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ABSTRACT
This work investigates the computational study of a six-compartmental mathematical model of tuberculosis disease dynamics with the impact
of vaccination. Traditional mathematical models presume that all variables are precise and can be measured or calculated precisely. However,
in many real-world scenarios, variables may need to be more accurate or easier to quantify, resulting in model uncertainty. Considering this,
fuzziness is introduced into the model by taking the contact, recovery, and death rates due to disease as fuzzy membership functions. Two
numerical computational schemes, forward Euler and nonstandard finite difference (NSFD), are designed to solve the model. The positiv-
ity and convergence for the developed method are investigated, which are significant characteristics of these dynamical models, and it is
revealed that these features are preserved in the extended scheme. Numerical computations are performed to support the analytical results.
The numerical and computational results indicate that the proposed NSFD method adequately represents the dynamics of the disease despite
the uncertainty and heterogeneity. Moreover, the obtained method generates plausible predictions that regulators can use to design and
develop control strategies to support decision-making.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0165348

I. INTRODUCTION

The bacterium Mycobacterium tuberculosis causes tuberculosis
(TB). It is a significant public health problem worldwide, especially
in developing countries. TB typically affects the lungs; however,
it can also affect other parts of the body. TB’s primary transmis-
sion mode is inhaling airborne droplets containing the bacteria.
An infected person can spread bacteria into the air by coughing,
sneezing, speaking, or singing. These droplets can be inhaled by
other people nearby, and if they reach the lungs, the bacteria can

cause TB infection. Although tuberculosis can be fatal, it is fre-
quently prevented and cured. TB affects one-quarter of the world’s
population, which means they have the germs but have not yet
developed symptoms and cannot spread the disease. The bacterium
that causes tuberculosis spreads when an infected person coughs
or sneezes. Most people with the bacteria that causes tuberculosis
do not exhibit any symptoms. When symptoms manifest, they fre-
quently include fever, weight loss, nocturnal sweats, and a cough
that can be bloody.1–4 TB transmission is more likely in crowded
and poorly ventilated settings, such as prisons, homeless shelters,
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and refugee camps. Close and prolonged contact with an infected
person increases the risk of transmission. People with compromised
immune systems, such as HIV infection or malnutrition, are also at
higher risk of TB infection and disease. Despite having tuberculo-
sis bacteria in their bodies, a person may not exhibit any symptoms.
The immune systems of most humans can contain bacteria, stop-
ping them from spreading and causing illness. In this situation, a
person will have a TB infection but not an active disease. Latent
TB is the name for this condition. It may be more challenging for
the body to keep the TB bacteria under control. This is more likely
to happen when the immune system is compromised by illness or
the use of specific drugs. When this happens, the bacteria may grow
and produce symptoms, which could result in active tuberculosis.
Those who have active tuberculosis can infect others with the dis-
ease. People who do not exhibit any symptoms typically do not need
treatment. A lengthy antibiotic treatment involving several drugs
will be necessary for active symptoms. It continues to be a world-
wide health concern due to its high mortality and is one of the top
causes of death in most sub-Saharan African nations.

