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Abstract: Divorce is the dissolution of two parties’ marriage. Separation and divorce are the
major obstacles to the viability of a stable family dynamic. In this research, we employ a basic
incidence functional as the source of interpersonal disagreement to build an epidemiological framework
of divorce outbreaks via the fractal-fractional technique in the Atangana-Baleanu perspective. The
research utilized Lyapunov processes to determine whether the two steady states (divorce-free and
endemic steady state point) are globally asymptotically robust. Local stability and eigenvalues
methodologies were used to examine local stability. The next-generation matrix approach also provides
the fundamental reproducing quantity R̄0. The existence and stability of the equilibrium point can
be assessed using R̄0, demonstrating that counseling services for the separated are beneficial to the
individuals’ well-being and, as a result, the population. The fractal-fractional Atangana-Baleanu
operator is applied to the divorce epidemic model, and an innovative technique is used to illustrate its
mathematical interpretation. We compare the fractal-fractional model to a framework accommodating
different fractal-dimensions and fractional-orders and deduce that the fractal-fractional data fits the
stabilized marriages significantly and cannot break again.
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1. Introduction

A legally accepted relationship or settlement agreement involving two people establishes duties
and responsibilities amongst them, their respective in-laws, and the community as a whole. When
an intimate physical engagement is genetically accepted, it is regularly alluded to as marriage or
consensual incest [1]. Marriage was intended to be a non-acrimonious partnership from the beginning.
Nevertheless, unpleasant situations have surfaced, with the divorce process being the most common.
When the proportion of unfavorable to desirable deeds is equal to or larger than unity, the latter
phenomenon is more probable to occur. Divorce is defined as the dissolution of a two-person union [2],
and it has a negative impact on domestic organizations in today’s society. This vexing pattern persists
unabated throughout Asia and the civilized world. Forced marriage, illiteracy, poverty, extramarital
intimacy and pregnancy, betrayal, and a dearth of religious commitment are just a few of the causative
factors of a breakup [3].

Divorce is an alarming trend that, like any sickness, has an influence on the psychological and
cultural formation of modern civilization. About half of all early marriages in the system end in
divorce [4], with subsequent unions having significantly higher divorce rates [5]. Separation frequently
leads to divorce, with 75 percent of separations ending in divorce [6]. Separation conditions have been
linked to a higher prevalence of juvenile adversity and unemployment [7]. It is critical to eradicating
this lethal sociological plague from our civilization.

In recent years, the numerical formulation has been utilized as a powerful strategy in the prevention
of outbreaks, and one might apply it to the prevention of separation in matrimonial organizations. The
impact of economic growth [8] and cultural propagation [9] on separation patterns has been a source
of worry in the past. In particular, [2] has suggested a framework for the rise of separation in Ghana,
dividing incidents into three categories: marital, divorced, and separated. Similarly, [2] expanded
their research to encompass individuals who had not taken particular steps to avoid separation.
Several researchers have investigated various mathematical models in this area, which can be found
in references [10–12].

Fractional calculus (FC) is defined as the advancement or modification of conventional derivatives
and integrals to non-integer order instances, has received considerable scholarly emphasis in recent
times [13–16]. According to the research, numerous scientific and other physical processes involve
fractional derivatives, including ideological, aquifer, electrostatics, financing, and hydrodynamics, to
highlight a few [17, 18].

Several researchers have explored the simulated predictions owing to the availability and
distinctiveness of fractional differential equation systems in diverse configurations, for example, [19–
22]. In FC, there are three types of fractional derivative/integral formulations: the Riemann-Liouville
and Caputo derivatives, which are a concatenation of power law (PL) functions [17], including the first
derivative; the Caputo-Fabrizio fractional derivative, which is a combination of the first derivative and
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the exponential decay (ED) law [23], including the Delta-Dirac feature; and the Atangana-Baleanu
fractional derivative [24], which has a generalized Mittag-Leffler (GML) as a kernel [25–28]. The
majority of the relevant and purposeful formulations in the various configuration domains of such
fractional-order derivative formulations in the scope of FC, which includes numerical simulations
modeled with formulae utilizing these three types of kernels, can be found in significant relevant
scholarly studies in [29–34] and the references cited therein.

Except for the previously mentioned continuous advancement that originated from the interaction
of ideologies between L’Hopital and his advisor Leibniz, researchers in [35–38] proposed some other
revolutionary notion in which conventional differentiation is lengthened to the core principle of fractal
differentiation derivative, with the result that unless the fractal-order approaches 1, the conventional
derivative is recovered. Furthermore, the fractal derivative is equivalent to αζα−1 if the mapping is
differentiable. Although this differential formulation has been employed in a number of cases, the
concept has yet to be recognized and implemented in the domains of mathematics, physics, and bio-
sciences. However, this fractal derivative concept emerges in several natural phenomena; for example,
favorable aquifer circulation pathways can be recorded by applying such a novel concept. Certain
individuals assume there’s nothing really novel or revolutionary, but it is evident, or at least can be
claimed, that combining two existent materials can result in a creative and inventive notion, or at the
very best, a customized rendition of the key construct. This additional feature will be much more
effective and convenient than the previous versions.

In 2017, Atangana [39], proposed a novel notion of differentiation, which is termed “fractal-
fractional” (FF), in which the researcher recommended the fractal derivative of the combination
of a specified function utilizing three previous notions, notably the PL kernel, the ED kernel, and
the GML function. The concept is novel, and it appears to have offered up significant avenues
of exploration into a wide range of scientific domains, encompassing economics, hydrodynamics,
life science, randomness, hydrology, acoustic emission, physiology, biomechanics, and plenty of
others [40, 41]. The researcher [39] suggested that the fractional formulation can only represent a
handful of complicated situations, whereas the fractal derivative can catch various forms of intricacies,
and that integrating theories can allow us to effectively comprehend the challenges of precise
existence [42, 43]. Atangana and Qureshi [44] recently introduced the modeling of chaotic dynamic
system attractors using FF operators, and Goméz-Aguilar [45] proposed chaos and multiple attarctors
in a FF model. Shinriki’s oscillator system and Rashid et al. [46] presented a revolutionary FF model
for comprehending the oscillatory and challenging behavior of the human liver with a GML kernel.
Etemad et al. [41] contemplated a novel mathematical analysis on the FF model of the AH1N1/09 virus
and its generalized Caputo-type version. Khan et al. [26] expounded a case study of FF tuberculosis
model in China. Rezapour et al. [27] defined a theoretical and numerical analysis of a FF two-strain
model of meningitis.

