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Abstract: With the fast growth of the economy and rapid urbanization, the waste produced by the 

urban population also rises as the population increases. Due to communal, ecological, and financial 

constrictions, indicating a landfill site has become perplexing. Also, the choice of the landfill site is 

oppressed with vagueness and complexity due to the deficiency of information from experts and the 

existence of indeterminate data in the decision-making (DM) process. The neutrosophic hypersoft set 

(NHSS) is the most generalized form of the neutrosophic soft set, which deals with the multi-sub-

attributes of the alternatives. The NHSS accurately judges the insufficiencies, concerns, and hesitation 

in the DM process compared to IFHSS and PFHSS, considering the truthiness, falsity, and 

indeterminacy of each sub-attribute of given parameters. This research extant the operational laws for 

neutrosophic hypersoft numbers (NHSNs). Furthermore, we introduce the aggregation operators (AOs) 

for NHSS, such as neutrosophic hypersoft weighted average (NHSWA) and neutrosophic hypersoft 
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weighted geometric (NHSWG) operators, with their necessary properties. Also, a novel multi-criteria 

decision-making (MCDM) approach has been developed for site selection of solid waste management 

(SWM). Moreover, a numerical description is presented to confirm the reliability and usability of the 

proposed technique. The output of the advocated algorithm is compared with the related models 

already established to regulate the favorable features of the planned study. 

Keywords: neutrosophic soft set; neutrosophic hypersoft set; NHSWA operator; NHSWG operator; 

MCDM; SWM 

Mathematics Subject Classification: 62A86, 90B50, 03E72, 68T35 

 

1. Introduction 

MCDM is the most efficient approach to determine an adequate alternative among all viable 

options. Maximum assessments are made when objectives and limitations in everyday situations are 

often imprecise or blurred. Zadeh [1] introduced the fuzzy set (FS) theory to address this ambiguity 

and concern, an essential tool for solving unnecessary and hesitant problems in DM.  Experts consider 

primarily membership (MD) and non-membership degree (NMD) that FS cannot lead. Atanassov [2] 

overcame these limitations and introduced the intuitionistic fuzzy set (IFS). Wang and Liu [3] 

presented some operations such as Einstein summation, Einstein product, etc., and the AOs of the IFS. 

However, the available IFS cannot understand the infrequent and disturbing details because it is 

intentionally assumed to be a linear inequality between MD and NMD. If the expert selects MD = 0.6 

and NMD=0.7, then IFS cannot handle it as 0.6+0.7≥1. Yager [4] presented a Pythagorean fuzzy set 

(PFS) to precise these deficiencies by revising the basic state 𝜅 + 𝛿 ≤ 1 to 𝜅2 + 𝛿2 ≤ 1. Xiao and 

Ding [5] considered the Jensen–Shannon divergence and presented an inventive divergence measure 

for PFS. 

Thao and Smarandache [6] proposed entropy measures of PFS and developed the MCDM 

method. Zhang et al. [7] introduced some new SMs for PFS and proved that their protracted SMs 

are capable compared to existing SMs. Rahman et al. [8] scheduled the geometric AO of PFS and 

demonstrated the multi-attribute group decision-making (MAGDM) approach by their proposed 

AO. Lin et al. [9] extended the partitioned Bonferroni mean operators for linguistic PFS and 

developed the MAGDM using their established operators. Zhang and Xu [10] prolonged the order 

of preference by similarity to the ideal solution (TOPSIS) to solve MCDM developments. Wei and 

Lu [11] delivered the basic properties of Pythagorean fuzzy power AOs and developed the multi-

attribute decision-making (MADM) approach to resolve the DM obstacles. Wang and Li [12] 

revealed the interaction operational laws of Pythagorean fuzzy numbers (PFNs) and developed the 

power Bonferroni mean operators. Lin et al. [13] introduced a new probability density-based 

ordered weighted average operator, which was proposed based on the input values' data 

distribution features. Zhang [14] proposed an effective DM procedure based on SMs to overcome 

the MCGDM constraints under the PFS environment. Peng and Yuan [15] presented the AOs of 

PFS and validated the DM method by their scheduled method. Lin et al. [16] proposed the 

interactional partitioned Heronian mean AOs for linguistic q-rung orthopair fuzzy set and planned 

a MAGDM model based on their developed AOs. Zulqarnain et al. [17] presented the TOPSIS 

method for NS to crack MCDM issues. Lin et al. [18] proposed interactional operational laws to 
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compute the picture fuzzy numbers. All these theories cannot handle the indeterminacy of the 

alternates. Smarandache [19] protracted the neutrosophic set (NS) theory capably deals with 

imprecise information considering the alternatives' truth, false, and indeterminacy. 

All of the above approaches have a wide range of applications, but parametric chemistry has 

some limitations due to the incompetence of these theories. Molodtsov [20] offered the idea of soft 

sets (SS) and illuminated some basic operations and their properties to deal with misunderstandings 

and ambiguities. Maji et al. [21] extended the concept of SS and developed numerous basic 

operations. Cagman and Enginoglu [22] presented fuzzy parametric SS with fundamental 

operations. Ali et al. [23] extended the notion of SS and explained numerous basic operations of 

SS and their basic features. Maji et al. [24] introduced fuzzy soft sets (FSS) by associating them 

with two prevailing theories of FS and SS. Moreover, Roy and Maji [25] developed a unique DM 

technique for FSS to categorize inadequate facts. Cagman et al. [26] introduced the AOs of FSS 

and anticipated the DM technique via their projected AOs. Feng et al. [27] presented amendable 

agendas in FSS and delivered weighted FSS with their applications. Maji et al. [28] introduced the 

intuitionistic fuzzy soft sets (IFSS) with some fundamental operations and their basic features. 

Arora and Garg [29] prolonged the AOs for IFSS and delivered the MCDM technique to the 

operators they had settled. Çağman and Karataş [30] established a DM methodology for IFSS built 

on their demonstrated operations. Muthukumar and Krishnan [31] scheduled a DM technique for 

IFSS employing their developed SMs and weighted SMs. 

Peng et al. [32] protracted the Pythagorean fuzzy soft set (PFSS), the most authentic leeway of 

IFSS, by including two prevalent models, PFS and SS. Zulqarnain et al. [33] presented the algebraic 

operational laws for PFSS and introduced the AOs for PFSS. Athira et al. [34] defined Hamming and 

Euclidean distances and established entropy measures for PFSS. Zulqarnain et al. [35] prolonged the 

Einstein AOs for PFSS with their properties to resolve MAGDM problems. Athira et al. [36] developed 

the entropy measures of PFSS. Zulqarnain et al. [37-38] extended the Einstein-ordered AOs for PFSS 

based on their developed Einstein operational laws. They also developed the DM approaches to resolve 

composite real-life impediments. Naeem et al. [39] proposed the TOPSIS and VIKOR methodologies 

utilizing the AOs of PFSS to resolve MCGDM complications. Maji et al. [40] projected the 

Neutrosophic soft set (NSS) by unifying the SS and NS. The notion of the possibility NSS was settled 

by Karaaslan [41], who presented a DM technique to resolve those complications, which enclose 

hesitation.  

Broumi [42] discussed the fundamental operations with their properties for NSS and scheduled a 

DM model to resolve real-life complications. Deli and Subas [43] presented the cut sets for single-

valued neutrosophic numbers (SVNNs) and settled on an MCDM approach to resolving DM obstacles. 

Wang et al. [44] developed the CC for SVNNs. Ye [45] offered simplified NS and presented some 

operational rules and AOs. Smarandache [46] planned the theory of a hypersoft set (HSS), which 

integrates numerous multi-sub-parameters of the considered set of parameters in the attribution 

function 𝑓. Smarandache HSS is the most influential theory for dealing with multi-sub-parameters of 

supposed parameters compared to extensions of SS theory. Different researchers in the world promote 

numerous HSS extensions and their DM methods. Rahman et al. [47] settled a novel extension of 

IFHSS known as possibility IFHSS. Zulqarnain et al. [48] extended the CC for IFHSS and developed 

the TOPSIS approach and AOs for IFHSS. Zulqarnain et al. [49] prolonged the impression of IFHSS 

to PFHSS with essential operations. Siddique et al. [50] presented the AOs for PFHSS and projected an 

MCDM technique utilizing their anticipated AOs. Sunthrayuth et al. [51] anticipated the Einstein weighted 
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average aggregation operator for PFHSS to resolve MCDM complications. Zulqarnain et al. [52] presented 

the Einstein weighted geometric aggregation operator for PFHSS and used it for material selection. 

Zulqarnain et al. [53] developed the Einstein-ordered AOs for PFHSS and developed an MCDM 

approach to resolve DM complexities. Khan et al. [54] introduced the q-ROFHSS with some basic 

operations. q-ROFHSS is a combination rational formation of q-ROFSS. Gurmani et al. [55] extended 

the TOPSIS method using q-ROFHSS information to develop a MAGDM technique. Khan et al. [56] 

projected the AOs for q-ROFHSS and utilized their presented AOs to analyze the cryptocurrency 

market. 

The population is growing rapidly and significantly impacts the environment, threatening the 

planet's sustainability. One of the most noticeable concerns of population growth is urbanization. 

Urbanization disrupts the balance of the usual atmosphere. In every metropolitan zone, a massive 

quantity of solid waste is produced. Developing states face substantial challenges in choosing and 

handling solid waste dumping spots for numerous reasons, including urban enlargement, fluctuations 

in local use land use, environmental influences, and financial and prospect-premeditated scheduling 

and supervision. The Waste face-to-face is presented by Alkaradaghi et al. [57]. Authors [58–60] 

discussed that the unexpected resident growth, rapid economic growth, abandoned urbanization, 

modification of solid waste, and misconduct are critical aspects of the rise in solid waste generation, 

causing humiliation to the 'environment. In South Asia, Pakistan, as a developing state, does not have 

a suitable waste management policy, thus producing 20 million tons of solid waste every year with an 

increased rate of about 2%, estimated to be 2.4%. According to Naqvi et al. [61–62], it is expected to 

be between 0.283 and 0.612 kg/capita/day annually. Currently, waste landfills in developing republics, 

comprising Pakistan, are not designated based on appropriate features and robust dealings, which is 

consequential in the enterprise and careless environmental organizations [63–65]. Ignore rules 

dispensed by Landfill Management Barzehkar et al. [66] and Kamdar et al. [67] stated that landfill is 

an essential part of the waste management chain, comprising waste bargain, recycling, reusing, 

composting, and lastly, landfilling. Basar et al. [68] introduced the REGIME method for PFS and used 

it for waste disposal site selection. Li et al. [69] introduced the GM (1, 1) model for PFNs and utilized 

their proposed model for site selection in SWM. Ren et al. [70] developed the novel MADM approach 

to finding a suitable site for SWM using the power Muirhead mean operator for a q-rung orthopair 

probabilistic hesitant fuzzy set. But, as mentioned above, these models cannot deal with the 

parameterized and multi-parameterized values of the considered alternatives. Karasan and Bolturk [71] 

proposed the combined compromise solution technique for disposal site selection under neutrosophic 

sets. They deliberated the truthiness, falsity, and indeterminacy of the considered alternatives. But, the 

combined compromise solution technique can also not accommodate the parameterized and multi-

parameterized values of the alternatives. On the other hand, our presented model in this research 

competently deals with the parameterized and multi-parameterized values of alternatives considering 

the truthiness, falsity, and indeterminacy. So, defining solid waste disposal and disposal sites is one of 

the most significant and problematic steps. 

1.1. Motivation 

The NHSS is a competent amalgam of the NS and HSS, a dominant scientific tool for conciliation 

with ambiguous, inconsistent, and incomplete facts. It has been found that AOs perform a crucial role 

in DM, so cooperative evaluation data from disparate origins can be designed into specific verdicts. 

To our expertise, there is no application of AOs in the literature under the NHSS setting. Still, not all 

of the above methods are suitable for summarizing neutrosophic hypersoft numbers (NHSNs), and 
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they cannot be intentionally associated with the multi sub-attributes of the parameters MD, NMD, and 

indeterminacy. We can say that the results of MD or other degrees of NMD and the effect of 

indeterminacy on the corresponding average and geometric AOs do not interrupt the entire procedure. 

So, the consequences of the present models are obscene and do not effectively order predilection for 

substitutes. The techniques defined in [48,50,55,56] are inappropriate for assessing facts in 

determining the ability to attain improved ideas and precise outcomes. All these existing theories 

cannot handle the indeterminacy of the multi sub-attributes of the alternatives. Meanwhile, 

Smarandache presented NHSS capably accommodating mentioned above obstacles, a hybrid tool to 

address the truthiness, falsity, and indeterminacy of the sub-attribute values. A boosted organizing 

procedure attracts investigators to flaw impenetrable and insufficient data. NHSS plays a vital part in 

DM concerning the exploration consequences by assembling various sources into a single value. Thus, 

to encourage the present investigation on NHSS, we will state AOs with their desirable properties built 

on irregular information. 

1.2. Significant Contributions 

We instigated a strategy to use NHSS information to select the right location for SWM to address 

these shortcomings. A rich organizational process leads investigators to poorly indescribable and 

scarce data to correct these shortcomings. The NHSS has played an essential role in interpreting the 

DM of exploration results by combining rich resources into a single value. The prevailing AOs for 

IFHSS and PFHSS cannot cope with the state when the facts of any multi-sub attribute comprise 

indeterminacy. It is an ingenious hybrid structure to cope with unpredicted problems during the DM 

practice. So, to initiate the current exploration of NHSS, we will state AOs based on rough data. The 

main intentions of the extant study are given as follows: 

(1)NHSS can integrate several aspects of the problem concerning several sub-attributes of 

parameters considered in the DM system. To maintain the benefits of this absorption, we extended the 

AOs of NHSS. 

