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Abstract
In this paper, we introduce new types of additive functional equations and obtain the solutions to these additive functional

equations. Furthermore, we investigate the Hyers-Ulam stability for the additive functional equations in fuzzy normed spaces
and random normed spaces using the direct and fixed point approaches. Also, we will present some applications of functional
equations in physics. Through these examples, we explain how the functional equations appear in the physical problem, how
we use them to solve it, and we talk about solutions that are not used for solving the problem, but which can be of interest. We
provide an example to show how functional equations may be used to solve geometry difficulties.
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1. Introduction

A classical question in the theory of functional equations is: when is it true that a mapping, which
approximately satisfying a functional equation, must be somehow close to an exact solution of the equa-
tion? Such a problem, called a stability problem of the functional equation, was formulated by Ulam [44]
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and Hyers [14] and they have gave a solution to Ulam’s problem for the case of approximate additive
mappings. Subsequently, Hyers result was generalized by Aoki [2] for additive mappings and by Rassias
[37] for linear mappings to consider the problem with the unbounded Cauchy differences. The stability
problems of functional equations have been extensively investigated by [1, 4, 6, 9–20].

Katsaras [17] defined a fuzzy norm on a linear space to construct a fuzzy structure on the space. Some
mathematicians have introduced several types of fuzzy norms from different points of view. In particular,
Bag and Samanta [3] and Cheng et al. [5] have gave an idea of a fuzzy norm in such a manner that the
corresponding fuzzy metric is of the Kramosil and Michalek type [21]. In [30], the authors have introduced
the notion of fuzzy Hyers-Ulam-Rassias stability. These genuine foundations serve as the basis for the
Hyers-Ulam-Aoki-Rassias stability (see [7, 8, 40]). In [38, 39], the authors have gave speculations on the
Hyers stability hypothesis, which permits the Cauchy difference to be bounded. Radu [36] investigated
the stability of functional equations by using the fixed point method.

A mapping, which fulfills

Ψ(F+G) = Ψ(F) +Ψ(G) (1.1)

is called an additive mapping.
Kannappan [16] investigated the stability of various types of functional equations, such as addi-

tive equations, multiplicative equations, logarithmic functions, trigonometric functions, vector-valued
functions, sine functional equations, alternative Cauchy equations, wave equations, polynomial equa-
tions, and quadratic equations. Sahoo and Kannappan [41], presented Hyers result along with a theorem
due to Rassias that generalizes the result of Hyers. We also point out some other generalizations related
to the stability of the additive Cauchy equation.

The importance of functional equations is comparable to that of differential equations because many of
the problems that can be stated in terms of a differential equation or a system of differential equations can
also be stated in terms of a functional equation or a system of functional equations. However, functional
equations are easier and more natural than differential equations because they do not involve derivatives.

An exploration of recent research with Choquet-Deny-type equations and characterization theory,
which demonstrates the close links that have been established between stochastic processes and applied
probability. Concentrates on solutions of the Integrated Cauchy Functional Equation (ICFE) under differ-
ent conditions. Demonstrates that results from a variety of characterization problems involving discrete
and continuous distributions can be more easily obtained by utilizing the solution of an appropriate ICFE.
Discussion of applications of the ICFE in characterizing stochastic models is included, with additional ex-
amples from areas such as renewal processes and potential theory. For more details of applications of
functional equations and functional differential equations, see [22–35, 41–45].

In this paper, we investigate general solution and generalized Hyers-Ulam stability of the functional
equations

Ψ

 φ∑
p=1

(
c + e

2

)φ
hp

−

(
c + e

2

)φ φ∑
p=1

Ψ(hp) = 0 (1.2)

and

Ψ

 φ∑
p=1

hp

+

φ∑
q=1

Ψ

−hq +
∑

p=1;p6=q

hp

− (φ− 1)
φ∑

p=1

Ψ(hp) = 0, (1.3)

where c 6= e 6= 0 and φ > 1 in fuzzy normed space and random normed space as well as using two
different methods.
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2. Preliminaries

In this section, we introduce the definition of a fuzzy normed space and a random normed space.

