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ABSTRACT
This research aims to discuss the existence, global stability, periodicity, and bifurcation analysis of a modified version of the ecological model
proposed by Tilman and Wedlin [Nature 353, 653–655 (1991)].

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0106829

I. INTRODUCTION
Difference equations containing exponential terms have many

applications in biology (see Ref. 2).3–8 In Ref. 10, the authors
modeled an ecological condition as a difference equation

Bt+1 = cN
ea−bLt

1 + ea−bLt
, Lt+1 =

L2
t

Lt + d
+ kBt+1. (1)

Here, Bt is the living biomass, Lt the litter mass, N the total soil nitro-
gen, t the time, and constants a, b, c, d > 0 and 0 < k < 1. Chaotic
nature of (1) was observed by a bifurcation diagram with the varying
parameter, such as soil nitrogen.

In Ref. 9, the authors modified (1) as

xn+1 =
ax2

n

xn + b
+ c

ek−dxn

1 + ek−dxn
, x0 ∈ R, (2)

where 0 < a < 1, b, c, d, k ∈ R+ and x0 ∈ R. Here, in (2), the constant
c, which was ck times the soil nitrogen N in (1), and the inclusion of
parameter a are the main modification they made and its dynamical
analysis was discussed with proof.

In Ref. 1, the authors considered the base of the exponent of a
difference equation as λ and discussed various stability properties.

In this paper, we generalized (2) by changing the exponent
base e to λ ∈ (1,∞) and investigated the global attractivity and
periodicity of the solutions of the difference equations

yn+1 =
αy2

n

β + yn
+ γ

λη−δyn

1 + λη−δyn
, n ∈ N. (3)

Here, λ > 1, 0 < α < 1, and β, γ, δ, η ∈ R+ and y0 is the initial arbitrary
non-negative numbers.

Moreover, to know the importance of λ, we did bifurcation
analysis by varying the base parameter l and observed the nature of
solutions, such as periodic or chaotic, by keeping α, β, γ, δ, and η
fixed.

II. UNIQUENESS, GLOBAL STABILITY,
AND PERIODICITY

Here, we study the existence of invariant intervals, uniqueness,
global stability, and periodic solutions of Eq. (3).

Theorem II.1. (i) Let I = [ γλη−(γδ/(1−α)))

1+λη−(γδ/(1−α))) , γ
1−α ]. If yn ∈ I for all

n = 0, 1, 2, . . ., I is an invariant interval for (3).
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(ii) For a positive constant a, let I = [ γλη−(γδ/(1−α)))−δa

1+λη−(γδ/(1−α)))−δa , γ
1−α + a].

Then, there exists an n0 ∈ {1, 2, . . .} for all n ≥ n0, yn ∈ I.

Proof. (i) Let yn > 0 and y0 ∈ I. Since 0 < α < 1, we have

y1 =
αy2

0

β + y0
+ γ

λη−δy0

1 + λη−δy0
< αy0 + γ ≤

αγ
1 − α

+ γ =
γ

1 − α
.

Then,

yn ≤
γ

1 − α
, n = 0, 1, 2, . . . . (4)

Let

h(y) =
γλη−δy

1 + λη−δy . (5)

We see that h decreases since h′(y) = − γδ(ln λ)λη−δy

(1+λη−δy)2 < 0.
Therefore, from (4), we have

yn ≥
γλη−(γδ/(1−α))

1 + λη−(γδ/(1−α)) . (6)

Hence the proof.

(ii) Let xn > 0 be a solution of (3). From (2.4) and (2.6) of Ref. 9
for an n0 ∈ {1, 2, . . .} such that

yn ≤ a +
γ

1 − α
, n ≥ n0. (7)

Since h decreases, we get

yn ≥
γλη−(γδ/(1−α))−δa

1 + λη−(γδ/(1−α))−δa , n ≥ n0. (8)

Equations (7) and (8) complete the proof.

Example II.2. Let α = 0.5, β = 3, γ = 8, δ = 4, η = 7, and λ = 3.
We see by computation that I = [5.0954 × 10−27, 16] and by taking
initial value y0 ∈ I, we have yn ∈ I.