Mathematical models are frequently used to improve under-
standing infectious disease transmission and prevention. In epi-
demiology, mathematical modeling has become a valuable tool for
understanding disease transmission dynamics, predicting the impact
of interventions, and developing control strategies. Mathematical
equations are used in mathematical models to describe how infec-
tious diseases propagate through a population. Simple compart-
mental models to more complex network models that incorporate
individual-level behavior and contact patterns are examples of these
models. Compartmental models categorize the population as sus-
ceptible, infected, recovered, etc. The models track the movement
of individuals between these compartments based on the rate of
transmission, recovery, and other parameters. Mathematical mod-
eling has been extensively used to study TB’s transmission dynamics
and develop disease control strategies. Yang et al. examined two TB
models with insufficient care.5 After deriving the basic reproduction
numbers for each, a study of the two models’ intuitive epidemio-
logical interpretations is done. There is also a discussion of certain
methods to stop the spread of TB. Okuonghae proposed a mathe-
matical model that distinguishes susceptibility in the population by
classifying susceptible as having no, partial, or full natural resistance
to TB and latently infected individuals as rapid, normal, or very slow
(or no) progressors to active TB depending on the genes.6 Mishra
and Srivastava presented a mathematical model to understand the
spread of tuberculosis disease in both pulmonary and drug-resistant
subjects.7 The mathematical model was developed to fit those data
best and obtain the model’s optimal parameter values. Preventive
measures for tuberculosis control were also investigated.8 Ludji et al.
proposed modifying deterministic mathematical models for tuber-
culosis with vaccination. The reproduction number is calculated,
and a sensitivity analysis is carried out. The model’s stability is also
investigated.9 Nkamba et al. used a deterministic epidemic model
to study the impact of vaccination on the spread of tuberculosis.
There were also numerical simulations.10 Ullah et al. investigated the
impact of effective contact rate, treatment rate, and incomplete treat-
ment vs efficient treatment on a deterministic TB epidemic model.
The asymptotic behavior, spread, and potential tuberculosis eradi-
cation are also discussed.11 Liu and Zhang created a mathematical
model to describe how vaccination and treatment affect the spread

of tuberculosis.12 Andrawus et al. developed a new mathematical
model of TB transmission dynamics, including first- and second-
line treatment. The control reproduction number and equilibrium
points are calculated for the studied model, and their stability is
examined. Some numerical simulation was performed to support the
analytical results.13 Zadeh first proposed the fuzzy theory in 1965.14

Fuzzy theory plays an important role in mathematical modeling by
providing a way to handle uncertain or ambiguous information in a
mathematical framework. Traditional mathematical models assume
that all variables are precise and can be accurately measured or
calculated. However, in many real-world situations, variables may
be imprecise or difficult to quantify, leading to uncertainty in the
model. The fuzzy theory provides a mathematical framework for
dealing with this uncertainty by allowing variables to take on val-
ues that are not precisely defined but are characterized by degrees of
membership in a set. This allows for a more flexible and realistic rep-
resentation of variables and enables mathematical models to reflect
the complex and uncertain nature of real-world systems accurately.
Fuzzy parameters are a type of parameter used in mathematical
modeling that represents the degree of uncertainty or imprecision
in the values of the parameters. Fuzzy parameters are instrumental
when the relationships between variables are complex and precise
data are unavailable. They allow for the representation of uncer-
tainty and imprecision quantitatively, making it possible to incor-
porate subjective knowledge and expert opinion into mathematical
models. The fuzzy theory has been applied in many areas of mathe-
matical modeling. By incorporating fuzzy theory into mathematical
models, researchers can build more accurate and robust models that
can handle uncertainty and imprecision, leading to better predic-
tions and decisions. Many researchers have applied fuzzy theory to
epidemiology. The fuzzy theory has been applied in various ways to
develop and enhance epidemic models. Barros et al.15 and Mondal
et al.16 investigated epidemic models with fuzzy transmission coeffi-
cients. For the fuzzy transmission of worms in a computer network,
Mishra and Pandey proposed a SIR’S model. The developed system
of equations is solved and simulated using numerical methods.17

The high-order extrapolated nonstandard finite difference schemes
(NSFD) are designed to model infectious diseases, as discussed in
Refs. 18 and 19. The NSFD theory proposed by Mickens20 is exten-
sively used in disease mathematical and numerical modeling,21–24

to mention a few. Allehiany et al. investigated a Covid-19 model
with fuzziness and numerically solved it using the NSFD scheme.25