Definition 2.1. Let Θ be a real linear space. A function f : Θ×R→ [0, 1] is said to be fuzzy norm on Θ if

N1. f(h, c) = 0 for c 6 0;
N2. h = 0 iff f(h, c) = 1, ∀ c > 0;

N3. f(ch, e) = f
(
h, e

|c|

)
if c 6= 0;

N4. f(h+ g, c + e) > min{f(h, e),f(g, e)};
N5. f(h, .) is a increasing on R and limc→∞f(h, c) = 1;
N6. for h 6= 0,f(h, .) is continuous on R, ∀ h, g ∈ Θ and c, e ∈ R.

The pair (Θ,f) is called “fuzzy normed space.”

Definition 2.2. Let T be a continuous t-norm, Θ-vector space and a mapping Υ : Θ → D+ . A random
normed space is a triple (Θ, Υ, T), if

1. Υh(s) = ε0(s), for all s > 0⇔ h = 0;

2. Υαh(s) = Υα
(
s
|α|

)
, for all h ∈ Θ, and α in R with α 6= 0;

3. Υh+g(s+ ι) > (Υh(s);Υy(s)), for all h, g ∈ Θ and s, ι > 0.

Theorem 2.3. Let (f,d) be a complete metric space and Ω : f→ Z be a mapping with Lipschitz constant £. Then
for each given element h ∈ f, we have

1. (Ωφh,Ωφ+1h) = +∞, ∀ φ > 0;
2. d(Ωφh,Ωφ+1h) <∞, ∀ φ > φ0;
3. {Ωφh} is convergent to z∗ of Ω;
4. Z = {z ∈ f;d(Ωφ0h, z) <∞} for z∗ of Ω;
5. 1

1−£d(Q,ΩQ) > d(Q∗,Q), ∀ Q ∈ £.

Here, Ω is a strictly contractive mapping.

Throughout this paper, an additive function Ψ : Θ→ Y is defined by

DΨ(h1,h2, . . . ,hφ) = Ψ

 φ∑
p=1

(
c + e

2

)φ
hp

−

(
c + e

2

)φ φ∑
p=1

Ψ(hp)

and

DΨ(h1,h2, . . . ,hφ) = Ψ

 φ∑
p=1

hp

+

φ∑
q=1

Ψ

−hq +
∑

p=1;p6=q

hp

− (φ− 1)
φ∑

p=1

Ψ(hp),

for all h1,h2, . . . ,hφ ∈ Θ.

3. General solution of (1.2)

In this section, we present the general solution of the φ-dimensional functional equation (1.2).

Theorem 3.1. Let (Θ,Y) be a real vector space. If a mapping Ψ : Θ→ Y satisfies (1.3), for all h1,h2, . . . ,hφ ∈ Θ,
then Ψ : Θ→ Y satisfies (1.1), for all F,G ∈ Θ.
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Proof. Suppose that a mapping Ψ : Θ→ Y satisfies the functional equation (1.1). Setting (F,G) by (0, 0) in
(1.1), we get Ψ(0) = 0. Replacing (F,G) by (h1,h2) in (1.1), we have

Ψ(h1 + h2) = Ψ(h1) +Ψ(h2), ∀ h1,h2 ∈ Θ. (3.1)

Setting (h1,h2) by (h1 − h) in (3.1), we get

Ψ(−h) = −Ψ(h), ∀ h ∈ Θ.

Therefore, Ψ is an odd function. Replacing (h1,h2) by (h,h) and (2h,h) in (3.1), we arrive

Ψ(2h) = 2Ψ(h), Ψ(3h) = 3Ψ(h), ∀ h ∈ Θ.

In general, for any positive integer φ, we have

Ψ(φh) = φΨ(h), ∀ h ∈ Θ. (3.2)

Switching (h1,h2) by (h1,−h2) in (3.2), we get

Ψ(h1 − h2) = Ψ(h1) −Ψ(h2), ∀ h1,h2 ∈ Θ. (3.3)

Setting (h1,h2) by (−h1,h2) in (3.3), we have

Ψ(−h1 + h2) = −Ψ(h1) +Ψ(h2), ∀ h1,h2 ∈ Θ. (3.4)

Adding (3.1), (3.3), and (3.4), we arrive

Ψ(h1 + h2) +Ψ(h1 − h2) +Ψ(−h1 + h2) = Ψ(h1) +Ψ(h2), ∀ h1,h2 ∈ Θ.