Theorem II.3. (3) has a unique positive equilibrium solution.

Proof. Let F(y) = αy2

β+y + γ λη−δy

1+λη−δy − y,

⇒ F(y) = −
(1 − α)y2

+ βy
β + y

+ γ
λη−δy

1 + λη−δy (9)

and F(0) = γλη

1+λη > 0.
Taking lim

y→∞
F(y) = −∞, we get from (3)

F′(y) =
αy2
+ 2αβy

(β + y)2 −
γδ(ln λ)λη−δy

(1 + λη−δy)2 − 1

= −
(1 − α)y2

+ 2(1 − α)βy + β2

(β + y)2 −
γδ(ln λ)λη−δy

(1 + λη−δy)2 < 0,

which results in the decrease in F. Therefore, the solution is unique.

Theorem II.4. Suppose that

γδ ln λ < 2(1 − α). (10)

Then, the following statements are true:

(i) Every positive solution of (3) tends to the unique positive
equilibrium ȳ.

(ii) The unique ȳ > 0 of (3) is globally asymptotically stable.

Proof. (i) Let

f (x, y) =
αx2

β + x
+

γλη−δy

1 + λη−δy . (11)

Let I be the same as defined in Theorem II.1.
Let x, y ∈ I.
We have

f (x, y) ≤ αx + γ ≤ α(
γ

1 − α
+ a) + γ

=
αγ + γ − αγ

1 − α
+ aα ≤

γ
1 − α

+ a. (12)

From (5), h decreases, and hence we obtain

f (x, y) ≥
γλη−(γδ/(1−α))−δa

1 + λη−(γδ/(1−α))−δa . (13)

Equations (12) and (13) imply that f : I × I → I,

∂f
∂x
=

αx2
+ 2αβx

(β + x)2 > 0,
∂f
∂y
= −

γδλη−δy

(1 + λη−δy)
< 0.

Here, for every x, the function f decreases with respect to y and
increases for every y with respect to x.

If (3) has a solution yn, Theorem II.1 (ii) gives the following:
Let ℓ, L > 0 such that

L = f (L, ℓ) =
αL2

β + L
+

γλη−δℓ

1 + λη−δℓ , (14)

ℓ = f (ℓ, L) =
αℓ2

β + ℓ
+

γλη−δL

1 + λη−δL , n ≥ n0, yn ∈ I. (15)

Consider the system of equations

z = f (z, w) =
αz2

β + z
+

γλη−δw

1 + λη−δw ,

w = f (w, z) =
αw2

β + w
+

γλη−δz

1 + λη−δz .

(16)

Considering z = z(w), we obtain

(1 − α)z2
+ βz

β + z
=

γλη−δw

1 + λη−δw

and

z′(w) = −
γδ(z + β)2

(ln λ)λη−δw

(1 + λη−δw)2((1 − α)z2 + 2(1 − α)βz + β2)
. (17)
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Let G(w) = (1−α)w2
+βw

β+w −
γλη−δz(w)

1+λη−δz(w) .
From (16), we obtain

G′(w) =
(1 − α)w2

+ 2(1 − α)βw + β2

(β + w)2 +
γδ(ln λ)λη−δz(w)

(1 + λη−δz(w))2 z′(w).

(18)
From (17), we get

G′(w)=
(1 − α)w2

+ 2(1 − α)βw + β2

(β + w)2

−
γ2δ2
(z + β)2

(ln λ)2λη−δwλη−δz(w)

(1+λη−δw)2(1 + λη−δz(w))2((1− α)z2 + 2(1 − α)βz + β2)
.

(19)

Now, the following relations hold:

λη−δz(w)

(1 + λη−δz(w))2 <
1
2

,
λη−δw

(1 + λη−δw)2 <
1
2

,

(z + β)2

(1 − α)z2 + 2(1 − α)βz + β2 <
1

1 − α
,

(1 − α)w2
+ 2(1 − α)βw + β2

(w + β)2 > 1 − α.