Alhebshi et al. looked into a computer virus model that used fuzzy
criteria.26 The evolutionary computational method for tuberculosis
model with fuzziness provides a significant contribution to the field
of TB research and control. Its ability to incorporate fuzziness and
evolutionary computation techniques enables more accurate pre-
dictions and simulations of TB transmission dynamics, aiding in
developing effective control strategies and policies. Furthermore,
this approach has the potential to be extended to other infectious
diseases, where uncertainties and complex interactions play a criti-
cal role, providing a valuable tool for public health decision-making
and intervention planning. The development, accomplishment, and
numerical analysis of the first-order explicit numerical computa-
tional technique with NSFD in a fuzzy environment, particularly
with fuzzy parameters, is the novelty of the current work. Using
fuzzy theory in TB modeling can improve our understanding of TB
transmission and inform the development of more effective control
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strategies. To our knowledge, the model under study has never been
studied in the literature in the NSFD and fuzzy senses, and this is the
first study of this model in this sense. The remainder of this paper is
designed as we begin with a TB model and a mathematical analysis
of the model is presented. The following sections contain the for-
ward Euler and NSFD mathematical techniques and their simulation
results. This article is concluded in the final section.

II. TB MODEL WITH FUZZY PARAMETERS
We consider the TB model talked about by Mishra and

Srivastava,7

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt
= Λ + εR + ρV − βIS − (σ + d)S,

dE
dt
= βIS − (γ + d)E,

dI
dt
= −(α + ϕ + d + δ)I + γE,

dQ
dt
= αI − (η + d + δ)Q,

dR
dt
= ϕI + ηQ − (ε + d)R,

dV
dt
= σS − (ρ + d)R⋅

(1)

The corresponding model with fuzzy parameters can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt
= Λ + εR + ρV − β(ξ)IS − (σ + d)S,

dE
dt
= β(ξ)IS − (γ + d)E,

dI
dt
= −(α + ϕ + d + δ(ξ))I + γE,

dQ
dt
= αI − (η(ξ) + d + δ(ξ))Q,

dR
dt
= ϕI + η(ξ)Q − (ε + d)R,

dV
dt
= σS − (ρ + d)R⋅

(2)

Here, S, E, I, Q, R, and V denote susceptible, exposed, TB infected,
quarantined, recovered, and vaccinated classes, respectively. The
birth rate is represented byΛ, the natural death rate by d, γ is the rate
of transmission from exposed to infected type, the rates of transmis-
sion from infected to quarantined class and infected to recovered
class are denoted by α and ϕ respectively, and the rates of transfer
from recovered compartment to susceptible compartment and vac-
cinated to susceptible compartment are represented by ε and ρ. At
the same time, σ is the vaccination rate coefficient for the suscepti-
ble population. Moreover, the TB contact rate β, recovery rate η, and
TB-induced death rate δ are considered fuzzy numbers due to their
uncertain natures and are defined as follows:

β(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, ξ ≤ ξmin

ξ − ξmin

ξM − ξmin
, ξmin < ξ ≤ ξM

1, ξM < ξ,

(3)

η(ξ) =
η0 − 1
ξM

ξ + 1, 0 ≤ ξ ≤ ξmin, (4)

and

δ(ξ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(1 − ξ) − ψ0

ξmin
ξ + ψ0, 0 ≤ ξ ≤ ξmin,

1 − ξ, ξmin < ξ⋅
(5)

III. NUMERICAL MODELING

Numerical modeling is a cornerstone of modern scientific
investigation, empowering researchers to unlock the natural world’s
mysteries and address pressing global challenges. As computational
techniques advance, the impact of numerical modeling on our
understanding of the universe and our ability to shape a better
tomorrow will only continue to expand, making it an indispens-
able tool in pursuing knowledge and progress. We could use Euler
and nonstandard finite difference methods in this section for a given
fuzzy epidemic model (2).

A. Forward Euler scheme

The method is based on discretizing the continuous-time
domain into a series of discrete time steps, where the solution to the
differential equation is approximated at each time step. The forward
Euler method for model (2) is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1
= Sn
+ h[Λ + εR + ρV − β(ξ)InSn

− (σ + d)Sn
],

En+1
= En

+ h[β(ξ)InSn
− (γ + d)En

],

In+1
= In
+ h[γEn

− (α + ϕ + d + δ(ξ))In
],

Qn+1
= Qn

+ h[αIn
− (η(ξ) + d + δ(ξ))Qn

],

Rn+1
= Rn

+ h[ϕIn
+ η(ξ)Qn

− (ε + d)Rn
],

Vn+1
= Vn

+ h[σSn
− (ρ + d)Rn

].