Substituting (h1,h2) by (h1,h2 + h3) in (3.1), we get

Ψ(h1 + h2 + h3) = Ψ(h1) +Ψ(h2) +Ψ(h3), ∀ h1,h2,h3 ∈ Θ. (3.5)

Setting (h1,h2) by (−h1,h2 + h3) in (3.1), we arrive

Ψ(−h1 + h2 + h3) = −Ψ(h1) +Ψ(h2) +Ψ(h3), ∀ h1,h2,h3 ∈ Θ. (3.6)

Replacing (h1,h2) by (h1,−h2 + h3) in (3.1), we get

Ψ(h1 − h2 + h3) = Ψ(h1) −Ψ(h2) +Ψ(h3), ∀ h1,h2,h3 ∈ Θ. (3.7)

Setting (h1,h2) by (h1,h2 − h3) in (3.1), we get

Ψ(h1 + h2 − h3) = Ψ(h1) +Ψ(h2) −Ψ(h3), ∀ h1,h2,h3 ∈ Θ. (3.8)

Adding (3.5), (3.6), (3.7), and (3.8), we arrive

Ψ(h1 + h2 + h3) +Ψ(−h1 + h2 + h3) +Ψ(h1 − h2 + h3) +Ψ(h1 + h2 − h3) = 2Ψ(h1) + 2Ψ(h2) + 2Ψ(h3),

∀ h1,h2,h3 ∈ Θ. Continue this process up to φ times, we get

Ψ

 φ∑
p=1

hp

+

φ∑
q=1

Ψ

−hq +
∑

p=1;p 6=q

hp

− (φ− 1)
φ∑

p=1

Ψ(hp) = 0, ∀ h1,h2,h3, . . . ,hφ ∈ Θ.
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Conversely, a mapping Ψ : Θ → Y satisfies the functional equation (1.3). Replacing (h1,h2,h3, . . . ,hφ) by
(0, 0, 0, . . . , 0) in (1.3), we get Ψ(0) = 0. Setting (h1,h2, . . . ,hφ) by (h, 0, . . . , 0) in (1.3), we get

φΨ(h) +Ψ(−h) = (φ− 1)Ψ(h), ∀ h ∈ Θ. (3.9)

From (3.9), we get
Ψ(−h) = −Ψ(h), ∀ h ∈ Θ.

Therefore, Ψ is an odd function. Setting (h1,h2,h3, . . . ,hφ) by (h,h, 0, . . . , 0), (h,h,h, . . . , 0) in (1.3), we
have

Ψ(2h) = 2Ψ(h), Ψ(3h) = 3Ψ(h), ∀ h ∈ Θ.

Switching (h1,h2,h3, . . . ,hφ) by (h1,h2, 0, . . . , 0) in (1.3), we get

Ψ(h1 + h2) = (φ− 1)Ψ(h1) +Ψ(h2),
2Ψ(h1 + h2) = (φ− 1)Ψ(h1) +Ψ(h2),
3Ψ(h1 + h2) = (φ− 1)Ψ(h1) +Ψ(h2), ∀ h1,h2 ∈ Θ.

Continue this process up to φ times, we get

Ψ(h1 + h2) = Ψ(h1) +Ψ(h2), ∀ h1,h2 ∈ Θ.

Replacing (h1,h2) by (F,G), we have

Ψ(F+G) = Ψ(F) +Ψ(G), ∀ F,G ∈ Θ.

4. Direct method-Stability of (1.2)

In this section, we investigate the Hyers-Ulam stability of (1.2) in fuzzy normed space via direct
method.

