation, in the last few decades, several researchers have been investigating the
existence (and if possible, the uniqueness) of a fixed point of distinct operators in the setting of various
spaces. We emphasize that the existence of a fixed point and finding the existence fixed point are two
different tasks. It is clear that the second task is more difficult one. For this reason, for finding a fixed point,
several distinct iteration processes were defined and studied. Among all, we count the most interesting and
useful iteration as follows: Mann iteration process [1], Ishikawa iteration process [2], K-iteration process [3],
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M∗-iteration process [4], K∗-iteration process [5], M-iteration process [6], J-iteration process [7], D-iteration
process [8], and its error in [9]; see also, Agarwal et al. [10], Noor [11], Abbas and Nazir [12], and Ullah
et al. [13].

Motivated by the aforementioned facts, in this article, we introduce a new iteration process, namely,
D-plus iteration process. In addition, we prove its stability under suitable conditions. We present a com-
parison of the proposed iteration process with S-iteration process [10] and Picard-S iteration process [3]. We
conclude that our method can outperform them in terms of number of iterations. Finally, we prove weak
and strong convergence theorems for Suzuki generalized nonexpansive mappings in the setting of uni-
formly convex Banach spaces.

We next recall some useful definitions and basic concepts for this article.
Let M be a nonempty subset of a Banach space X and F M M: → . We denote by FFix( ) the fixed-point

set of F , that is, F x M Fx xFix :( ) { }= ∈ = . A mapping F M M: → is said to be a contraction if there exists
k 0, 1( )∈ such that for all r s M, ∈ , Fr Fs k r s‖ − ‖ ≤ ‖ − ‖. If k 1= , then F is called nonexpansive and quasi
nonexpansive if for all r M∈ and p FFix( )∈ , Fr p r p‖ − ‖ ≤ ‖ − ‖. A mapping F is said to be generalized
nonexpansive if for all r s X, ∈ ,

r Fr r s Fr Fs r s1 2 ./ ‖ − ‖ ≤ ‖ − ‖ ⇒ ‖ − ‖ ≤ ‖ − ‖

Definition 1. (See, e.g., [14]) A Banach space X is called uniformly convex if for each ε 0, 2( ]∈ there exists
δ 0> such that for r s X, ∈ with r 1‖ ‖ ≤ and s r s ε1,‖ ‖ ≤ ‖ − ‖ > implies δ.r s

2‖ ‖ ≤

+

Definition 2. (See, e.g., [14]) A mapping F M M: → is said to satisfy condition (C) if for all ξ η M, ∈ ,
we have

ξ Fξ ξ η Fξ Fη ξ η1 2 ./ ‖ − ‖ ≤ ‖ − ‖ ⇒ ‖ − ‖ ≤ ‖ − ‖

Indeed, this notion of Suzuki [14] was improved in [15].

Definition 3. [16] A Banach space X is said to satisfy Opial’s property [2] if for each sequence ξn{ } in X
converging weakly to ξ X∈ , we have

ξ ξ ξ ηlimsup limsup
n

n
n

n‖ − ‖ < ‖ − ‖

→∞ →∞

for all η X∈ such that η ξ≠ .

Lemma 1. (See, e.g., [[1], Proposition 3]). Let M be a nonempty subset of a Banach space X and F M M: → .
Suppose that X satisfies Opial’s property. Assume that F is a Suzuki generalized nonexpansive mapping. If ξn{ }

converges weakly to t and Fξ ξlim 0n n n‖ − ‖ =
→∞

, then F t t( ) = , that is, I F− is demiclosed at zero.

Lemma 2. ([1], Theorem 5). Let M be a weakly compact convex subset of a uniformly convex Banach space X .
Let F M M: → . Assume that F is a Suzuki generalized nonexpansive mapping. Then F has a fixed point.

Definition 4. [17] Let rn n 0{ }
=

∞ and sn n 0{ }
=

∞ be two sequences that converge to the same fixed point p and
r p an n‖ − ‖ ≤ , and s p bn n‖ − ‖ ≤ for all n 0≥ . If the sequence an n 0{ }

=

∞ and bn n 0{ }
=

∞ converge to a and b,
respectively, and lim 0n

a a
b b

n

n
=

→∞

‖ − ‖

‖ − ‖

, then we say that rn n 0{ }
=

∞ converges to p faster than sn n 0{ }
=

∞ .

Definition 5. [18] Let un n 0{ }
=

∞ be a sequence in M . Then an iteration procedure r f F r,n n1 ( )=
+

converging to
a fixed point p is said to be F-stable or stable with respect to F , if for ε t f F u n N1 : ,n n n( )= ‖ + − ‖ ∈ ,
we have εlim 0n n =

→∞
if and only if u plimn n =

→∞
.

Lemma 3. [19] Let rn n 0{ }
=

∞ and tn n 0{ }
=

∞ be nonnegative real sequences satisfying the relation r t r t1n n n n1 ( )≤ − +
+

,
where t 0, 1n ( )∈ for all n N∈ , tΣn n0 = ∞

=

∞ and 0r
t
n

n
→ as n → ∞. Then rlim 0n n =

→∞
.
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Lemma 4. [20] Suppose that X is a uniformly convex Banach space and let un{ } be real sequence such
that p u q0 1n< ≤ ≤ < for all n 1≥ . Let rn{ } and sn{ } be sequences in X such that r rlimsupn n‖ ‖ ≤

→∞
,

s rlimsupn n‖ ‖ ≤
→∞

, and u r u s rlimsup 1n n n n n( ) )‖ + − ‖ =
→∞

hold for some r ≥ 0. Then r slim 0n n n‖ − ‖ =
→∞

.

