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Abstract
This research inscription gets to grips with two novel varieties of boundary value
problems. One of them is a hybrid Langevin fractional differential equation, whilst the
other is a coupled system of hybrid Langevin differential equation encapsuling a
collective fractional derivative known as theψ -Caputo fractional operator. Such
operators are generated by iterating a local integral of a function with respect to
another increasing positive function � . The existence of the solutions of the
aforehand equations is tackled by using the Dhage fixed point theorem, whereas
their uniqueness is handled using the Banach fixed point theorem. On the top of this,
the stability within the scope of Ulam–Hyers of solutions to these systems are also
considered. Two pertinent examples are presented to corroborate the reported
results.
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1 Introduction
The qualitative analysis of differential systems with noninteger or fractional orders (FDS)
has underfonged momentous interest virtue of the broader advancement and umpteen
practices of the fractional calculus related to natural phenomena in the real world. The
applications of such models can be found in many recent works; the reader can refer to
[4, 29],and references therein.

Particularly, the existence, uniqueness, and stability analysis of a solution for FDS have
been studied rapidly involving fractional derivatives due to Riemann and Liuoville, Ca-
puto, Hadamard, Katugampola, etc; see, e.g., [1, 2, 9, 13, 16, 28], and the references therein.

Unlike standard fractional derivatives, the so-called generalized (or ψ-) fractional
derivatives are introduced by many authors [7, 8, 21, 22]. These researches give rise to
many investigations in the field of qualitative analysis in the FDS [3, 14, 26].
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More specifically, coupled fractional differential systems are quite important in a variety
of problems of applied nature, especially in biosciences. The analytical approaches of such
systems also considered and investigated, by means of fixed point theorems, the existence,
uniqueness, and stability [17, 20, 27].

Hybrid fractional differential equations are one of the recent investigations in the field
of mathematical analysis of the FDS. In hybrid systems the authors used a common fixed
point theorem for the product or sum of two operators in Banach spaces [11, 15, 19, 24, 25].

The study of Ulam stability for the FDS has been investigated by many authors. They
have discussed various Ulam–Hyers stability problems for different kinds of FDS including
Langevin systems by using many techniques; see [5, 10, 12], and the references therein.

Motivated by new developments in ψ-fractional calculus, in the present research, we
enquire the existence and uniqueness along with the stability in the sense of Ulam–Hyers
for solutions to nonlinear hybrid fractional Langevin equations (HLFDS) described by

⎧
⎨

⎩

c
D

μ;ψ
a+ [c

D
ν;ψ
a+ [ ω(τ )

G(τ ,ω(τ )) ] – λω(τ )] = F(τ ,ω(τ )), τ ∈ J := [a, b],

ω(a) = 0, c
D

ν;ψ
a+ [ ω(τ )

G(τ ,ω(τ )) ]τ=a = 0, ω(b) = ζω(η), η ∈ (a, b),
(1.1)

and the coupled system of HLFDS formulated by

c
D

μi1;ψ
a+

[
c
D

νi ;ψ
a+

[
ωi(τ )

Gi(τ ,ω1(τ ),ω2(τ ))

]

– λiωi(τ )
]

= Fi
(
τ ,ω1(τ ),ω2(τ )

)
, (1.2)

τ ∈ J , i = 1, 2, with boundary conditions

ωi(a) = 0, c
D

νi ;ψ
a+

[
ωi(τ )

Gi(τ ,ω1(τ ),ω2(τ ))

]

τ=a
= 0, ωi(b) = ζiωi(ηi), (1.3)

i = 1, 2, ηi ∈ (a, b), where c
D

β ;ψ
a+ is the ψ-Caputo fractional derivative of order β ∈ {μ,μi} ⊆

(0, 1], {ν,νi} ⊆ (1, 2], i = 1, 2, F : J ×R −→ R and G : J ×R → R\{0} are given continuous
functions such that F(τ , 0) = 0, λ, λi, ζ , and ζi are all real constants. The nonlinear func-
tions G1,G2 : J × R × R → R\{0} and the functions F1,F2 : J × R × R −→ R are also
continuous such that F1(τ , 0,ω2) = F2(τ ,ω1, 0) = 0.

Here is a brief outline of the work. Section 2 provides the definitions and initial results
presupposed to prove our key findings. Moreover, we present an auxiliary lemma on the
representation of solutions of problem (1.1) and system (1.2)–(1.3). In Sect. 3, we establish
the existence of solutions taking advantage of the Dhage fixed point theorem. On the other
hand, we discuss the uniqueness of these solutions using the Banach fixed point theorem
in Sect. 4. We investigate the stability in the sense of Ulam for the proposed problems in
Sect. 5. Finally, we provide two examples to support the acquired results in Sect. 6.

2 Groundwork
To procure our fundamental purposes, at the outset, we scrutinize some auxiliary notions
needed in the depth of this work.

Let C = C(J ,R) be the set of continuous real-valued functions ω : J →R, which is clearly
a Banach space endowed with the supremum norm

‖ω‖ = sup
{∣
∣ω(τ )

∣
∣ : τ ∈ J

}
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and is a Banach algebra under the multiplication defined by

(ω� )(τ ) = ω(τ )� (τ )

for ω,� ∈ C and τ ∈ J . Now the product space E = C × C is a vector space under the
coordinatewise addition and scalar multiplication. On the product linear space E, define
the norm ‖ · ‖ by

∥
∥(ω1,ω2)

∥
∥ = ‖ω1‖ + ‖ω2‖.

Obviously, the norm pace (E,‖(·, ·)‖) is a Banach space, which can be considered a Banach
algebra as well. The multiplication action of two elements of E is defined as

(
(ω1,ω2)(�1,�2)

)
(τ ) = (ω1,ω2)(τ )(�1,�2)(τ ) =

(
ω1(τ )�1(τ ),ω2(τ )�2(τ )

)
(2.1)

for all τ ∈ J , where (ω1,ω2), (�1,�2) ∈ E.
Afterward, we start by giving the ψ-fractional integrals and derivatives involved. For

more related details, we refer the readers to inspect papers [7, 8] and, more generally, the
monograph [23].

Definition 2.1 ([7]) Let α > 0, and let an increasing function ψ : J −→ R satisfy ψ ′(τ ) �=
0 for all τ ∈ J . We define the left-sided ψ-Riemann–Liouville integral of an integrable
function ω on J with respect to ψ as

I
α;ψ
a+ ω(τ ) =

1

(α)

∫ τ

a
ψ ′(s)

(
ψ(τ ) – ψ(s)

)α–1
ω(s) ds, (2.2)

where 
 is the usual Euler gamma function.

Equation (2.2) reduces to the Riemann–Liouville and Hadamard fractional integrals by
taking ψ(τ ) = τ and ψ(τ ) = ln τ , respectively.

Definition 2.2 ([7]) Let m ∈ N with m = [α] + 1. The left-sided ψ-Caputo fractional
derivative ω ∈ Cm(J ,R) with respect to a strictly increasing function ψ for all τ ∈ J is de-
fined as

c
D

α;ψ
a+ ω(τ ) = I

m–α;ψ
a+

(
1

ψ ′(τ )
d
dz

)m

ω(τ ).

Lemma 2.3 ([7]) Assuming that α,β > 0 and ω ∈ L1(J ,R), we get

I
α;ψ
a+ I

β ;ψ
a+ ω(τ ) = I

α+β ;ψ
a+ ω(τ ), τ ∈ J .

Lemma 2.4 ([7]) Let α > 0.
(i) If ω ∈ C(J ,R), then

c
D

α;ψ
a+ I

α;ψ
a+ ω(τ ) = ω(τ ), τ ∈ J .
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(ii) If ω ∈ Cm(J ,R) and m – 1 < α < m, then

I
α;ψ
a+

c
D

α;ψ
a+ ω(τ ) = ω(τ ) –

m–1∑

k=0

( 1
ψ ′(τ )

d
dτ

)kω(a)
k!

[
ψ(τ ) – ψ(a)

]k , τ ∈ J ,

for some constants ck , k = 0, 1, 2, . . . , m – 1.

Lemma 2.5 ([8]) Let τ > a, α ≥ 0, and β > 0. Then
• I

α;ψ
a+ (ψ(t) – ψ(a))β–1(τ ) = 
(β)


(α+β) (ψ(τ ) – ψ(a))α+β–1;
• c

D
α;ψ
a+ (ψ(t) – ψ(a))β–1(τ ) = 
(β)


(β–α) (ψ(τ ) – ψ(a))β–α–1;
• c

D
α;ψ
a+ (ψ(t) – ψ(a))k(τ ) = 0, for any k = 0, . . . , m – 1; m ∈N.