(2)The AOs for NHSS are well-known gorgeous assessment AOs. In some situations, the 

prevalent AOs aspect is unresponsive to marking the precise finding over the DM method. To stun 

these particular obstacles, the existing AOs necessary to be revised. We regulate innovative operational 

laws for neutrosophic hypersoft numbers (NHSNs). 

(3)NHSWA and NHSWG operators have been presented with their crucial properties with settled 

algebraic operational laws. 

(4)Establish a new algorithm based on plan operators to solve the MCDM problem under the 

NHSS setting. 

(5)Site selection for SWM is a subservient feature of urbanization as it realizes the concrete 

circumstances for all aspects. SWM is an arduous but significant stage in the certified improvement 

(6)A comparative study of the advanced MCDM method and prevailing approaches has been 

offered to contemplate usefulness and dominance. 

The rest of the study can be summed up like this. Section 2 discusses fundamental notions 

such as SS, NSS, and NHSS, which comfort us in constructing the structure of the consequent 

study. Section 3 defines some operating laws for the NHSS and develops some AOs, such as NHSWA 

and NHSWG operators, with existing operational laws with the required properties. Section 4 uses a 

DM technique to resolve the MCDM issue using the planned operators. A mathematical illustration is 

given to certify the practicability of the established DM technique. Also, we employ some of the 
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present techniques for comparative analysis with our scheduled method. Furthermore, we extant the 

assistances, easiness, tractability, and efficacy of the proposed strategy in Section 5. An inclusive 

debate is organized between some existing methods and our established approach in the same section. 

2. Preliminaries 

In the subsequent section, we recollected necessary notions that assisted us in growing the present 

article's configuration, such as SS, NS, NSS, HSS, FHSS, and NHSS. 

Definition 2.1. [20] Let 𝒰 and ℰ be the universe of discourse and set of attributes, respectively, and 

𝒫(𝒰) be the power set of 𝒰 and ⩜⊆ ℰ. A pair (ℱ, ⩜) is called a soft set over 𝒰, where ℱ is a mapping: 

ℱ:⩜→ 𝒫(𝒰) 

Also, it can be defined as follows: 

(ℱ,⩜) = {ℱ(ℯ) ∈ 𝒫(𝒰): ℯ ∈ ℰ, ℱ(ℯ) = ∅ 𝑖𝑓 ℯ ∉⩜} 

Definition 2.2. [19] Let 𝓤 be a universe of discourse and ⩜ be an neutrosophic set on 𝓤 is defined as 

⩜= {𝒗, (𝓣⩜(𝒗), 𝓘⩜(𝒗), 𝕮⩜(𝒗)): 𝒗 ∈ 𝓤} , where 𝓣 , 𝓘 , 𝕮 :𝓤 → ]𝟎− , 𝟏+ [ and 𝟎−≤𝓣⩜(𝒗) + 𝓘⩜(𝒗) +

𝕮⩜(𝒗)≤𝟑
+. 

Definition 2.3. [40] Let 𝒰 be a universe of discourse and ℰ be a collection of parameters regarding 𝒰 

and 𝒫(𝒰) be a collection of all neutrosophic subsets of 𝒰 and ⩜⊆ ℰ. A pair (ℱ,⩜) is known as a 

neutrosophic soft set over 𝒰, where ℱ is a mapping: 

ℱ:⩜→ 𝒫(𝒰) 

Definition 2.4. [46] Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘={𝑘1, 𝑘2, 

𝑘3,..., 𝑘𝑛},(n≥1) and 𝐾𝑖 signified the set of parameters with their conforming sub-parameters, such as 

𝐾𝑖∩𝐾𝑗=φ, where 𝑖≠𝑗 for each 𝑛≥1 and 𝑖, 𝑗𝜖{1,2,3…𝑛}. Suppose 𝐾1×𝐾2×𝐾3×…×𝐾𝑛=⩜⃛={𝑑1ℎ × 𝑑2𝑘 ×

⋯× 𝑑𝑛𝑙} be a collection of sub-parameters, where 1≤ ℎ ≤ 𝛼, 1≤ 𝑘 ≤ 𝛽, and 1≤ 𝑙 ≤ 𝛾, and 𝛼,𝛽,𝛾 ∈ℕ. 

Then the pair (ℱ,𝐾1×𝐾2×𝐾3×…×𝐾𝑛=(ℱ,⩜⃛) is known as a hypersoft set, where ℱ is a mapping: 

ℱ:𝐾1×𝐾2×𝐾3×…×𝐾𝑛=⩜⃛→ 𝒫(𝒰). 

It is also defined as 

(ℱ,⩜⃛)={�̌�, ℱ⩜⃛(�̌�): �̌� ∈⩜⃛, ℱ⩜⃛(�̌�) ∈ 𝒫(𝒰)}. 

Definition 2.5. [46] Let 𝒰  be a universe of discourse and 𝒫 (𝒰 ) be a power set of 𝒰  and 

𝑘={𝑘1,𝑘2,𝑘3,...,𝑘𝑛},(n≥1) and 𝐾𝑖 signified the set of parameters with their conforming sub-parameters, 

such as 𝐾𝑖∩𝐾𝑗=φ, where 𝑖≠𝑗 for each 𝑛≥1 and 𝑖, 𝑗𝜖{1,2,3…𝑛}. Suppose 𝐾1×𝐾2×𝐾3×…×𝐾𝑛=⩜⃛={𝑑1ℎ ×

𝑑2𝑘 ×⋯× 𝑑𝑛𝑙} be a collection of multi-sub-attributes, where 1≤ ℎ ≤ 𝛼, 1≤ 𝑘 ≤ 𝛽, and 1≤ 𝑙 ≤ 𝛾, 

and 𝛼 ,𝛽 ,𝛾 ∈ℕ, and 𝑁𝑆𝒰  represents neutrosophic subsets over 𝒰 . Then, (ℱ, 𝐾1 × 𝐾2 × 𝐾3 × …×
𝐾𝑛 ⩜⃛) is called neutrosophic hypersoft set, where ℱ is a mapping: 

ℱ:𝐾1×𝐾2×𝐾3×…×𝐾𝑛=⩜⃛→ 𝑁𝑆𝒰. 

It is also defined as 

(ℱ,⩜⃛)={(�̌�, ℱ⩜⃛(�̌�)) : �̌� ∈⩜⃛, ℱ⩜⃛(�̌�) ∈ 𝑁𝑆
𝒰}, 
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where ℱ⩜⃛(�̌�)={〈𝑣, 𝒯ℱ(�̌�)(𝑣), ℐℱ(�̌�)(𝑣), ℭℱ(�̌�)(𝑣)〉 : 𝑣 ∈ 𝒰}, where 𝒯ℱ(�̌�)(𝑣), ℐℱ(�̌�)(𝑣), and ℭℱ(�̌�)(𝑣) 

symbolize the truthness, indeterminacy, and false values for attributes such as 𝒯ℱ(�̌�)(𝑣), ℐℱ(�̌�)(𝑣), 

ℭℱ(�̌�)(𝑣) ∈ [0, 1], and 0≤ 𝒯ℱ(�̌�)(𝑣)+ℐℱ(�̌�)(𝑣)+ℭℱ(�̌�)(𝑣) ≤3. 

Simply an NHSN can be stated as ℱ={(𝒯ℱ(�̌�)(𝑣), ℐℱ(�̌�)(𝑣), ℭℱ(�̌�)(𝑣))}, where 0 ≤ 𝒯ℱ(�̌�)(𝑣) +

ℐℱ(�̌�)(𝑣) + ℭℱ(�̌�)(𝑣) ≤3. 

Example 2.1. Consider 𝒰 = {𝑣1, 𝑣2}  be a universe of discourse and 𝔏= {𝐿1 =
𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑚𝑒𝑡ℎ𝑑𝑜𝑙𝑜𝑔𝑦, 𝐿2 = 𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑠, 𝐿3 = 𝐶𝑙𝑎𝑠𝑠𝑒𝑠}  are the deliberated aspects, and their 

corresponding n-tuple sub-attributes are given as follows: 𝐿1 = {𝑎11 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑏𝑎𝑠𝑒, 𝑎12 =
 𝑐𝑙𝑎𝑠𝑠 𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑖𝑜𝑛} , 𝐿2= {𝑎21 = 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠, 𝑎22 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 𝑎23 = 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠} , and 

Classes=𝐿3={𝑎31 = 𝑀𝑎𝑠𝑡𝑒𝑟𝑠, 𝑎32 = 𝐷𝑜𝑐𝑡𝑜𝑟𝑜𝑙}. Let ⩜⃛=𝐿1×𝐿2×𝐿3 be a set of attributes 

⩜⃛=𝐿1×𝐿2×𝐿3={𝑑11, 𝑑12} × {𝑑21, 𝑑22, 𝑑23} × {𝑑31, 𝑑32} 

={
(𝑑11, 𝑑21, 𝑑31), (𝑑11, 𝑑21, 𝑑32), (𝑑11, 𝑑22, 𝑑31), (𝑑11, 𝑑22, 𝑑32), (𝑑11, 𝑑23, 𝑑31), (𝑑11, 𝑑23, 𝑑32),
(𝑑12, 𝑑21, 𝑑31), (𝑑12, 𝑑21, 𝑑32), (𝑑12, 𝑑22, 𝑑31), (𝑑12, 𝑑22, 𝑑32), (𝑑12, 𝑑23, 𝑑31), (𝑑12, 𝑑23, 𝑑32),

} 

⩜⃛={�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8, �̌�9, �̌�10, �̌�11, �̌�12} 

Then the NHSS over 𝒰 is given as follows: 

(ℱ,⩜⃛)=

{
  
 

  
 (�̌�1, (𝛿1, (.6, .3, .8)), (𝛿2, (.9, .3, .5))) , (�̌�2, (𝛿1, (.5, .2, .7)), (𝛿2, (.7, .1, .5))) , (�̌�3, (𝛿1, (.5, .2, .8)), (𝛿2, (.4, .3, .4))) ,

 (�̌�4, (𝛿1, (. 2, .5, .6)), (𝛿2, (. 5, .1, .6))) , (�̌�5, (𝛿1, (. 8, .4, .3)), (𝛿2, (. 2, .3, .5))) , (�̌�6, (𝛿1, (. 9, .6, .4)), (𝛿2, (. 7, .6, .8))) ,

(�̌�7, (𝛿1, (.6. .5, .3)), (𝛿2, (.4, .2, .8))) , (�̌�8, (𝛿1, (.8, .2, .5)), (𝛿2, (.6, .8, .4))) , (�̌�9, (𝛿1, (.7, .4, .9)), (𝛿2, (.7. .3, .5))) ,

(�̌�10, (𝛿1, (.8, .4, .6)), (𝛿2, (.7, .2, .9))) , (�̌�11, (𝛿1, (.8, .4, .5)), (𝛿2, (.4, .2, .5))) , (�̌�12, (𝛿1, (.7, .5, .8)), (𝛿2, (.7, .5, .9))) . }
  
 

  
 

 

For simplicity, we will express ℱ𝑣𝑖(�̌�𝑗) = {{(𝒯ℱ(�̌�)(𝑣𝑖), ℐℱ(�̌�)(𝑣𝑖), ℭℱ(�̌�)(𝑣𝑖))} ⎸𝑣𝑖 ∈ 𝒰}  as 

𝔍�̌�𝑖𝑗 = ⟨𝒯ℱ(�̌�𝑖𝑗), 𝒥ℱ(�̌�𝑖𝑗), ℭℱ(�̌�𝑖𝑗)⟩  is called NHSN, where 0 ≤ 𝒯ℱ(�̌�𝑖𝑗) + 𝒥ℱ(�̌�𝑖𝑗) + ℭℱ(�̌�𝑖𝑗) ≤ 3 , and 

𝒯ℱ(�̌�𝑖𝑗), 𝒥ℱ(�̌�𝑖𝑗), ℭℱ(�̌�𝑖𝑗) ∈ [0, 1]. The score function for NHSNs 𝔍�̌�𝑖𝑗 is defined as follows: 

𝒮(𝔍�̌�𝑖𝑗)= 𝒯ℱ(�̌�𝑖𝑗) − ℭℱ(�̌�𝑖𝑗).        (2.1) 

Where 𝒮(𝔍�̌�𝑖𝑗) ∈ [−1, 1], sometimes the score function is unable to compare any two NHSNs. 

like 𝔍�̌�11 = ⟨0.6, 0.2, 0.2⟩  and 𝔍�̌�12 = ⟨0.5, 0.1, 0.1⟩ . Where 𝒮(𝔍�̌�11) =0.4= 𝒮(𝔍�̌�12)  in such cases, 

choosing which alternate is more applicable is challenging. To grasp such facts, we must present the 

accuracy function for NHSNs. 

𝘏(𝔍�̌�𝑖𝑗)=𝒯ℱ(�̌�𝑖𝑗) + 𝒥ℱ(�̌�𝑖𝑗) + ℭℱ(�̌�𝑖𝑗), 𝘏(𝔍�̌�𝑖𝑗) ∈ [0, 1].     (2.2) 

In the succeeding, we extant the comparison laws to relate NHSNs 𝔍�̌�𝑖𝑗 and 𝔗�̌�𝑖𝑗such as 

(1) If 𝒮(𝔍�̌�𝑖𝑗) > 𝒮(𝔗�̌�𝑖𝑗), then 𝔍�̌�𝑖𝑗 > 𝔗�̌�𝑖𝑗. 

(2) If 𝒮(𝔍�̌�𝑖𝑗) = 𝒮(𝔗�̌�𝑖𝑗), then 

 If 𝘏(𝔍�̌�𝑖𝑗) > 𝘏(𝔗�̌�𝑖𝑗), then 𝔍�̌�𝑖𝑗 > 𝔗�̌�𝑖𝑗; 

 If 𝘏 (𝔍�̌�𝑖𝑗) = 𝘏(𝔗�̌�𝑖𝑗), then 𝔍�̌�𝑖𝑗 = 𝔗�̌�𝑖𝑗. 
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3. Aggregation operators for neutrosophic hypersoft numbers 

In the following section, we will introduce the AOs, 𝑖. 𝑒., NHSWA, and NHSWG operators for 

NHSNs. We also discuss the fundamental properties of our developed AOs. 