Proposition 1. (See, e.g., [14]) Let M be a nonempty subset of a Banach space X and F M M: → be
a mapping. Then
(i) If F is nonexpansive, then F is a Suzuki generalized nonexpansive mapping.
(ii) If F is a Suzuki generalized nonexpansive mapping and has a fixed point, then F is a quasi nonexpansive

mapping.

Also, the author in [14] proved the following lemma (see Lemma 7 in [14]).

Lemma 5. [14] Let M be a nonempty subset of a Banach space X and F M M: → be a Suzuki generalized
nonexpansive mapping. Then, for all r s X, ∈ , we have

Fr Fs Fr r r s3 .‖ − ‖ ≤ ‖ − ‖ + ‖ − ‖

Let M be a nonempty closed convex subset of a Banach space X , and let rn{ } be a bounded sequence in
X . For s X∈ , we set

r s r r s, limsup .n
n

n( { }) = ‖ − ‖

→∞

The asymptotic radius of rn{ } relative to M is given by

r M r r s r s M, inf , : ,n n( { }) { ( { }) }= ∈

and the asymptotic center of rn{ } relative to M is the set

A M r s M r s r r M r, : , , .n n n( { }) { ( { })} ( { })= ∈ =

It is known that, in a uniformly convex Banach space, A M ξ, n( { }) consists of exactly one point.
Next we discuss the existing iterative process.
Throughout this section, we suppose that θn n 0{ }

=

∞ , ηn n 0{ }
=

∞ and ϑn n 0{ }
=

∞ are real sequences in 0, 1[ ] andC is
a nonempty subset of Banach space X .

In 2016, the authors in [21] introduced a new iteration process as follows:

r C
t ϑ r ϑ Fr
s F θ Fr θ Ft
r Fs

,
1 ,

1 ,
.

n n n n n

n n n n n

n n

0

1

⎧

⎨

⎪

⎩
⎪

( )

(( ) )

∈

= − +

= − +

=
+

(1)

Subsequently, the authors in [22] introduced a new iteration process as follows:

r C
t ϑ r ϑ Fr
s θ t θ Ft
r η Ft η Fs

,
1 ,
1 ,

1 .

n n n n n

n n n n n

n n n n n

0

1

⎧

⎨

⎪

⎩
⎪

( )

( )

( )

∈

= − +

= − +

= − +
+

(2)

In 2017, the authors in [4] introduced the following iteration process known as M*-iteration process:

r C
t ϑ r ϑ Fr
s F θ r θ Ft
r Fs

,
1 ,

1 ,
.

n n n n n

n n n n n

n n

0

1

⎧

⎨

⎪

⎩
⎪

( )

(( ) )

∈

= − +

= − +

=
+

(3)
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Recently, in 2018, the authors in [3] introduced the following iteration process called K-iteration
process and proved weak and strong convergence theorems for fixed points of Suzuki generalized non-
expansive mappings in the setting of uniformly convex Banach spaces.

r C
t ϑ r ϑ Fr
s F θ Fr θ Ft
r Fs

,
1 ,

1 ,
.

n n n n n

n n n n n

n n

0

1

⎧

⎨

⎪

⎩
⎪

( )

(( ) )

∈

= − +

= − +

=
+

(4)

They have demonstrated that the K-iteration process converges faster than the S-iteration process, Picard-S
iteration process, M-iteration process, and M∗-iteration process. In 2018, the author in [5] introduced the K∗

iteration process and showed that K∗ iteration process converges faster than Picard-S iteration process and
S-iteration process.

r C
t ϑ r ϑ Fr
s F θ t θ Ft
r Fs

,
1 ,

1 ,
.

n n n n n

n n n n n

n n

0

1

⎧

⎨

⎪

⎩
⎪

( )

(( ) )

∈

= − +

= − +

=
+

(5)

In the same year, the authors in [6] introduced M-iteration process as follows:

r C
t ϑ r ϑ Fr
s Ft
r Fs

,
1 ,

,
.

n n n n n

n n

n n

0

1

⎧

⎨

⎪

⎩
⎪

( )

∈

= − +

=

=
+

(6)

Recently, in 2019, the authors in [7] introduced the new iteration process called J-iteration process as
follows:

r C
t F ϑ r ϑ Fr
s F θ t θ Ft
r Fs

,
1 ,
1 ,

.

n n n n n

n n n n n

n n

0

1

⎧

⎨

⎪

⎩
⎪

(( ) )

(( ) )

∈

= − +

= − +

=
+

(7)

By numerical examples, it was demonstrated that J-iteration process converges faster than some known
iteration processes. They also discussed the stability of the proposed iteration and proved fixed-point
results in the context of the uniformly convex Banach spaces for Suzuki generalized nonexpansive map-
pings. In 2021, the authors in [8] introduced a new iteration process, namely, D-iteration process as follows:

ξ C
ω F ϑ ξ ϑ Fξ
η F θ Fξ θ Fω
ξ Fη

1
1

.

n n n n n

n n n n n

n n

0

1

⎧

⎨

⎪

⎩
⎪

(( ) )

(( ) )

∈

= − +

= − +

=
+

(8)

They proved that their iteration process (9) has a better convergence rate than (1), (4), (5), and (7).
Furthermore, in [9], they proved that their D-iteration process is stable. Also they have proved the data
dependency result and the error estimation for D-iteration process.