Owing to the aforementioned proclivity, we proposed a numerical framework for the propagation of
the breakup outbreak, similar to other researchers [9,47] via the Atangana-Baleanu fractional derivative
in the Caputo perspective and the FF operator in the Atangana-Baleanu fractional derivative context.
Meanwhile, the existence and uniqueness results are derived via the aforesaid model. Besides that, we
add a category of reconstituted marital instances involving anti-divorce counseling and reconciliation to
the system of [47], in which the cohesive societal disturbance is propagated by divorced and separated
people over partnered people, applying the conventional incidence functional as the cause of spousal
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disharmony. This is a key element that has been lacking in earlier research. A system for qualitative
analysis of the divorce epidemic has been developed via the FF Atangana-Baleanu operator. Graphical
illustrations are demonstrated by incorporating the fractional-order and fractal-dimension with varying
values. A simulation scheme is presented for with and without counseling control via the Atangana-
Baleanu fractional derivative in the Caputo perspective, respectively. Our contribution to this new
approach is to design this mathematical structure via the newly-defined hybrid Mittag-Leffler kernel.
Also, for the first time, in this paper, we derive numerical schemes for the FF divorce epidemic model
with the help of the Newton polynomials and by comparing our results with the Adams-Bashforth
simulations. In this direction, we can see some dynamical behaviors of the solutions in our simulations.

To follow this study, the Section “Preliminaries” is devoted to recalling some definitions. The
main structure of the FF divorce epidemic model is presented in Section 3. The existence analysis
and positivity of the proposed model are conducted with the qualitative aspects, such as disease-
free equilibrium and stability analysis, presented using appropriate Lyapunov’s candidates. Section
4 investigates the unique solutions using the Banach contraction principle. Fractal-fractional divorce
epidemic model analysis is also presented in the sense of the Cauchy problem. To simulate the
suggested model numerically, we use a new type of two-step Lagrange polynomials in the context of
the Adams–Bashforth method to derive some algorithms in Section 5. In Section 5, by using Matlab,
we analyze the behaviors of solutions during a finite time period and try to investigate the role of
some parameters in controlling the epidemic by varying the values of dimensions and orders. The
conclusions are presented in the Section “Conclusions”.

2. Preliminaries

It is vital to investigate some basic FF operator theories before continuing on to the mathematical
formulation. Consider the function w(ζ), which is continuous and fractal differentiable on [c, d] with
fractal-dimension η2 and fractional-order η1, as well as the specifications available in [39].

Definition 2.1. ( [39]) The fractal-fractional operator of w(ζ) containing the power-law kernel in the
context of Riemann-Liouville can be stated as follows for η1 ∈ [0, 1]:

FFPDη1,η2
0,ζ (w(ζ)) =

1
Γ(u − η1)

d
dζη2

ζ∫
0

(ζ − x)u−η1−1w(x)dx, (2.1)

where
dw(x)
dxη2

= lim
ζ 7→x

w(ζ) − w(x)
ζη2 − xη2

and u − 1 < η1, η2 ≤ u ∈ N. Also, Γ(ζ) =
∫ ∞

0
e−uuζ−1dζ signifies the Gamma function.

Definition 2.2. ( [39]) The fractal-fractional operator of w(ζ) containing the exponential decay kernel
in the context of Riemann-Liouville can be stated as follows for η1 ∈ [0, 1]:

FFEDη1,η2
0,ζ (w(ζ)) =

s(η1)
1 − η1

d
dζη2

ζ∫
0

exp
(
−

η1

1 − η1
(ζ − x)

)
w(x)dx, (2.2)

such that s(0) = s(1) = 1 having η1 < 1, η2 ≤ u ∈ N.
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Definition 2.3. ( [39]) The fractal-fractional operator of w(ζ) containing the generalized Mittag-Leffler
kernel in the context of Riemann-Liouville can be stated as follows for η1 ∈ [0, 1]:

FFMDη1,η2
0,ζ (w(ζ)) =

ABC(η1)
1 − η1

d
dζη2

ζ∫
0

Eη1

(
−

η1

1 − η1
(ζ − x)

)
w(x)dx, (2.3)

such that ABC(η1) = 1 − η1 +
η1
Γ(η1) having η1 < 1, η2 ≤ 1 ∈ N.

Definition 2.4. ( [39]) The corresponding fractal-fractional integral formulation of (2.1) is defined as:

FFPJη1
0,ζ(w(ζ)) =

η2

Γ(η1)

ζ∫
0

(ζ − x)η1−1xη2−1w(x)dx. (2.4)

Definition 2.5. ( [39]) The corresponding fractal-fractional integral formulation of (2.2) is defined as:

FFEJη1
0,ζ(w(ζ)) =

η1η2

s(η1)

ζ∫
0

xη2−1w(x)dx +
η2(1 − η1)ζη2−1w(ζ)

s(η1)
. (2.5)

Definition 2.6. ( [39]) The corresponding fractal-fractional integral formulation of (2.3) is defined as:

FFMJη1
0,ζ(w(ζ)) =

η1η2

ABC(η1)

ζ∫
0

xη2−1(ζ − x)η1−1w(x)dx +
η2(1 − η1)ζη2−1w(ζ)

ABC(η1)
. (2.6)

Definition 2.7. ( [24]) Let w ∈ H1(υ, λ), υ < λ and the Atangana-Baleanu fractional derivative
operator is defined as:

ABC
c Dη1

ζ (w(ζ)) =
ABC(η1)

1 − η1

ζ∫
c

w′(x)Eη1

(
−
η1(ζ − x)η1

1 − η1

)
dx, η1 ∈ [0, 1], (2.7)

where ABC(η1) denotes the normalization function.