Theorem 4.1. Let Ω ∈ {−1, 1} and Γ : Θφ → Z be a mapping. Then

N ′(Γ(cΩh, cΩh, . . . , cΩh),∈) > N ′(σΩΓ(h,h, . . . ,h), ε), σ > 0,
(σ
c

)Ω
< 1, ∀ h ∈ Θ, ε > 0 (4.1)

and

lim
φ→∞N ′(Γ(cΩφh1, cΩφh2, cΩφh3, . . . ,hφ), cΩφε) = 1, ∀ h1,h2, . . . ,hφ ∈ Θ, ε > 0.

Suppose an odd mapping Ψ : Θ→ Y fulfills the inequality

N(DΨ(h1,h2, . . . ,hφ), ε) > N ′(Γ(h1,h2, . . . ,hφ), ε), ∀ ε > 0, h1,h2, . . . ,hφ ∈ Θ. (4.2)

Then

A(h) = N− lim
φ→∞ Ψ(c

Ωφh)

cΩφ
exists, for all h ∈ Θ

and A : Θ→ Y is a unique additive mapping such that

N(Ψ(h) −A(h), ε) > N ′(Γ(h,h, . . . ,h), ε|c − σ|), ∀ h ∈ Θ, ε > 0, (4.3)

where c = φ(φ2 − 2φ+ 1).
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Proof. First assume Ω = 1. Replacing (h1,h2, . . . ,hφ) by (h,h, . . . ,h) in (4.2), we obtain

N(Ψ(ch) − cΨ(h), ε) > N ′(Γ(h,h, . . . ,h), ε), ∀ h ∈ Θ, ε > 0. (4.4)

From (4.4), we arrive that

N

(
Ψ(ch)

c
−Ψ(h),

ε

c

)
> N ′(Γ(h,h, . . . ,h), ε), ∀ h ∈ Θ, ε > 0. (4.5)

Replacing h by cφh in (4.5), we obtain

N

(
Ψ(cφ+1h)

c
−Ψ(cφh),

ε

c(c)

)
> N ′(Γ(cφh, cφh, . . . , cφh), ε), ∀ h ∈ Θ, ε > 0. (4.6)

Using (4.1), (N3), in (4.6), we get

N

(
Ψ(cφ+1h)

c
−Ψ(cφh),

ε

c(c)

)
> N ′

(
Γ(h,h, . . . ,h),

ε

σφ

)
,

N

(
Ψ(c(φ+1)h)

c(φ+1) −
Ψ(cφh)

cφ
,

ε

cc(cφ)

)
> N ′

(
Γ(h,h, . . . ,h),

ε

σφ

)
, ∀ h ∈ Θ, ε > 0. (4.7)

Replacing ε by σφε in (4.7), we get

N

(
Ψ(cφ+1h)

c(φ+1) −
Ψ(cφh)

cφ
,
σφε

cc(cφ)

)
> N ′ (Γ(h,h, . . . ,h), ε) , ∀ h ∈ Θ, ε > 0. (4.8)

Clearly,

Ψ(cφx)

cφ
−Ψ(h) =

φ−1∑
p=0

Ψ(cp+1h)

c(p+1) −
Ψ(cph)

cp
, ∀ h ∈ Θ, ε > 0. (4.9)

From (4.9) and (4.8), we acquire

N

Ψ(cφx)
cφ

−Ψ(h),
φ−1∑
p=0

εσp

c(p+1)

 > min
{
N

(
Ψ(cp+1x)

cp+1 −
Ψ(cph)

ci
,
εσp

c(p+1)

)}
> N ′(Γ(h,h, . . . ,h), ε), ∀ h ∈ Θ, ε > 0. (4.10)

Replacing h by cmh in (4.10) and using (4.1), (N3), we reach

N

Ψ(cφ+mx)

c(φ+m)
−
Ψ(cmh)

cm
,
φ−1∑
p=0

εσp

c(p+1)

 > N ′(Γ(h,h, . . . ,h), ε) > N ′(Γ(h,h, . . . ,h),
ε

σm
)

and so,

N

Ψ(cφ+mx)

c(φ+m)
−
Ψ(cmh)

cm
,
φ−1∑
p=0

εσp

c(p+1)

 > N ′(Γ(h,h, . . . ,h), ε), ∀ h ∈ Θ, ε > 0, m,φ > 0.