2 Main results

In this section, we present a new iteration process and analytically prove that it converges strongly to
unique fixed point as well as stable and also prove that has better convergence rate than the existing
iteration process.
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First, we introduce a new iteration process called D-plus iteration process. It is defined as follows:

r C
t F ϑ r ϑ Fr
s F θ t θ Ft
r F η Ft η Fs

,
1 ,
1 ,

1 .

n n n n n

n n n n n

n n n n n

0

1

⎧

⎨

⎪

⎩
⎪

(( ) )

(( ) )

(( ) )

∈

= − +

= − +

= − +
+

(9)

We prove that D-plus iteration process converges faster than some existing iteration processes. We give
some numerical experiments to show that the proposed iteration process has a better convergence rate than
S-iteration process and Picard-S iteration process. It is shown that our iteration process is free from the
selection of initial value. Its stability is also established under mild conditions.

In this section, we also generalized the strong convergence theorem “Theorem 2.1” for our iteration
process, which shows that our iteration process strongly converge to unique fixed point. We also general-
ized some comparison result to represent that our iteration process is the fast convergent one.

Theorem 2.1. LetC be a nonempty closed convex subset of a Banach space X and F C C: → be a contraction
mapping. Let rn n 0{ }

=

∞ be a sequence generated by D-plus iteration process with real sequences θn n 0{ }
=

∞ and
ϑn n 0{ }

=

∞ in [0 1] satisfying ϑΣn n0 = ∞
=

∞ or θΣ .n n0 = ∞
=

∞ Then rn n 0{ }
=

∞ converges strongly to a unique fixed point
of F .

Proof. Since F is a contraction in a Banach space, and F has a unique fixed point in C. Let us suppose that
p is a fixed point of F . So we obtain

t p F ϑ r ϑ Fr Fp
k ϑ r ϑ Fr p
k ϑ r p ϑ Fr p
k ϑ r p ϑ Fr p
k ϑ r p kϑ r p
k ϑ k r p

1
1
1

1
1

1 1 .

n n n n n

n n n n

n n n n

n n n n

n n n n

n n

(( ) )

( )

( )( ) ( )

( ) ( )

{( ) }

{ ( )}

‖ − ‖ = ‖ − + − ‖

≤ ‖ − + − ‖

≤ ‖ − − + − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖

= − − ‖ − ‖

Also we have

s p F θ t θ Ft Fp
k θ t θ Ft p
k θ t p θ Ft p
k θ t p θ Ft p
k θ t p kθ t p k t p
k ϑ k r p

1
1
1

1
1
1 1 .

n n n n n

n n n n

n n n n

n n n n

n n n n n

n n
2

(( ) )

( )

( )( ) ( )

( )

{( ) }

{ ( )}

‖ − ‖ = ‖ − + − ‖

≤ ‖ − + − ‖

≤ ‖ − − + − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖ = ‖ − ‖

≤ − − ‖ − ‖

It follows that

r p F η Ft η Fs Fp
k η Ft p η Fs p
k η k t p η k s p
k η t p η s p
k η t p kη t p
k η k t p
k η k k ϑ k r p
k η k ϑ k r p

1
1
1
1
1

1 1
1 1 1 1
1 1 1 1 .

n n n n n

n n n n

n n n n

n n n n

n n n n

n n

n n n

n n n

1

2

2

2

2

3

(( ) )

[( ) ]

[( ) ]

[( ) ]

[( ) ]

{ ( )}

{ ( )}{ { ( )} }

{ ( )}{ ( )}

‖ − ‖ = ‖ − + − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖

= − − ‖ − ‖

≤ − − − − ‖ − ‖

= − − − − ‖ − ‖

+

By repeating the aforementioned process, we obtain
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r p k η k ϑ k r p
r p k η k ϑ k r p
r p k η k ϑ k r p

r p k η k ϑ k r p

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1 .

n n n n

n n n n

n n n n

3
1 1 1

1
3

2 2 2

2
3

3 3 3

1
3

0 0 0

{ ( )}{ ( )}

{ ( )}{ ( )}

{ ( )}{ ( )}

{ ( )}{ ( )}

‖ − ‖ ≤ − − − − ‖ − ‖

‖ − ‖ ≤ − − − − ‖ − ‖

‖ − ‖ ≤ − − − − ‖ − ‖

⋮

‖ − ‖ ≤ − − − − ‖ − ‖

− − −

− − − −

− − − −

Therefore, we obtain

r p k r p η k ϑ k1 1 1 1 .n
n

i

n

i i1
3 1

0
0

{ ( )}{ ( )}( )
∏‖ − ‖ ≤ ‖ − ‖ − − − −

+

+

=

Since k1 0( )− > and ϑ 1n ≤ for all n N∈ . Therefore, we obtain ϑ k1 1 1n( )− − < and η k1 1 1n( )− − < for all
n N∈ . We know that r e1 r

− ≤
− for all r 0, 1[ ]∈ . So we have

r p k r p e .n
n k ϑ ϑ

1
3 1

0
1 i

n
i i

n
i0 0( ) ( )

‖ − ‖ ≤ ‖ − ‖
∑ ∑

+

+ − −
= =

Thus, taking the limits n → ∞ both sides, we obtain r plim 0n n‖ − ‖ =
→∞

. □

Remark 1. From Theorem 2.1, by replacing the condition ϑΣn n0 = ∞
=

∞ by θΣn n0 = ∞
=

∞ and putting ηΣ 0n n0 =
=

∞ ,
then t p k r pn n‖ − ‖ ≤ ‖ − ‖ and we obtain s p k θ k r p1 1n n n

2{ ( )}‖ − ‖ ≤ − − ‖ − ‖. Thus

r p k r p θ k1 1 .n
n

i

n

i1
3 1

0
0

{ ( )}( )
∏‖ − ‖ ≤ ‖ − ‖ − −

+

+

=

Therefore, we obtain the desired result.