Definition 3.1. Let 𝔍�̌�𝑘=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩, 𝔍�̌�11=⟨𝒯�̌�11 , 𝒥�̌�11 , ℭ�̌�11⟩, and 𝔍�̌�12=⟨𝒯�̌�12 , 𝒥�̌�12 , ℭ�̌�12⟩ be three 

NHSNs and 𝛼 > 0, and then the algebraic operational laws are defined as: 

(1) 𝔍�̌�11 ⊕𝔍�̌�12=⟨𝒯�̌�11 + 𝒯�̌�12 − 𝒯�̌�11𝒯�̌�12 , 𝒥�̌�11𝒥�̌�12 , ℭ�̌�11ℭ�̌�12⟩, 

(2) 𝔍�̌�11 ⊗𝔍�̌�12=⟨𝒯�̌�11𝒯�̌�12 , 𝒥�̌�11 + 𝒥�̌�12 − 𝒥�̌�11𝒥�̌�12 , ℭ�̌�11 + ℭ�̌�12 − ℭ�̌�11ℭ�̌�12⟩, 

(3) 𝛼𝔍�̌�𝑘=⟨1 − (1 − 𝒯�̌�𝑘)
𝛼
, 𝒥�̌�𝑘

𝛼 , ℭ�̌�𝑘
𝛼⟩, 

(4) 𝔍�̌�𝑘
𝛼 =⟨𝒯�̌�𝑘

𝛼 , 1 − (1 − 𝒥�̌�𝑘)
𝛼
, 1 − (1 − ℭ�̌�𝑘)

𝛼
⟩. 

Using the above presented algebraic operational laws, the AOs for NHSNs can be defined as follows. 

Definition 3.2. 𝔍�̌�𝑘=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩ be an NHSN, Ω𝑖 and γ𝑗 be the weights for experts and multi sub-

attributes of the deliberated attributes consistently along with indicated circumstances Ω𝑖 > 0, 
∑ Ω𝑖
𝑛
𝑖=1 =1, γ𝑗 >0, ∑ γ𝑗

𝑚
𝑗=1 =1. Then NHSWA operator can be defined as NHSWA: ∆𝑛→ ∆  and 

expressed as follows: 

𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚)=⊕𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍�̌�𝑖𝑗).    (3.1) 

Theorem 3.1. 𝔍�̌�𝑘=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩ be an NHSN, where (𝑖 = 1, 2, … , 𝑛, 𝑎𝑛𝑑 𝑗 = 1, 2, … ,𝑚). Then, 

obtained aggregated values using Eq 3.1 is also an NHSN and 

𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚)= 

⟨1 − ∏ (∏ (1 − 𝒯�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ (𝒥�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 , ∏ (∏ (ℭ�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.   (3.2) 

Ω𝑖  and γ𝑗  be the weights for specialists and multi sub-attributes of the intended parameters, 

respectively, along with indicated conditions Ω𝑖 >0, ∑ Ω𝑖
𝑛
𝑖=1 =1, γ𝑗 >0, ∑ γ𝑗

𝑚
𝑗=1 =1. 

Proof. Using the principle of mathematical induction NHSWA operator can be proved by utilizing the 

following steps: 

For 𝑛 = 1, we get Ω1=1. Then, we have 

𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�1𝑚)=⊕ 𝑗=1
𝑚 γ𝑗𝔍�̌�1𝑗 

=⟨1 − ∏ (1 − 𝒯�̌�1𝑗)
γ𝑗𝑚

𝑗=1 , ∏ (𝒥�̌�1𝑗)
γ𝑗𝑚

𝑗=1 , ∏ (ℭ�̌�1𝑗)
γ𝑗𝑚

𝑗=1 ⟩ 

=⟨1 − ∏ (∏ (1 − 𝒯�̌�𝑖𝑗)
Ω𝑖1

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ (𝒥�̌�𝑖𝑗)

Ω𝑖1
𝑖=1 )

γ𝑗
𝑚
𝑗=1 , ∏ (∏ (ℭ�̌�𝑖𝑗)

Ω𝑖1
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩. 

For 𝑚 = 1, we get γ1=1. Then, we have 

𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 , 𝔍�̌�21 , … , 𝔍�̌�𝑛1)=⊕𝑖=1
𝑛 Ω𝑖𝔍�̌�𝑖1 

= ⟨1 − ∏ (1 − 𝒯�̌�𝑖1)
Ω𝑖𝑛

𝑖=1 , ∏ (𝒥�̌�𝑖1)
Ω𝑖𝑛

𝑖=1 , ∏ (ℭ�̌�𝑖1)
Ω𝑖𝑛

𝑖=1 ⟩ 
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=⟨1 − ∏ (∏ (1 − 𝒯�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

1
𝑗=1 , ∏ (∏ (𝒥�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
1
𝑗=1 , ∏ (∏ (ℭ�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
1
𝑗=1 ⟩. 

So, for 𝑛 = 1 and 𝑚 = 1, Eq 3.2 satisfied. Consider Eq 3.2 holds for 𝑚 = 𝛽1 + 1, 𝑛 = 𝛽2 and 𝑚 =

𝛽1, 𝑛 = 𝛽2 + 1, such as: 

⊕𝑗=1
𝛽1+1 γ𝑗 (⊕𝑖=1

𝛽2 Ω𝑖𝔍�̌�𝑖𝑗)= 

⟨1 − ∏ (∏ (1 − 𝒯�̌�𝑖𝑗)
Ω𝑖𝛽2

𝑖=1 )
γ𝑗

𝛽1+1
𝑗=1 , ∏ (∏ (𝒥�̌�𝑖𝑗)

Ω𝑖𝛽2
𝑖=1 )

γ𝑗
𝛽1+1
𝑗=1 , ∏ (∏ (ℭ�̌�𝑖𝑗)

Ω𝑖𝛽2
𝑖=1 )

γ𝑗
𝛽1+1
𝑗=1 ⟩， 

⊕𝑗=1
𝛽1 γ𝑗 (⊕𝑖=1

𝛽2+1 Ω𝑖𝔍�̌�𝑖𝑗)= 

⟨1 − ∏ (∏ (1 − 𝒯�̌�𝑖𝑗)
Ω𝑖𝛽2+1

𝑖=1 )
γ𝑗

𝛽1
𝑗=1 , ∏ (∏ (𝒥�̌�𝑖𝑗)

Ω𝑖𝛽2+1
𝑖=1 )

γ𝑗
𝛽1
𝑗=1 , ∏ (∏ (ℭ�̌�𝑖𝑗)

Ω𝑖𝛽2+1
𝑖=1 )

γ𝑗
𝛽1
𝑗=1 ⟩. 

For 𝑚 = 𝛽1 + 1 and 𝑛 = 𝛽2 + 1, we have 

⊕𝑗=1
𝛽1+1 γ𝑗 (⊕𝑖=1

𝛽2+1 Ω𝑖𝔍�̌�𝑖𝑗)=⊕𝑗=1
𝛽1+1 γ𝑗 (⊕𝑖=1

𝛽2 Ω𝑖𝔍�̌�𝑖𝑗 ⊕Ω𝛽2+1𝔍�̌�(𝛽2+1)𝑗
) 

⊕𝑗=1
𝛽1+1 γ𝑗 (⊕𝑖=1

𝛽2+1 Ω𝑖𝔍�̌�𝑖𝑗)=⊕𝑗=1
𝛽1+1⊕𝑖=1

𝛽2 γ𝑗Ω𝑖𝔍�̌�𝑖𝑗 ⊕𝑗=1
𝛽1+1 γ𝑗Ω𝛽2+1𝔍�̌�(𝛽2+1)𝑗

 

=⟨
1 − ∏ (∏ (1 − 𝒯�̌�𝑖𝑗)

Ω𝑖𝛽2
𝑖=1 )

γ𝑗
𝛽1+1
𝑗=1 ⊕1−∏ ((1 − 𝒯(𝛽2+1)𝑗

2)
Ω𝛽2+1)

γ𝑗𝛽1+1
𝑗=1 ,

∏ (∏ (𝒥�̌�𝑖𝑗)
Ω𝑖𝛽2

𝑖=1 )
γ𝑗

𝛽1+1
𝑗=1 ⊕∏ ((𝒥(𝛽2+1)𝑗)

Ω𝛽2+1)
γ𝑗𝛽1+1

𝑗=1 , ∏ (∏ (ℭ�̌�𝑖𝑗)
Ω𝑖𝛽2

𝑖=1 )
γ𝑗

⊕
𝛽1+1
𝑗=1 ∏ ((ℭ(𝛽2+1)𝑗)

Ω𝛽2+1)
γ𝑗𝛽1+1

𝑗=1

⟩ 

=⟨1 − ∏ (∏ (1 − 𝒯�̌�𝑖𝑗)
Ω𝑖𝛽2+1

𝑖=1 )
γ𝑗

𝛽1+1
𝑗=1 , ∏ (∏ (𝒥�̌�𝑖𝑗)

Ω𝑖𝛽2+1
𝑖=1 )

γ𝑗
𝛽1+1
𝑗=1 , ∏ (∏ (ℭ�̌�𝑖𝑗)

Ω𝑖𝛽2+1
𝑖=1 )

γ𝑗
𝛽1+1
𝑗=1 ⟩. 

Therefore, it is correct for 𝑚 = 𝛽1 + 1 and 𝑛 = 𝛽2 + 1. 

Example 3.1. Let 𝒰 ={ 𝜅1 , 𝜅2 , 𝜅3 } be a collection of experts with their weights 

Ω𝑖=(0.143, 0.514, 0.343)
𝑇. The group of specialists is operational to precise the attractiveness of a 

firm using a defined set of attributes 𝔏′ = {𝑑1 = 𝑙𝑎𝑤𝑛, 𝑑2 = 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑠𝑦𝑠𝑡𝑒𝑚} with their conforming 

sub-attributes; Lawn =𝑑1={𝑑11 = 𝑤𝑖𝑡ℎ 𝑔𝑟𝑎𝑠𝑠, 𝑑12 = 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑔𝑟𝑎𝑠𝑠}, security system =𝑑2={𝑑21 =
𝑔𝑢𝑎𝑟𝑑𝑠, 𝑑22 = 𝑐𝑎𝑚𝑒𝑟𝑎𝑠}. Let 𝔏′=𝑑1×𝑑2 be a set of multi sub-attributes 

𝔏′=𝑑1×𝑑2={𝑑11, 𝑑12} × {𝑑21, 𝑑22}={(𝑑11, 𝑑21), (𝑑11, 𝑑22), (𝑑12, 𝑑21), (𝑑12, 𝑑22)}. 

𝔏′={�̌�1, �̌�2, �̌�3, �̌�4}  with weights γ𝑗 =(. 35, .15, .2, .3)𝑇 . Specialists' estimation for each multi-sub-

attribute in the form of NHSNs (𝔍, 𝔏′)=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩
3×4

given as follows: 

(𝔍, 𝔏′)=[

(. 3, .8, .6) (. 4, .6, .3) (. 8, .3, .6) (. 2, .5, .6)
(. 8, .3, .7) (. 5, .7, .4) (. 1, .7, .3) (. 9, .4, .8)
(. 3, .6, .5) (. 8, .5, .7) (. 2, .6, .5) (. 8, .5, .4)

]. 

Using Eq 3.2. 

𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�34) 
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= ⟨1 −∏(∏(1 − 𝒯�̌�𝑖𝑗)
Ω𝑖

3

𝑖=1

)

γ𝑗4

𝑗=1

,∏(∏(𝒥�̌�𝑖𝑗)
Ω𝑖

3

𝑖=1

)

γ𝑗4

𝑗=1

,∏(∏(ℭ�̌�𝑖𝑗)
Ω𝑖

3

𝑖=1

)

γ𝑗4

𝑗=1

⟩ 

=⟨

1 − ({(. 7).143(. 2).514(. 7).343}.35{(. 6).143(. 5).514(. 2).343}.15{(. 2).143(. 9).514(. 8).343}.2{(. 8).143(. 1).514(. 2).343}.3),

({(. 8).143(. 3).514(. 6).343}.35{(. 6).143(. 7).514(. 5).343}.15{(. 3).143(. 7).514(. 6).343}.2, {(. 5).143(. 4).514(. 5).343}.3),

({(. 6).143(. 7).514(. 5).343}.35{(. 3).143(. 4).514(. 7).343}.15{(. 6).143(. 3).514(. 5).343}.2, {(. 6).143(. 8).514(. 4).343}.3)

⟩ 

=⟨

1 − ({. 35478}.35{. 35613}.15{. 59346}.2{. 16699}.3),

({. 42815}.35{. 57972}.15{. 52147}.2, {. 41596}.3),

({. 57972}.35{. 41235}.15{. 42092}.2, {. 57516}.3)，

⟩ 

=⟨. 68615, .46206, .51546⟩. 

3.1. Properties of NHSWA operator 

3.1.1. Idempotency 

If 𝔍�̌�𝑖𝑗=𝔍�̌�=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩ ∀𝑖, 𝑗. Then, 

𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚)=𝔍�̌�. 

Proof. As we know that all 𝔍�̌�𝑖𝑗=𝔍�̌�=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩ ∀𝑖, 𝑗. Then, using Eq 3.2 

𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚) 

=⟨1 − ∏ (∏ (1 − 𝒯�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ (𝒥�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 , ∏ (∏ (ℭ�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩ 

=⟨1 − ((1 − 𝒯�̌�𝑖𝑗)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ γ𝑗
𝑚
𝑗=1

, ((𝒥�̌�𝑖𝑗)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ γ𝑗
𝑚
𝑗=1

, ((ℭ�̌�𝑖𝑗)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ γ𝑗
𝑚
𝑗=1

⟩ 

=⟨1 − (1 − 𝒯�̌�𝑖𝑗) , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩=𝔍�̌�. 