Replacing ε by ε∑φ+m−1
p=m

σp

c(p+1)
, we get

N

(
Ψ(cφ+mx)

c(φ+m)
−
Ψ(cmh)

cm
, ε
)

> N ′

Γ(h,h, . . . ,h),
ε∑φ+m−1

p=m
σp

(c(p+1))

 , ∀ h ∈ Θ, ε > 0, m,φ > 0. (4.11)
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Since
∑m

p=0
(
σ
c

)p
<∞ is a Cauchy criterion, which is convergence at 0 < σ < c.

Hence, the sequence
{
Ψ(cφh)

cφ

}
is a Cauchy sequence in a fuzzy Banach space (Y,N). Also, this

sequence converges to some point A(x) ∈ Y. So we define a function A : Θ→ Y by

A(h) = N− lim
φ→∞ Ψ(c

φh)

cφ
, ∀ h ∈ Θ.

Note that, Ψ and A are odd functions. Letting m = 0 in equation (4.11), we obtain

N

(
Ψ(cnx)

cφ
−Ψ(h), ε

)
> N ′

Γ(h,h, . . . ,h),
ε∑φ+m−1

p=m
σp

(c(p+1))

 , ∀ h ∈ Θ, ε > 0. (4.12)

Taking the limit as φ→∞ in (4.12) and using (N6), we get

N(Ψ(h) −A(h), ε) > N ′(Γ(h,h, . . . ,h), ε(c − σ)), ∀ h ∈ Θ, ε > 0.

Now, we claim that A is additive.
Varying (h1,h2, . . . ,hφ) by (cφh1, cφh2, . . . , cφhφ) in (4.2) respectively, we have

N

(
1
cφ
DΨ(cφh1, cφh2, . . . , cφhφ), ε

)
> N ′(Γ(cφh1, cφh2, . . . , cφhφ), cφε), ∀ h ∈ Θ, ε > 0.

Since limφ→∞N ′(Γ(cφh1, cφh2, . . . , cφhφ), cφε) = 1 and a function A : Θ → Y satisfies the functional
equation (1.2). Hence, A : Θ→ Y is an additive function.

To prove the uniqueness of A : Θ → Y, let B : Θ → Y be another mapping satisfying (4.3). Fix h ∈ Θ,
clearly A(cφh) = cφA(h) and B(cφh) = cφB(h), ∀ h ∈ Θ, φ ∈ N. From (4.3), we have

N(A(h) −B(h), ε) = N

(
A(cφh)

cφ
−
B(cφh)

cφ
, ε
)

> N ′
(
Γ(h,h, . . . ,h),

(cφ)ε(c − σ)

2σφ

)
, ∀ h ∈ Θ, ε > 0.

Since limφ→∞ (cφ)ε(c−σ)
2σφ =∞, we have

lim
φ→∞N ′

(
Γ(h,h, . . . ,h),

(cφ)ε(c − σ)

2σφ

)
= 1.

Thus N(A(h) −B(h), ε) = 1, ∀ h ∈ Θ, ε > 0 and so A(h) = B(h).

Corollary 4.2. If a mapping Ψ : Θ→ Y satisfies the inequality

N(DΨ(h1,h2, . . . ,hφ), ε) >


N ′(κ, ε),
N ′(κ

∑φ
p=1 ‖hp‖

ι, ε),
N ′(κ

∏φ
p=1 ‖hp‖

ι, ε),
N ′(κ(

∑φ
p=1 ‖hp‖

φι +
∏φ

p=1 ‖hp‖
ι), ε), ∀ h1,h2, . . . ,hφ ∈ Θ, ε, κ > 0,

then there exists a unique additive mapping A : Θ→ Y such that

N(Ψ(h) −A(h), ε) >


N ′(κ, |c − 1|ε),
N ′(κ‖h‖ι,φ|c − cι|ε), ι 6= 1,
N ′(κ‖h‖φι, |c − cφι|ε), ι 6= 1

φ ,
N ′(κ‖h‖φι, (φ+ 1)|c − cφι|ε), ι 6= 1

φ , ∀ h ∈ Θ, ε > 0,

where c = φ(φ2 − 2φ+ 1).
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5. Stability of additive functional equation in random normed space-Direct method

In this section, the authors discuss Hyers-Ulam satbility of functional equations (1.3) in random
normed space using direct method.