(6)

Here, “h” is the time step size and n ≥ 0. S0
(0), E0

(0), I0
(0),

Q0
(0), R0

(0), and V0
(0) ≥ 0.

B. NSFD scheme
The Nonstandard Finite Difference (NSFD) method is a

numerical technique for solving differential equations. Unlike tra-
ditional finite difference methods that utilize standard central
or forward/backward difference formulas, NSFD methods employ
nonstandard stencils. The Nonstandard Finite Difference (NSFD)
method for model (2) is as follows:

AIP Advances 13, 085125 (2023); doi: 10.1063/5.0165348 13, 085125-3

© Author(s) 2023

 07 D
ecem

ber 2023 12:02:54



AIP Advances ARTICLE pubs.aip.org/aip/adv

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1
=

Sn
+ h(Λ + εRn

+ ρVn
)

1 + h(β(ξ)In
+ σ + d)

,

En+1
=

En
+ hβ(ξ)InSn

1 + h(γ + d)
,

In+1
=

In
+ hγEn

1 + h(α + ϕ + d + δ(ξ))
,

Qn+1
=

Qn
+ hαIn

1 + h(η(ξ) + d + δ(ξ))
,

Rn+1
=

Rn
+ h(ϕIn

+ η(ξ)Qn
)

1 + h(ε + d)
,

Vn+1
=

Vn
+ hσSn

1 + h(ρ + d)
.

(7)

Here, “h” is the time step size and n ≥ 0. S0
(0), E0

(0),
I0
(0), Q0

(0), R0
(0), and V0

(0) ≥ 0.

C. Positivity of the scheme

Theorem. Let the state variables S, E, I, Q, R, and V involved
in the scheme be positive at t = 0; moreover, if all the parameters
are also positive, then Sn+1

≥ 0, En+1
≥ 0, In+1

≥ 0, Qn+1
≥ 0, Rn+1

≥ 0, Vn+1
≥ 0.

Proof. Taking into account the state variables S, E, I, Q, R, and
V of the NSFD scheme (6) and by combining all the equations in the
system above with n = 0, we arrive at the following expression:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1
=

S0
+ h(Λ + εR0

+ ρV0
)

1 + h(β(ξ)I0
+ σ + d)

≥ 0,

E1
=

E0
+ hβ(ξ)I0S0

1 + h(γ + d)
≥ 0,

I1
=

I0
+ hγE0

1 + h(α + ϕ + d + δ(ξ))
≥ 0,

Q1
=

Q0
+ hαI0

1 + h(η(ξ) + d + δ(ξ))
≥ 0,

R1
=

R0
+ h(ϕI0

+ η(ξ)Q0
)

1 + h(ε + d)
≥ 0,

V1
=

V0
+ hσS0

1 + h(ρ + d)
≥ 0⋅

By substituting n = 1 in, we can proceed to the next step.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S2
=

S1
+ h(Λ + εR1

+ ρV1
)

1 + h(β(ξ)I1
+ σ + d)

≥ 0,

E2
=

E1
+ hβ(ξ)I1S1

1 + h(γ + d)
≥ 0,

I2
=

I1
+ hγE1

1 + h(α + ϕ + d + δ(ξ))
≥ 0,

Q2
=

Q1
+ hαI1

1 + h(η(ξ) + d + δ(ξ))
≥ 0,

R2
=

R1
+ h(ϕI1

+ η(ξ)Q1
)

1 + h(ε + d)
≥ 0,

V2
=

V1
+ hσS1

1 + h(ρ + d)
≥ 0⋅

Next, assume that the above system of equations ensures that the
value of variables has the attribute of positivity for n = 2, 3, 4, . . . ,
n − 1, i.e., Sn+1

≥ 0, En+1
≥ 0, In+1

≥ 0, Qn+1
≥ 0, Rn+1

≥ 0, Vn+1
≥ 0,

for n = 2, 3, 4, . . . , n − 1.
The positivity will now be examined for a random positivity

integer n ∈ Z, and we observe that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1
=