Remark 2.6 It is obvious by Lemma 2.4 and 2.5 that under general boundary conditions,
we have

I
α;ψc
a+ D

α;ψ
a+ ω(τ ) = ω(τ ) +

m–1∑

k=0

ck
[
ψ(τ ) – ψ(a)

]k , τ ∈ J ,

Below we provide some background from the fixed point theory

Definition 2.7 ([6]) A self-operator � on a Banach space C is called Lipschitz if there
exists a constant L� > 0 such that

∥
∥�(ω) – �(� )

∥
∥ ≤ L�‖ω – �‖

for all elements ω,� ∈ C. If L� < 1, then � is called a contraction.

The following theorem plays a crucial role in the analysis carried out in this work.

Theorem 2.8 ([18]) Let X be a convex bounded closed set contained in the Banach algebra
C, and let operators P : C→ C and R : X → C be such that:

(S1) P is a Lipschitz map with Lipschitz constant LP ;
(S2) R is completely continuous;
(S3) ω = PωR� ,∀� ∈X ⇒ ω ∈X; and
(S4) LPMR < 1, where MR = ‖R(X)‖ = sup{‖Rω‖ : ω ∈X}.
Then the operator equation ω = PωRω possesses a solution in X.

Theorem 2.9 ([6]) A contraction mapping � : C→ C possesses a unique fixed point.

3 Existence results
In this section, we consider a general type of HLFDS (1.1) and the couple HLFDS
(1.2)–(1.3) involving an arbitrary function ψ .

To investigate the existence of solutions for (1.1), we need the following lemma.

Lemma 3.1 Assume that G(b)
G(η)

ψ(b)–ψ(a)
ψ(η)–ψ(a) �= ζ . Let ω ∈ C be a solution for the hybrid Langevin

equation
⎧
⎨

⎩

c
D

μ;ψ
a+ [c

D
ν;ψ
a+ [ ω(τ )

G(τ ) ] – λω(τ )] = F(τ ), τ ∈ J := [a, b],

ω(a) = 0, c
D

ν;ψ
a+ [ ω(τ )

G(τ ) ]τ=a = 0, ω(b) = ζω(η), η ∈ (a, b).
(3.1)
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Then it satisfies the following integral equation:

ω(τ ) = G(τ )
[

H(τ ) –
[G(b)H(b) – ζG(η)H(η)](ψ(τ ) – ψ(a))
G(b)(ψ(b) – ψ(a)) – ζG(η)(ψ(η) – ψ(a))

]

, (3.2)

where

H(τ ) = I
μ+ν;ψ
a+ F(τ ) + λI

ν;ψ
a+ ω(τ ).

In particular, if ζ = G(b)
G(η) , then

ω(τ ) = G(τ )
[

H(τ ) –
ψ(τ ) – ψ(a)
ψ(b) – ψ(η)

[
H(b) – H(η)

]
]

.

Proof Applying the μth ψ-Riemann–Liouville fractional integral to both sides of (3.1), by
Lemma 2.6 we get

c
D

ν;ψ
a+

[
ω(τ )
G(τ )

]

= I
μ;ψ
a+ F(τ ) + λω(τ ) + c0.

Benefiting from the first and second boundary conditions, we manifestly obtain that
c0 = 0.. Applying the νth ψ-Riemann–Liouville fractional integral once more and using
Lemma 2.6 lead to the following integral form:

ω(τ )
G(τ )

= H(τ ) + c1
(
ψ(τ ) – ψ(a)

)
+ c2. (3.3)

From the first boundary condition we have c2 = 0. By the last boundary condition we ob-
tain

c1 =
ζG(η)H(η) – G(b)H(b)

G(b)(ψ(b) – ψ(a)) – ζG(η)(ψ(η) – ψ(a))
.

Substituting these constants into (3.3), we obtain (3.2).
Conversely, it is straightforward to observe that the function in (3.2) satisfies Equation

(3.1) and the associated boundary conditions. �

According to Lemma 3.1, we precisely define the notion of a mild solution of (1.1).

Definition 3.2 A function ω ∈ C is said to be a mild solution of (1.1) if ω fulfills the equa-
tion

ω(τ ) = G
(
τ ,ω(τ )

)
(3.4)

×
[

Hω(τ ) –
(ψ(τ ) – ψ(a))[G(b,ω(b))Hω(b) – ζG(η,ω(η))Hω(η)]
G(b,ω(b))(ψ(b) – ψ(a)) – ζG(η,ω(η))(ψ(η) – ψ(a))

]

,

where

Hω(τ ) = I
μ+ν;ψ
a+ F

(
τ ,ω(τ )

)
+ λI

ν;ψ
a+ ω(τ ), τ ∈ J . (3.5)
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We make the following assumptions:
(A1) The function G : J ×R →R\{0} is continuous, and there exists a positive function

φ with supremum ‖φ‖ such that

∣
∣G(τ ,ω) – G(τ ,� )

∣
∣ ≤ φ(τ )|ω – � |

for all (τ ,ω), (τ ,� ) ∈ J ×R. Moreover, there exists a constant ϑ > 0 such that

∣
∣G(b,ω)

(
ψ(b) – ψ(a)

)
– ζG(η,ω)

(
ψ(η) – ψ(a)

)∣
∣ ≥ ϑ > 0 (3.6)

for all ω ∈R.
(A2) The function F : J × R → R is continuous, and there exist a function p ∈ C(J ,R+)

and a nondecreasing function χ ∈ C([0,∞), (0,∞)) such that

∣
∣F(τ ,ω)

∣
∣ ≤ p(τ )χ

(|ω|) (3.7)

for all τ ∈ J and ω ∈R.
(A3) There exists r > 0 such that

r ≥ G0Ar

1 – ‖φ‖Ar

and

‖φ‖Ar < 1, (3.8)

where G0 = supτ∈J |G(τ , 0)|, and

Ar =
‖p‖(ψ(b) – ψ(a))μ+ν

ϑ
(μ + ν + 1)
[
ϑ + 2G0

(
ψ(b) – ψ(a)

)
)
]
χ (r)

+
2(ψ(b) – ψ(a))μ+ν+1‖p‖‖φ‖

ϑ
(μ + ν + 1)
rχ (r) (3.9)

+
|λ|(ψ(b) – ψ(a))ν+1‖φ‖

ϑ
(ν + 1)
r2

+
|λ|(ψ(b) – ψ(a))ν

ϑ
(ν + 1)
[
ϑ + 2G0

(
ψ(b) – ψ(a)

)
)
]
r.

Next, we provide the existence of solutions giving credence to the Dhage fixed point
theorem.

Theorem 3.3 If conditions (A1)–(A3) are satisfied, then (1.1) has at least one mild solu-
tion.

Proof Define the set

S =
{
ω ∈ C : ‖ω‖ ≤ r

}
.
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Clearly, S is a closed convex bounded subset of the Banach space C. In virtue of Defini-
tion 3.2, we define two operators P : C→ C and R : S→ C by

Pω(τ ) = G
(
τ ,ω(τ )

)
, τ ∈ J ,

and

Rω(τ ) = Hω(τ ) –
(ψ(τ ) – ψ(a))[G(b,ω(b))Hω(b) – ζG(η,ω(η))Hω(η)]
G(b,ω(b))(ψ(b) – ψ(a)) – ζG(η,ω(η))(ψ(η) – ψ(a))

, τ ∈ J .

Then the integral equation (3.4) can be written in the operator form as

ω(τ ) = Pω(τ )Rω(τ ), τ ∈ J .

We show that the operators P and R satisfy all the conditions of Theorem 2.8.
Step 1: Firstly, we show that P is Lipschitzian on C. Let ω,� ∈ C. Then by (A2) we have

∣
∣Pω(τ ) – P� (τ )

∣
∣ =

∣
∣G

(
τ ,ω(τ )

)
– G

(
τ ,� (τ )

)∣
∣

≤ φ(τ )
∣
∣ω(τ ) – � (τ )

∣
∣

for all τ ∈ J . Taking the supremum over τ , we obtain

‖Pω – P�‖ ≤ ‖φ‖‖ω – �‖

for all ω,� ∈ C. Therefore P is Lipschitzian on C with Lipschitz constant ‖φ‖.
Step 2: We prove that the operatorR is completely continuous on S. For this purpose, we

firstly show that the operator R is continuous on C. Let ωn be a sequence in S converging
to a point ω ∈ S. Now by the Lebesgue dominated convergence theorem we obtain

lim
n→∞R(ωn)(τ )

= lim
n→∞

{

Hωn(τ )

–
(ψ(τ ) – ψ(a))[G(b,ωn(b))Hωn(b) – ζG(η,ωn(η))Hωn(η)]
G(b,ωn(b))(ψ(b) – ψ(a)) – ζG(η,ωn(η))(ψ(η) – ψ(a))

}

= Hω(τ )

–
(ψ(τ ) – ψ(a))[G(b,ω(b))Hω(b) – ζG(η,ω(η))Hω(η)]
G(b,ω(b))(ψ(b) – ψ(a)) – ζG(η,ω(η))(ψ(η) – ψ(a))

= R(ω)(τ )

for all τ ∈ J . This shows that R is a continuous operator on S.
Next, we prove that the set R(S) is a uniformly bounded in S. For any ω ∈ S and τ ∈ J ,

we have

∣
∣Hω(τ )

∣
∣ ≤ I

μ+ν;ψ
a+

∣
∣F

(
τ ,ω(τ )

)∣
∣ + |λ|Iν;ψ

a+
∣
∣ω(τ )

∣
∣
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≤ (ψ(τ ) – ψ(a))μ+ν‖p‖χ (r)

(μ + ν + 1)

+
|λ|(ψ(τ ) – ψ(a))νr


(ν + 1)
.