3.1.2. Boundedness 

Let 𝔍�̌�𝑖𝑗=\⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩ be a collection of NHSNs. 

𝔍�̌�𝑖𝑗
−

=⟨𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒯�̌�𝑖𝑗} ,

𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{𝒥�̌�𝑖𝑗} ,

𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{ℭ�̌�𝑖𝑗}⟩ and 

𝔍�̌�𝑖𝑗
+

=⟨𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{𝒯�̌�𝑖𝑗} ,

𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒥�̌�𝑖𝑗} ,

𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{ℭ�̌�𝑖𝑗}⟩, then 

𝔍�̌�𝑖𝑗
− ≤ 𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚) ≤ 𝔍�̌�𝑖𝑗

+
. 

Proof. Since 𝔍�̌�𝑖𝑗=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩ be a collection of NHSNs∀𝑖, 𝑗. Then, 
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𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒯�̌�𝑖𝑗} ≤ 𝒯�̌�𝑖𝑗 ≤

𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒯�̌�𝑖𝑗} 

⇒ 1 −
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒯�̌�𝑖𝑗} ≤ 1 − 𝒯�̌�𝑖𝑗 ≤ 1 −

𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒯�̌�𝑖𝑗} 

⇔ (1 −
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒯�̌�𝑖𝑗})

Ω𝑖

≤ (1 − 𝒯�̌�𝑖𝑗)
Ω𝑖
≤ (1 −

𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒯�̌�𝑖𝑗})

Ω𝑖

 

⇔ (1 −
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒯�̌�𝑖𝑗})

∑ Ω𝑖
𝑛
𝑖=1

≤∏(1 − 𝒯�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

≤ (1 −
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒯�̌�𝑖𝑗})

∑ Ω𝑖
𝑛
𝑖=1

 

⇔ (1 −
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒯�̌�𝑖𝑗})

∑ γ𝑗
𝑚
𝑗=1

≤∏(∏(1 − 𝒯�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

)

γ𝑗𝑚

𝑗=1

≤ (1 −
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒯�̌�𝑖𝑗})

∑ γ𝑗
𝑚
𝑗=1

 

⇔ 1−
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒯�̌�𝑖𝑗} ≤∏(∏(1 − 𝒯�̌�𝑖𝑗)

Ω𝑖
𝑛

𝑖=1

)

γ𝑗𝑚

𝑗=1

≤ 1 −
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒯�̌�𝑖𝑗} 

⇔ 𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒯�̌�𝑖𝑗} ≤ 1 − ∏ (∏ (1 − 𝒯�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ≤ 𝑚𝑎𝑥

𝑗
𝑚𝑎𝑥
𝑖
{𝒯�̌�𝑖𝑗}.   (3.3) 

Again, 

𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒥�̌�𝑖𝑗} ≤ 𝒥�̌�𝑖𝑗 ≤

𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒥�̌�𝑖𝑗} 

⇒ (
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒥�̌�𝑖𝑗})

∑ Ω𝑖
𝑛
𝑖=1

≤∏(𝒥�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

≤ (
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒥�̌�𝑖𝑗})

∑ Ω𝑖
𝑛
𝑖=1

 

⇔
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒥�̌�𝑖𝑗} ≤∏(𝒥�̌�𝑖𝑗)

Ω𝑖
𝑛

𝑖=1

≤
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒥�̌�𝑖𝑗} 

⇔ (
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒥�̌�𝑖𝑗})

γ𝑗

≤ (∏(𝒥�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

)

γ𝑗

≤ (
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒥�̌�𝑖𝑗})

γ𝑗

 

⇔ (
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒥�̌�𝑖𝑗})

∑ γ𝑗
𝑚
𝑗=1

≤∏(∏(𝒥�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

)

γ𝑗𝑚

𝑗=1

≤ (
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒥�̌�𝑖𝑗})

∑ γ𝑗
𝑚
𝑗=1

. 

So, we get 

⇔ 𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒥�̌�𝑖𝑗} ≤ ∏ (∏ (𝒥�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ≤ 𝑚𝑎𝑥

𝑗
𝑚𝑎𝑥
𝑖
{𝒥�̌�𝑖𝑗},   (3.4) 

and 

𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{ℭ�̌�𝑖𝑗} ≤ ℭ�̌�𝑖𝑗 ≤

𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{ℭ�̌�𝑖𝑗} 
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⇒ (
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{ℭ�̌�𝑖𝑗})

∑ Ω𝑖
𝑛
𝑖=1

≤∏(ℭ�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

≤ (
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{ℭ�̌�𝑖𝑗})

∑ Ω𝑖
𝑛
𝑖=1

 

⇔
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{ℭ�̌�𝑖𝑗} ≤∏(ℭ�̌�𝑖𝑗)

Ω𝑖
𝑛

𝑖=1

≤
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{ℭ�̌�𝑖𝑗} 

⇔ (
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{ℭ�̌�𝑖𝑗})

γ𝑗

≤ (∏(ℭ�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

)

γ𝑗

≤ (
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{ℭ�̌�𝑖𝑗})

γ𝑗

 

⇔ (
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{ℭ�̌�𝑖𝑗})

∑ γ𝑗
𝑚
𝑗=1

≤∏(∏(ℭ�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

)

γ𝑗𝑚

𝑗=1

≤ (
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{ℭ�̌�𝑖𝑗})

∑ γ𝑗
𝑚
𝑗=1

. 

So, we get 

⇔ 𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{ℭ�̌�𝑖𝑗} ≤ ∏ (∏ (ℭ�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ≤ 𝑚𝑎𝑥

𝑗
𝑚𝑎𝑥
𝑖
{ℭ�̌�𝑖𝑗}.    (3.5) 

Let 𝑁𝐻𝑆𝑊𝐴 (𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚) = ⟨𝒯�̌� , 𝒥�̌� , ℭ�̌�⟩ = 𝔍�̌� , then inequalities (3.3)–(3.5) can be 

transformed into the following form: 
𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒯�̌�𝑖𝑗} ≤ 𝒯�̌� ≤

𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{𝒯�̌�𝑖𝑗} , 

𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒥�̌�𝑖𝑗} ≤ 𝒥�̌� ≤

𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{𝒥�̌�𝑖𝑗}, and 

𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{ℭ�̌�𝑖𝑗} ≤ ℭ�̌� ≤

𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{ℭ�̌�𝑖𝑗} respectively. 

Using Eq 2.1, we get the following: 

𝒮(𝔍�̌�)=𝒯�̌� − ℭ�̌� ≤
𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{𝒯�̌�𝑖𝑗} −

𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{ℭ�̌�𝑖𝑗}=𝒮 (𝔍�̌�𝑖𝑗

+), 

𝒮(𝔍�̌�)=𝒯�̌� − ℭ�̌� ≥
𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒯�̌�𝑖𝑗} −

𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{ℭ�̌�𝑖𝑗}=𝒮 (𝔍�̌�𝑖𝑗

−). 

Then, order relation to two NHSNs, we have 

𝔍�̌�𝑖𝑗
− ≤ 𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚) ≤ 𝔍�̌�𝑖𝑗

+
. 

3.1.3. Shift Invariance 

If 𝔍�̌�=⟨𝒯�̌�, 𝒥�̌� , ℭ�̌�⟩ be an NHSN. Then, 

𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 ⊕𝔍�̌� , 𝔍�̌�12 ⊕𝔍�̌� , … , 𝔍�̌�𝑛𝑚 ⊕𝔍�̌�)=𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚) ⊕ 𝔍�̌�. 

Proof. Assume 𝔍�̌� be an NHSN and 𝔍�̌�𝑖𝑗 be a collection of NHSNs. Utilizing operational laws, we 

have: 

𝔍�̌�⊕𝔍�̌�𝑛𝑚=⟨𝒯�̌� + 𝒯�̌�𝑖𝑗 − 𝒯�̌�𝒯�̌�𝑖𝑗 , 𝒥�̌�𝒥�̌�𝑖𝑗 , ℭ�̌�ℭ�̌�𝑖𝑗⟩. 

So 

𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 ⊕𝔍�̌� , 𝔍�̌�12 ⊕𝔍�̌� , … , 𝔍�̌�𝑛𝑚 ⊕𝔍�̌�)=⊕𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖 (𝔍�̌�𝑖𝑗 ⊕𝔍�̌�)) 
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=⟨
1 − ∏ (∏ (1 − 𝒯�̌�𝑖𝑗)

Ω𝑖
(1 − 𝒯�̌�)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 , ∏ (∏ (𝒥�̌�𝑖𝑗)

Ω𝑖
(𝒥�̌�)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ,

∏ (∏ (ℭ�̌�𝑖𝑗)
Ω𝑖
(ℭ�̌�)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1

⟩ 

=⟨
1 − (1 − 𝒯�̌�)∏ (∏ (1 − 𝒯�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 , 𝒥�̌�∏ (∏ (𝒥�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ,

ℭ�̌�∏ (∏ (ℭ�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1

⟩ 

=⟨
1 − ∏ (∏ (1 − 𝒯�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 , ∏ (∏ (𝒥�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ,

∏ (∏ (ℭ�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1

⟩ ⊕ ⟨𝒯�̌� , 𝒥�̌�, ℭ�̌�⟩ 

=𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚) ⊕ 𝔍�̌�. 

3.1.4. Homogeneity 

Let 𝛼 > 0; then, we have to Prove that 

𝑁𝐻𝑆𝑊𝐴(𝛼𝔍�̌�11 , 𝛼𝔍�̌�12 … , 𝛼𝔍�̌�𝑛𝑚)=𝛼𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚). 

Proof. Let 𝔍�̌�𝑖𝑗=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩ be a collection of NHSNs∀𝑖, 𝑗, and 𝛼 is any positive real number. 

Then, 

𝛼𝔍�̌�𝑖𝑗=⟨1 − (1 − 𝒯�̌�𝑖𝑗)
𝛼
, 𝒥�̌�𝑖𝑗

𝛼, ℭ�̌�𝑖𝑗
𝛼⟩. 

So, 

𝑁𝐻𝑆𝑊𝐴(𝛼𝔍�̌�11 , 𝛼𝔍�̌�12 … , 𝛼𝔍�̌�𝑛𝑚) 

=⟨1 − ∏ (∏ (1 − 𝒯�̌�𝑖𝑗)
𝛼Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ (𝒥�̌�𝑖𝑗)

𝛼Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 , ∏ (∏ (ℭ�̌�𝑖𝑗)

𝛼Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩ 

=⟨1 − (∏ (∏ (1 − 𝒯�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 )

𝛼

, (∏ (∏ (𝒥�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 )

𝛼

, (∏ (∏ (ℭ�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 )

𝛼

⟩ 

=𝛼𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚). 

3.1.5. Monotonicity 

Let 𝔍�̌�𝑖𝑗=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩ and 𝔍�̌�𝑖𝑗
∗ =⟨𝒯�̌�𝑖𝑗

∗ , 𝒥�̌�𝑖𝑗
∗ , ℭ�̌�𝑖𝑗

∗ ⟩ be the collection of NHSNs. Then 

𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚) ≤ 𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11
∗ , 𝔍�̌�12

∗ , … , 𝔍�̌�𝑛𝑚
∗ ), if 𝔍�̌�𝑖𝑗 ≤ 𝔍�̌�𝑖𝑗

∗ ∀𝑖, 𝑗. 

Proof. Let 𝑓(𝑥) =
1−𝑥

1+𝑥
, 𝑥 ∈ [0, 1], then 

𝑑

𝑑𝑥
(𝑓(𝑥)) =

−2

(1+𝑥)2
< 0. So, 𝑓(𝑥) is decreasing function on 

]0, 1]. If 𝒯�̌�𝑖𝑗 ≤ 𝒯�̌�𝑖𝑗
∗ , then 𝑓 (𝒯�̌�𝑖𝑗

∗ ) ≤ 𝑓 (𝒯�̌�𝑖𝑗)∀𝑖, 𝑗.i.e., 
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1 − 𝒯�̌�𝑖𝑗
∗ ≤ 1 − 𝒯�̌�𝑖𝑗 . 

Where, Ω𝑖 >0, ∑ Ω𝑖
𝑛
𝑖=1 =1, γ𝑗 >0, ∑ γ𝑗

𝑚
𝑗=1 =1. So, 

((1 − 𝒯�̌�𝑖𝑗
∗ )

∑ Ω𝑖
𝑛
𝑖=1

)

∑ γ𝑗
𝑚
𝑗=1

≤ ((1 − 𝒯�̌�𝑖𝑗)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ γ𝑗
𝑚
𝑗=1

 

⇒ (∏(1 − 𝒯�̌�𝑖𝑗
∗ )

Ω𝑖
𝑛

𝑖=1

)

∑ γ𝑗
𝑚
𝑗=1

≤ (∏(1 − 𝒯�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

)

∑ γ𝑗
𝑚
𝑗=1

 

⇒ ∏ (∏ (1 − 𝒯�̌�𝑖𝑗
∗ )

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ≤ ∏ (∏ (1 − 𝒯�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1  

⇒ 1 − ∏ (∏ (1 − 𝒯�̌�𝑖𝑗
∗ )

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ≥ 1 −∏ (∏ (1 − 𝒯�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 . 

Again let 𝑔(𝑦) =
2−𝑦

𝑦
, 𝑦 ∈ [0, 1], then 

𝑑

𝑑𝑦
(𝑔(𝑦)) =  

−2

𝑦2
< 0. So, 𝑔(𝑦) is decreasing function on 

]0, 1]. If 𝒥�̌�𝑖𝑗
∗ ≤ 𝒥�̌�𝑖𝑗, then 𝑔 (𝒥�̌�𝑖𝑗

∗ ) ≥ 𝑔 (𝒥�̌�𝑖𝑗)∀𝑖, 𝑗. i.e., 

𝒥�̌�𝑖𝑗
∗ ≤ 𝒥�̌�𝑖𝑗. 