Theorem 5.1. Let q = ±1 and Ψ : Θ→ Y be an additive mapping for which there exists a function τ : Θφ → D+

with the condition

lim
`→∞T∞p=0

(
τ(3`+ph1,3`+ph2,...,3`+phφ)

(
3`+p+1qs

))
= 1, and

lim
`→∞T∞p=0

(
τ(3`+ph1,3`+ph2,...,3`+phφ)

(
3`+p+1qs

))
= lim
`→∞

(
τ3`h1,3`h2,...,3`hφ

(
3`ps

))
,

such that

ΥDΨ(h1,h2,...,hφ)(s) > τ(h1,h2,...,hφ)(s), ∀ h1,h2, . . . ,hφ ∈ Θ, s > 0.

Then there exists a unique additive function A : Θ→ Y satisfying (1.2) and

ΥA(h)−Ψ(h)(s) > T∞p=0

(
τ(3(p+1)qh,3(p+1)qh,3(p+1)qh,0,...,0)

(
(φ− 2)3(1+p)qs

))
, ∀ h ∈ Θ, s > 0,

where h ∈ Θ and A(h) is defined by

ΥA(h)(s) = lim
k→∞ΥΨ(3`qh)

3`q
(s), ∀ h ∈ Θ, s > 0.

Corollary 5.2. If a mapping Ψ : Θ→ Y satisfies the inequality

ΥDf(h1,h2,...,hφ)(s) >


τε(s),
τε
∑φ

p=1 ‖hp‖
ι(s), ι 6= 1,

τε

(∏φ
p=1 ‖hp‖

ι +
∑φ

p=1 ‖hp‖
φι
)
(s), ι 6= 1

φ , ∀h1,h2, . . . ,hφ ∈ Θ, s > 0,

then there exists a unique additive function A : Θ→ Y such that

ΥΨ(h)−A(h)(s) >


τ ε

(φ−2)|2|
(s),

τ 3ε‖h‖ι
(φ−2)|3−3φ|

(s),

τ 3ε‖h‖s
(φ−2)|3−3φι|

(s), ∀ h ∈ Θ, s > 0.

6. Fixed point method-Stability of (1.2)

In this part, we investigate the Hyers-Ulam stability of (1.2) in fuzzy normed space via fixed point
technique. Define

τp =

{
c, if p = 0,
1
c , if p = 1,

where c = φ(φ2 − 2φ+ 1) and Ω = {s/s : Θ→ Y, s(0) = 0}.

Theorem 6.1. Let Ψ : Θ→ Y and Γ : Θφ → Z be mappings with the condition

lim
k→∞N ′

(
Γ(τp`h1, τp`h2, . . . , τp`hφ), τp`ε

)
= 1,∀h1,h2, . . . ,hφ ∈ Θ and ε > 0
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and satisfy the inequality

N(DΨ(h1,h2, . . . ,hφ), ε) > N ′(Γ(h1,h2, . . . ,hφ), ε), ∀h1,h2, . . . ,hφ ∈ Θ and ε > 0.

If L = L[i] such that

N ′
(
L

1
τp
β(τph), ε

)
= N ′(β(h), ε), ∀ h ∈ Θ, ε > 0,

then there exists a unique additive mapping A : Θ→ Y satisfying (1.2) and

N(Ψ(h) −A(h), ε) > N ′
(
L1−i

1 − £
β(h), ε

)
, ∀ h ∈ Θ, ε > 0.