Therefore

∣
∣R(ω)(τ )

∣
∣

≤ ∣
∣Hω(τ )

∣
∣

+
(ψ(τ ) – ψ(a))[|G(b,ω(b))||Hω(b)| + |ζ ||G(η,ω(η))||Hω(η)|]

|G(b,ω(b))(ψ(b) – ψ(a)) – ζG(η,ω(η))(ψ(η) – ψ(a))|

≤ (ψ(τ ) – ψ(a))μ+ν‖p‖χ (r)

(μ + ν + 1)

+
|λ|(ψ(τ ) – ψ(a))νr


(ν + 1)

+
(ψ(τ ) – ψ(a))|G(b,ω(b))|

ϑ

×
[

(ψ(b) – ψ(a))μ+ν‖p‖χ (r)

(μ + ν + 1)

+
|λ|(ψ(b) – ψ(a))νr


(ν + 1)

]

+
|ζ |(ψ(τ ) – ψ(a))|G(η,ω(η))|

ϑ

×
[

(ψ(η) – ψ(a))μ+ν‖p‖χ (r)

(μ + ν + 1)

+
|λ|(ψ(η) – ψ(a))νr


(ν + 1)

]

≤ ‖p‖(ψ(b) – ψ(a))μ+ν

ϑ
(μ + ν + 1)
[
ϑ + 2G0

(
ψ(b) – ψ(a)

)
)
]
χ (r)

+
2(ψ(b) – ψ(a))μ+ν+1‖p‖‖φ‖

ϑ
(μ + ν + 1)
rχ (r)

+
|λ|(ψ(b) – ψ(a))ν+1‖φ‖

ϑ
(ν + 1)
r2

+
|λ|(ψ(b) – ψ(a))ν

ϑ
(ν + 1)
[
ϑ + 2G0

(
ψ(b) – ψ(a)

)
)
]
r. (3.10)

Thus ‖Rω‖ ≤ Ar for all ω ∈ S with Ar given in (3.9). This shows that R is uniformly
bounded on S.

Let τ1, τ2 ∈ J be such that τ1 < τ2. Then for any ω ∈ S, by (3.7) we get

∣
∣Hω(τ2) – Hω(τ1)

∣
∣

≤
∫ τ1

a

ψ ′(s)

(μ + ν)

[(
ψ(τ2) – ψ(s)

)μ+ν–1 –
(
ψ(τ1) – ψ(s)

)μ+ν–1]∣∣F
(
s,ω(s)

)∣
∣ds

+
∫ τ2

τ1

ψ ′(s)

(μ + ν)

(
ψ(τ2) – ψ(s)

)μ+ν–1∣∣F
(
s,ω(s)

)∣
∣ds

+ |λ|
∫ τ1

a

ψ ′(s)

(ν)

[(
ψ(τ2) – ψ(s)

)ν–1 –
(
ψ(τ1) – ψ(s)

)μ+ν–1]∣∣ω(s)
∣
∣ds

+
∫ τ2

τ1

ψ ′(s)

(ν)

(
ψ(τ2) – ψ(s)

)ν–1∣∣ω(s)
∣
∣ds

≤ [2(ψ(τ2) – ψ(τ1))μ+ν + (ψ(τ2) – ψ(a))μ+ν – (ψ(τ1) – ψ(a))μ+ν]‖p‖χ (r)

(μ + ν + 1)

+
|λ|[2(ψ(τ2) – ψ(τ1))ν + (ψ(τ2) – ψ(a))ν – (ψ(τ1) – ψ(a))ν]r


(ν + 1)
.
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By similar arguments as in (3.10) we obtain
∣
∣
∣
∣

[G(b,ω(b))Hω(b) – ζG(η,ω(η))Hω(η)]
G(b,ω(b))(ψ(b) – ψ(a)) – ζG(η,ω(η))(ψ(η) – ψ(a))

∣
∣
∣
∣

≤ |G(b,ω(b))|
ϑ

[
(ψ(b) – ψ(a))μ+ν‖p‖χ (r)


(μ + ν + 1)
+

|λ|(ψ(b) – ψ(a))νr

(ν + 1)

]

+
|ζ ||G(η,ω(η))|

ϑ

[
(ψ(η) – ψ(a))μ+ν‖p‖χ (r)


(μ + ν + 1)
+

|λ|(ψ(η) – ψ(a))νr

(ν + 1)

]

≤ G0‖p‖(ψ(b) – ψ(a))μ+νχ (r)
ϑ
(μ + ν + 1)

+
rχ (r)(ψ(b) – ψ(a))μ+ν+1‖p‖‖φ‖

ϑ
(μ + ν + 1)

+
|λ|r2(ψ(b) – ψ(a))ν‖φ‖

ϑ
(ν + 1)
+
G0|λ|r(ψ(b) – ψ(a))ν

ϑ
(ν + 1)

= B.

Therefore

∣
∣R(ω)(τ2) – R(ω)(τ1)

∣
∣

≤ ∣
∣Hω(τ2) – Hω(τ1)| + |ψ(τ2) – ψ(τ1)

∣
∣

×
∣
∣
∣
∣

[G(b,ω(b))Hω(b) – ζG(η,ω(η))Hω(η)]
G(b,ω(b))(ψ(b) – ψ(a)) – ζG(η,ω(η))(ψ(η) – ψ(a))

∣
∣
∣
∣

≤ [2(ψ(τ2) – ψ(τ1))μ+ν + (ψ(τ2) – ψ(a))μ+ν – (ψ(τ1) – ψ(a))μ+ν]‖p‖χ (r)

(μ + ν + 1)

+
|λ|[2(ψ(τ2) – ψ(τ1))ν + (ψ(τ2) – ψ(a))ν – (ψ(τ1) – ψ(a))ν]r


(ν + 1)

+ B
∣
∣ψ(τ2) – ψ(τ1)

∣
∣.

This implies

∣
∣R(ω)(τ2) – R(ω)(τ1)

∣
∣ → 0 as τ1 → τ2

uniformly for all ω ∈ S. Thus R has the equicontinuity specification on the Banach space
C. As a consequence, R is relatively compact, and thus the Arzelà–Ascoli theorem yields
that R is completely continuous, and, finally, R is compact on S.

Step 3: Hypothesis (S3) of Theorem 2.8 is satisfied.
Let ω ∈ C and � ∈ S be arbitrary elements such that ω = PωR� . Then we have

∣
∣ω(τ )

∣
∣ =

∣
∣P(ω)(τ )R(ω)(τ )

∣
∣

≤ [∣
∣G(τ ,ω) – G(τ , 0)

∣
∣ +

∣
∣G(τ , 0)

∣
∣
]
Ar

≤ [‖φ‖‖ω‖ + G0
]
Ar .

Taking the supremum in the above inequality, we obtain

‖ω‖ ≤ G0Ar

1 – ‖φ‖Ar
≤ r.

Thus ω ∈ S, and so statement (S3) of Theorem 2.8 follows.
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Step 4: At last, we have

MR =
∥
∥R(S)

∥
∥ = sup

{∥
∥R(ω)

∥
∥ : ω ∈ S

} ≤Ar .