Then, by the above-mentioned relations and Theorem (II.4), we
have

G′(w) = 1 − α − γ2δ2 1
4(1 − α)

> 0.

Therefore, function G increases. We have from (15), G(w) = 0 has
solutions ℓ, L. Therefore, L = ℓ. From Lemma 3.1 of Ref. 9, every yn
of (3) contains the unique equilibrium ȳ when n→∞.

(ii) The linearized equation about the equilibrium ȳ is

yn+1 = (
αȳ 2
+ 2αβȳ

(β + ȳ)2 −
γδ(ln λ)λη−δȳ

(1 + λη−δȳ )2 )yn.

We prove that

∣
αȳ 2
+ 2αβȳ

(β + ȳ)2 −
γδ(ln λ)λη−δȳ

(1 + λη−δȳ )2 ∣ < 1 (20)

or

− 1 <
αȳ 2
+ 2αβȳ

(β + ȳ)2 −
γδ(ln λ)λη−δȳ

(1 + λη−δȳ )2 < 1. (21)

Since 0 < α < 1, it is obvious that

−
(1 − α)ȳ 2

+ 2(1 − α)βȳ + β2

(β + ȳ)2 <
γδ(ln λ)λη−δȳ

(1 + λη−δȳ )2 .

From Theorem (II.4), we get γδ ln λ < 2(1 − α) < 2,

γδ(ln λ)λη−δȳ

(1 + λη−δȳ )2 <
2λη−δȳ

(1 + λη−δȳ )2 < 1 < 1 +
αȳ 2
+ 2αβȳ

(β + ȳ)2 ,

and so (21) is true. Hence, (20) holds, and we see that from
Theorem 1.3.7 of Ref. 11, ȳ is locally asymptotically stable.
From (i), every yn of (3) tends to ȳ as n→∞. Therefore, ȳ is
globally asymptotically stable.

Example II.5. For α = 0.5, β = 3, γ = 0.8, δ = 0.4, η = 7, λ = 3,
and Theorem (II.4) holds, then every positive solution of (3) tends to
the unique positive equilibrium ȳ and ȳ > 0 is globally asymptotically
stable.

Theorem II.6. Let μ > 0 and δ > (1+α)(1+λη
)

μ(1−α) ln λ ,

γ > ((1−α)μ2
+βμ)(1+λη−δμ

)

(μ+β)λη−δμ . Then, (3) has period-2 solutions.

Proof. Solution of (3) is of period two if y2 = y0. Then,

αy2
1

β + y1
+ γ

λη−δy1

1 + λη−δy1
= y0,

αy2
0

β + y0
+ γ

λη−δy0

1 + λη−δy0
= y1. (22)

Let

H(y) =
αh(y)2

β + h(y)
+ γ

λη−δh(y)

1 + λη−δh(y) − y, h(y) =
αy2

β + y
+ γ

λη−δy

1 + λη−δy .

(23)
We prove that H′(ȳ) > 0.

From (23), we get

H′(y) = h′(y)(
αh(y)2

+ 2αβh(y)
(β + h(y))2 −

γδ(ln λ)λη−δh(y)

(1 + λη−δh(y))2 ) − 1,

h′(y) =
αy2
+ 2αβy

(β + y)2 −
γδ(ln λ)λη−δy

(1 + λη−δy)2 .
(24)

From Theorem II.4, we have

h(ȳ) = ȳ. (25)

From (24) and (25), we get

H′(ȳ) = (−
αȳ 2
+ 2αβȳ

(β + ȳ)2 +
γδ(ln λ)λη−δȳ

(1 + λη−δȳ )2 )

2

− 1.