Theorem 2.2. Let M be a nonempty closed convex subset of a Banach space X and F M M: → be a
contraction with a fixed point p. For a given r u0 0= , let rn n 0{ }

=

∞ and un n 0{ }
=

∞ be a sequence generated by
D-plus iteration process and K∗-iteration process as in [5], respectively, with real sequences θn n 0{ }

=

∞ , ϑn n 0{ }
=

∞

and ηn n 0{ }
=

∞ in 0, 1[ ] satisfying ϑ ϑ 1n≤ < for some θ ϑ, 0> and for all n N∈ . Then rn n 0{ }
=

∞ converges to p faster
than un n 0{ }

=

∞ .

Proof. From inequality (10) of Theorem 3.2 in [5], we have

u p k u p θ k1 1 .n
n

i

n

i1
2 1

0
0

{ ( )}( )
∏‖ − ‖ ≤ ‖ − ‖ − −

+

+

=

Since θ θn≤ and for all n N∈ , we obtain

u p k u p θ k1 1 .n
n

i
n

1
2 1

0
1{ ( )}( )

‖ − ‖ ≤ ‖ − ‖ − −
+

+ +

Also, from Remark 1, we obtain

r p k r p θ k1 1 .n
n

i

n

i1
3 1

0
0

{ ( )}( )
∏‖ − ‖ ≤ ‖ − ‖ − −

+

+

=

Moreover, θ θn≤ for all n N∈ gives

r p k r p θ k1 1 .n
n

i
n

1
3 1

0
1{ ( )}( )

‖ − ‖ ≤ ‖ − ‖ − −
+

+ +

So we have

a k u p θ k1 1n
n

i
n2 1

0
1{ ( )}( )

= ‖ − ‖ − −
+ +

and

b k r p θ k1 1 .n
n

i
n3 1

0
1{ ( )}( )

= ‖ − ‖ − −
+ +
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Then

b
a

k r p θ k
k u p θ k

k1 1
1 1

.n

n

n
i

n

n
i

n
3 1

0
1

2 1
0

1{ ( )}

{ ( )}

( )

( )
=

‖ − ‖ − −

‖ − ‖ − −

=

+ +

+

+

Thus, we obtain lim 0n
b
a

n

n
=

→∞
. Hence, the result follows. □

Now we prove that D-plus converges faster than K-iteration process [3].

Theorem 2.3. Let M be a nonempty closed convex subset of a Banach space X and F M M: → be a
contraction with a fixed point p. For a given r u0 0= , let rn n 0{ }

=

∞ and un n 0{ }
=

∞ be a sequence generated by
D-plus iteration process and K-iteration process [3], respectively, with real sequences θn n 0{ }

=

∞ , ϑn n 0{ }
=

∞ and
ηn n 0{ }

=

∞ in 0, 1[ ] satisfying ϑ ϑ 1n≤ < for some θ ϑ, 0> and for all n N∈ . Then rn n 0{ }
=

∞ converges to p faster
than un n 0{ }

=

∞ .

Proof. From Theorem 2.1, we have

r p k r p θ k1 1 .n
n

i
n

1
3 1

0
1{ ( )}( )

‖ − ‖ ≤ ‖ − ‖ − −
+

+ +

Since θ θn≤ and for all n N∈ , we obtain

r p k r p θ k1 1 .n
n

i
n

1
3 1

0
1{ ( )}( )

‖ − ‖ ≤ ‖ − ‖ − −
+

+ +

Let a k r p θ k1 1n
n

i
n3 1

0
1{ ( )}( )

= ‖ − ‖ − −
+ + .

Now, from Theorem 3.2 in [3], we have

u p k u p ϑθ k1 1 .n
n

i

n

i1
3 1

0
0

{ ( )}( )
∏‖ − ‖ ≤ ‖ − ‖ − −

+

+

=

Since ϑ ϑn≤ and for all n N∈ , we obtain

u p k u p ϑθ k1 1 .n
n

i
n

1
3 1

0
1{ ( )}( )

‖ − ‖ ≤ ‖ − ‖ − −
+

+ +

Here, we define

b k u p ϑθ k1 1 .n
n

i
n3 1

0
1{ ( )}( )

= ‖ − ‖ − −
+ +

Then

a
b

k r p θ k
k u p ϑθ k

r p θ k
u p ϑθ k

1 1
1 1

1 1
1 1

.n

n

n
i

n

n
i

n
i

n

i
n

3 1
0

1

3 1
0

1
0

1

0
1

{ ( )}

( ) { ( )}

{ ( )}

{ ( )}

( )

( )
=

‖ − ‖ − −

‖ − ‖ − −

=

‖ − ‖ − −

‖ − ‖ − −

+ +

+ +

+

+

Thus, taking limit as n → ∞, we have lim 0n
a
b

n

n
=

→∞
. Hence, the result follows. □

Now we prove that D-plus converges faster than M-iteration process [6].

Theorem 2.4. Let M be a nonempty closed convex subset of a Banach space X and F M M: → be
a contraction with a fixed point p. For a given r u0 0= , let rn n 0{ }

=

∞ and un n 0{ }
=

∞ be sequences generated by
D-plus iteration process and M-iteration process [6], respectively, with real sequences θn n 0{ }

=

∞ , ϑn n 0{ }
=

∞ and
ηn n 0{ }

=

∞ in 0, 1[ ] satisfying ϑ ϑ 1n≤ < for some θ ϑ, 0> and for all n N∈ . Then rn n 0{ }
=

∞ converges to p faster
than un n 0{ }

=

∞ .