From above estimate we obtain

LPMR ≤ ‖φ‖Ar < 1,

and so hypothesis (S4) of Theorem 2.8 is satisfied. Accordingly, the operators N and R
approve all four statements of Theorem 2.8, and thus the equation P(ω)R(ω) = ω pos-
sesses a mild solution in S. Consequently, the HLFDS (1.1) involves a mild solution on J .
This establishes the required result. �

Remark 3.4 Let ζ = G(b,ω(b))
G(η,ω(η)) . Then the integral solution (3.4) reduces to the following form:

ω(τ ) = G
(
τ ,ω(τ )

)
[

Hω(τ ) –
ψ(τ ) – ψ(a)
ψ(b) – ψ(η)

[
Hω(b) – Hω(η)

]
]

,

where H is defined by (3.5). It is easy to rewrite the value of Ar defined by (3.9) as

Ar =
|λ|(ψ(b) – ψ(a))ν


(ν + 1)

(

1 +
2(ψ(b) – ψ(a))
ψ(b) – ψ(η)

)

r

× (ψ(b) – ψ(a))μ+ν‖p‖

(μ + ν + 1)

(

1 +
2(ψ(b) – ψ(a))
ψ(b) – ψ(η)

)

χ (r).

In this case, there is no need to assume condition (3.6).

The proof of the next result follows by the proof of Theorem 3.3 taking into account the
modified ideas in assumptions (A1) and (A3) as explained in Remark 3.4.

Corollary 3.5 Assume that conditions (A1)–(A3) hold and that ζ = G(b,ω(b))
G(η,ω(η)) . Then the

HLFDS (1.1) has at least one mild solution defined on J .

Let us now define the notion of a mild solution of the coupled HLFDS (1.2)–(1.3).

Definition 3.6 An element (ω1,ω2) ∈ E is said to be a mild solution of the coupled HLFDS
(1.2)–(1.3) if it satisfies

ωi(τ ) = Gi
(
τ ,ω1(τ ),ω2(τ )

)
)
[

Hi(ω1,ω2)(τ ) –
(
ψ(τ ) – ψ(a)

)
(3.11)

× [Gi(b,ω1(b),ω2(b))Hi(ω1,ω2)(b) – ζiGi(ηi,ω1(ηi),ω2(ηi))Hi(ω1,ω2)(ηi)]
Gi(b,ω1(b),ω2(b))(ψ(b) – ψ(a)) – ζiGi(ηi,ω1(ηi),ω2(ηi))(ψ(ηi) – ψ(a))

]

,

i = 1, 2, where

Hi(ω1,ω2)(τ ) = I
μi+νi ;ψ
a+ Fi

(
τ ,ω1(τ ),ω2(τ )

)
+ λiI

νi ;ψ
a+ ωi(τ ). (3.12)

To start verifying the next result, the following assumptions are further required.
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(B1) The function Gi : J × R × R → R\{0} is continuous, and there exists a positive
function φi with supremum ‖φi‖such that

∣
∣Gi(τ ,ω1,ω2) – Gi(τ ,�1,�2)

∣
∣ ≤ ‖φi‖

(|ω1 – �1| + |ω2 – �2|
)

for all τ ∈ J , i = 1, 2, and ω1,ω2,�1,�2 ∈ R. Moreover, there exists a positive con-
stant ϑi such that

∣
∣Gi

(
b,ω1(b),ω2(b)

)(
ψ(b) – ψ(a)

)
– ζiGi

(
ηi,ω1(ηi),ω2(ηi)

)(
ψ(ηi) – ψ(a)

)∣
∣

≥ ϑi (3.13)

for i = 1, 2 and ω1,ω2 ∈R.
(B2) The function Fi : J × R × R → R is continuous, and there exist a function pi ∈

C(J ,R+) and a nondecreasing function χiC([0,∞), (0,∞)) such that

∣
∣Fi(τ ,ω1,ω2)

∣
∣ ≤ pi(τ )χi

(|ω1| + |ω2|
)

for all τ ∈ J and ω1,ω2 ∈R.
(B3) There exist ρ,ρi > 0 such that

ρ ≥ G0,1Aρ1 + G0,iAρ2

1 – ‖φ1‖Aρ1 – ‖φ2‖Aρ2
,

where G0,i = supτ∈J |Gi(τ , 0, 0)|(i = 1, 2), and

Aρi =
‖pi‖(ψ(b) – ψ(a))μi+νi

ϑi
(μi + νi + 1)
[
ϑi + 2G0,i

(
ψ(b) – ψ(a)

)
)
]
χi(ρ1 + ρ2) (3.14)

+
2(ψ(b) – ψ(a))μi+νi+1‖pi‖‖φi‖

ϑi
(μi + νi + 1)
ρiχi(ρ1 + ρ2)

+
|λi|(ψ(b) – ψ(a))νi+1‖φi‖

ϑi
(νi + 1)
ρ2

i

+
|λi|(ψ(b) – ψ(a))νi

ϑi
(νi + 1)
[
ϑi + 2G0,i

(
ψ(b) – ψ(a)

)
)
]
ρi,

Aρ = Aρ1 + Aρ2 , ‖φ‖ = ‖φ1‖ + ‖φ2‖.

The next result is an analogue of Theorem 3.3 in the coupled form, and hence we will
not go into details in the proof.

Theorem 3.7 Suppose that hypotheses (B1)–(B4) hold. If

‖φ‖Aρ < 1, (3.15)

then the coupled HLFDS (1.2)–(1.3) possesses a mild solution on J .

Proof Consider a subset X of the Banach space E given by

X =
{
ω = (ω1,ω2) ∈ E : ‖ωi‖ ≤ ρi; ρ ≥ ρ1 + ρ2

}
.
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Evidently, X is a convex, bounded, and closed set contained in the Banach space C×C = E.
Define the operators P = (P1,P2) : E → E and R =(R1,R2) : X → E by

Pi(ω1,ω2)(τ ) = Gi
(
τ ,ω1(τ ),ω2(τ )

)
,

where

Ri(ω1,ω2)(τ )

= Hi(ω1,ω2)(τ ) –
(
ψ(τ ) – ψ(a)

)

× [Gi(b,ω1(b),ω2(b))Hi(ω1,ω2)(b) – ζiGi(ηi,ω1(ηi),ω2(ηi))Hi(ω1,ω2)(ηi)]
Gi(b,ω1(b),ω2(b))(ψ(b) – ψ(a)) – ζiGi(ηi,ω1(ηi),ω2(ηi))(ψ(ηi) – ψ(a))

for τ ∈ J , i = 1, 2. In this case the coupled system of the given hybrid integral equation
(3.11) can be represented in the framework of a system of operator equations as

P(ω1,ω2)(τ )R)ω1,ω2)(τ ) = (ω1,ω2)(τ ), τ ∈ J ,

which further, taking into account the multiplication given in (2.1), reduces to

(
P1(ω1,ω2)(τ )R1(ω1,ω2)(τ ),P2(ω1,ω2)(τ )R2(ω1,ω2)(τ )

)
= (ω1,ω2)(τ )

for τ ∈ J . This further implies that

Pi(ω1,ω2)(τ )Ri(ω1,ω2)(τ ) = ωi(τ ), τ ∈ J , i = 1, 2.

In the following steps, we demonstrate that the operators P and R follow the statements
of Theorem 2.8.

Step 1: We first show thatP = (P1,P2) is Lipschitzian onEwith Lipschitz constant ‖φ‖ =
‖φ1‖ + ‖φ2‖. Let ω = (ω1,ω2),� = (�1,�2) ∈ E be arbitrary. Then using (B2), we have

∣
∣Pi(ω1,ω2)(τ ) – Pi(�1,�2)(τ )

∣
∣

=
∣
∣Gi

(
τ ,ω1(τ ),ω2(τ )

)
– Gi

(
τ ,�1(τ ),�2(τ )

)∣
∣

≤ ‖φi‖
(∣
∣ω1(τ ) – �1(τ )

∣
∣ +

∣
∣ω2(τ ) – �2(τ )

∣
∣
)

for all τ ∈ J , i = 1, 2. Taking the supremum norm over τ , we get that

∥
∥Pi(ω1,ω2) – Pi(�1,�2)

∥
∥ ≤ ‖φi‖

(‖ω1 – �1‖ + ‖ω2 – �2‖
)

for all i = 1, 2, ω,� ∈ E. Accordingly, by the definition of operator P we get

‖Pω – P�‖
=

∥
∥
(
P1(ω1,ω2),P2(ω1,ω2)

)
–

(
P1(�1,�2),P2(�1,�2)

)∥
∥

=
∥
∥
(
P1(ω1,ω2) – P1(�1,�2),P2(ω1,ω2) – P2(�1,�2)

)∥
∥

=
∥
∥P1(ω1,ω2) – P1(�1,�2)

∥
∥ +

∥
∥P2(ω1,ω2) – P2(�1,�2)

∥
∥
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≤ ‖φ1‖
(‖ω – �1‖ + ‖ω2 – �2‖

)
+ ‖φ2‖

(‖ω – �1‖ + ‖ω2 – �2‖
)

=
(‖φ1‖ + ‖φ2‖

)(‖ω – �1‖ + ‖ω2 – �2‖
)

= ‖φ‖‖ω – �‖

for all ω,� ∈ E. As a consequence, P = (P1,P2) is a Lipschitz map subject to constant

‖φ‖ = ‖φ1‖ + ‖φ2‖ > 0.