3. Model description

The observed system was inspired by the research of [47], and the fundamental framework can be
described as follows:

Ṡ1(ζ) = π + λD− (β1 + υ)S1,

Ṁ(ζ) = β1S1 + β2D−
(
υ + (1 − α) ξ1D+ξ2S2

N

)
,

Ḋ(ζ) = ϖ1M(1 − α) ξ1D+ξ2S2
N

+ϖ3S2 − (υ + λ + τ1 + β2)D,
Ṡ2(ζ) = ϖ2M(1 − α) ξ1D+ξ2S2

N
− (υ + τ2 +ϖ3)S2,

Ṙ(ζ) = τ1D + τ2S2 − υR,

(3.1)
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subject to the ICs S1(0) = S10, M(0) =M0, D(0) = D0, S2(0) = S20, R(0) = R0. According to the
hypothesis provided and the schematic representation in Figure 1, a relatively comprehensive concept
of the divorce outbreak (3.1) with anti-divorce counseling. People who are unmarried or who are eager
to marry but have not actually committed. The population of bachelors who intend to marry at time
ζ is represented by S1(ζ). Certain isolated situations may result in separation but not the other way
around, whereasM(ζ) refers to the proportion of coupled cases at time ζ. Unbreakable marriages or
separated situations can be reconciled. The proportion of separated individuals at time ζ is indicated by
D(ζ). Those who have been divorced and are unable to remarry are now represented by S2(ζ), which is
denoted as separated cases at time ζ. Divorced individuals have the option of remarrying or remaining
single. Furthermore,M(ζ) represents the proportion of restored marital cases at ζ. It can be seen that
the approximated parameters by the proposed model (3.1) are close to the curve of real data which
validates the accuracy of the presented model in this study. (see; Table 1). The anti-divorce setting is
changed when 0 ≤ α ≤ 1. The model (3.1) is obtained using the following flow diagram of the divorce
pandemic as follows:

Figure 1. Flow chart for divorce epidemic.
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Table 1. Settings of the system’s (3.4) attributes and parameters employed in simulation
analysis.

S ymbols Explanation Value References

η1 Component that prevents divorce (0 ≤ η1 ≤ 1) 0.4 Supposed
ξ1 Married couples’ breakup incidence 0.022 [2]
ξ2 Separated proportion of the married 0.031 [2]
υ People’ natural fatality rate 0.02 Estimated
π acquisition rate of unmarried people 4 Supposed
λ Proportion of rest bachelors after divorce 0.01 Estimated
β1 proportion of getting married by the singles 0.101 [2]
β2 Proportion of re-marriage after divorced 0.061 [2]
ϖ1 Rate of married instances that end in divorce 0.5 Supposed
ϖ2 Rate of married people that separated 0.4 Supposed
ϖ3 Breakup proportion of the married 0.021 [2]
τ1 Reconciliation’s response percentage in reuniting separated couples 0.2 Supposed
τ2 Reconciling divorced instances in marriage via high success rate. 0.3 Supposed

3.1. Positivity and boundedness of the divorce model

To show that the (3.1) divorce framework is significant, we must show that the system’s
corresponding parameters are non-negative at all times ζ. This is addressed more simply by noting
that the divorce model with non-negative starting circumstances remains non-negative for all ζ > 0.
The preceding is a lemma.

Lemma 3.1. Assume that the initial data G(0) ≥ 0, where G(ζ) =
(
S1(ζ),M(ζ),D(ζ),S2(ζ),R(ζ)

)
.

Thus, the model solution’s described by (3.1) are non-negative for ζ > 0. Also, lim
ζ 7→∞

≤ π
υ

having

N(ζ) = S1(ζ) +M(ζ) +D(ζ) + S2(ζ) + R(ζ).

Proof. Suppose t∗ = sup
{
ζ > 0 : G(ζ) > 0 ∈ [0, ζ]

}
. Therefore, t∗ > 0. For (3.1), we find the

corresponding outcomes as

dS1

dζ
= π − (β1 + υ)S. (3.2)

(3.2) can be written as:

d
dζ

{
S1(ζ) exp

(
υζ +

t∗∫
0

β1(ϕ1)dϕ1

)}
= π exp

(
υζ +

t∗∫
0

β1(ψ1)dψ1

)
.

Thus,

S1(t∗) exp
(
υt∗ +

t∗∫
0

β1(ϕ1)dϕ1

)
− S1(0) = π exp

(
υy1 +

y1∫
0

β1(ψ1)dψ1

)
dy1.
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Observe that

S1(t∗) = S1(0) exp
{
−

(
υt∗ +

t∗∫
0

β1(ϕ1)dϕ1

)}
+ exp

{
−

(
υt∗ +

t∗∫
0

β1(ϕ1)dϕ1

)}

×π

t∗∫
0

exp
(
υy1 +

y1∫
0

β1(ψ1)dψ1

)
dy1 > 0.

Repetition of the earlier procedures for the remaining system elements (3.1), we can obtain G(ζ) > 0
for any ζ > 0.

Now, summing up all cohorts of the model (3.1) leads to the following

dN
dζ
= π − υN , (3.3)

with N = S1 +M +D + S2 + R.

Consequently, we have

lim
ζ 7→∞
N(ζ) ≤

π

υ
,

which is the desired result.
Furthermore, we present the feasible region for the divorce epidemic model (3.1). Assume that the

invariant domain

∇ =
{(
S1(ζ),M(ζ),D(ζ),S2(ζ),R(ζ)

)
∈ R5

+ : N(ζ) ≤
π

υ

}
.

□

Now, the underlying findings are presented for the viable region.

Lemma 3.2. Assume that the domain presented by ∇ is positively invariant for the divorce epidemic
model (3.1) with S1(0) = S10, M(0) =M0, D(0) = D0, S2(0) = S20, R(0) = R0.

Proof. By using hypothesis (3.3), then the divorce epidemic model leads to

dN
dζ
= π − υN .

So that dN
dζ ≤ 0, if N(0) ≥ π

υ
. Hence, N(ζ) ≤ N(0) exp(−υζ) + π

υ
(1 − exp(−υζ)). Ultimately, the region

presented by ∇ is positively invariant. Also, N(0) ≥ π
υ
, then N(ζ) approaches to π

υ
asymptotically.