Proof. From Theorem 2.1, we have

r p k r p θ k1 1 .n
n

i
n

1
3 1

0
1{ ( )}( )

‖ − ‖ ≤ ‖ − ‖ − −
+

+ +

Since θ θn≤ and for all n N∈ , we obtain

r p k r p θ k1 1 .n
n

i
n

1
3 1

0
1{ ( )}( )

‖ − ‖ ≤ ‖ − ‖ − −
+

+ +
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We note that M-iteration is defined by

u C
w ϑ u ϑ Fu
v Fw
u Fv

,
1 ,

,
.

n n n n n

n n

n n

0

1

⎧

⎨

⎪

⎩
⎪

( )

∈

= − +

=

=
+

(10)

Then we have

w p ϑ u ϑ Fu Fp
ϑ u ϑ Fu p
ϑ u p ϑ Fu p

ϑ u p ϑ Fu p
ϑ u p kϑ u p

k ϑ k u p

1
1
1

1
1

1 1 .

n n n n n

n n n n

n n n n

n n n n

n n n n

n n

(( ) )

( )

( )( ) ( )

( )

( )

{ ( )}

‖ − ‖ = ‖ − + − ‖

≤ ‖ − + − ‖

≤ ‖ − − + − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖

= − − ‖ − ‖

Now,

v p Fw p k w p k ϑ k u p1 1 .n n n n n{ ( )}‖ − ‖ ≤ ‖ − ‖ ≤ ‖ − ‖ ≤ − − ‖ − ‖

Therefore, we obtain

u p Fv p k v p k ϑ k u p1 1 .n n n n n1
2{ ( )}‖ − ‖ ≤ ‖ − ‖ ≤ ‖ − ‖ ≤ − − ‖ − ‖

+

By repeating the aforementioned process, we obtain

u p k ϑ k u p
u p k ϑ k u p
u p k ϑ k u p

u p k ϑ k u p

1 1
1 1
1 1

1 1 .

n n n

n n n

n n n

2
1 1

1
2

2 2

2
2

3 3

1
2

0 0

{ ( )}

{ ( )}

{ ( )}

{ ( )}

‖ − ‖ ≤ − − ‖ − ‖

‖ − ‖ ≤ − − ‖ − ‖

‖ − ‖ ≤ − − ‖ − ‖

⋮

‖ − ‖ ≤ − − ‖ − ‖

− −

− − −

− − −

Therefore, we obtain u p k u p ϑ k1 1 .n
n

i
n

i1
2 1

0 0{ ( )}( )
‖ − ‖ ≤ ‖ − ‖∏ − −

+

+

=

Now, since ϑ ϑn≤ and for all n N∈ , we obtain

u p k u p ϑθ k1 1 .n
n

i
n

1
2 1

0
1{ ( )}( )

‖ − ‖ ≤ ‖ − ‖ − −
+

+ +

Let b k u p ϑθ k1 1n
n

i
n2 1

0
1{ ( )}( )

= ‖ − ‖ − −
+ + . Then, we have

a
b

r p k r p θ k
k u p ϑθ k

1 1
1 1

.n

n

n
n

i
n

n
i

n
1

3 1
0

1

2 1
0

1
{ ( )}

{ ( )}

( )

( )
=

‖ − ‖ ≤ ‖ − ‖ − −

‖ − ‖ − −

+

+ +

+ +

Thus, taking limit as n → ∞, we obtain lim 0n
a
b

n

n
=

→∞
. Hence, the result follows. □

Next, we prove that D-plus converges faster than that of the M∗-iteration process [4]. Here, we consider
the rate of convergence of M∗-iteration process under contraction and compare it with the D-plus iteration
process.

Theorem 2.5. Let M be a nonempty closed convex subset of a Banach space X and F M M: → be a
contraction with a fixed point p. For a given r u0 0= , let rn n 0{ }

=

∞ and un n 0{ }
=

∞ be sequences generated by
D-plus iteration process and M∗-iteration process [4], respectively, with real sequences θn n 0{ }

=

∞ , ϑn n 0{ }
=

∞ and
ηn n 0{ }

=

∞ in 0, 1[ ] satisfying ϑ ϑ 1n≤ < for some θ ϑ, 0> and for all n N∈ . Then rn n 0{ }
=

∞ converges to p faster
than un n 0{ }

=

∞ .

Proof. From Theorem 2.1, we have

r p k r p θ k1 1 .n
n

i
n

1
3 1

0
1{ ( )}( )

‖ − ‖ ≤ ‖ − ‖ − −
+

+ +
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Since θ θn≤ and for all n N∈ , we obtain

r p k r p θ k1 1 .n
n

i
n

1
3 1

0
1{ ( )}( )

‖ − ‖ ≤ ‖ − ‖ − −
+

+ +

We define

a k r p θ k1 1 .n
n

i
n3 1

0
1{ ( )}( )

= ‖ − ‖ − −
+ +

Note that M∗-iteration is defined by

u C
w ϑ u ϑ Fu
v F θ u θ Fw
u Fv

,
1 ,

1 ,
.

n n n n n

n n n n n

n n

0

1

⎧

⎨

⎪

⎩
⎪

( )

(( ) )

∈

= − +

= − +

=
+

(11)

Then we have

w p ϑ u ϑ Fu Fp
ϑ u ϑ Fu p
ϑ u p ϑ Fu p

ϑ u p ϑ Fu p
ϑ u p kϑ u p
ϑ k u p

1
1
1

1
1
1 1 .

n n n n n

n n n n

n n n n

n n n n

n n n n

n n

(( ) )

( )

( )( ) ( )

( )

( )

{ ( )}

‖ − ‖ = ‖ − + − ‖

≤ ‖ − + − ‖

≤ ‖ − − + − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖

= − − ‖ − ‖

Now

v p F θ u θ Fw Fp
k θ u θ Fw p
k θ u p θ Fw p
k θ u p θ Fw p
k θ u p kθ w p
k θ u p kθ ϑ k u p
k θ kθ kθ ϑ k u p
k k θ kθ ϑ k u p
k θ k kϑ u p