Step 2: Now we show that R = (R1,R2) is continuous and compact operator from X into
E. To deduce the continuity of R, let {ω1,n,ω2,n}n∈N be a sequence of points of X tending
to (ω1,ω2) ∈ X. Then the Lebesgue dominated convergence theorem yields

lim
n→∞Ri(ω1,n,ω2,n)(τ )

= lim
n→∞{Hi(ω1,n,ω2,n)(τ ) –

(
ψ(τ ) – ψ(a)

)

× [Gi(b,ω1,n(b),ω2,n(b))Hi(ω1,ω2)(b) – ζGi(η,ω1,n(η),ω2,n(η))Hi(ω1,ω2)(η)]
Gi(b,ω1,n(b),ω2,n(b))(ψ(b) – ψ(a)) – ζGi(η,ω1,n(η),ω2,n(η))(ψ(η) – ψ(a))

= Ri(ω1,ω2)(τ ), i = 1, 2, τ ∈ J .

Hence R(ω1,n,ω2,n) = (R1(ω1,n,ω2,n),R2(ω1,n,ω2,n)) converges to R(ω1,ω2) pointwise on
J . Next, we prove the compactness of R on X. Firstly, to ensure the uniform boundedness,
applying (B2), for (ω1,ω2) ∈X, we get

∣
∣Hi(ω1,ω2)(x)

∣
∣ ≤ I

μi+νi ;ψ
a+

∣
∣Fi

(
x,ω1(x),ω2(x)

)∣
∣ + |λi|Iνi ;ψ

a+
∣
∣ωi(x)

∣
∣

≤ (ψ(x) – ψ(a))μi+νi‖pi‖χi(ρ1 + ρ2)

(μi + νi + 1)

+
|λi|(ψ(x) – ψ(a))νiρi


(νi + 1)
.

Therefore

∥
∥Ri(ω1,ω2)

∥
∥

≤ ‖pi‖(ψ(b) – ψ(a))μi+νi

ϑi
(μi + νi + 1)
[
ϑi + 2G0,i

(
ψ(b) – ψ(a)

)
)
]
χi(ρ1 + ρ2)

+
2(ψ(b) – ψ(a))μi+νi+1‖pi‖‖φi‖

ϑi
(μi + νi + 1)
ρiχi(ρ1 + ρ2)

+
|λi|(ψ(b) – ψ(a))νi+1‖φi‖

ϑi
(νi + 1)
ρ2

i

+
|λi|(ψ(b) – ψ(a))νi

ϑi
(νi + 1)
[
ϑi + 2G0,i

(
ψ(b) – ψ(a)

)
)
]
ρi

for all (ω1,ω2) ∈X. Hence Ri is a uniformly bounded operator by the upper bound Aρi on
X. Accordingly, R is a uniformly bounded operator on X, because

∥
∥R(ω1,ω2)(τ )

∥
∥ =

∥
∥R1(ω1,ω2)(τ )

∥
∥ +

∥
∥R2(ω1,ω2)(τ )

∥
∥

≤Aρ1 + Aρ2 ≤Aρ < ∞.
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Next, to confirm the equicontinuity of R, let (ω1,ω2) ∈ X be an arbitrary point, and let
τ1, τ2 ∈ J be such that τ1 < τ2. Then we have

∣
∣Ri(ω1,ω2)(τ1) – Ri(ω1,ω2)(τ2)

∣
∣

≤ [2(ψ(τ2) – ψ(τ1))μi+νi + (ψ(τ2) – ψ(a))μi+νi – (ψ(τ1) – ψ(a))μi+νi ]‖pi‖χi(ρ1 + ρ2)

(μi + νi + 1)

+
|λi|[2(ψ(τ2) – ψ(τ1))νi + (ψ(τ2) – ψ(a))νi – (ψ(τ1) – ψ(a))νi ]ρi


(νi + 1)

+ Bi
∣
∣ψ(τ2) – ψ(τ1)

∣
∣

→ 0 as τ1 → τ2,

where

Bi =
G0,i‖pi‖(ψ(b) – ψ(a))μi+νiχi(ρ1 + ρ2)

ϑi
(μi + νi + 1)

+
ρiχi(ρ1 + ρ2)(ψ(b) – ψ(a))μi+νi+1‖pi‖‖φi‖

ϑi
(μi + νi + 1)

+
|λi|ρ2

i (ψ(b) – ψ(a))νi‖φi‖
ϑi
(νi + 1)

+
G0,i|λi|ρi(ψ(b) – ψ(a))νi

ϑi
(νi + 1)
.

Hence it follows that

∣
∣R(ω1,ω2)(τ1) – R(ω1,ω2)(τ2)

∣
∣ → 0 as τ1 → τ2

uniformly for all (ω1,ω2) ∈ X. Thus R is equicontinuous on the Banach space E. As a
consequence, R is relatively compact, and thus the Arzelà–Ascoli theorem yields that R
is completely continuous, and, finally, R is compact on X.

Step 3: We now proceed to demonstrate the third condition (S3) of Theorem 2.8. Let
(�1,�2) be an element of X such that

(ω1,ω2) =
(
P1(ω1,ω2)R1(�1,�2),P2(ω1,ω2)R2(�1,�2)

)
.

Then, for i = 1, 2, we obtain

|(ωi(τ )| =
∣
∣Pi(ω1,ω2)(τ )Ri(�1,�2)(τ )

∣
∣

≤ [‖φi‖
(‖ω1‖ + ‖ω2‖

)
+ G0,i

]
Aρi .

Condition (3.15) implies that ‖φ1‖Aρ1 + ‖φ2‖Aρ2 < 1. Therefore

‖ω1‖ + ‖ω2‖ ≤ G0,1Aρ1 + G0,iAρ2

1 – ‖φ1‖Aρ1 – ‖φ2‖Aρ2
.

As ‖(ω1,ω2)‖ = ‖ω1‖ + ‖ω2‖, we have that ‖(ω1,ω2)‖ ≤ ρ . Thus (ω1,ω2) ∈X, and so state-
ment (S3) of Theorem 2.8 follows.

Step 4: At last, we have

MR =
∥
∥R(X)

∥
∥ = sup

{∥
∥R(ω1,ω2)

∥
∥ : (ω1,ω2) ∈X

}
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= sup
{∥
∥R1(ω1,ω2)

∥
∥ +

∥
∥R2(ω1,ω2)

∥
∥ : (ω1,ω2) ∈X

}

≤Aρ1 + Aρ2 = Aρ .

From this estimate by (3.15) we obtain

LPMR ≤ ‖φ‖Aρ < 1,

and so hypothesis (S4) of Theorem 2.8 is satisfied. Accordingly, the operators P and R
approve all four statements of Theorem 2.8, and thus the equation P(ω1,ω2)R(ω1,ω2) =
(ω1,ω2) possesses a mild solution in X. Consequently, the coupled HLFDS (1.2)–(1.3) in-
volves a mild solution on J . This finishes the proof. �

Remark 3.8 Let ζi = Gi(b,ω1(b),ω2(b))
Gi(η,ω1(η),ω2(η)) , i = 1, 2. Then the integral solution (3.11) reduces to the

following form:

ωi(τ ) = Gi
(
τ ,ω1(τ ),ω2(τ )

)
(3.16)

×
[

Hi
(
ω1(τ ),ω2(τ )

)
–

ψ(τ ) – ψ(a)
ψ(b) – ψ(η)

[
Hi

(
ω1(b),ω2(b)

)
– Hi

(
ω1(η),ω2(η)

)]
]

,

where Hi is defined by (3.12). As in Remark 3.4, we modify the value of Aρi by (3.14) as

Aρi =
|λi|(ψ(b) – ψ(a))νi


(νi + 1)

(

1 +
2(ψ(b) – ψ(a))
ψ(b) – ψ(η)

)

ρi

× (ψ(b) – ψ(a))μi+νi‖pi‖

(μi + νi + 1)

(

1 +
2(ψ(b) – ψ(a))
ψ(b) – ψ(η)

)

χi(ρ1 + ρ2).

In this case, there is no need to assume condition (3.13).

The proof of the next result follows by the proof of Theorem 3.7 taking into account the
modified ideas in assumptions (B1) and (B3), as explained in Remark 3.8.

Corollary 3.9 Suppose that hypotheses (B1)–(B3) hold. Furthermore, if

‖φ‖Aρ < 1,

then the coupled HLFDS (1.2)–(1.3) possesses a mild solution on J .