Therefore, the domain presented by ∇ contain all solutions in R5
+. □

3.2. Divorce epidemic model for FF operator

Divorce is the dissolution of two parties’ marriage. As a result of the prevalence of divorce, there
have been attacks on the family and attempts to redefine marriage in modern society. To deal with
this social disaster, we create a fractional model of the fractal-fractional operators type, with the
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fractional order η1 and fractal dimension η2. Fractal-fractional differential equations transfer the order
and dimension of every dynamical system into a rational one. To upgrade and improve the approximate
results, inspired by the standard model (3.1), we present a mathematical FF model on the dynamics
of divorce epidemics under the effect of restored marital cases via the generalized Mittag-Leffler-type
kernel as

FFDη1,η2
0,ζ S1(ζ) = π + λD− (β1 + υ)S1, S1(0) = S10 ≥ 0,

FFDη1,η2
0,ζ M(ζ) = β1S1 + β2D−

(
υ + (1 − α) ξ1D+ξ2S2

N

)
, M(0) =M0 ≥ 0,

FFDη1,η2
0,ζ D(ζ) = ϖ1M(1 − α) ξ1D+ξ2S2

N
+ϖ3S2 − (υ + λ + τ1 + β2D), D(0) = D0 ≥ 0,

FFDη1,η2
0,ζ S2(ζ) = ϖ2M(1 − α) ξ1D+ξ2S2

N
− (υ + τ2 +ϖ3)S2, , S2(0) = S20 ≥ 0,

FFDη1,η2
0,ζ R(ζ) = τ1D + τ2S2 − υR, R(0) = R0 ≥ 0,

(3.4)

where η1 signifies the fractional-order and η2 denotes the fractal-dimension, respectively.

3.3. Existence and positivity of the divorce epidemic model

Here, we investigate the model’s (3.4) validity and usefulness.

Theorem 3.3. Assume that there is a unique positive solution for the system (3.4) and stays in R5
+.

Proof. First, we present the following outcomes to identify that the solution of the model (3.4) is
positive: 

FFDη1,η2
0,ζ S1(ζ)

∣∣∣∣
S1=0
= π ≥ 0,

FFDη1,η2
0,ζ M(ζ)

∣∣∣∣
M=0
= β1S1 ≥ 0,

FFDη1,η2
0,ζ D(ζ)

∣∣∣∣
D=0
= ϖ1Mφm +ϖ3S2 ≥ 0,

FFDη1,η2
0,ζ S2(ζ)

∣∣∣∣
S2=0
= ϖ2M(1 − α) ξ1D

N
− (υ + τ2 +ϖ3)S2 ≥ 0,

FFDη1,η2
0,ζ R(ζ)

∣∣∣∣
R=0
= τ1D + τ2S2 ≥ 0.

For all ζ ≥ 0, we conclude that the system solution remains in R5
+.

FFDη1,η2
0,ζ N(ζ) = π − υN .

Observe that

lim
ζ 7→∞

supN(ζ) ≤
π

υ
. (3.5)

Finally, the realm of biological viability for the system (3.4) can be demonstrated by

∇∗ =
{(
S1(ζ),M(ζ),D(ζ),S2(ζ),R(ζ)

)
∈ R5

+ : N(ζ) ≤
π

υ

}
.

□

Furthermore, the concept of divorce epidemic provided before (3.4) in the FF operators’ Atangana-
Baleanu is applied to obtain the steady state of the aforesaid model.
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3.4. Disease free equilibrium (DFE)

The system (3.4) comprises the following configuration in its steady state as



FFDη1,η2
0,ζ S1(ζ) = 0,

FFDη1,η2
0,ζ M(ζ) = 0,

FFDη1,η2
0,ζ D(ζ) = 0,

FFDη1,η2
0,ζ S2(ζ) = 0,

FFDη1,η2
0,ζ R(ζ) = 0,

we have the following

E0 =
(
S0

1,M
0, ,D0,S0

2, ,R
0) = ( π

β1 + υ
,
πβ1

β1 + υ
, 0, 0, 0

)
.

The basic reproductive number R̄, which may be determined by applying the next-generation
matrix [48] for the system (3.4), can be used to investigate the efficacy of DFE at E0. The divorce
regulated reproductive number, denoted by R̄c herein, is determined using the conventional notation
presented as

R̄c = ρ(gV−1) =
(1 − α)β1

υ + β1

{
ϖ2ξ2(υ + λ + τ1 + ξ2) + ξ1(ϖ1(υ + τ2 +ϖ3) +ϖ2ϖ3)

(υ + λ + τ1 + β2)(υ + τ2 +ϖ3)

}
, (3.6)

where

g =
 (1−α)β1

β1+υ
ϖ1ξ1

(1−α)β1
β1+υ

ϖ1ξ2
(1−α)β1
β1+υ

ϖ2ξ1
(1−α)β1
β1+υ

ϖ2ξ2

 and V−1 =

 1
υ+λ+τ1+β2

ϖ3
(υ+λ+τ1+β2)(υ+τ2+ϖ3)

0 1
(υ+τ2+ϖ3)

 . (3.7)

In the nonappearance of anti–divorce counseling and reunion, we get the breakup reproduction number
by setting α = 0, τ1 = 0, τ2 = 0, we have

R̄b =
β1

β1 + υ

(
ξ1(ϖ1(υ +ϖ3) +ϖ2ϖ3) + β2ϖ2ξ2(υ + λ + β2)

(ϖ3 + υ)(λ + υ + β2)

)
. (3.8)

Furthermore, we only have reproductive data for individual interventions in regards of anti–divorce
counseling and unification:

R̄ad =
β1(1 − α)
β1 + υ

(
ξ1(ϖ1(υ +ϖ3) +ϖ2ϖ3) + β2ϖ2ξ2(υ + λ + β2)

(ϖ3 + υ)(λ + υ + β2)

)
,

R̄u =
β1

υ + β1

(
ϖ2ξ2(υ + λ + τ1 + ξ2) + ξ1(ϖ1(υ + τ2 +ϖ3) +ϖ2ϖ3)

(υ + λ + τ1 + β2)(υ + τ2 +ϖ3)

)
. (3.9)

The divorce epidemic model (3.4) is locally asymptotically stable at the DFE E0, as shown in the
presented model. Predicated on [48], we arrive at the following conclusions:

Theorem 3.4. The divorce epidemic model (3.4) at the DFE E0 is locally asymptotically stable if
R̄c < 1 which admits ∣∣∣ arg(νℓ)

∣∣∣ > ℑ1π

2
. (3.10)
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Proof. The presence of endemic divorce equilibrium comes directly from the following

φ∗m =


(
υ(υ + λ + τ1 + β1)(υ + τ2 +ϖ3) + β1ϖ2(υ + τ2)(υ + λ + τ1 + β1)
+(τ1β1 + (β1 − β2))(ϖ2ϖ3 +ϖ1(υ + τ2 +ϖ3))

)−1

×
(
υ(υ + β1)(υ + λ + τ1 + β1)(υ + τ2 +ϖ3)(R̄c − 1)

) , (3.11)

when φ∗m , 0. Therefore, the divorce-endemic steady state can be obtained by utilizing (3.11), is
denoted by E1 =

(
S̄1, M̄, D̄, S̄2, R̄

)
.