1
1
1

1
1
1 1 1
1 1

1 1 1
1 1 1 .

n n n n n

n n n n

n n n n

n n n n

n n n n

n n n n n

n n n n n

n n n n

n n n

(( ) )

( )

( )( ) ( )

( )

{( ) }

{( ) { ( )} }

{( ) ( )}

{ ( ) ( )}

{ ( )( )}

‖ − ‖ = ‖ − + − ‖

≤ ‖ − + − ‖

≤ ‖ − − + − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ − ‖ − ‖ + − − ‖ − ‖

= − + − − ‖ − ‖

= − − − − ‖ − ‖

= − − − ‖ − ‖

It follows that

u p Fv p k θ k kϑ u p1 1 1 .n n n n n1
2{ ( )( )}‖ − ‖ ≤ ‖ − ‖ ≤ − − − ‖ − ‖

+

By repeating the aforementioned process, we obtain

u p k θ k kϑ u p
u p k θ k kϑ u p
u p k θ k kϑ u p

u p k θ k kϑ u p

1 1 1
1 1 1
1 1 1

1 1 1 .

n n n n

n n n n

n n n n

2
1 1 1

1
2

2 2 2

2
2

3 3 3

1
2

0 0 0

{ ( )( )}

{ ( )( )}

{ ( )( )}

{ ( )( )}

‖ − ‖ ≤ − − − ‖ − ‖

‖ − ‖ ≤ − − − ‖ − ‖

‖ − ‖ ≤ − − − ‖ − ‖

⋮

‖ − ‖ ≤ − − − ‖ − ‖

− − −

− − − −

− − − −

Therefore, we obtain

u p k u p θ k kϑ1 1 1 .n
n

i

n

i i1
2 1

0
0

{ ( )( )}( )
∏‖ − ‖ ≤ ‖ − ‖ − − −

+

+

=

Now, since θ θ ϑ ϑn n≤ ≤ and for all n N∈ , we obtain

u p k u p θ k kϑ1 1 1 .n
n

i i
n

1
2 1

0
1( ) { ( )( )}( )

‖ − ‖ ≤ ‖ − ‖ − − −
+

+ +

Let b k u p θ k kϑ1 1 1 .n
n

i i
n2 1

0
1( ) { ( )( )}( )

= ‖ − ‖ − − −
+ + Then
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a
b

k r p θ k
k u p θ k kϑ

k θ k
θ k kϑ

1 1
1 1 1

1 1
1 1 1

.n

n

n
i

n

n
i i

n

n
i

n

i i
n

3 1
0

1

2 1
0

1

1 1

1
( ) { ( )}

( ) { ( )( )}

{ ( )}

{ ( )( )}

( )

( )
=

‖ − ‖ − −

‖ − ‖ − − −

=

− −

− − −

+ +

+ +

+ +

+

Thus, taking limit as n → ∞, we obtain lim 0n
a
b

n

n
=

→∞
. Hence, the result follows. □

Next we prove that our new iteration D-plus is stable.

Theorem 2.6. Let M be a nonempty closed convex subset of a Banach space X and F M M: → be
a contraction. Let rn n 0{ }

=

∞ be a sequence generated by D-plus iteration process, with real sequences θn n 0{ }
=

∞ ,
ϑn n 0{ }

=

∞ and ηn n 0{ }
=

∞ in 0, 1[ ] satisfying ϑn n0∑ = ∞
=

∞ . Then D-plus iterative process is stable.

Proof. Let rn n 0{ }
=

∞ be a sequence in C. Suppose that the sequence generated by D-plus iteration process is
defined by r f F r;n n1 ( )=

+
converging to unique fixed point p (follows from Theorem 2.1). Set

ε r f F r; .n n n1 ( )= ‖ − ‖
+

We will prove that εlim 0n n =
→∞

if and only if r plim .n n =
→∞

Let εlim 0n n =
→∞

. Then, we have

r p r f F r f F r p ε r p, , .n n n n n n1 1 1( ) ( )‖ − ‖ ≤ ‖ − ‖ + ‖ − ‖ = + ‖ − ‖
+ + +

From Theorem 2.1, we obtain

r p k η k ϑ k r p1 1 1 1 .n n n n1
3{ ( )}{ ( )}‖ − ‖ ≤ − − − − ‖ − ‖

+

Since k0 1< < , η0 1n≤ ≤ , and ϑ0 1n≤ ≤ for all n N∈ and εlim 0n n =
→∞

, and by using Lemma 3, we obtain
r plim 0n n‖ − ‖ =

→∞
. Hence, r plim .n n =

→∞

Conversely, let r plim .n n =
→∞

Then we have

ε r f F r r p f F r p
r p k η k ϑ k x p

, , ,
1 1 1 1 .

n n n n n

n n n n

1 1

1
3

( ) ( )

{ ( )}{ ( )}

= ‖ − ‖ ≤ ‖ − ‖ + ‖ − ‖

≤ ‖ − ‖ + − − − − ‖ − ‖

+ +

+

Therefore, we have εlim 0.n n =
→∞

Hence, D-plus iteration process is stable. □

Remark 2. As after reading literature, there raise a question, is it possible to develop an iteration process
that has better convergence rate? The main objective of this article is to present an iterative process that has
better convergence rate and stable. To fulfil this aim, we attain the aforementioned mention result
(Theorems 2.1–2.6).

Theorem 2.1 is the main result, which shows that our iterative process strongly converges to unique
fixed point. Theorems 2.2–2.5 show the analytic comparison of our iteration process with existing iterative
process. The last one result represents that our iteration process is stable.

In next section, we present weak and strong convergence result in the setting of uniformly convex
Banach spaces.