4 Uniqueness of the solution
It is known that the uniqueness of the solution of a nonlinear differential equation can be
obtained Theorem 2.9 (the Banach fixed point theorem). Unfortunately, it is hard to get a
contraction principle for the integral system (3.11) even though assuming the bounded-
ness and Lipschitz conditions for nonlinear functions. For simplicity, we consider here-
after the HLFDS (1.1) and the coupled HLFDS (1.2)–(1.3) in the cases of ζ = G(b,ω(b))

G(η,ω(η)) and
ζi = Gi(b,ω1(b),ω2(b))

Gi(η,ω1(η),ω2(η)) , i = 1, 2, respectively, as in Corollaries 3.5 and 3.9 and Remarks 3.4 and
3.8.

We further make the following assumption for the next result:
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(C1) The function G : J × R → R\{0} is continuous, and there exists a function φ ∈
C(J ,R+) with supremum ‖φ‖ such that

∣
∣G(τ ,ω) – G(τ ,� )

∣
∣ ≤ φ(τ )|ω – � |

for all (τ ,ω), (τ ,� ) ∈ J ×R. Moreover, there is a constant kG > 0 such that

∣
∣G(τ ,ω)

∣
∣ ≤ kG

for all (τ ,ω) ∈ J ×R.
(C2) The function F : J ×R → R is continuous, and there exists a function p ∈ C(J ,R+)

with supremum ‖p‖ such that

∣
∣F(τ ,ω) – F(τ ,� )

∣
∣ ≤ p(τ )|ω – � |

for all (τ ,ω), (τ ,� ) ∈ J ×R. Moreover, there is a constant kF > 0 such that

∣
∣F(τ ,ω)

∣
∣ ≤ kF

for all (τ ,ω) ∈ J ×R.
(C3) The constant B < 1, where

B =
|λ|‖φ‖(ψ(b) – ψ(a))


(ν + 1)

×
[
(
ψ(b) – ψ(a)

)ν–1 +
(ψ(b) – ψ(a))ν + (ψ(η) – ψ(a))ν

ψ(b) – ψ(η)

]

+
(kG(‖p‖ + |λ|) + kF‖φ‖)(ψ(b) – ψ(a))


(μ + ν + 1)

×
[
(
ψ(b) – ψ(a)

)μ+ν–1 +
(ψ(b) – ψ(a))μ+ν + (ψ(η) – ψ(a))μ+ν

ψ(b) – ψ(η)

]

.

We start with the HLFDS (1.1) and establish the first uniqueness result.

Theorem 4.1 Assume that (C1)–(C3) hold. Then there exists a unique mild solution of
the HLFDS (1.1) on J .

Proof Let Q : C→ C be the operator defined as

Qω(τ ) = G
(
τ ,ω(τ )

)
[

Hω(τ ) –
ψ(τ ) – ψ(a)
ψ(b) – ψ(η)

[
Hω(b) – Hω(η)

]
]

, τ ∈ J .

Then Q is well defined and continuous due to the continuity of G and H. For ω, � ∈ C,
by (C2) we obtain

∣
∣Hω(τ ) – H� (τ )

∣
∣ (4.1)

≤ I
μ+ν;ψ
a+

∣
∣F

(
τ ,ω(τ )

)
– F

(
τ ,� (τ )

)∣
∣+λI

ν;ψ
a+

∣
∣ω(τ ) – � (τ )

∣
∣
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≤
(

(ψ(τ ) – ψ(a))μ+ν‖p‖

(μ + ν + 1)

+
|λ|(ψ(τ ) – ψ(a))ν


(ν + 1)

)

‖ω – �‖

and

∣
∣Hω(τ )

∣
∣ ≤ kF(ψ(τ ) – ψ(a))μ+ν


(μ + ν + 1)
+

|λ|(ψ(τ ) – ψ(a))ν


(ν + 1)
. (4.2)

Applying the triangle inequality, we get

∣
∣Qω(τ ) – Q� (τ )

∣
∣

≤ ∣
∣G

(
τ ,ω(τ )

)
Hω(τ ) – G

(
τ ,� (τ )

)
H� (τ )

∣
∣

+
ψ(τ ) – ψ(a)
ψ(b) – ψ(η)

∣
∣
∣
∣G

(
τ ,� (τ )

)
H� (b) – G

(
τ ,ω(τ )

)
Hω(b)

∣
∣
∣
∣

+
ψ(τ ) – ψ(a)
ψ(b) – ψ(η)

∣
∣
∣
∣G

(
τ ,ω(τ )

)
Hω(η) – G

(
τ ,� (τ )

)
H� (η)

∣
∣
∣
∣

≤ ∣
∣G

(
τ ,ω(τ )

)∣
∣
∣
∣Hω(τ ) – H� (τ )

∣
∣

+
∣
∣H� (τ )

∣
∣
∣
∣G

(
τ ,ω(τ )

)
– G

(
τ ,� (τ )

)∣
∣

+
ψ(τ ) – ψ(a)
ψ(b) – ψ(η)

∣
∣G

(
τ ,� (τ )

)∣
∣
∣
∣H� (b) – Hω(b)

∣
∣

+
ψ(τ ) – ψ(a)
ψ(b) – ψ(η)

∣
∣Hω(b)

∣
∣
∣
∣G

(
τ ,� (τ )

)
– G

(
τ ,ω(τ )

)∣
∣

+
ψ(τ ) – ψ(a)
ψ(b) – ψ(η)

∣
∣G

(
τ ,ω(τ )

)∣
∣
∣
∣Hω(η) – H� (η)

∣
∣

+
ψ(τ ) – ψ(a)
ψ(b) – ψ(η)

∣
∣H� (η)

∣
∣
∣
∣G

(
τ ,ω(τ )

)
– G

(
τ ,� (τ )

)∣
∣.

By (4.1) and (4.2), using assumptions (C1)–(C2), we deduce that

∣
∣Qω(τ ) – Q� (τ )

∣
∣

≤ kG
(

(ψ(τ ) – ψ(a))μ+ν‖p‖

(μ + ν + 1)

+
|λ|(ψ(τ ) – ψ(a))ν


(ν + 1)

)

‖ω – �‖

+ ‖φ‖
(

kF(ψ(τ ) – ψ(a))μ+ν


(μ + ν + 1)
+

|λ|(ψ(τ ) – ψ(a))ν


(ν + 1)

)

‖ω – �‖

+
kG[ψ(τ ) – ψ(a)]

ψ(b) – ψ(η)

(
(ψ(b) – ψ(a))μ+ν‖p‖


(μ + ν + 1)
+

|λ|(ψ(b) – ψ(a))ν


(ν + 1)

)

‖ω – �‖

+
‖φ‖[ψ(τ ) – ψ(a)]

ψ(b) – ψ(η)

(
kF(ψ(b) – ψ(a))μ+ν


(μ + ν + 1)
+

|λ|(ψ(b) – ψ(a))ν


(ν + 1)

)

‖ω – �‖

+
kG[ψ(τ ) – ψ(a)]

ψ(b) – ψ(η)

(
(ψ(η) – ψ(a))μ+ν‖p‖


(μ + ν + 1)
+

|λ|(ψ(η) – ψ(a))ν


(ν + 1)

)

‖ω – �‖

+
‖φ‖[ψ(τ ) – ψ(a)]

ψ(b) – ψ(η)

(
kF(ψ(η) – ψ(a))μ+ν


(μ + ν + 1)
+

|λ|(ψ(η) – ψ(a))ν


(ν + 1)

)

‖ω – �‖.

Taking the supremum over J and simplifying lead to

‖Qω – Q�‖ ≤ B‖ω – �‖.
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Hypothesis (C3) allows us to apply the Banach fixed point theorem (Theorem 2.9), which
finishes the proof. �

The uniqueness of the mild solution for the coupled HLFDS (1.2)–(1.3) can be achieved
by the same arguments as in Theorem 4.1. Hence we omit the proof. Let us first introduce
the assumptions that will be used for the next result.