As we know that Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1 = , γ𝑗 >0, ∑ γ𝑗

𝑚
𝑗=1 =1. So, 

((𝒥�̌�𝑖𝑗
∗ )

∑ Ω𝑖
𝑛
𝑖=1

)

 ∑ γ𝑗
𝑚
𝑗=1

≤ ((𝒥�̌�𝑖𝑗)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ γ𝑗
𝑚
𝑗=1

 

⇒ (∏(𝒥�̌�𝑖𝑗
∗ )

Ω𝑖
𝑛

𝑖=1

)

 ∑ γ𝑗
𝑚
𝑗=1

≤ (∏(𝒥�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

)

∑ γ𝑗
𝑚
𝑗=1

 

⇒ ∏ (∏ (𝒥�̌�𝑖𝑗
∗ )

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ≤ ∏ (∏ (𝒥�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 . 

Again let ℎ(𝑡) =
1

𝑡
, 𝑡 ∈ [0, 1], then 

𝑑

𝑑𝑡
(ℎ(𝑡)) =

−1

𝑡2
< 0. So, ℎ(𝑡) is decreasing function on ]0, 1]. 

If ℭ�̌�𝑖𝑗
∗ ≤ ℭ�̌�𝑖𝑗, then ℎ (ℭ�̌�𝑖𝑗

∗ ) ≥ ℎ (ℭ�̌�𝑖𝑗)∀𝑖, 𝑗. i.e., 

ℭ�̌�𝑖𝑗
∗ ≤ ℭ�̌�𝑖𝑗. 
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As we know that Ω𝑖 >0, ∑ Ω𝑖
𝑛
𝑖=1 =1, γ𝑗 >0, ∑ γ𝑗

𝑚
𝑗=1 =1. So, 

((ℭ�̌�𝑖𝑗
∗ )

∑ Ω𝑖
𝑛
𝑖=1

)

 ∑ γ𝑗
𝑚
𝑗=1

≤ ((ℭ�̌�𝑖𝑗)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ γ𝑗
𝑚
𝑗=1

  

⇒ (∏(ℭ�̌�𝑖𝑗
∗ )

Ω𝑖
𝑛

𝑖=1

)

 ∑ γ𝑗
𝑚
𝑗=1

≤ (∏(ℭ�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

)

 ∑ γ𝑗
𝑚
𝑗=1

 

⇒ ∏ (∏ (ℭ�̌�𝑖𝑗
∗ )

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ≤ ∏ (∏ (ℭ�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 . 

So, it is proven that 

𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚) ≤ 𝑁𝐻𝑆𝑊𝐴(𝔍�̌�11
∗ , 𝔍�̌�12

∗ , … , 𝔍�̌�𝑛𝑚
∗ ). 

Definition 3.3. 𝔍�̌�𝑘=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩ be an NHSN, Ω𝑖 and γ𝑗 be weights for experts and multi sub-

attributes of the deliberated attributes, respectively, along with indicated surroundings Ω𝑖 > 0, 
∑ Ω𝑖
𝑛
𝑖=1 =1, γ𝑗 >0, ∑ γ𝑗

𝑚
𝑗=1 =1. Then NHSWG operator can be demarcated as follows: NHSWG: ∆𝑛→

∆ defined as follows 

𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚)=⊗𝑗=1
𝑚 (⊗𝑖=1

𝑛 𝔍
�̌�𝑛𝑚

Ω𝑖 )
γ𝑗

.     (3.6) 

Theorem 3.2. 𝔍�̌�𝑘=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩ be an NHSN, where (𝑖 = 1, 2, … , 𝑛, 𝑎𝑛𝑑 𝑗 = 1, 2, … ,𝑚). Then, 

obtained aggregated values using Eq 3.6 is also an NHSN and 

𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚)= 

⟨∏ (∏ (𝒯�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , 1 − ∏ (∏ (1 − 𝒥�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 , 1 − ∏ (∏ (1 − ℭ�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩. (3.7) 

Ω𝑖  and γ𝑗  be the weights for specialists and multi sub-attributes of the intended parameters, 

respectively, along with indicated conditions Ω𝑖 >0, ∑ Ω𝑖
𝑛
𝑖=1 =1, γ𝑗 >0, ∑ γ𝑗

𝑚
𝑗=1 =1. 

Proof. Using the principle of mathematical induction NHSWG operator can be proved by utilizing the 

following steps 

For 𝑛 = 1, we get Ω1=1. Then, we have 

𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�1𝑚)=⊗𝑗=1
𝑚 𝔍

�̌�1𝑗

γ𝑗
 

=⟨∏ (𝒯�̌�1𝑗)
γ𝑗𝑚

𝑗=1 , 1 − ∏ (1 − 𝒥�̌�1𝑗)
γ𝑗𝑚

𝑗=1 , 1 − ∏ (1 − ℭ�̌�1𝑗)
γ𝑗𝑚

𝑗=1 ⟩ 

=⟨∏ (∏ (𝒯�̌�𝑖𝑗)
Ω𝑖1

𝑖=1 )
γ𝑗

,𝑚
𝑗=1 1 − ∏ (∏ (1 − 𝒥�̌�𝑖𝑗)

Ω𝑖1
𝑖=1 )

γ𝑗
𝑚
𝑗=1 , 1 − ∏ (∏ (1 − ℭ�̌�𝑖𝑗)

Ω𝑖1
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩. 

For 𝑚 = 1, we get γ1=1. Then, we have 
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𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�21 , … , 𝔍�̌�𝑛1)=⊗𝑖=1
𝑛 (𝔍�̌�𝑖1)

Ω𝑖
 

=⟨∏ (𝒯�̌�𝑖1)
Ω𝑖𝑛

𝑖=1 , 1 − ∏ (1 − 𝒥�̌�𝑖1)
Ω𝑖𝑛

𝑖=1 , 1 − ∏ (1 − ℭ�̌�𝑖1)
Ω𝑖𝑛

𝑖=1 ⟩ 

=⟨∏ (∏ (𝒯�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

1
𝑗=1 , 1 − ∏ (∏ (1 − 𝒥�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
1
𝑗=1 , 1 − ∏ (∏ (1 − ℭ�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
1
𝑗=1 ⟩. 

For 𝑛 = 1 and 𝑚 = 1, Eq 3.7 satisfied the NHSWG operator. Let Eq 3.7 holds for 𝑚 = 𝛽1 + 1, 

𝑛 = 𝛽2 and 𝑚 = 𝛽1, 𝑛 = 𝛽2 + 1, such as: 

⊗𝑗=1
𝛽1+1 ((⊗𝑖=1

𝛽2 (𝔍�̌�𝑖𝑗)
Ω𝑖
))

γ𝑗

= 

⟨∏ (∏ (𝒯�̌�𝑖𝑗)
Ω𝑖𝛽2

𝑖=1 )
γ𝑗

𝛽1+1
𝑗=1 , 1 − ∏ (∏ (1 − 𝒥�̌�𝑖𝑗)

Ω𝑖𝛽2
𝑖=1 )

γ𝑗
𝛽1+1
𝑗=1 , 1 − ∏ (∏ (1 − ℭ�̌�𝑖𝑗)

Ω𝑖𝛽2
𝑖=1 )

γ𝑗
𝛽1+1
𝑗=1 ⟩, 

⊗𝑗=1
𝛽1 ((⊗𝑖=1

𝛽2+1 (𝔍�̌�𝑖𝑗)
Ω𝑖
))

γ𝑗

= 

⟨∏ (∏ (𝒯�̌�𝑖𝑗)
Ω𝑖𝛽2+1

𝑖=1 )
γ𝑗

𝛽1
𝑗=1 , 1 − ∏ (∏ (1 − 𝒥�̌�𝑖𝑗)

Ω𝑖𝛽2+1
𝑖=1 )

γ𝑗
𝛽1
𝑗=1 , 1 − ∏ (∏ (1 − ℭ�̌�𝑖𝑗)

Ω𝑖𝛽2+1
𝑖=1 )

γ𝑗
𝛽1
𝑗=1 ⟩. 

For 𝑚 = 𝛽1 + 1 and 𝑛 = 𝛽2 + 1, we have 

⊗𝑗=1
𝛽1+1 ((⊗𝑖=1

𝛽2+1 (𝔍�̌�𝑖𝑗)
Ω𝑖
))

γ𝑗

=⊗𝑗=1
𝛽1+1 ((⊗𝑖=1

𝛽2+1 (𝔍�̌�𝑖𝑗)
Ω𝑖
⊗ (𝔍�̌�(𝛽2+1)𝑗

)
Ω𝛽2+1

))

γ𝑗

 

⊗𝑗=1
𝛽1+1 ((⊗𝑖=1

𝛽2+1 (𝔍�̌�𝑖𝑗)
Ω𝑖
))

γ𝑗

=⊗𝑗=1
𝛽1+1 (⊗𝑖=1

𝛽2 (𝔍�̌�𝑖𝑗)
Ω𝑖
)
γ𝑗

⊗𝑗=1
𝛽1+1 ((𝔍�̌�(𝛽2+1)𝑗

)
Ω𝛽2+1

)
γ𝑗

 

=⟨

∏ (∏ (𝒯�̌�𝑖𝑗)
Ω𝑖𝛽2

𝑖=1 )
γ𝑗

𝛽1+1
𝑗=1 ⊗∏ ((𝒯(𝛽2+1)𝑗

2)
Ω𝛽2+1)

γ𝑗𝛽1+1
𝑗=1 ,

1 − ∏ (∏ (1 − 𝒥�̌�𝑖𝑗)
Ω𝑖𝛽2

𝑖=1 )
γ𝑗

𝛽1+1
𝑗=1 ⊗1−∏ ((1 − 𝒥(𝛽2+1)𝑗)

Ω𝛽2+1)
γ𝑗𝛽1+1

𝑗=1 ,

1 − ∏ (∏ (1 − ℭ�̌�𝑖𝑗)
Ω𝑖𝛽2

𝑖=1 )
γ𝑗

⊗
𝛽1+1
𝑗=1 1 − ∏ ((1 − ℭ(𝛽2+1)𝑗)

Ω𝛽2+1)
γ𝑗𝛽1+1

𝑗=1

⟩ 

= ⟨∏ (∏ (𝒯�̌�𝑖𝑗)
Ω𝑖𝛽2+1

𝑖=1 )
γ𝑗

𝛽1+1
𝑗=1 , 1 − ∏ (∏ (1 − 𝒥�̌�𝑖𝑗)

Ω𝑖𝛽2+1
𝑖=1 )

γ𝑗
𝛽1+1
𝑗=1 , 1 − ∏ (∏ (1 −

𝛽2+1
𝑖=1

𝛽1+1
𝑗=1

ℭ�̌�𝑖𝑗)
Ω𝑖
)
γ𝑗

⟩. 

Hence, it is true for 𝑚 = 𝛽1 + 1 and 𝑛 = 𝛽2 + 1. 

Example 3.2. Let 𝒰 ={ 𝜅1 , 𝜅2 , 𝜅3 } be a collection of specialists with their weights 

Ω𝑖=(0.143, 0.514, 0.343)
𝑇. The team of experts is operational to precise the attractiveness of a firm 

using a defined set of attributes 𝔏′={𝑑1 = 𝑙𝑎𝑤𝑛, 𝑑2 = 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑠𝑦𝑠𝑡𝑒𝑚} with their conforming sub-

attributes, Lawn =𝑑1= {𝑑11 = 𝑤𝑖𝑡ℎ 𝑔𝑟𝑎𝑠𝑠, 𝑑12 = 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑔𝑟𝑎𝑠𝑠} , security system =𝑑2={𝑑21 =
𝑔𝑢𝑎𝑟𝑑𝑠, 𝑑22 =  𝑐𝑎𝑚𝑒𝑟𝑎𝑠}. Let 𝔏′=𝑑1×𝑑2 be a set of multi sub-attributes 
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𝔏′=𝑑1×𝑑2={𝑑11, 𝑑12} × {𝑑21, 𝑑22}={(𝑑11, 𝑑21), (𝑑11, 𝑑22), (𝑑12, 𝑑21), (𝑑12, 𝑑22)}. 

𝔏′={�̌�1, �̌�2, �̌�3, �̌�4}  with weights γ𝑗 =(. 35, .15, .2, .3)𝑇 . Specialists' estimation for each multi-sub-

attribute in the term of NHSNs (𝔍, 𝔏′)=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩
3×4

given as follows: 

(𝔍, 𝔏′)=[

(. 3, .8, .6) (. 4, .6, .3) (. 8, .3, .6) (. 2, .5, .6)
(. 8, .3, .7) (. 5, .7, .4) (. 1, .7, .3) (. 9, .4, .8)
(. 3, .6, .5) (. 8, .5, .7) (. 2, .6, .5) (. 8, .5, .4)

]. 

Using Eq 3.7.， 

𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�34)= 

⟨∏(∏(𝒯�̌�𝑖𝑗)
Ω𝑖

3

𝑖=1

)

γ𝑗4

𝑗=1

, 1 −∏(∏(1 − 𝒥�̌�𝑖𝑗)
Ω𝑖

3

𝑖=1

)

γ𝑗4

𝑗=1

, 1 −∏(∏(1 − ℭ�̌�𝑖𝑗)
Ω𝑖

3

𝑖=1

)

γ𝑗4

𝑗=1

⟩ 

=⟨

(
{(. 3).143(. 8).514(. 3).343}.35{(. 4).143(. 5).514(. 8).343}.15

{(. 8).143(. 1).514(. 2).343}.2{(. 2).143(. 9).514(. 8).343}.3
) ,

1 − (
{(. 2).143(. 7).514(. 4).343}.35{(. 4).143(. 3).514(. 5).343}.15

{(. 7).143(. 3).514(. 4).343}.2, {(. 5).143(. 6).514(. 5).343}.3
) ,

1 − (
{(. 4).143(. 3).514(. 5).343}.35{(. 7).143(. 6).514(. 3).343}.15

{(. 4).143(. 7).514(. 5).343}.2, {(. 4).143(. 2).514(. 6).343}.3
)

⟩ 

=⟨0.40661, 0.60939, 0.84213⟩. 