3 Convergence analysis

Lemma 6. Let M be a nonempty closed convex subset of a Banach space X, and let F M M: → be a mapping
satisfying condition (C) with FFix( ) ≠ ∅. For arbitrary chosen r M0 ∈ , let the sequence rn{ } be generated by D-
plus iteration process. Then r plimn n‖ − ‖

→∞
exists for any p FFix( )∈ .

Proof. Let p FFix( )∈ and t C∈ . Since F satisfies condition (C), it follows that p Ft p t1 2 0/ ‖ − ‖ = ≤ ‖ − ‖

implies Fp Ft p t‖ − ‖ ≤ ‖ − ‖. So by Proposition 1 (ii), we have
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t p ϑ r ϑ Fr p
ϑ r p ϑ Fr p
ϑ r p ϑ r p

r p

1
1
1

.

n n n n n

n n n n

n n n n

n

( )

( )

( )

‖ − ‖ = ‖ − + − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖

= ‖ − ‖

It follows that

s p F θ t θ Ft p
θ Ft θ Ft p

θ Ft p θ Ft p
θ t p θ t p

t p r p

1
1

1
1

.

n n n n n

n n n n

n n n n

n n n n

n n

(( ) )

( )

( )

( )

‖ − ‖ = ‖ − + − ‖

≤ ‖ − + − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖

= ‖ − ‖ ≤ ‖ − ‖

Then

r p F η Ft η Fs Fp
η Ft p η Fs p
η Ft p η Fs p

η t p η s p
η r p η r p

r p

1
1
1

1
1

.

n n n n n

n n n n

n n n n

n n n n

n n n n

n

1 (( ) )

( )( ) ( )

[( ) ]

( )

( )

‖ − ‖ = ‖ − + − ‖

≤ ‖ − − + − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖

= ‖ − ‖

+

This implies that r pn{ }‖ − ‖ is bounded and nonincreasing for all p FFix( )∈ . Hence, r plimn n‖ − ‖
→∞

exists
as required. □

Theorem 3.1. Let M be a nonempty closed convex subset of uniformly convex Banach space X , and let
F M M: → be a mapping satisfying condition (C). For arbitrary chosen r M0 ∈ , let the sequence rn{ } be
generated by D-plus iteration process for all n 1≥ where θn{ } and ϑn{ } are real sequences in a b,[ ] for some
a b, with a b0 1< ≤ < . Then FFix( ) ≠ ∅ if and only if rn{ } is bounded and Fr rlim 0n n n‖ − ‖ =

→∞
.

Proof. Suppose FFix( ) ≠ ∅ and p FFix( )∈ . Then, by Lemma 6, we have r plimn n‖ − ‖
→∞

exists and rn{ }

is bounded. Let r p rlim .n n‖ − ‖ =
→∞

Then, by Lemma 6, we have

t p r p rlimsup limsup .
n

n
n

n‖ − ‖ ≤ ‖ − ‖ =

→∞ →∞

By Proposition 1 (ii), we obtain

Tr p r p rlimsup limsup .
n

n
n

n‖ − ‖ ≤ ‖ − ‖ =

→∞ →∞

On the other hand, we see that

r p F η Ft η Fs p
F η Ft η Fs Fp

η Ft p η Fs p
η Ft p η Fs p

η t p η s p
η r p η r p

r p

1
1

1
1

1
1

.

n n n n n

n n n n

n n n n

n n n n

n n n n

n n n n

n

1 (( ) )

(( ) )

( )( ) ( )

[( ) ]

( )

( )

‖ − ‖ = ‖ − + − ‖

= ‖ − + − ‖

≤ ‖ − − + − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖

= ‖ − ‖

+

Therefore, r t pliminfn n≤ ‖ − ‖
→∞

. Thus, we obtain

r t p

ϑ r ϑ Fr p

ϑ Fr p ϑ r p

lim

lim 1

lim 1 .

n
n

n
n n n n

n
n n n n

( )

( ) ( )( )

= ‖ − ‖

= ‖ − + − ‖

= ‖ − + − − ‖

→∞

→∞

→∞
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Then, by using aforementioned inequalities and Lemma 4, we have

Fr rlim 0.
n

n n‖ − ‖ =

→∞

Conversely, suppose that rn{ } is bounded and Fr rlim 0n n n‖ − ‖ =
→∞

. Let p A M r, n( { })∈ . By Lemma 4,
we have

r Fp r r Fp Fr r r p r p r p r, limsup limsup 3 limsup , .n
n

n
n

n n n
n

n n( { }) ( ) ( { })= ‖ − ‖ ≤ ‖ − ‖ + ‖ − ‖ ≤ ‖ − ‖ =

→∞ →∞ →∞

This implies that Fp A C r, n( { })∈ . Since X is uniformly convex, A C r, n( { }) is singleton, and hence, we have
Fp p= . Hence, FFix( ) ≠ ∅.

Next, we prove strong and weak convergence results of sequences generated by D-plus iteration
process for Suzuki generalized nonexpansive mappings in the setting of uniformly convex Banach
spaces. □

Theorem 3.2. Let M be a nonempty closed convex subset of a uniformly Banach space X , and let F M M: →

be a mapping satisfying condition (C), where θn{ } and ϑn{ } are real sequences in a b,[ ] for some a b, with
a b0 1< ≤ < . Such that FFix .( ) ≠ ∅ Let X satisfy the Opial’s property. For arbitrary chosen r M0 ∈ , let the

sequence rn{ } be generated by D-plus iteration process for all n 1.≥ Then rn{ } converges weakly to p FFix( )∈ .