Notice from (3.11), φ∗m > 0 if and only if R̄0 > 1 and β2 < β1, which are the essential prerequisites
for divorce to prevail in the marriage contract.

The accompanying is the consequence of the linearization procedure of the system (3.1) at divorce
endemic obtained by the Jacobian matrix:

J =


−(υ + β) 0 λ 0 0
−β1 −(υ + φ∗m) β2 −

(1−α)ξ1M

N

(1−α)ξ2M

N
0

0 ϖ1φ
∗
m

ϖ1(1−α)ξ2M

N
− (υ + λ + τ1 + β2) ϖ3 +

ϖ1(1−α)ξ2M

N
0

0 ϖ2φ
∗
m

ϖ2(1−α)ξ1M

N

ϖ2(1−α)ξ2M

N
− (υ + τ2 +ϖ3) 0

0 0 τ1 τ2 −υ


. (3.12)

From the aforesaid system (3.12), we can write

JE1 =



−(υ + β) 0 λ 0
−β1 −(υ + φ∗m) β2 −

(1−α)ξ1M̄

N

(1−α)ξ2M̄

N

0 ϖ1φ
∗
m

ϖ1(1−α)ξ2M̄

N
− (υ + λ + τ1 + β2) ϖ3 +

ϖ1(1−α)ξ2M̄

N

0 ϖ2φ
∗
m

ϖ2(1−α)ξ1M̄

N

ϖ2(1−α)ξ2M̄

N
− (υ + τ2 +ϖ3)

0 0 τ1 τ2


with the corresponding characteristic polynomial is

b0 + b1y1 + b2y2
1 + b3y3

1 + b4y4
1 = 0, (3.13)

where

b0 =


φ∗m

(
(υ + β1)(υ + λ + τ1 + β2)(υ + τ2 +ϖ3) − (λβ1 + β2(υ + β1))ϖ2(1 − α)M̄

N
ξ2(ϖ1 + 1)

+(ϖ2ϖ3 +ϖ1(υ + τ2 +ϖ3))
)
+ υ(υ + β1)

(
(υ + λ + τ1 + β2)(υ + τ2 +ϖ3)

−(1 − α)M̄
N

(ξ2ϖ2(υ + λ + τ1 + β1) + ξ1(ϖ2ϖ3 +ϖ1(υ + τ2 +ϖ3)))
−ϖ2(1 − α)2ξ1ξ2(1 −ϖ1)M̄

N

)
,

b1 =


(υ + β1)(υ + λ + τ1 + β2)(υ + τ2 +ϖ3) + υ

(
(υ + β1)(2υ + τ2 + τ2 + λ + β2 +ϖ3)

+(υ + λ + τ1 + β2)(υ + τ2 +ϖ3)
)
+ φ∗m

{
(υ + β1)

(
2υ + λ + τ1 + τ2 + β2 +ϖ3

)
−ϖ2β2(1 − α)ξ2(1 −ϖ1)M̄

N
+ (υ + λ + τ1 + β2)(υ + τ2 +ϖ3) −ϖ1(λβ1 + β2(υ + β1))

−β2(ϖ2ϖ3 +ϖ1(υ + τ2 +ϖ3))
}
+ ξ1ξ2(2υ + β2(1 −ϖ1))(1 − α)2

(
M̄

N

)2
,
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b2 =


φ∗m

(
3υ + β1 + β2 + λ + τ1 + τ2 +ϖ3 −ϖ1β2

)
+ υ(3υ + β1 + β2 + λ + τ1 + τ2 +ϖ3)

+(υ + β1)(2υ + τ1 + τ2 + λ + ξ2 +ϖ3) −ϖ2(1 − α)2ξ1ξ2(1 −ϖ1

(
M̄

N

)2
)

+(υ + λ + τ1 + β2)(υ + τ2 +ϖ3) − (1 − α)M̄
N

(
ξ2ϖ2(υ + λ + τ1 + β2)

+ξ1(ϖ2ϖ3 +ϖ1(υ + τ2 +ϖ3)) + (2υ + β1)(ϖ1ξ1 +ϖ2ξ2)
)
,

b3 =
{
υ
(
3υ + β1 + β2 + λ + τ1 + τ2 +ϖ3

)
+ φ∗m − (1 − α)(ϖ1ξ1 +ϖ2ξ2)M̄

N
,

b4 = 1.

According to the Routh-Hurwitz stability condition [49], which admits that for the assumption
reported b1b2b3 > b2

3 + b2
1b0, where bℓ > 0 for all ℓ = 1, 2, ..., 4. Ultimately, the Rough-Hurtwiz

assumptions assure the local asymptotic stability of the divorce model (3.4) at DFE E0. As can be seen,
all of the coefficients in (3.13) are non-negative. This demonstrates that R̄c > 1 and M̄ < N . It is clear
that the endemic equilibrium of divorce if R̄c > 1 and M̄ < N is localized asymptotically. □

3.5. Stability analysis

Here, employing the noted stability technique of the Lyapunov candidate [50], this report outlines
the global behavior of framework (3.4) at the divorce-free steady state.

Theorem 3.5. Suppose that the system (3.4) satisfies a global asymptotic divorce-free steady state if
and only if R̄c < 1.