Sn
+ h(Λ + εRn

+ ρVn
)

1 + h(β(ξ)In
+ σ + d)

≥ 0,

En+1
=

En
+ hβ(ξ)InSn

1 + h(γ + d)
≥ 0,

In+1
=

In
+ hγEn

1 + h(α + ϕ + d + δ(ξ))
≥ 0,

Qn+1
=

Qn
+ hαIn

1 + h(η(ξ) + d + δ(ξ))
≥ 0,

Rn+1
=

Rn
+ h(ϕIn

+ η(ξ)Qn
)

1 + h(ε + d)
≥ 0,

Vn+1
=

Vn
+ hσSn

1 + h(ρ + d)
≥ 0⋅

As a result, the proposed scheme guarantees the positivity of the state
variables for all positive integer values of n.

D. Convergence analysis
Convergence analysis is crucial for assessing the reliability and

efficiency of numerical methods, guiding the selection of appropriate
parameters, and ensuring that numerical solutions provide accurate
approximations of the underlying mathematical problems. In this
section, we check the convergence analysis of the NSFD model given
in (7). Let

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 =
S + h(Λ + εR + ρV)
1 + h(β(ξ)I + σ + d)

,

C2 =
E + hβ(ξ)IS
1 + h(γ + d)

,

C3 =
I + hγE

1 + h(α + ϕ + d + δ(ξ))

C4 =
Q + hαI

1 + h(η(ξ) + d + δ(ξ))
,

C5 =
R + h(ϕI + η(ξ)Q)

1 + h(ε + d)
,

C6 =
V + hσS

1 + h(ρ + d)
.

(8)

The Jacobian matrix of the NSFD scheme at Disease Free Equilib-
rium (DFE) point is
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J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1 + h(σ + d)

0 0 0
hε

1 + h(σ + d)
hρ

1 + h(σ + d)
0

1
1 + h(γ + d)

0 0 0 0

0
hγ

1 + h(α + ϕ + d + δ(ξ))
1

1 + h(α + ϕ + d + δ(ξ))
0 0 0

0 0
hα

1 + h(η(ξ) + d + δ(ξ))
1

1 + h(η(ξ) + d + δ(ξ))
0 0

0 0
hϕ

1 + h(ε + d)
hη

1 + h(ε + d)
1

1 + h(ε + d)
0

hσ
1 + h(ρ + d)

0 0 0 0
1

1 + h(ρ + d)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Eigenvalues of the above matrix are λ1 =
1

1+h(σ+d) < 1, λ2

= 1
1+h(γ+d) < 1, λ3 =

1
1+h(α+ϕ+d+δ(ξ)) < 1, and λ4 =

1
1+h(η(ξ)+d+δ(ξ))

< 1. λ5 =
1

1+h(ε+d) < 1, and λ6 =
1

1+h(ρ+d) < 1. Since all eigenvalues
are less than one, which proves the desired result.

E. Consistency analysis
We apply Taylor’s series to check the proposed scheme’s

consistency. From the first equation of system (6), we have

Sn+1
[1 + h(β(ξ)In

+ σ + d)] = Sn
+ h(Λ + εRn

+ ρVn
). (9)

Taylor’s series expansion for Sn+1 is

Sn+1
= Sn
+ h

dS
dt
+

h2

2!
d2S
dt2 +

h3

3!
d3S
dt3 +

h4

4!
d4S
dt4 + ⋅ ⋅ ⋅ .

Equation (9) becomes

(Sn
+ h

dS
dt
+

h2

2!
d2S
dt2 +

h3

3!
d3S
dt3 +

h4

4!
d4S
dt4 + ⋅ ⋅ ⋅),

[1 + h(β(ξ)In
+ σ + d)] = Sn

+ h(Λ + εRn
+ ρVn

),

h
dS
dt
+ h(β(ξ)In

+ σ + d)Sn
= h(Λ + εRn

+ ρVn
).