3.2. Properties of NHSWG operator  

3.2.1. Idempotency 

If 𝔍�̌�𝑖𝑗=𝔍�̌�=⟨𝒯�̌�, 𝒥�̌� , ℭ�̌�⟩∀𝑖, 𝑗. Then, 

𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚)=𝔍�̌�. 

Proof. As we know that all 𝔍�̌�𝑖𝑗=𝔍�̌�=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩ ∀𝑖, 𝑗. Then, using Eq 3.7. 

𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚)= 

⟨∏(∏(𝒯�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

)

γ𝑗𝑚

𝑗=1

, 1 −∏(∏(1 − 𝒥�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

)

γ𝑗𝑚

𝑗=1

, 1 −∏(∏(1 − ℭ�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

)

γ𝑗𝑚

𝑗=1

⟩ 

𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚)= 

⟨((𝒯�̌�𝑖𝑗)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ γ𝑗
𝑚
𝑗=1

, 1 − ((1 − 𝒥�̌�𝑖𝑗)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ γ𝑗
𝑚
𝑗=1

, 1 − ((1 − ℭ�̌�𝑖𝑗)
∑ Ω𝑖
𝑛
𝑖=1

)

∑ γ𝑗
𝑚
𝑗=1

⟩ 
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=⟨𝒯�̌�𝑖𝑗 , 1 − (1 − 𝒥�̌�𝑖𝑗) , 1 − (1 − ℭ�̌�𝑖𝑗)⟩ 

=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩=𝔍�̌�. 

3.2.2. Boundedness 

Let 𝔍�̌�𝑖𝑗=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩ be a collection of NHSNs 

𝔍�̌�𝑖𝑗
−

=⟨𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒯�̌�𝑖𝑗} ,

𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{𝒥�̌�𝑖𝑗} ,

𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{ℭ�̌�𝑖𝑗}⟩ 

and 

𝔍�̌�𝑖𝑗
+

= ⟨𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{𝒯�̌�𝑖𝑗} ,

𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒥�̌�𝑖𝑗} ,

𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{ℭ�̌�𝑖𝑗}⟩, 

then 

𝔍�̌�𝑖𝑗
− ≤ 𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚) ≤ 𝔍�̌�𝑖𝑗

+
. 

Proof. Since 𝔍�̌�𝑖𝑗=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩ be a collection of NHSNs∀𝑖, 𝑗. Then, 

𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒯�̌�𝑖𝑗} ≤ 𝒯�̌�𝑖𝑗 ≤

𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒯�̌�𝑖𝑗} 

⇒
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒯�̌�𝑖𝑗} ≤ 𝒯�̌�𝑖𝑗 ≤

𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒯�̌�𝑖𝑗} 

⇔ (
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒯�̌�𝑖𝑗})

Ω𝑖

≤ (𝒯�̌�𝑖𝑗)
Ω𝑖
≤ (

𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒯�̌�𝑖𝑗})

Ω𝑖

 

⇔ (
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒯�̌�𝑖𝑗})

∑ Ω𝑖
𝑛
𝑖=1

≤∏(𝒯�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

≤ (
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒯�̌�𝑖𝑗})

∑ Ω𝑖
𝑛
𝑖=1

 

⇔ (𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒯�̌�𝑖𝑗})

∑ γ𝑗
𝑚
𝑗=1

≤ ∏ (∏ (𝒯�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 ≤ (𝑚𝑎𝑥

𝑗
𝑚𝑎𝑥
𝑖
{𝒯�̌�𝑖𝑗})

∑ γ𝑗
𝑚
𝑗=1

 

⇔ 𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒯�̌�𝑖𝑗} ≤ ∏ (∏ (𝒯�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ≤ 𝑚𝑎𝑥

𝑗
𝑚𝑎𝑥
𝑖
{𝒯�̌�𝑖𝑗}.    (3.8) 

 Again, 

𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒥�̌�𝑖𝑗} ≤ 𝒥�̌�𝑖𝑗 ≤

𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒥�̌�𝑖𝑗} 

1 −
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒥�̌�𝑖𝑗} ≤ 1 − 𝒥�̌�𝑖𝑗 ≤ 1 −

𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒥�̌�𝑖𝑗} 

⇒ 1 − (
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒥�̌�𝑖𝑗})

∑ Ω𝑖
𝑛
𝑖=1

≤∏(1 − 𝒥�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

≤ 1 − (
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒥�̌�𝑖𝑗})

∑ Ω𝑖
𝑛
𝑖=1
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⇔ 1− (
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{𝒥�̌�𝑖𝑗})

∑ γ𝑗
𝑚
𝑗=1

≤∏(∏(1 − 𝒥�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

)

γ𝑗𝑚

𝑗=1

≤ 1 − (
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{𝒥�̌�𝑖𝑗})

∑ γ𝑗
𝑚
𝑗=1

 

⇔ 𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒥�̌�𝑖𝑗} ≤ 1 − ∏ (∏ (1 − 𝒥�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ≤ 𝑚𝑎𝑥

𝑗
𝑚𝑎𝑥
𝑖
{𝒥�̌�𝑖𝑗}. 

 So, we get 

⇔ 𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒥�̌�𝑖𝑗} ≤ 1 − ∏ (∏ (1 − 𝒥�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ≤ 𝑚𝑎𝑥

𝑗
𝑚𝑎𝑥
𝑖
{𝒥�̌�𝑖𝑗},   (3.9) 

and, 

𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{ℭ�̌�𝑖𝑗} ≤ ℭ�̌�𝑖𝑗 ≤

𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{ℭ�̌�𝑖𝑗} 

1 −
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{ℭ�̌�𝑖𝑗} ≤ 1 − ℭ�̌�𝑖𝑗 ≤ 1 −

𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{ℭ�̌�𝑖𝑗} 

⇒ 1 − (
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{ℭ�̌�𝑖𝑗})

∑ Ω𝑖
𝑛
𝑖=1

≤∏(1 − ℭ�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

≤ 1 − (
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{ℭ�̌�𝑖𝑗})

∑ Ω𝑖
𝑛
𝑖=1

 

⇔ 1− (
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{ℭ�̌�𝑖𝑗})

∑ γ𝑗
𝑚
𝑗=1

≤∏(∏(1 − ℭ�̌�𝑖𝑗)
Ω𝑖

𝑛

𝑖=1

)

γ𝑗𝑚

𝑗=1

≤ 1 − (
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{ℭ�̌�𝑖𝑗})

∑ γ𝑗
𝑚
𝑗=1

 

⇔
𝑚𝑖𝑛

𝑗

𝑚𝑖𝑛

𝑖
{ℭ�̌�𝑖𝑗} ≤ 1 −∏(∏(1 − ℭ�̌�𝑖𝑗)

Ω𝑖
𝑛

𝑖=1

)

γ𝑗𝑚

𝑗=1

≤
𝑚𝑎𝑥

𝑗

𝑚𝑎𝑥

𝑖
{ℭ�̌�𝑖𝑗} 

So, we get 

⇔ 𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{ℭ�̌�𝑖𝑗} ≤ 1 − ∏ (∏ (1 − ℭ�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ≤ 𝑚𝑎𝑥

𝑗
𝑚𝑎𝑥
𝑖
{ℭ�̌�𝑖𝑗}.   (3.10) 

Let 𝑁𝐻𝑆𝑊𝐺 (𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚)=⟨𝒯�̌� , 𝒥�̌� , ℭ�̌�⟩=𝔍�̌�, then inequalities (3.8)–(3.10) can be 

transformed into the following form: 
𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒯�̌�𝑖𝑗} ≤ 𝒯�̌� ≤

𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{𝒯�̌�𝑖𝑗}, 

𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒥�̌�𝑖𝑗} ≤ 𝒥�̌� ≤

𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{𝒥�̌�𝑖𝑗}, and 

𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{ℭ�̌�𝑖𝑗} ≤ ℭ�̌� ≤

𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{ℭ�̌�𝑖𝑗} respectively. 

Using Eq 2.1, we get the following: 

𝒮(𝔍�̌�)=𝒯�̌� − ℭ�̌� ≤
𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{𝒯�̌�𝑖𝑗} −

𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{ℭ�̌�𝑖𝑗}=𝒮 (𝔍�̌�𝑖𝑗

+), 

𝒮(𝔍�̌�)=𝒯�̌� − ℭ�̌� ≥
𝑚𝑖𝑛
𝑗

𝑚𝑖𝑛
𝑖
{𝒯�̌�𝑖𝑗} −

𝑚𝑎𝑥
𝑗

𝑚𝑎𝑥
𝑖
{ℭ�̌�𝑖𝑗}=𝒮 (𝔍�̌�𝑖𝑗

−). 

Then, order relation to two NHSNs, we have 

𝔍�̌�𝑖𝑗
− ≤ 𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚) ≤ 𝔍�̌�𝑖𝑗

+
. 

3.2.3. Shift Invariance 

If 𝔍�̌�=⟨𝒯�̌�, 𝒥�̌� , ℭ�̌�⟩ be an NHSN. Then, 

𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 ⊗𝔍�̌� , 𝔍�̌�12 ⊗𝔍�̌� , … , 𝔍�̌�𝑛𝑚 ⊗𝔍�̌�)=𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚) ⊗ 𝔍�̌�. 
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Proof. Assume 𝔍�̌� be an NHSN and 𝔍�̌�𝑖𝑗 be a collection of NHSNs. Utilizing operational laws, we 

have: 

𝔍�̌�11 ⊗𝔍�̌�12=⟨𝒯�̌�11𝒯�̌�12 , 𝒥�̌�11 + 𝒥�̌�12 − 𝒥�̌�11𝒥�̌�12 , ℭ�̌�11 + ℭ�̌�12 − ℭ�̌�11ℭ�̌�12⟩. 

So, 

𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 ⊗𝔍�̌� , 𝔍�̌�12 ⊗𝔍�̌� , … , 𝔍�̌�𝑛𝑚 ⊗𝔍�̌�)=⊗𝑗=1
𝑚 γ𝑗 (⊗𝑖=1

𝑛 Ω𝑖 (𝔍�̌�𝑖𝑗 ⊗𝔍�̌�)) 

=⟨
∏ (∏ (𝒯�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 (𝒯�̌�)

Ω𝑖)
γ𝑗

𝑚
𝑗=1 , 1 − ∏ (∏ (1 − 𝒥�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 (1 − 𝒥�̌�)

Ω𝑖)
γ𝑗

𝑚
𝑗=1 ,

1 − ∏ (∏ (1 − ℭ�̌�𝑖𝑗)
Ω𝑖
(1 − ℭ�̌�)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1

⟩ 

=⟨
𝒯�̌�∏ (∏ (𝒯�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 , 1 − (1 − 𝒥�̌�)∏ (∏ (1 − 𝒥�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ,

1 − (1 − ℭ�̌�)∏ (∏ (1 − ℭ�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1

⟩ 

=⟨
𝒯�̌�∏ (∏ (𝒯�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 , 1 − (1 − 𝒥�̌�)∏ (∏ (1 − 𝒥�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ,

1 − (1 − ℭ�̌�)∏ (∏ (1 − ℭ�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1

⟩ 

=⟨
∏ (∏ (𝒯�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 , 1 − ∏ (∏ (1 − 𝒥�̌�𝑖𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ,

1 − ∏ (∏ (1 − ℭ�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1

⟩ ⊗ ⟨𝒯�̌� , 𝒥�̌�, ℭ�̌�⟩ 

=𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚)⊗ 𝔍�̌�. 

3.2.4. Homogeneity 

Let 𝛼 >0, where 𝛼 is any positive real number. Then, we will prove that 

𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11
𝛼 , 𝔍�̌�12

𝛼 , … , 𝔍�̌�𝑛𝑚
𝛼)=(𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚))

𝛼
. 

Proof. Let 𝔍�̌�𝑖𝑗=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩ be a collection of NHSNs ∀𝑖, 𝑗, and 𝛼 is any positive real number. 

Then, 

𝔍�̌�𝑘
𝛼 =⟨𝒯�̌�𝑘

𝛼 , 1 − (1 − 𝒥�̌�𝑘)
𝛼
, 1 − (1 − ℭ�̌�𝑘)

𝛼
⟩, 

𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚) 
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= ⟨∏(∏(𝒯�̌�𝑖𝑗)
𝛼Ω𝑖

𝑛

𝑖=1

)

γ𝑗𝑚

𝑗=1

, 1 −∏(∏(1 − 𝒥�̌�𝑖𝑗)
𝛼Ω𝑖

𝑛

𝑖=1

)

γ𝑗𝑚

𝑗=1

, 1 −∏(∏(1 − ℭ�̌�𝑖𝑗)
𝛼Ω𝑖

𝑛

𝑖=1

)

γ𝑗𝑚

𝑗=1

⟩ 

=⟨

(∏ (∏ (𝒯�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 )

𝛼

, 1 − (∏ (∏ (1 − 𝒥�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 )

𝛼

,

1 − (∏ (∏ (1 − ℭ�̌�𝑖𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 )

𝛼 ⟩ 

=(𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚))
𝛼

. 