Proof. Since FFix( ) ≠ ∅, so by Theorem 3.1, we have rn{ } is bounded. So Fr rlim 0.n n n‖ − ‖ =
→∞

Since X is
uniformly convex hence reflexive, so by Eberlin’s theorem, there exists a subsequence rnj{ } of rn{ }, which

converges weakly to some p X1 ∈ . Since M is closed and convex, by Mazur’s theorem, p C1 ∈ . By Lemma 2,
we have p FFix1 ( )∈ .

Now, we show that rn{ } converges weakly to p1. In fact, if this is not true, so there must exists a sub-
sequence rnk{ } for rn{ } such that ξnk{ } converges weakly to p C2 ∈ and p p2 1≠ . By Lemma 2, p FFix2 ( )∈ . Since

r plimn n‖ − ‖
→∞

exists for all p FFix( )∈ . By Theorem 3.1 and Opial’s property, we have

r p r p

r p

r p

r p

r p

r p

lim lim

lim

lim

lim

lim

lim ,

n
n

j
n

j
n

n
n

k
n

k
n

n
n

1 1

2

2

2

1

1

j

j

k

k

‖ − ‖ = ‖ − ‖

< ‖ − ‖

= ‖ − ‖

= ‖ − ‖

< ‖ − ‖

= ‖ − ‖

→∞ →∞

→∞

→∞

→∞

→∞

→∞

which is contradiction. So p p1 2= . This implies that rn{ } converges weakly to a fixed point of F . □

Theorem 3.3. Let M be a nonempty closed convex subset of a uniformly Banach space X , and let F M M: →

be a mapping satisfying condition (C) where θn{ } and ϑn{ } are real sequences in a b,[ ] for some a b, with
a b0 1.< ≤ < Suppose that FFix( ) ≠ ∅. LetC be a nonempty convex subset of X . Then rn{ } converges strongly

to p FFix .( )∈

Proof. By Lemma 2, we have FFix( ) ≠ ∅, and so, by Theorem 3.1, we obtain Fr rlim 0.n n n‖ − ‖ =
→∞

Since M is
compact, there exists a subsequence rnj{ } of rn{ }, which converges strongly to p for some p C∈ . By Lemma 5,
we have

r Fp Fr r r p n3 , for all 1.n n n nk k k k‖ − ‖ ≤ ‖ − ‖ + ‖ − ‖ ≥

Letting k → ∞, we obtain p FFix( )∈ . By Lemma 6, r plimn n‖ − ‖
→∞

exists for every p FFix( )∈ . So rn{ }

converges strongly to p. □
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4 Numerical examples

In this section, we present a numerical example to support our analytic result of Section 2. First, we take a
contraction map and calculate fixed point for it by using different iteration process. Graphically as well as
with the help of table, we compare the calculation of our iteration process with the existing iteration
process. Both “table and graphs” show the efficiency of our iteration process. As some of the iteration
process of literature fails to converge at particular initial value. Their convergence depends on the selection
of initial value. The objective of this article is to present the fastest convergent iterative method as well as its
convergent independent from the selection of the initial value. In Example 2, we take different initial value
for a contraction map in Example 1. Figures 1–4 show that either the initial value is above or below the fixed
point, convergence of our iteration process does not effect.

Example 1. Let us define a function F R R: → by F r r r8 40 .2 1
2( ) ( )= − + Then clearly F is a contraction.

Let θn
n

n
2

3 1=
+

, ϑn
n

n
3

4 5=
+

, and ηn
n

n
4

5 1=
+

. The initial value r 40.50 = is given in Table 1. Figure 5 shows

the convergence of iteration processes. The efficiency of D-plus iteration process is shown.

Table 1 presents that our iteration process is most efficient and fastest compared to the exiting iterative
process of literature. We also represent efficiency of our iteration process graphically.

Figure 1: Convergence of D-plus iteration process when initial guess is 20.5.

Figure 2: Convergence of D-plus iteration process when initial guess is 10.5.
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From Figures 5, 6, and Table 1, we can easily see that D-plus iteration process has a better convergence
behavior than Picard-S and S-iteration processes.

Figure 3: Convergence of D-plus iteration process when initial guess is 0.5.

Figure 4: Convergence of D-plus iteration process when initial guess is −5.5.

Table 1: Convergence of D-plus, Picard-S, and S iteration processes in Example 1

D-plus Picard-S S

r0 40.5 40.5 40.5
r1 29.599069 33.190836 36.827299
r2 16.743028 25.484353 32.591647
r3 6.5593682 17.820134 28.059416
r4 5.0075393 10.863721 23.430599
r5 5.0000166 6.1638489 18.843365
r6 5 5.0537052 14.448288
r7 5 5.0014824 10.481527
r8 5 5.0000392 7.3683714
r9 5 5.0000010 5.6315028
r10 5 5.0000001 5.1036913
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Hence, in Example 1, computationally as well as graphically, it is clear that D iteration process is more
efficient then existing iterative process.

In the following example, we present graphical representation for different initial values of our iteration
process.

Example 2. Let us define a function F as in Example 1. Let r 20.50 = , r 10.50 = , r 0.50 = , and r 5.50 = −

be different initial values in D-plus iteration process in Figures 1–4, respectively.

On account of Figures 1–4, we can easily see that D-plus iteration process is independent from the
selection of initial values.

5 Conclusion

In this article, we present a new instantly convergent iterative method to approximate fixed points of
contractions. First, we have presented D-plus iteration process and then proved its convergence to a unique

Figure 5: Convergence of D-plus, Picard-S and S-iteration processes in Example 1.

Figure 6: Convergence of D-plus, Picard-S and S-iteration processes in Example 1.
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fixed point and its stability. Also, analytically and numerically showed that the proposed iteration process
has a better convergence rate than some existing iteration processes defined in [3–8,15,21–23]. Furthermore,
it was shown that the convergence of D-plus iteration process is independent from the choice of initial
values.
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