We prove that

γδ(ln λ)λη−δȳ

(1 + λη−δȳ )2 > 1 +
αȳ 2
+ 2αβȳ

(β + ȳ)2 . (26)

We have from (3)

γλη−δȳ

1 + λη−δȳ =
(1 − α)ȳ 2

+ βȳ
β + ȳ

. (27)

We get

((1 − α)ȳ 2
+ βȳ)(1 + λη−δȳ

)

(β + ȳ)λη−δȳ = γ. (28)

Let G(y) = ((1−α)y2
+βy)(1+λη−δȳ

)

(β+y)λη−δy .
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From the hypothesis and (28), we get G(ȳ) = c > G(μ). G is an
increasing function since G′(y) > 0. Therefore, we have ȳ > μ.

From (27), we have

γδ(ln λ)λη−δȳ

(1 + λη−δȳ )2 =
δ(ln λ)((1 − α)ȳ 2

+ βȳ)
(β + ȳ)(1 + λη−δȳ )

>
δ(1 − α)(ln λ)ȳ

1 + λη ,

which implies

γδ(ln λ)λη−δȳ

(1 + λη−δȳ )2 >
δ(1 − α)μ ln λ

1 + λη .

From the hypothesis, we get

γδ(ln λ)λη−δȳ

(1 + λη−δȳ )2 > 1 + α.

FIG. 1. γ = 1.2277.

FIG. 2. γ = 1.23.

Therefore, (26) is true. Hence, H′(ȳ) > 0. There exists a pos-
itive constant ε such that H is an increasing function for
y ∈ (ȳ − ε, ȳ + ε).

From (23), we can prove that H(ȳ) = 0, H(0) > 0. So, there
exists a Ψ < ȳ such that H(Ψ) = 0.

Hence, we have yn with y0 = Ψ is a solution of (3) with
period-2.

Example II.7. For α = 0.05, β = 3, γ = 222, δ = 50, η = 7, λ = 2,
μ = 0.25, since the conditions of Theorem II.6 holds, then (3) has a
periodic solution of prime period-2.

FIG. 3. γ = 2.

FIG. 4. γ = 8.4.
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III. BIFURCATION ANALYSIS
In this section, we present the bifurcation analysis of the qual-

itative changes that happen for the solutions of the difference equa-
tion (3). Here, we consider λ as the variation parameter, which is the
base of the exponent η − δyn in (3).

We fix α = 0.2, β = 3, δ = 5, η = 7, and y0 = 3.
For γ < 1.2 and for any λ, the solution is asymptotically sta-

ble. Therefore, no bifurcation occurs. When γ = 1.2277, we observe
from Fig. 1 a small periodic bubble that originates at λ ≈ 12, and so,
period-2 solution occurs approximately in the interval [12, 17].

In Fig. 2, we observe that the bubble expands to a certain stage
when γ = 1.23. Hence, we confirm the existence of period-2 solution
for 9 < λ < 30. On increasing γ, the bubble vanishes and bifurcation

FIG. 5. γ = 8.43.

FIG. 6. γ = 8.8.

FIG. 7. γ = 9.555.

FIG. 8. γ = 9.8.

FIG. 9. γ = 10.
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FIG. 10. γ = 47.

FIG. 11. γ = 70.

appears like a fork that guarantees a period-2 solutions after bifur-
cation (see Fig. 3). In Fig. 4, we observe the blooming of two new
bubbles when γ = 8.4. As shown in Fig. 2, the bubbles expand and
period doubling also occurs (see Figs. 5 and 6).

When γ = 9.555 and around λ = 540, in Fig. 7, we observe the
possibility of chaotic solutions. After the chaos period-3, solutions
occur. Figures 8 and 9 show the increase in chaotic solutions. When
we increase γ, chaotic solutions occur for small λ, and simulta-
neously, three bubbles are formed, which guarantees the period-3
solution and bifurcates to period-6 followed by chaos and period-4
solutions and so on (see Figs. 10–12).

FIG. 12. γ = 500.

IV. CONCLUSION
In this research, we argued the existence of unique positive

equilibrium solution, its convergence, global asymptotic stability,
and conditions for the existence of periodic solutions. The impor-
tance of the generalized base λ of the exponent was discussed using
the bifurcation diagram by varying it. For various λ, we observed the
existence of asymptotic, periodic, and chaotic solutions.
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