Corollary 6.2. If a function Ψ : Θ→ Y satisfies the inequality

N(DΨ(h1,h2, . . . ,hφ), ε) >


N ′(κ, ε),
N ′(κ

∑φ
p=1 ‖hp‖

ι, ε),
N ′(κ

∏φ
p=1 ‖hp‖

ι, ε),
N ′(κ(

∑φ
p=1 ‖hp‖

φι +
∏φ

p=1 ‖hp‖
ι), ε), κ > 0,

∀ h1,h2, . . . ,hφ ∈ Θ, ε > 0, then there exists a unique additive mapping A : Θ→ Y such that

N(Ψ(h) −A(h), ε) >


N ′(κ, |c − 1|ε),
N ′(κ‖h‖ι,φ|c − cι|ε), ι 6= 1,
N ′(κ‖h‖φι, |c − cφι|ε), ι 6= 1

φ ,
N ′(κ‖h‖φι, (φ+ 1)|c − cφι|ε), ι 6= 1

φ , ∀ h ∈ Θ, ε > 0,

where c = φ(φ2 − 2φ+ 1).

7. Stability of additive functional equation in random normed space-Fixed point method

In this section, the authors present the generalized Hyers-Ulam stability of functional equitation (1.3)
in random normed space using fixed point method.

Theorem 7.1. Let Ψ : Θ→ Y and τ : Xφ → D+ be mappings with the condition

lim
`→∞

(
(τ`ph1, τ`ph2, . . . , τ`phφ), τ`ps

)
= 1,∀ h1,h2, . . . ,hφ ∈ Θ, s > 0,

where τp =

{
3, p = 0,
1
3 , p = 1,

satisfies the functional inequality

ΥDΨ(h1,h2, . . . ,hφ)(s) > τ(h1,h2,...,hφ)(s), ∀ h1,h2, . . . ,hφ ∈ Θ, s > 0.

If £ = £(i), then h→ β(h, s) = 1
(n−2)τ(h3 ,h3 ,h3 ,0,...,0)(s) has the property that

β(h, s) 6 £
1
δp
β(δph, s), ∀h ∈ Θ, s > 0, (7.1)

then there exists a unique additive mapping A : Θ→ Y satisfying (1.2) and

ΥA(h)−Ψ(h)

(
L1−i

1 − £
t

)
> β(h, s), ∀h ∈ Θ, s > 0.
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Proof. Let d(h,g) = inf{` ∈ (0,∞)�Υ(h(h) − g(h))(`s) > β(h, s),h ∈ Θ, s > 0}. Then the normed space
(Ω,d) is complete. Define T : Ω→ Ω by Th(h) = 1

δp
h(δph), ∀ h ∈ Θ. Now

d(Th,Tg) 6 £d(h,g), ∀ h,g ∈ Ω, d(h,g) 6 `.

Therefore T is strictly contractive mapping on Ω with Lipschitz constant £. Replacing (h1,h2, . . . ,hφ) by
(h,h,h, 0, . . . , 0) in (4.2), we get

Υ(φ−2)Ψ(3h)−3(n−2)Ψ(h)(s) > τ(h,h,h,0,...,0)(s), ∀ h ∈ Θ.

From (4.6), we get

ΥΨ(3h)
3 −Ψ(h)

(s) > τ(h,h,h,0,...,0)((φ− 2)3s), ∀ h ∈ Θ. (7.2)

Using (7.1) for p = 0, it reduces to

ΥΨ(3h)
3 −Ψ(h)

(s) > Lβ(h, s), ∀ h ∈ Θ.

Hence,

d
(
ΥTΨ(h)−Ψ(h)

)
> L = L1−i <∞, ∀ h ∈ Θ. (7.3)

Replacing Θ by x
3 in (7.2), we get

ΥΨ(h)
3 −Ψh3

(s) > τ(h3 ,h3 ,h3 ,0,...,0)((φ− 2)3s), ∀ h ∈ Θ.

Using (7.1) for p = 1, it reduces to

Υ3Ψh3 −Ψ(h)(s) > β(h, s)⇒ ΥTΨ(h)−Ψ(h)(s) > β(h, s), ∀ h ∈ Θ.

Hence,

d
(
ΥTΨ(h)−Ψ(h)

)
> L = L1−i <∞, ∀ h ∈ Θ. (7.4)

From (7.3) and (7.4), we can conclude

d
(
ΥTΨ(h)−Ψ(h)

)
> L = L1−i <∞, ∀ h ∈ Θ.