Proof. Applying a matrix theoretic technique, as shown in [50], that generates the corresponding
Lyapunov candidate

U(ζ) =
ξ1D

(υ + λ + τ1 + β2)
+ S2

{ ξ1ϖ3

(υ + λ + τ1 + β2)(υ + τ2 +ϖ3)
+

ξ2

(υ + τ2 +ϖ3)

}
,

whose FFDη1,η2
0,ζ yields

FFDη1,η2
0,ζ (U(ζ)) =

ξ1

(υ + λ + τ1 + β2)

{
ϖ1

(
(1 − α)

ξ1D + ξ2S2

N

)
M +ϖ3S2 −D(υ + λ + τ1 + β2)

}
+
{ ξ1ϖ3

(υ + λ + τ1 + β2)(υ + τ2 +ϖ3)
+

ξ2

(υ + τ2 +ϖ3)

}
×
{
ϖ2

(
(1 − α)

ξ1D + ξ2S2

N

)
M + S2(υ + τ2 +ϖ3)

}
.

Simple computations yield

FFDη1,η2
0,ζ (U(ζ)) = (ξ1D + ξ2S2)

{
M(1 − α)
N

(ξ1(ϖ1(υ + τ2 +ϖ3) +ϖ2ϖ3) + ξ2ϖ2(υ + λ + τ1 + β2)
(υ + λ + τ1 + β2)(υ + τ2 +ϖ3)

)
− 1

}
.

Observe that in divorce-free steady state, M
N
= M

0

N0 =
β1
υ+β1

. Thus, we have

FFDη1,η2
0,ζ (U(ζ)) = (ξ1D + ξ2S2)

{
β1(1 − α)
υ + β1

(ξ1(ϖ1(υ + τ2 +ϖ3) +ϖ2ϖ3) + ξ2ϖ2(υ + λ + τ1 + β2)
(υ + λ + τ1 + β2)(υ + τ2 +ϖ3)

)
− 1

}
.

Hence, FFDη1,η2
0,ζ (U(ζ)) = (ξ1D + ξ2S2)(R̄c − 1), FFDη1,η2

0,ζ (U(ζ)) ≤ 0 and D = S2 = 0. According to
Lyapunov’s stability criterion [49], E0 is a globally asymptotically steady state point. □
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Theorem 3.6. For β2 = 0, then the divorce-endemic steady state of model (3.4) is globally stable if
R̄c > 1.

Proof. Considering the Lyapunov candidate X(ζ) [51] presented as follow

X(ζ) = ψ1

(
S1 − S̄1 ln

S1

S̄1

)
+ ψ2

(
M− M̄ ln

M

M̄

)
+ ψ3

(
D− D̄ ln

D

D̄

)
+ ψ4

(
S2 − S̄2 ln

S2

S̄2

)
+ψ5

(
R − R̄ ln

R

R̄

)
, (3.14)

are positive constants ψ1, ψ2, ..., ψ5 must be specifically selected.
Applying FFDη1,η2

0,ζ on (3.14) and in view of (3.4) with the substitution β2 = 0 produces

FFDη1,η2
0,ζ (X(ζ)) = ψ1

(S1 − S̄1

S1

){
π + λD− (β1 + υ)S1

}
+ψ2

(M− M̄
M

){
β1S1 −

(
υ + (1 − α)

ξ1D + ξ2S2

N

)
M

}
+ψ3

(D− D̄
D

){
ϖ1(1 − α)

ξ1D + ξ2S2

N
M +ϖ3S2 − (υ + λ + τ1)D

}
+ψ4

(S2 − S̄2

S2

){
ϖ2(1 − α)

ξ1D + ξ2S2

N
M− (υ +ϖ3 + τ2)S2

}
+ψ5

(R − R̄
R

){
τ1D + τ2S2 − υR

}
. (3.15)

At E1 = (S̄1, M̄, D̄, S̄2, R̄), we have

(β1 + υ)S̄1 = π + λD̄,

β1S̄1 = υM̄ + M̄
ξ1D̄ + ξ2S̄2

N
,

(υ + λ + τ1)D̄ = ϖ3S̄2 +ϖ1(1 − α)
ξ1D̄ + ξ2S̄2

N
,

(υ +ϖ3 + τ2)S̄2 = ϖ2(1 − α)
ξ1D̄ + ξ2S̄2

N
,

υR̄ = τ1D̄ + τ2S̄2.

Thus, we have

FFDη1,η2
0,ζ (X(ζ))

= ψ1π
(2S1S̄1 − S

2
1 − S̄1

2

S̄1S1

)
− ψ1λD̄

(S1 − S̄1

S1

)(D− D̄
D

)
+ ψ2

¯υM
(M− M̄
M

)(S1

S̄1
−
M

M̄

)
+ψ2ξ1(1 − α)

(M− M̄
M

)(S1

S̄1
−
MD

M̄D̄

)M̄D̄
N
+ ψ2ξ2(1 − α)

(M− M̄
M

)(S1

S̄1
−
MS2

M̄S̄1

)M̄S̄2

N

+ψ3ϖ1ξ1(1 − α)
(D− D̄
D

)(DM
D̄M̄

−
D

D̄

)D̄M̄
N
+ ψ3ϖ1ξ2(1 − α)

(D− D̄
D

)(S2M

S̄2M̄
−
D

D̄

)S̄2M̄

N
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+ψ3ϖ1ϖ3ξ2(1 − α)
(D− D̄
D

)(S2

S̄2
−
D

D̄

)
S̄2 + ψ4ϖ2ξ1(1 − α)

(S2 − S̄2

S2

)(DM
D̄M̄

−
S2

S̄2

)D̄M̄
N

+ψ4ϖ2ξ2(1 − α)
(S2 − S̄2

S2

)(S2M

S̄2M̄
−
S2

S̄2

)S̄2M̄

N
+ ψ5τ1D̄

(R − R̄
R

)(D
D̄
−
R

R̄

)
+ψ5τ2S̄2

(R − R̄
R

)(S2

S̄2
−
R

R̄

)
. (3.16)

As (S1,M,D,S2,R) , (S̄1, M̄, D̄, S̄2, R̄), FFDη1,η2
0,ζ (X(ζ)) < 0, FFDη1,η2

0,ζ (X(ζ)) = 0 if S1 = S̄1, M =

M̄, D = D̄,S2 = S̄2,D = D̄. According to Lyapunov’s stability criterion [49], divorce endemic is
globally stable. □