(D1) The function Gi : J × R × R → R\{0} is continuous, and there exists a function
φi ∈ C(J ,R+) with supremum ‖φi‖ such that

∣
∣Gi(τ ,ω1,ω2) – Gi(τ ,�1,�2)

∣
∣ ≤ φi(τ )

[|ω1 – �1| + |ω2 – �2|
]

for all (τ ,ω1,ω2), (τ ,�1,�2) ∈ J × R×R, i = 1, 2. Moreover, there is a constant
kGi > 0 such that

∣
∣Gi(τ ,ω1,ω2)

∣
∣ ≤ kGi

for all (τ ,ω1,ω2) ∈ J ×R×R, i = 1, 2.
(D2) The function Fi : J × R × R → R is continuous, and there exists a function pi ∈

C(J ,R+) with supremum ‖pi‖ such that

∣
∣Fi(τ ,ω1,ω2) – Fi(τ ,�1,�2)

∣
∣ ≤ pi(τ )

[|ω1 – �1| + |ω2 – �2|
]

for all (τ ,ω1,ω2), (τ ,�1,�2) ∈ J × R×R, i = 1, 2. Moreover, there is a constant
kFi > 0 such that

∣
∣F(τ ,ω1,ω2)

∣
∣ ≤ kFi

for all (τ ,ω1,ω2) ∈ J ×R×R, i = 1, 2.
(D3) The constant B = B1 + B2 < 1, where

Bi =
|λi|‖φi‖(ψ(b) – ψ(a))


(νi + 1)
(4.3)

×
[
(
ψ(b) – ψ(a)

)νi–1 +
(ψ(b) – ψ(a))νi + (ψ(ηi) – ψ(a))νi

ψ(b) – ψ(ηi)

]

+
(kGi (‖pi‖ + |λi|) + kFi‖φi‖)(ψ(b) – ψ(a))


(μi + νi + 1)

×
[
(
ψ(b) – ψ(a)

)μi+νi–1 +
(ψ(b) – ψ(a))μi+νi + (ψ(ηi) – ψ(a))μi+νi

ψ(b) – ψ(ηi)

]

.

Theorem 4.2 Assume that (D1)–(D3) hold. Then there exists a unique mild solution of
the coupled HLFDS (1.2)–(1.3) on J .

5 Ulam–Hyers stability
In this section, we study the Ulam–Hyers and generalized Ulam–Hyers stability of the cou-
pled HLFDS (1.2)–(1.3). Once we obtain the stability for the coupled HLFDS (1.2)–(1.3),
then it will be satisfied for the HLFDS (1.1).
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For this, let ε > 0, and let � : J → R
+ be a continuous function. Consider the following

inequality:

∣
∣
∣
∣
c
D

μi1;ψ
a+

[
c
D

νi ;ψ
a+

[
ωi(τ )

Gi(τ ,ω(τ ))

]

– λiωi(τ )
]

– Fi
(
τ ,ω(τ )

)
∣
∣
∣
∣ ≤ ε (5.1)

for τ ∈ J , ω = (ω1,ω2) ∈ E, i = 1, 2.

Definition 5.1 ([10]) The coupled HLFDS (1.2)–(1.3) is Ulam–Hyers stable if there exists
c > 0 such that for each ε > 0 and for each solution ω ∈ E of (5.1)–(1.3), there exists a
solution � ∈ E of (1.2)–(1.3) with

‖ω – �‖ ≤ cε.

Definition 5.2 ([10]) The coupled HLFDS (1.2)–(1.3) is generalized Ulam–Hyers stable
if there exists σ ∈ C(R+,R+) with σ (0) = 0 such that for each ε > 0 and for each solution
ω ∈ E of (5.1)–(1.3), there exists a solution � ∈ E of (1.2)–(1.3) with

‖ω – �‖ ≤ σ (ε).

Remark 5.3 It is clear that Definition 5.1 for σ (ε) = cε leads to Definition 5.2, but the
converse is not true in general.

Remark 5.4 ([10]) A function ω ∈ E is a solution of inequality (5.1)–(1.3) if and only if
there exists a function gi ∈ C(J ,R) (which depends on ω) such that

• |gi(τ )| ≤ ε, τ ∈ J ;
• cDμi1;ψ

a+ [c
D

νi ;ψ
a+ [ ωi(τ )

Gi(τ ,ω(τ )) ] – λiωi(τ )] = Fi(τ ,ω(τ )) + gi(τ ), τ ∈ J ;
• ωi(a) = 0, c

D
νi ;ψ
a+ [ ωi(τ )

Gi(τ ,ω(τ )) ]τ=a = 0,ωi(b) = ζiωi(ηi), i = 1, 2.
For simplification of equations in the next result, we denote

Ci =
‖φi‖


(μi + νi + 1)
(ψ(b) – ψ(a))μi+νi+1

ψ(b) – ψ(ηi)
,

Di =
kGi (ψ(b) – ψ(a))


(μi + νi + 1)

×
(

(
ψ(b) – ψ(a)

)μi+νi–1 +
(ψ(b) – ψ(a))μi+νi + (ψ(ηi) – ψ(a))μi+νi

ψ(b) – ψ(ηi)

)

,

and recall the constants Bi, i = 1, 2, defined by (4.3). Now we introduce the first result.

Theorem 5.5 Suppose C1+ C2 < 1
2 and B1+ B2 < 1

2 , and let hypotheses (D1)–(D3) be satis-
fied. Then the coupled HLFDS (1.2)–(1.3) is generalized Ulam–Hyers stable.

Proof Let ε > 0, and let ω = (ω1,ω2) ∈ E be a solution of (5.1)–(1.3). Then by Lemma 3.1
and Remark 5.4 there exists a function gi ∈ C(J ,R) satisfying |gi(τ )| ≤ ε such that

ωi(τ ) = Gi
(
τ ,ω1(τ ),ω2(τ )

)
) (5.2)
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×
[

Fi(ω1,ω2)(τ ) –
ψ(τ ) – ψ(a)
ψ(b) – ψ(ηi)

(
Fi(ω1,ω2)(b) – Fi(ω1,ω2)(ηi)

)
]

,

where

Fi(ω1,ω2)(τ ) = I
μi+νi ;ψ
a+

[
Fi

(
τ ,ω1(τ ),ω2(τ )

)
+ gi(τ )

]
+ λiI

νi ;ψ
a+ ωi(τ ).

Let � ∈ E be a solution of the coupled HLFDS (1.2)–(1.3). Then it satisfies the integral
equation (3.16). Using (D2), we have

∣
∣Fi(ω1,ω2)(τ ) – Hi(�1,�2)(τ )

∣
∣ (5.3)

≤ I
μi+νi ;ψ
a+

∣
∣Fi

(
τ ,ω1(τ ),ω2(τ )

)
– Fi

(
τ ,�1(τ ),�2(τ )

)∣
∣ + I

μi+νi ;ψ
a+

∣
∣gi(τ )

∣
∣

+ |λi|Iνi ;ψ
a+

∣
∣ωi(τ ) – �i(τ )

∣
∣

≤ ‖pi‖(ψ(τ ) – ψ(a))μi+νi


(μi + νi + 1)
‖ω – �‖ +

ε(ψ(τ ) – ψ(a))μi+νi


(μi + νi + 1)

+
|λi|(ψ(τ ) – ψ(a))μi+νi


(μi + νi + 1)
‖ω – �‖

and

∣
∣Hi(ω1,ω2)(τ )

∣
∣ ≤ kF(ψ(τ ) – ψ(a))μi+νi


(μi + νi + 1)
+

|λi|(ψ(τ ) – ψ(a))νi


(νi + 1)
, (5.4)

∣
∣Fi(ω1,ω2)(τ )

∣
∣ ≤ (kF + ε)(ψ(τ ) – ψ(a))μi+νi


(μi + νi + 1)
+

|λi|(ψ(τ ) – ψ(a))νi


(νi + 1)
.

Applying the triangle inequality, we obtain

∣
∣ωi(τ ) – �i(τ )

∣
∣

≤ ∣
∣Gi

(
τ ,ω1(τ ),ω2(τ )

)∣
∣
∣
∣Fi(ω1,ω2)(τ ) – Hi(�1,�2)(τ )

∣
∣

+
∣
∣Hi(�1,�2)(τ )

∣
∣|Gi

(
τ ,ω1(τ ),ω2(τ )

)
– Gi

(
τ ,�1(τ ),�2(τ )

)

+
∣
∣
∣
∣
ψ(τ ) – ψ(a)
ψ(b) – ψ(ηi)

∣
∣
∣
∣)Hi(�1,�2)(b) – Fi(ω1,ω2)(b)||Gi

(
τ ,�1(τ ),�2(τ )

)

+
∣
∣
∣
∣
ψ(τ ) – ψ(a)
ψ(b) – ψ(ηi)

∣
∣
∣
∣Gi

(
τ ,�1(τ ),�2(τ )

)
– Gi

(
τ ,ω1(τ ),ω2(τ )

)||Fi(ω1,ω2)(b)

+
∣
∣
∣
∣
ψ(τ ) – ψ(a)
ψ(b) – ψ(ηi)

∣
∣
∣
∣Fi(ω1,ω2)(ηi) – Hi(�1,�2)(ηi)||Gi

(
τ ,ω1(τ ),ω2(τ )

)

+
∣
∣
∣
∣
ψ(τ ) – ψ(a)
ψ(b) – ψ(ηi)

∣
∣
∣
∣Gi

(
τ ,ω1(τ ),ω2(τ )

)
– Gi

(
τ ,�1(τ ),�2(τ )

)|∣∣Hi(�1,�2)(ηi)
∣
∣.