3.2.5. Monotonicity 

Let 𝔍�̌�𝑖𝑗=⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩ and 𝔍�̌�𝑖𝑗
∗ =⟨𝒯�̌�𝑖𝑗

∗ , 𝒥�̌�𝑖𝑗
∗ , ℭ�̌�𝑖𝑗

∗ ⟩ be the collection of NHSNs. Then  

𝑁𝐻𝑆𝑊𝐺(𝔍�̌�11 , 𝔍�̌�12 , … , 𝔍�̌�𝑛𝑚) ≤ 𝑁𝐻𝑆𝑊𝐺 (𝔍�̌�11
∗ , 𝔍�̌�12

∗ , … , 𝔍�̌�𝑛𝑚
∗ ), if 𝔍�̌�𝑖𝑗 ≤ 𝔍�̌�𝑖𝑗

∗  ∀ 𝑖, 𝑗. 

Proof. Similar to 3.1.5. 

4. MCDM approach using developed NHSWA and NHSWG operators  

In the subsequent section, we will introduce the MCDM methodology by the anticipated 

NHSWA and NHSWG operators in the NHSS setting. 

4.1. Proposed decision-making approach 

Let ∁= {∁1, ∁2, ∁3, … , ∁𝑠} be a set of 𝑠 alternatives and 𝒰 = {𝜅1, 𝜅2, 𝜅3, … , 𝜅𝑛} be a set of 𝑛 

experts. The weights of experts are given as Ω = (Ω1, Ω1, … , Ω𝑛)
𝑇 and Ω𝑖 > 0, ∑ Ω𝑖

𝑛
𝑖=1 = 1. Let 

𝔏 = {𝑑1, 𝑑2, … , 𝑑𝑚} be a set of attributes with their corresponding multi sub-attributes such as 𝔏′ =

{(𝑑1𝜌 × 𝑑2𝜌 × …× 𝑑𝑚𝜌) for all 𝜌 ∈ {1, 2, … , 𝑡} } with weights 𝛾 = (γ1𝜌, γ2𝜌, γ3𝜌, … , γ𝑚𝜌)
𝑇
 such as 

γ𝜌 > 0 , ∑ γ𝜌
𝑡
𝜌=1 = 1  and can be specified as 𝔏′ = {�̌�𝜕: 𝜕 ∈ {1, 2, … , 𝑘}} . The team of experts 

{𝜅𝑖: 𝑖 = 1, 2, … , 𝑛} appraise the substitutes {∁(𝑧): 𝑧 = 1, 2, … , 𝑠} under the anticipated sub-attributes 

of the considered parameters {�̌�𝜕: 𝜕 = 1, 2, … , 𝑘} given in the form of NHSNs, such as (∁
�̌�𝑖𝑘

(𝑧)
)
𝑛×𝜕

=

(𝒯
�̌�𝑖𝑘

(𝑧)
, ℐ
�̌�𝑖𝑘

(𝑧)
, ℭ

�̌�𝑖𝑘

(𝑧)
)
𝑛×𝜕

, where 0 ≤ 𝒯
�̌�𝑖𝑘

(𝑧)
, ℐ
�̌�𝑖𝑘

(𝑧)
, ℭ

�̌�𝑖𝑘

(𝑧)
≤ 1  and 0 ≤ 𝒯

�̌�𝑖𝑘

(𝑧)
+ ℐ

�̌�𝑖𝑘

(𝑧)
+ ℭ

�̌�𝑖𝑘

(𝑧)
≤ 3  for all 𝑖, 𝑘 . 

Applying the anticipated NHSWA and NHSWG operators grow accumulated NHSNs ℒᶲ for each 

substitute conferring to the specialist's predilections. Use Eq 2.1 to calculate the score value for 

each alternative. The above methods can be summarized as follows:  
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Step 1. Develop decision matrices (∁
�̌�𝑖𝑘

(𝑧)
)
𝑛×𝜕

= (𝒯
�̌�𝑖𝑘

(𝑧)
, ℐ
�̌�𝑖𝑘

(𝑧)
, ℭ

�̌�𝑖𝑘

(𝑧)
)
𝑛×𝜕

 in the form of NHSNs for 

each alternative. 

                 �̌�1                             �̌�2         … ..                  �̌�𝜕 

(∁(𝑧), 𝔏′)
𝑛×𝜕

=

𝜅1

𝜅2

⋮
𝜅n

 

(

 
 
 

(𝒯
�̌�11

(𝑧)
, ℐ
�̌�11

(𝑧)
, ℭ

�̌�11

(𝑧)
) (𝒯

�̌�12

(𝑧)
, ℐ
�̌�12

(𝑧)
, ℭ

�̌�12

(𝑧)
) ⋯ (𝒯

�̌�1𝜕

(𝑧)
, ℐ
�̌�1𝜕

(𝑧)
, ℭ

�̌�1𝜕

(𝑧)
)

(𝒯
�̌�21

(𝑧)
, ℐ
�̌�21

(𝑧)
, ℭ

�̌�21

(𝑧)
) (𝒯

�̌�22

(𝑧)
, ℐ
�̌�22

(𝑧)
, ℭ

�̌�22

(𝑧)
) ⋯ (𝒯

�̌�2𝜕

(𝑧)
, ℐ
�̌�2𝜕

(𝑧)
, ℭ

�̌�2𝜕

(𝑧)
)

⋮ ⋮ ⋮ ⋮

(𝒯
�̌�𝑛1

(𝑧)
, ℐ
�̌�𝑛1

(𝑧)
, ℭ

�̌�𝑛1

(𝑧)
) (𝒯

�̌�𝑛2

(𝑧)
, ℐ
�̌�𝑛2

(𝑧)
, ℭ

�̌�𝑛2

(𝑧)
) ⋯ (𝒯

�̌�𝑛𝜕

(𝑧)
, ℐ
�̌�𝑛𝜕

(𝑧)
, ℭ

�̌�𝑛𝜕

(𝑧)
))

 
 
 

. 

Step 2. Using the normalization rule converts the cost type sub-attributes to benefit type sub-

attribute. 

ᵡ𝑖𝑗={
𝔍�̌�𝑖𝑗
𝑐 ;        cost type parameter

𝔍�̌�𝑖𝑗;  benefit type parameter
. 

Where 𝔍�̌�𝑖𝑗
𝑐 =⟨1 − ℭ�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , 𝒯�̌�𝑖𝑗⟩, which represents the complement of ⟨𝒯�̌�𝑖𝑗 , 𝒥�̌�𝑖𝑗 , ℭ�̌�𝑖𝑗⟩. 

Step 3. Aggregate the NHSNs 𝔍�̌�𝑖𝑗  for each alternative ∁= {∁1, ∁2, ∁3, … , ∁𝑠}  into a collective 

decision matrix ℒᶲ using settled NHSWA or NHSWG operators (or Eqs 3.2 and 3.7, respectively). 

Step 4. If ∁= {∁1, ∁2, ∁3, … , ∁𝑠} be an assortment of deliberated alternatives. Then, compute the 

score values ℒᶲ for each alternative using Eq 2.1. 

Step 5. Choose the most appropriate alternate with a maximum score value ℒᶲ. 

Step 6. Rank the substitutes. 

4.2. Application of the proposed MCDM technique for site selection of solid waste management 

Finding new landfills needs numerous features, data, investigation, and queries. These aspects 

mostly contain community health alarms, ecological aspects, the landscape of the zone, geology, 

hydrology, drainage and climate in the region, the accessibility of landfills in the area to refuge 

waste, contiguity to housing and industrialized regions, traveling from city, drainage system, cost, 

and present/coming land usage in the region [72]. It also involves a widespread valuation of spot 

surroundings and probable influence on the atmosphere. This comprises societies' geography, 

drainage, geology, hydrogeology, air quality, surface water, and the coldest. 

The slope is one of the influential topographic aspects of landfill spot choice. The bottom and 

moderate slopes are mostly appropriate for detecting landfill spots, whereas the average slope is 

more proper than other slope curriculums for landfill spot choice. In this investigation, a slope 

with 0-2% is deliberated as low, 2-8% is very high, 8-15% is high, and >30% is very low aptness. 

The central fragment of the metropolis is not appropriate for landfill spot selection since sloping 

to intensely sloping topography is more soaked in this area than in other regions. While: the 

southern and northern landfills of the metropolis have a good part. The landfill zone must not be 

situated on a mountain with a rocky slope and landslide zones. Areas located on mildly sloping are 

favored over smooth ground and extremely sloping regions, as indicated in [73], because extremely 

sloping zones can source an incurable slide, particularly when there is rain or high-water escape. 

Also, abrupt inclines can cause carriage difficulty in production or flattening exertion, which can 

be a surplus charge; it can also decrease the steadiness of the adjacent slopes and raise the threat 
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of landslides. Landfill spot is not endorsed in immediacy to defrayal regions. The developed 

regions that contain saleable areas, administrative and private associations, colleges, health centers, 

spiritual associations, informative associations, homes, and other societal service areas are 

deliberated as reimbursement extents in this study. The landfill site is generally endorsed to be one 

kilometer far from residential regions [72,74–78], with a set distance from residential to be 3000 

m, 500-2000 m, and 3000 m multi-ring barriers. 

The present and upcoming land usage are imperative standards when choosing landfill spots. 

Generally, land with fewer socio-economic, ecological, and dogmatic worth or cost is suggested 

as a removal spot. As it is a substance of community health anxiety, seeing the extraordinary 

proportion of growth, one must proceed with the long-term land usage organization of land into 

deliberation to detect the removal region. Additionally, the current and upcoming waste wagons 

transportation must be reflected [72]. The MCDM approach is used for allocating measures 

weights for each aspect plan. The spatial multi-criteria analysis is the best frequently employed 

technique when it originates from spotting selection difficulties or appropriateness replicas . 

Different weights were specified in partiality of individual aspects compared to other aspects. The 

literature recommends numerous criterion-weighting processes built on experts' decisions in the 

MCDM [79,80]. To address this problem, we supposed four distinct geographic regions associated 

with the key factors we discussed. 

Let ∁= {∁1, ∁2, ∁3, ∁4} be a set of alternatives (geographic regions) and 𝒰 = {𝜅1, 𝜅2, 𝜅3, 𝜅4} be 

a team of four experts with weights (. 1, .25, .35, .3)𝑇 for choosing a suitable alternate, the most 

appropriate spot for solid waste. The group of specialists selects the parameters for the assortment 

of areas for solid waste, such as 𝔏 = {ℓ1 =  slope, ℓ2 =  distance from settlement, ℓ3 = Land use} 

with their corresponding sub-attribute: Slope = ℓ1 = {𝑑11 = 0 −

2% and more than 30% is low and very low, 𝑑12 = 2–8% is very high, and 8 − 15% is high} 

Distance and settlement = ℓ2 = {𝑑21 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑎𝑟𝑒𝑎 𝑖𝑠 500 −

2000 m, 𝑑22 = more than 3000 m}, and Land use = ℓ3 = {𝑑31 = Land use}. Let 𝔏′ = ℓ1 × ℓ2 ×

ℓ3 shows the multi sub-attributes 

𝔏′ = ℓ1 × ℓ2 × ℓ3 = {𝑑11, 𝑑12} × {𝑑21, 𝑑22} × {𝑑31} 

= {(𝑑11, 𝑑21, 𝑑31), (𝑑11, 𝑑22, 𝑑31), (𝑑12, 𝑑21, 𝑑31), (𝑑12, 𝑑22, 𝑑31)}. 

𝔏′ = {�̌�1, �̌�2, �̌�3, �̌�4} with weights (0.2, 0.1, 0.4, 0.3)𝑇. Experts deliver their opinion for each 

geographical region in the form of NHSNs following multi sub-attributes of deliberated attributes. 

A flow chart of the above-presented approach to finding the most suitable site for SWM under 

the NHSS environment is given in the following Figure 1. 
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Figure 1. Flow chart of site selection for SWM using AOs under NHSS. 

4.3.NHSWA operator 

Step 1. The specialists investigated all considered sites for solid waste and gave their opinion in the 

form of NHSNs. The summary of their score values for each alternative is shown in Tables 1–4. 

Table 1. Decision matrix for alternative ∁1. 

∁𝟏 �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 

𝜿𝟏 (0.9,0.2,0.1) (0.3, 0.3, 0.7) (0.6, 0.4, 0.2) (0.7,0.1,0.3) 

𝜿𝟐 (0.8, 0.3,0.2) (0.6,0.2, 0.6) (0.8, 0.3, 0.1) (0.2, 0.6, 0.8) 

𝜿𝟑 (0.6,0.1,0.3) (0.6,0.1,0.3) (0.8, 0.2, 0.1) (0.6, 0.3, 0.4) 

𝜿𝟒 (0.9, 0.1, 0.1) (0.9,0.1,0.1) (0.8, 0.1, 0.1) (0.9,0.1,0.2) 

Table 2. Decision matrix for alternative ∁2. 

∁𝟐 �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 

𝜿𝟏 (0.3,0.3,0.7) (0.9, 0.2, 0.1) (0.6, 0.1, 0.3) (0.3,0.6,0.2) 

𝜿𝟐 (0.8, 0.2,0.1) (0.8,0.3, 0.2) (0.9, 0.1, 0.1) (0.8, 0.3, 0.1) 

𝜿𝟑 (0.6,0.3,0.4) (0.8,0.1,0.2) (0.9, 0.1, 0.1) (0.2, 0.3, 0.8) 

𝜿𝟒 (0.9, 0.1, 0.2) (0.8,0.1,0.1) (0.7, 0.1, 0.3) (0.6,0.3,0.4) 

Table 3. Decision matrix for alternative ∁3. 

∁𝟑 �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 

𝜿𝟏 (0.6,0.3,0.4) (0.2, 0.3, 0.8) (0.3, 0.6, 0.2) (0.3,0.6,0.2) 

𝜿𝟐 (0.9, 0.1,0.1) (0.9,0.1, 0.1) (0.9, 0.1, 0.1) (0.8, 0.3, 0.2) 

𝜿𝟑 (0.8,0.3,0.2) (0.9,0.2,0.1) (0.9, 0.1, 0.1) (0.2, 0.3, 0.8) 

𝜿𝟒 (0.3, 0.3, 0.7) (0.9,0.1,0.2) (0.7, 0.1, 0.3) (0.6,0.3,0.4) 
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Table 4. Decision matrix for alternative ∁4. 