4. Existence and uniqueness results for divorce epidemic model

Here, we intend to replace the first-order derivatives using innovative Atangana-Baleanu fractional
derivative in Caputo sense to strengthen the system (3.1), as demonstrated in

ABCDη1
ζ S1(ζ) = π + λD− (β1 + υ)S1,

ABCDη1
ζ M(ζ) = β1S1 + β2D−

(
υ + (1 − α) ξ1D+ξ2S2

N

)
,

ABCDη1
ζ D(ζ) = ϖ1M(1 − α) ξ1D+ξ2S2

N
+ϖ3S2 − (υ + λ + τ1 + β2D),

ABCDη1
ζ S2(ζ) = ϖ2M(1 − α) ξ1D+ξ2S2

N
− (υ + τ2 +ϖ3)S2,

ABCDη1
ζ R(ζ) = τ1D + τ2S2 − υR.

(4.1)

Employing the fixed point hypothesis, we evaluate the existence of a unique solution for the
problem (4.1). To apply it, we convert the (4.1) divorce epidemic model into an integral formulation
that includes the fractional order integral operator (2.7). The mechanism (4.1) can be written as follows: ABCDη1

ζ Φ(ζ) = ℧(ζ,Φ(ζ)),
Φ(0) = Φ0, 0 < ζ < T < ∞.

(4.2)

The vector Φ(ζ) = (S1,M,D,S2,R) reflects the initial configuration of parameters Φ0 =(
S1(0),M(0),D(0),S2(0),R(0)

)
illustrates the basic requirements that were described in (4.2).

Additionally, ℧ denotes a continuous vector function as shown in:

℧ =


℧1

℧2

℧3

℧4

℧5


=


π + λD− (β1 + υ)S1

β1S1 + β2D− (υ + φm)
ϖ1φmM +ϖ3S2 − (υ + λ + τ1 + β2D)

ϖ2φmM− (υ + τ2 +ϖ3)S2

τ1D + τ2S2 − υR


.

Furthermore, the function ℧ admits the Lipschitz hypothesis stated as as:∥∥∥℧(ζ,Φ1(ζ)) −℧(ζ,Φ2(ζ))
∥∥∥ ≤ Lω∥∥∥Φ1(ζ) − Φ2(ζ)

∥∥∥, Lω > 0. (4.3)

Hence, Φ is a contraction from (4.3). Thus, (4.2) has a unique solution and so does the system (4.1)
has a unique solution.

Now, we use the underlying argument to arrive at the desired result.
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Theorem 4.1. The system (4.2) admits a unique solution if

1 − η1

ABC(η1)
LΦ +

η1

ABC(η1)Γ(η1)
Tη1

maxLΦ < 1. (4.4)

Proof. By means of Definition 2.7 and considering (4.2), then the scheme is transformed to a Volterra
integral equation as follows:

Φ(ζ) = Φ0 +
1 − η1

ABC(η1)
℧(ζ,Φ(ζ)) +

η1

ABC(η1)Γ(η1)

ζ∫
0

(ζ − τ)η1−1℧(τ,Φ(τ))dτ. (4.5)

Considering ⊺ = (0,T) and the functional g : C(⊺,R5) 7→ C(⊺,R5) stated as

Φ(ζ) = Φ0 +
1 − η1

ABC(η1)
℧(ζ,Φ(ζ)) +

η1

ABC(η1)Γ(η1)

ζ∫
0

(ζ − τ)η1−1℧(τ,Φ(τ))dτ. (4.6)

Ultimately, (4.5) can be simplified as

Φ(ζ) = g
[
Φ(ζ)

]
. (4.7)

Applying the supremum norm ⊺ indicated by ∥.∥⊺ is written as:∥∥∥Φ(ζ)
∥∥∥
⊺
= sup

ζ∈⊺

∥∥∥Φ(ζ)
∥∥∥, Φ(ζ) ∈ C. (4.8)

Clearly, the Banach space C(⊺,R3) have the norm ∥.∥⊺. Furthermore, the ensuing variant is easily
verified:∥∥∥∥∥

ζ∫
0

K(ζ, τ)Φ(τ)dτ
∥∥∥∥∥ ≤ T

∥∥∥K(ζ, τ)
∥∥∥
⊺

∥∥∥Φ(ζ)
∥∥∥
⊺
, ∀Φ(ζ) ∈ C(⊺,R+), K(ζ, τ) ∈ C(⊺2,R) (4.9)

such that ∥∥∥K(ζ, τ)
∥∥∥
⊺
= sup

ζ,τ∈⊺

∣∣∣K(ζ, τ)
∣∣∣. (4.10)

In view of (4.7), one can find∥∥∥g
[
Φ1(ζ)

]
− g

[
Φ2(ζ)

]∥∥∥
⊺

≤

∥∥∥∥∥ 1 − η1

ABC(η1)

(
℧(ζ,Φ1(ζ)) −℧(ζ,Φ2(ζ))

)
+

η1

ABC(η1)Γ(η1)

ζ∫
0

(ζ − τ)η1−1
(
℧(τ,Φ1(τ)) −℧(τ,Φ2(τ))

)∥∥∥∥∥
⊺
.(4.11)

Additionally, considering (4.3), (4.9), and triangular variant, (4.11) gives:∥∥∥g
[
Φ1(ζ)

]
− g

[
Φ2(ζ)

]∥∥∥
⊺

≤

( 1 − η1

ABC(η1)
LΦ +

η1Tη1
max

ABC(η1)Γ(η1)
LΦ

)∥∥∥Φ1(ζ) − Φ2(ζ)
∥∥∥
⊺
.
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Consequently, this leads to the subsequent conclusion:∥∥∥g
[
Φ1(ζ)

]
− g

[
Φ2(ζ)

]∥∥∥
⊺

≤ Υ
∥∥∥Φ1(ζ) − Φ2(ζ)

∥∥∥
⊺
,

where

Υ =
1 − η1

ABC(η1)
LΦ +

η1Tη1
max

ABC(η1)Γ(η1)
LΦ < 1.