We get the following by some simplification and applying h→ 0:

dS
dt
= Λ + εRn

+ ρVn
− β(ξ)InSn

− (σ + d)Sn,

dS
dt
= Λ + εR + ρV − β(ξ)IS − (σ + d)S,

which is consistent with the first equation of system (2). In a similar
way,

En+1
= En

+ h
dE
dt
+

h2

2!
d2E
dt2 +

h3

3!
d3E
dt3 +

h4

4!
d4E
dt4 + ⋅ ⋅ ⋅ .

From the second equation of the NSFD scheme, we have

En+1
[1 + h(γ + d)] = En

+ hβ(ξ)InSn,

(En
+ h

dE
dt
+

h2

2!
d2E
dt2 +

h3

3!
d3E
dt3 +

h4

4!
d4E
dt4 + ⋅ ⋅ ⋅),

[1 + h(γ + d)] = En
+ hβ(ξ)InSn,

h(γ + d)En
+ h

dE
dt
= hβ(ξ)InSn,

dE
dt
= β(ξ)InSn

− (γ + d)En,

dE
dt
= β(ξ)IS − (γ + d)E,

In+1
= In
+ h

dI
dt
+

h2

2!
d2I
dt2 +

h3

3!
d3I
dt3 +

h4

4!
d4I
dt4 + ⋅ ⋅ ⋅ ,

In+1
[1 + h(α + ϕ + d + δ(ξ))] = In

+ hγEn,

(In
+ h

dI
dt
+

h2

2!
d2I
dt2 +

h3

3!
d3I
dt3 +

h4

4!
d4I
dt4 + ⋅ ⋅ ⋅),

[1 + h(α + ϕ + d + δ(ξ))] = In
+ hγEn,

h(α + ϕ + d + δ(ξ))In
+ h

dI
dt
= hγEn,

dI
dt
= −(α + ϕ + d + δ(ξ))In

+ γEn,

dI
dt
= −(α + ϕ + d + δ(ξ))I + γE.

Similarly,

Qn+1
= Qn

+ h
dQ
dt
+

h2

2!
d2Q
dt2 +

h3

3!
d3Q
dt3 +

h4

4!
d4Q
dt4 + ⋅ ⋅ ⋅ ,
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FIG. 1. Dynamics of subpopulations using forward Euler method for case 1, case 2, and case 3. (a) Graphical behavior of each subpopulation at TB-free equilibrium for case
1 at h = 1. (b) Graphical behavior of each subpopulation at TB-free equilibrium for case 1 at h = 1.8. (c) Graphical behavior of each subpopulation at TB-existing equilibrium
for case 2 at h = 1. (d) Graphical behavior of each subpopulation at TB-existing equilibrium for case 2 at h = 1.02. (e) Graphical behavior of each subpopulation at TB-existing
equilibrium for case 3 at h = 0.5. (f) Graphical behavior of each subpopulation at TB-existing equilibrium for case 3 at h = 0.63.
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FIG. 2. Dynamics of subpopulations for case 1, case 2, and case 3 at h = 1 and h = 10. (a) TB-free equilibrium representation for case 1 at h = 1. (b) TB-free equilibrium for
case 1 at h = 10. (c) TB-existing equilibrium for case 2 at h = 1. (d) TB-existing equilibrium for case 2 at h = 10. (e) TB-existing equilibrium for case 3 at h = 1. (f) TB-existing
equilibrium for case 3 at h = 10.
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Qn+1
[1 + h(η(ξ) + d + δ(ξ))] = Qn

+ hαIn,

h
dQ
dt
+ h(η(ξ) + d + δ(ξ))Qn

= hαIn,

dQ
dt
= αIn

− (η(ξ) + d + δ(ξ))Qn,

dQ
dt
= αI − (η(ξ) + d + δ(ξ))Q.

Similarly, we can get

dR
dt
= ϕI + η(ξ)Q − (ε + d)R

and

dV
dt
= σS − (ρ + d)R

by applying the TSE of the last two equations of the NSFD scheme.
As a result, system (2) and our discretized implicit numerical
integration scheme is consistent.