By (D1), (D2), (5.3), and (5.4) we have

∣
∣ωi(τ ) – �i(τ )

∣
∣

≤ kGi

(
ε(ψ(τ ) – ψ(a))μi+νi


(μi + νi + 1)
+

‖pi‖(ψ(τ ) – ψ(a))μi+νi


(μi + νi + 1)
‖ω – �‖

+
|λi|(ψ(τ ) – ψ(a))μi+νi


(μi + νi + 1)
‖ω – �‖

)
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+ ‖φi‖
(

kF(ψ(τ ) – ψ(a))μi+νi


(μi + νi + 1)
+

|λi|(ψ(τ ) – ψ(a))νi


(νi + 1)

)

‖ω – �‖

+ kGi
ψ(τ ) – ψ(a)
ψ(b) – ψ(ηi)

(
ε(ψ(b) – ψ(a))μi+νi


(μi + νi + 1)

+
(‖pi‖(ψ(b) – ψ(a))μi+νi


(μi + νi + 1)
+

|λi|(ψ(b) – ψ(a))μi+νi


(μi + νi + 1)

)

‖ω – �‖
)

+ ‖φi‖ ψ(τ ) – ψ(a)
ψ(b) – ψ(ηi)

×
(

(kF + ε)(ψ(b) – ψ(a))μi+νi


(μi + νi + 1)
+

|λi|(ψ(b) – ψ(a))νi


(νi + 1)

)

‖ω – �‖

+ kGi
ψ(τ ) – ψ(a)
ψ(b) – ψ(ηi)

(
ε(ψ(ηi) – ψ(a))μi+νi


(μi + νi + 1)

+
(‖pi‖(ψ(ηi) – ψ(a))μi+νi


(μi + νi + 1)
+

|λi|(ψ(ηi) – ψ(a))μi+νi


(μi + νi + 1)

)

‖ω – �‖
)

+ ‖φi‖ ψ(τ ) – ψ(a)
ψ(b) – ψ(ηi)

×
(

kF(ψ(τ ) – ψ(a))μi+νi


(μi + νi + 1)
+

|λi|(ψ(τ ) – ψ(a))νi


(νi + 1)

)

‖ω – �‖.

Simplifications lead to

‖ω – �‖ ≤ 2(D1 + D2)
(

ε

1 – ε

)

, ε < 1.

The generalized Ulam–Hyers stability condition is satisfied if we assume that σ (ε) = 2(D1 +
D2)( ε

1–ε
) and σ (0) = 0. This completes the proof. �

Remark 5.6 The appearance of ε in the denominator is due to the term |Fi(ω1,ω2)(τ )|
estimated in (5.4). This implies that there is no guarantee to ensure the coupled HLFDS
(1.2)–(1.3) is Ulam–Hyers stable using the conditions of Theorem 5.5.

The next result can be proved similarly to Theorem 5.5.

Theorem 5.7 Let C < 1
2 and B < 1

2 , and let hypotheses (C1)–(C3) be satisfied. Then the
HLFDS (1.1) is generalized Ulam–Hyers stable.

6 Examples
In this section, to illustrate our results, we consider two examples.

Example 6.1 Consider the HLFDS

⎧
⎨

⎩

c
D

0.5;ψ
0+ [c

D
1.5;ψ
0+ [ ω(τ )

2+τ sinω(τ ) ] – 0.001ω(τ )] = 0.001e–τ
√|ω(τ )| + 0.001e–τ ,

ω(0) = 0, c
D

1.5;ψ
0+ [ ω(τ )

2+τ sinω(τ ) ]τ=0 = 0, ω(1) = 2ω(0.5).
(6.1)

The function G(τ ,ω(τ )) = 2 + τ sinω(τ ), τ ∈ [0, 1], is nonzero Lipschitz continuous such
that φ(τ ) = τ with supremum 1, and G0 = 2. If we choose ψ(τ ) = τ 2 + τ , τ ∈ [0, 1],



Boutiara et al. Boundary Value Problems         (2023) 2023:22 Page 22 of 24

then

∣
∣G(b,ω)

(
ψ(b) – ψ(a)

)
– ζG(η,ω)

(
ψ(η) – ψ(a)

)∣
∣ ≥ 7

4
= ϑ .

Thus condition (A1) holds.
The function F(τ ,ω(τ )) = 0.001e–τ

√|ω(τ )| + 0.001e–τ satisfies (A2) such that p(τ ) =
0.001e–τ has supremum 0.001 on [0, 1], and χ (r) =

√
r + 1, r ≥ 0, is nondecreasing. In the

last condition, we have

A1 = 0.045705,
2A1

1 – A1
= 0.096 < 1.

All hypotheses (A1)–(A3) are satisfied. Then Theorem 3.3 ensures the existence of at least
one nonzero mild solution of the HLFDS (6.1).

Example 6.2 Consider the coupled HLFDS

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
D

0.5;ψ
1+ [c

D
1.5;ψ
1+ [ ω1(τ )

0.07+0.001τ sinω1(τ )+0.001τ2 sinω2(τ ) ] – ω1(τ )]

= 0.01e–τ |ω1(τ )|+|ω2(τ )|
1+|ω1(τ )|+|ω2(τ )| , τ ∈ [1, e],

c
D

0.3;ψ
1+ [c

D
1.7;ψ
1+ [ ω1(τ )

0.07+0.001τ sinω1(τ )+0.001τ2 sinω2(τ ) ] – ω1(τ )]

= 0.01e–τ |ω1(τ )|+|ω2(τ )|
1+|ω1(τ )|+|ω2(τ )| , τ ∈ [1, e],

ω1(0) = 0, c
D

1.5;ψ
1+ [ ω1(τ )

0.07+0.001τ sinω1(τ )+0.001τ2 sinω2(τ ) ]τ=0 = 0,

ω1(e) = ζω1(2),

ω2(0) = 0, c
D

1.7;ψ
1+ [ ω2(τ )

0.07+0.001τ sinω1(τ )+0.001τ2 sinω2(τ ) ]τ=0 = 0,

ω2(e) = ζω2(2).

(6.2)

The functions G1(τ ,ω1(τ ),ω2(τ )) = G2(τ ,ω1(τ ),ω2(τ )) = 0.07 + 0.001τ sinω1(τ ) +
0.001τ 2 sinω2(τ ) are nonzero Lipschitz continuous such that ‖φi‖ = 0.001e2 ∼= 0.0074,
kGi = 0.07 + 0.001e + 0.001e2 ∼= 0.08, and ζi = 0.07+0.001e sinω1(e)+0.001e2 sinω2(e)

0.07+0.002 sinω1(2)+0.004 sinω2(2) .
The functions F1(τ ,ω1(τ ),ω2(τ )) = F2(τ ,ω1(τ ),ω2(τ )) = 0.01e–τ |ω1(τ )|+|ω2(τ )|

1+|ω1(τ )|+|ω2(τ )| are Lips-
chitzian with common constants ‖pi‖ = 0.01 and kFi = 0.01. If ψ(τ ) = ln τ (then the frac-
tional derivative becomes Hadamard derivative), then we obtain

B1 ∼= 0.27, B2 ∼= 0.2644.

This implies that B < 1, and therefore all hypotheses (D1)–(D3) of Theorem 4.2 are satis-
fied. Thus there exists a unique nonzero mild solution of the coupled HLFDS (6.2).

Moreover, we can find that

Ci = 0.0121, Di = 0.233, i = 1, 2.

Thus by Theorem 5.5 we deduce that the coupled HLFDS (6.2) is generalized Ulam–Hyers
stable.
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7 Conclusion
In this paper, we considered the existence, uniqueness, and Ulam–Hyers stability of solu-
tions for a novel class of hybrid Langevin fractional differential systems subject to three-
point boundary conditions in view of the ψ-Caputo derivatives. The obtained results are
derived by using the Dhage and Banach fixed point theorems. We considered two systems:
one is a hybrid Langevin fractional differential system, and the other is a coupled hybrid
Langevin fractional differential system. Finally, we introduce two examples to validate our
theoretical results. The obtained results are new and generalize many existing results in
the literature. This field is active in research, and hence we recommend to continue in
this line of studying to more qualitative analysis of such systems and using generalized
fractional derivatives. One direction of future investigations can be performed on other
fractional models using different fractional derivatives and multipoint boundary condi-
tions.
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