In order to prove that A : Θ → Y fulfills (1.2), the remaining proof is similar. Since A is a unique fixed
point of T and 4 = {Ψ ∈ Ω/d(Ψ,A) <∞}. Finally, A is an unique function such that

ΥA(h)−Ψ(h)

(
L1−i

1 − £
s

)
> β(h, s), ∀ h ∈ Θ, s > 0.

Corollary 7.2. If a function Ψ : Θ→ Y satisfies the inequality

ΥDΨ(h1,h2,...,hφ)(s) >


τε(s),
τε
∑φ

p=1 ‖hp‖
ι(s), ι 6= 1,

τε

(∏φ
p=1 ‖hp‖

ι +
∑φ

p=1 ‖hp‖
φι
)
(s), ι 6= 1

φ ,

for all h1,h2, . . . ,hφ ∈ Θ and all s > 0, then there exists an additive function A : Θ→ Y such that

ΥΨ(h)−A(h)(s) >


τ ε

(φ−2)|2|
(s),

τ 3ε‖h‖ι
(φ−2)|3−3ι|

(s),

τ 3ε‖h‖ι
(φ−2)|3−3φι|

(s), ∀ h ∈ Θ, s > 0.
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8. Applications of functional equations

Many areas of mathematics use functional equations, including physics, geometry, measure theories,
statistics, algebraic geometry, and group theory. Many intriguing applications of functional equations
may be found in characterization issues in probability theory. Joint distributions formed from conditional
distributions can be described using functional equation solutions. Stochastic processes, astronomy, eco-
nomics, classical mechanics, computer graphics, dynamic programming, neural networks, statistics, cod-
ing theory, information theory, fuzzy set theory, artificial intelligence, decision theory, population ethics,
and many other fields all use functional equations in some way.

We’ll provide an example to show how functional equations may be used to solve geometry difficulties.
Consider the rectangle with a g base and an h height. Let the rectangle’s area be f(h,g).

As illustrated in Figure 1, split the rectangle horizontally into two sub-rectangles with heights of h1
and h2 and the same base g.

Figure 1: Divide the rectangle horizontally.

Then the area of sub-rectangles will be f(h1,g) and f(h2,g) and the area of the full rectangle is f(h1 +
h2,g). We have

f(h1 + h2,g) = f(h1,g) + f(h2,g). (8.1)

In the same way as in Figure 2, we split the rectangle vertically with base heights g1 and g2 and the
same height h.

Figure 2: Divide the rectangle vertically.

Then the resulting areas are f(h,g1) and f(h,g2) and f(h,g1 + g2). Therefore,

f(h,g1 + g2) = f(h,g1) + f(h,g2). (8.2)

In equation (8.1), g is a constant and in equation (8.2), h is a constant. Both equations are similar to
Cauchy’s equation f(x+ y) = f(x) + f(y) whose solution is f(x) = cx. Therefore, the solution of (8.1) and
(8.2) is

f(h,g) = c1(g)h = c2(h)g. (8.3)

From (8.3),
c1(g)

g
=
c2(h)

h
= c. (8.4)



S. S. Santra, et al., J. Math. Computer Sci., 29 (2023), 343–355 354

From (8.4),
c1(g) = cg, c2(h) = cg. (8.5)

Substituting (8.5) in (8.3), we get
f(h,g) = chg,

where c is an arbitrary positive constant. Assume the initial conditions, that is, when h = 1,g = 1, the
area of the rectangle = 1, which gives c = 1. Therefore, f(h,g) = hg. Hence, we arrive at the area of the
rectangle.

9. Conclusion

We have introduced the general solution and generalized Hyers-Ulam stability of new type additive
functional equations (1.2) and (1.3). Furthermore, we have proved the Hyers-Ulam stability for the ad-
ditive functional equation (1.2) and (1.3) in fuzzy normed space and random normed space using two
different methods. Also, we gave some applications of functional equations in physics. Through these
examples, we explained how the functional equations appeared in the physical problem, and we talked
about solutions that were not used for solving the problem, but which could be of interest. We provided
an example to show how functional equations may be used to solve geometry difficulties.
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