IV. NUMERICAL SIMULATIONS
Here, we will use numerical simulation to demonstrate the

behavior of the forward Euler method and the proposed NSFD
scheme.

The dynamics of subpopulations using the forward Euler
method are depicted in Figs. 1(a)–1(f). The way remains positive

and convergent for a small step size value and starts oscillating and
gives negative values with a slight increase in the step size values.
For case 1, the method behaves well at h = 1 and produces negative
solutions at h = 1.8. For case 2, the method gives positive solutions
at h = 1, making nonphysical oscillations and non-positive solutions
at h = 1.02. Similarly, the technique works at h = 0.5 for the case,
providing negative solutions and fluctuations at h = 0.63. It can be
concluded from these graphs that the Euler method is not a reli-
able tool for studying TB disease dynamics in fuzzy conditions. The
dynamics of subpopulations are shown in Figs. 2(a)–2(f) for all three
cases at two different values of the time step sizes. It can be seen
that all compartments are converging smoothly, showing positive
behavior, and increasing step size does not affect its convergence
and positivity. Positivity is an essential feature in epidemic models as
these models consist of populations that cannot be negative. Many
numerical schemes do not hold this feature.

The infected population at the TB-free equilibrium point is
shown in Figs. 3(a) and 3(b) at two different step size values. The
method shows positive, stable, and converging behavior in both
cases, which are the main features of these types of models. The tech-
nique can reflect the disease dynamics for case 1. The behavior of the
infected population for case 2 and case 3 is represented in Figs. 4(a),
4(b), 5(a), and 5(b), respectively. The proposed technique converges
in both cases and is positive for different step-size values. This is
an exciting feature of the developed method, which many other
classical ways, such as Euler–Maruyama, Euler’s Stochastics, and
RK-4, do not keep it at increasing step sizes, as Raza et al.27 pointed
out. This makes it a valuable tool for disease modeling. The NSFD
scheme is an invaluable tool for disease modeling that can provide
accurate and efficient approximations of nonstandard differential
equations.

FIG. 3. (a) Graphical behavior of infected populations for case 1 at h = 1 (TB-free equilibrium). (b) Graphical behavior of infected populations for case 1 at h = 10 (TB-free
equilibrium).
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FIG. 4. (a) Graphical behavior of infected populations for case 2 at h = 1 (TB-existing equilibrium). (b) Graphical behavior of infected populations for case 2 at h = 10
(TB-existing equilibrium).

FIG. 5. (a) Graphical behavior of infected populations for case 3 at h = 1 (TB-existing equilibrium). (b) Graphical behavior of infected populations for case 3 at h = 10
(TB-existing equilibrium).

V. CONCLUSIONS

Data may not be precise in many real-world situations, making
it challenging to build a traditional mathematical model. The fuzzy
theory can handle such uncertain data. A disease may not be effec-
tive with a few viruses due to humanity’s natural immune power.
If the virus quantity is high, the system will become endemic. As
a result, intensive treatment is not required for a small amount of
virus. This phenomenon can only be observed in the fuzzy model

and cannot be sustained in the crisp model. As a result, fuzzy mod-
els are more adaptable than classical models. This paper examines a
mathematical model for TB transmission. In this study, the para-
meters β(ξ), η(ξ), and δ(ξ) are treated as fuzzy numbers. The
reproduction number and fuzzy equilibrium analysis are investi-
gated. An NSFD scheme is implemented in fuzzy environments to
solve the studied model numerically, and its convergence and pos-
itivity are investigated. The proposed method’s consistency is also
investigated. The proposed method preserves the convergence and
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positive behavior of the numerical solutions at each time step, which
are the main characteristics of this type of model. Delayed, stochas-
tic, and fractional models with fuzziness and many more directions
can be considered future directions. Furthermore, stochastic mod-
eling and implementation of nonstandard finite difference meth-
ods may be extended in fuzzy epidemic models, as discussed in
Refs. 28–30.
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