∁𝟒 �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 

𝜿𝟏 (0.9,0.1,0.1) (0.9, 0.1, 0.2) (0.8, 0.2, 0.1) (0.3,0.6,0.2) 

𝜿𝟐 (0.8, 0.2,0.1) (0.8,0.2, 0.1) (0.6, 0.3, 0.4) (0.8, 0.3, 0.2) 

𝜿𝟑 (0.8,0.1,0.1) (0.8,0.1,0.2) (0.9, 0.1, 0.1) (0.3, 0.6, 0.2) 

𝜿𝟒 (0.9, 0.1, 0.2) (0.3,0.3,0.7) (0.8, 0.3, 0.2) (0.9,0.1,0.1) 

Step 2. The considered parameters are identical, so there is no need to normalize. 

Step 3. Expert's opinions can be précised as follows using Eq 3.2: 

ℒ1 = ⟨. 76040, .18389, .26121⟩ , ℒ2 = ⟨. 76041, .16792, .21357⟩ , ℒ3 = ⟨. 75965, .18628, .22480⟩ , 

and ℒ4 = ⟨. 78886, .19121, .16463⟩. 

Step 4. Utilizing Eq 2.1, calculate the score values as follows: 

𝒮(ℒ1) = 0.49919, 𝒮(ℒ2) = 0.54684, 𝒮(ℒ3) = 0.53485, and 𝒮(ℒ4) = 0.62423. 

Step 5. The alternative ∁4 has a maximum score value, so ∁4 is the most acceptable alternative. 

Step 6. The obtained ranking of alternatives using the NHSWA operator is given as follows: 

𝒮(ℒ4) > 𝒮(ℒ2) > 𝒮(ℒ3) > 𝒮(ℒ1). So, ∁(4)> ∁(2)> ∁(3)> ∁(1). 

4.4. NHSWG operator 

Step 1 and step 2 are the same as 4.3. 

Step 3. Expert's opinions can be summarized as follows using Eq 3.7: 

ℒ1 = ⟨. 67268, .33949, .29462⟩ , ℒ2 = ⟨. 63457, .17526, .33252⟩ , ℒ3 = ⟨. 59871, .23992, .36100⟩ , 

and ℒ4 = ⟨. 68656, .25923, .20554⟩. 

Step 4. Calculate the score values using Eq 2.1. 

𝒮(ℒ1) = 0.37806, 𝒮(ℒ2) = 0.30205, 𝒮(ℒ3) = 0.23771, and 𝒮(ℒ4) = 0.48102. 

Step 5. The alternative ∁4 has a maximum score value, so ∁4 is the most acceptable alternative. 

Step 6. The obtained ranking of alternatives using the NHSWG operator is given as follows: 

𝒮(ℒ4) > 𝒮(ℒ1) > 𝒮(ℒ2) > 𝒮(ℒ3). So, ∁(4)> ∁(1)> ∁(2)> ∁(3). 

A graphical representation of the obtained results is given in the following Figure 2. 

 

Figure 2. Alternatives ranking. 
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5. Comparative analysis and discussion 

In the subsequent section, we present the practicality, easiness, and manageability, and a short 

assessment of the undermentioned: the intentional method and some prevalent approaches. 

5.1. Superiority of the proposed approach 

From this research and evaluation, it can be concluded that the importance gained through the 

planning technique is more corporate than any other technique. Overall, DM and popular DM 

techniques provide additional data to signal uncertainties. In addition, many FS hybrid structures have 

become a particular feature of NHSS, and some appropriate parameters have been added. General item 

information can be presented in a precise and analytical manner, see Table 5. Therefore, combining 

incorrect and inexplicit data in the DM procedure is an appropriate technique. Thus, the proposed 

procedure goes beyond the unique hybrid structure of fuzzy sets. 

Table 5. Structural analysis between NHSS and some prevailing models 

 Set 
Truthine

ss 

Indeterminac

y 
Falsity 

Parameterizat

ion 

Attribute

s 

Sub-

attributes 

Zadeh [1] FS ✓ × × × ✓ × 

Atanassov [2] IFS ✓ × ✓ × ✓ × 

Yager [4] PFS ✓ × ✓ × ✓ × 

Smarandache [19] NS ✓ ✓ ✓ × ✓ × 

Maji et al. [24] FSS ✓ × × ✓ ✓ × 

Maji et al. [28] IFSS ✓ × ✓ ✓ ✓ × 

Peng et al. [32] PFSS ✓ × ✓ ✓ ✓ × 

Maji [40] NSS ✓ ✓ ✓ ✓ ✓ × 

Smarandache [46] IFHSS ✓ × ✓ ✓ ✓ ✓ 

Zulqarnain et al. 

[49] 
PFHSS ✓ × ✓ ✓ ✓ ✓ 

Khan et al. [54] 

q-

RO

FH

SS 

✓ × ✓ ✓ ✓ ✓ 

Proposed approach NHSS ✓ ✓ ✓ ✓ ✓ ✓ 

5.2. Discussion 

Zadeh's FS [1] addressed inaccurate and misleading information using attributes considered by 

MD for each alternative. But FS does not indicate the NMD of the parameters under study. Atanasov's 

IFS [2] adjusts dark and dim substances using MD and NMD. But, IFS cannot handle the environments 

when 𝑀𝐷 +  𝑁𝑀𝐷 ≥  1. On the other hand, our concept deals with these problems competently. At 
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the same time, these theories contain no information about attribute uncertainty. To be astounded by 

such challenges, Smarandache [19] proposed the idea of NS. Maji et al. [24] suggested the concept of 

FSS considering the parameterized values of the objects, which creates hesitation because of the MD 

of parameters. But, the proposed FSS does not deliver any facts about the NMD of the object. To 

remedy the proposed error, Maji et al. [28] introduced the theory of IFSS. The scheduled idea grips 

hesitation more precisely by using MD and NMD of features with their parameterization, and the 

combination of MD and NMD does not exceed 1. To grip this consequence, Peng et al. [32] anticipated 

the idea of PFSS by amending the state 𝑀𝐷 +𝑁𝑀𝐷 ≤ 1  to 𝑀𝐷2 + 𝑁𝑀𝐷2 ≤ 1  with their 

parametrization. The PFSS is unable to deal with the indeterminacy of the attributes. Maji [40] 

introduced the concept of NSS, in which decision-makers competently solve the DM problems 

compared to the above-studied theories using truthiness, falsity, and indeterminacy of the object. But 

all the studies stated above have no material about the sub-attributes of the deliberated parameters. So 

the theories discussed above cannot handle the consequence when parameters have their conforming 

sub-attributes. Utilizing the MD and NMD, Smarandache [46] protracted the IFSS to IFHSS in which 

𝑀𝐷 +𝑁𝑀𝐷 ≤ 1 for each sub-attribute. But IFHSS cannot carry any data on the NMD of the sub-

attribute of the deliberated attribute. Zulqarnain et al. [49] anticipated another comprehensive idea of 

PFHSS relative to IFHSS. The PFHSS accommodates more uncertainty compared to IFHSS by 

updating the condition 𝑀𝐷 +𝑁𝑀𝐷 ≤ 1  to (𝒯ℱ(�̌�)(𝛿))
2
+ (𝒥ℱ(�̌�)(𝛿))

2
≤1. The q-ROFHSS [54] 

handles more hesitation compared to IFHSS and PFHSS by improving the conditions 𝑀𝐷 +𝑁𝑀𝐷 ≤

1 and (𝒯ℱ(�̌�)(𝛿))
2
+ (𝒥ℱ(�̌�)(𝛿))

2
≤1 to (𝒯ℱ(�̌�)(𝛿))

𝑞
+ (𝒥ℱ(�̌�)(𝛿))

𝑞
≤ 1. Not all prevailing hybrid 

configurations of FS can deal with the indeterminacy of sub-attributes of deliberated n-tuple attributes. 

On the other hand, developed aggregation operators can accommodate the sub-attributes of considered 

attributes using truthiness, indeterminacy, and falsity objects of sub-attributes with the following 

condition 0 ≤ 𝒯ℱ(�̌�)(𝑣) + ℐℱ(�̌�)(𝑣) + ℭℱ(�̌�)(𝑣) ≤ 3. It can be seen that the best choice of the proposed 

approach is an oral resemblance to one's method, which ensures accountability and effectiveness of 

the proposed approach. 

5.3. Comparative analysis 

In the following section, we endorse another algorithmic rule under NHSS operating the 

progressed NHSWA and NHSWG operators. Subsequently, we use the suggested algorithm for a 

realistic problem: the appropriate site selection for solid waste. The overall consequences demonstrate 

that the developed algorithm is appreciated and concrete. It can be observed that ∁4  is the most 

acceptable alternative for the disposal of solid waste management. The projected method can be 

equated to other existing approaches. The investigation determines that the outcomes achieved in an 

intended process are more capable than those of prevailing theories. Therefore, established AOs deal 

with indeterminate and confusing information more efficiently than prevalent techniques. However, 

under the modern DM approach, the core benefit of the intentional method is that it can incorporate 

extra information into the data compared to the current process. It is also helpful for determining 

deception and knowledge in the DM process. The benefit of the scheduled technique for prevailing 

approaches and attendant measures is to avoid consequences based on undesirable causes. For further 

assistance, please see the following Table 6. 
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Table 6. Comparative studies between proposed AOs and existing AOs under considered 

data in subsection 4.2 
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Remarks 

IFSWA [29] IFS IFSS Simple Parameters N/A Ignored the sub-attributes 

IFSWG [29] IFS IFSS Simple Parameters N/A Ignored the sub-attributes 

PFSWA[33] PFS PFSS Simple Parameters N/A Ignored the sub-attributes 

PFSWG [33] PFS PFSS Simple Parameters N/A Ignored the sub-attributes 

PFSEWA [35] PFS PFSS Simple Parameters N/A Ignored the sub-attributes 

PFSEWG [35] PFS PFSS Simple Parameters N/A Ignored the sub-attributes 

IFHSWA [48] IFS IFHSS multiple sub-

parameter 

Applicable Ignored the indeterminacy of 

the sub-attributes 

IFHSWG [48] IFS IFHSS multiple sub-

parameter 

Applicable Ignored the indeterminacy of 

the sub-attributes 

PFHSWA [50] PFS PFHSS multiple sub-

parameter 

Applicable Ignored the indeterminacy of 

the sub-attributes 

PFHSWG [50] PFS PFHSS multiple sub-

parameter 

Applicable Ignored the indeterminacy of 

the sub-attributes 

q-ROFHSWA 

[56] 

q-

R

O

F

S 

q-

RO

FH

SS 

multiple sub-

parameter 

Applicable Ignored the indeterminacy of 

the sub-attributes 

q-ROFHSWG 

[56] 

q-

R

O

F

S 

q-

RO

FH

SS 

multiple sub-

parameter 

Applicable Ignored the indeterminacy of 

the sub-attributes 

Proposed 

NHSWA 

NS NHSS multiple sub-

parameter 

Applicable Delivered the most precise 

information comparative to 

IFHSWA and PFHSWA 

operators considering the 

indeterminacy 

Proposed 

NHSWG 

NS NHSS multiple sub-

parameter 

Applicable Delivered the most precise 

information comparative to 

IFHSWG and PFHSWG 

operators considering the 

indeterminacy 

5.4. Advantages of Proposed Research 

In the following subsection, we will describe the planned approach's advantages. 
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• The planned method practices the idea of parameterization in conjunction with NHSS to 

address the importance of DM obstacles. Consistency-parameterized neutrosophic degree 

imitates the prospect that there is a level of salutation and justification. With these aspects, this 

correspondence holds astonishing capacity in practical computing demonstrations in the 

interpolation universe. 

• Because the model emphasizes in-depth surveillance of parameters and the set of values of 

their respective sub-parameters, it supports decision-makers make balanced and consistent 

judgments over DM. 

• It authenticates all the forms and features of predominant theories, so it's not unreasonable to 

contemplate it as a general system of existing ideas. 

6. Conclusions 

To deal with partial, uncertain, indeterminate, or inaccurate content, NHSS is a more efficient 

mathematical model. It is an ordinary model to deal with inexact and puzzling information compared 

to FS, IFS, PFS, etc. The NHSS to eliminate less conversant, unclear, and inequitable information 

around the degree of truth, falsity, and indeterminacy of n-tuples subattribute of the examined attributes. 

This study intends novel AOs for NHSS, such as NHSWA and NHSWG operators, with their 

fundamental properties. Waste dumping is a significant part of town governance, and constructing new 

landfills is an imperative tactic to report environmental pollution that is affected by the absence of 

waste dumping capability. Landfill structure must support its comforts with the atmosphere, citizens, 

and administration. The systematic and realistic technique of site selection can exploit securities. The 

choice of committal spots is subjective in several aspects, and people's intellectual capability is 

inadequate, so it is incredible to evaluate a detailed analysis. The analytical approach of the landfill 

site selection structure based on FS and IFS has effectually resolved this [79,80]. Still, it does not 

proceed into the interpretation of the decision-makers reluctance. So, to competently address the 

decision-makers hesitancy in the DM process, an MCDM algorithm has been proposed based on 

NHSWA and NHSWG operators. Furthermore, a comparative analysis is conceded to certify the 

anticipated method's usefulness and proficiency. Lastly, based on the consequences achieved, it can be 

resolute that the scheduled method exhibits extraordinary steadiness and achievability in the DM 

process. Future studies will focus on existing DM tools used by several other operators as part of the 

NHSS. Also, numerous other structures can be established and projected, such as interaction AOs, 

Einstein AOs, Bonferroni mean AOs and dombi AOs, etc., with their DM techniques for the NHSS 

environment. 
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