So that the expression g holds the (4.4) criterion, it can be a contraction mapping. As a result, the
scheme suggested by (4.2) has a unique solution. □

In this part, we utilize Definition 2.3 to reconstruct the conventional integer-order divorce epidemic
framework using the revolutionary FF operator. The divorce epidemic framework that develops when
the FF operator is analyzed can be described in (3.3). Furthermore, the existence and uniqueness of
the divorce epidemic framework developed in the FF operator are discussed clearly. To provide it, we
shall use the following expression to produce the generic Cauchy problem containing a FF derivative: FFDη1,η2

0,ζ ∆(ζ) = Ψ(ζ,∆(ζ)),
∆(0) = ∆0.

(4.12)

In view of Definition (2.3), the right hand side of (4.12) gives the foregoing expression:

ABC(η1)
1 − η1

d
dζ

ζ∫
0

Ψ(x,∆(x))Ēη1

(
−

η1

1 − η1
(ζ − x)η1

)
dx = η2ζ

η2−1Ψ(ζ,∆(ζ)). (4.13)

By making the use of integral operator, the conclusions are as follows:

∆(ζ) =
1 − η1

ABC(η1)
η2ζ

η2−1Ψ(ζ,∆(ζ)) +
η2η1

ABC(η1)Γ(η1)

ζ∫
0

(ζ − x)η1−1Ψ(x,∆(x))xη2−1dx + ∆(0).

Employing the Picard-Lindelöf method, we were able to

℘2∏
℘1

= Iu(ζu) ×P0(∆0),

where Iu(ζu) =
[
ζu−υ1 , ζu+υ1

]
, P0(∆0) =

[
ζ0 − ν1, ζ0 + ν1

]
.

Assume the following:

H = sup
ζ∈

∏℘2
℘1

∥∥∥Ψ∥∥∥.
In particular, the norm is written as follows:∥∥∥θ∥∥∥

∞
= sup

ζ∈
∏℘2

℘1

∥∥∥θ∥∥∥,
AIMS Mathematics Volume 8, Issue 3, 5233–5265.



5249

and introduce the functional

Λ
[
∁
[
Iu(ζu),Pb(ζu)

]]
−→ ∁

(
Iu(b),Pb(ζu)

)
,

defined as

ΛΨ(ζ) = Ψ0 +
1 − η1

ABC(η1)
η2ζ

η2−1Ψ(ζ,∆(ζ)) +
η1η2

ABC(η1)Γ(η1)

ζ∫
0

(ζ − x)η1−1Ψ(x,∆(x))xη2−1dx.

The essential objective is to demonstrate that the above function can convert a completely empty
metric space onto itself. We also intend to illustrate that it has the competence to identify contractions.
Therefore, we reveal that∥∥∥Λ∆(ζ) − ∆0

∥∥∥ ≤ b,
∥∥∥Λ∆(ζ) − ∆0

∥∥∥ ≤ 1 − η1

ABC(η1)
η2ζ

η2−1
∥∥∥Ψ(ζ,∆(ζ))

∥∥∥
∞
+

η1η2

ABC(η1)Γ(η1)

ζ∫
0

(ζ − x)η1−1
∥∥∥Ψ(x,∆(x))

∥∥∥xη2−1dx

≤
1 − η1

ABC(η1)
η2ζ

η2−1θ +
η1η2

ABC(η1)Γ(η1)
θ

ζ∫
0

(ζ − x)η1−1xη2−1dx.

Putting x = ζw, then it produces the following∥∥∥Λ∆(ζ) − ∆0

∥∥∥ ≤ 1 − η1

ABC(η1)
η2ζ

η2−1θ +
η1η2

ABC(η1)Γ(η1)
θζη1+η2−1B1(η2, η1).

Consequently, ∥∥∥Λ∆(ζ) − ∆0

∥∥∥ ≤ b 7→ θ <
bB1(η2, η1)

1−η1
ABC(η1)η2ζη2−1 +

η1η2
ABC(η1)Γ(η1)ζ

η1+η2−1
.

Therefore, considering ∆1,∆2 ∈ ∁[Iu(ζu),Pb(ζu)]. To find at the following modifications, apply the
Banach fixed point theorem: ∥∥∥Λ∆1 − Λ∆2

∥∥∥ ≤ LΦ∥∥∥∆ − ∆2

∥∥∥
∞
,

where LΦ < 1.∥∥∥Λ∆1 − Λ∆2

∥∥∥ ≤
1 − η1

ABC(η1)
η2ζ

η2−1
∥∥∥Ψ(ζ,∆1) − Ψ(ζ,∆2)

∥∥∥
+

η1η2

ABC(η1)Γ(η1)

ζ∫
0

(ζ − x)η1−1xη2−1
∥∥∥Ψ(ζ, x1) − Ψ(ζ, s2)

∥∥∥dx.

Using the fact of contraction mapping Ψ, so that
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∥∥∥Λ∆1 − Λ∆2

∥∥∥ ≤ 1 − η1

ABC(η1)
η2ζ

η2−1
L∆

∥∥∥∆1 − ∆2

∥∥∥
∞
+

η1η2

ABC(η1)Γ(η1)
L∆

∥∥∥∆1 − ∆2

∥∥∥
∞

ζ∫
0

(ζ − x)η1−1xη2−1dx

≤
1 − η1

ABC(η1)
η2ζ

η2−1
L∆

∥∥∥∆1 − ∆2

∥∥∥
∞
+

η1η2

ABC(η1)Γ(η1)
L∆

∥∥∥∆1 − ∆2

∥∥∥
∞
ζη1+η2−3B1(η2, η1).

Therefore, we have∥∥∥Λ∆1 − Λ∆2

∥∥∥ ≤ ( 1 − η1

ABC(η1)
η2ζ

η2−1
L∆ +

η1η2

ABC(η1)Γ(η1)
L∆ζ

η1+η2−3B1(η2, η1)
)∥∥∥∆1 − ∆2

∥∥∥
∞

<
( 1 − η1

ABC(η1)
η2aη2−1

L∆ +
η1η2

ABC(η1)Γ(η1)
L∆aη1+η2−3B1(η2, η1)

)∥∥∥∆1 − ∆2

∥∥∥
∞
.

As a result, assuming the underpinning supposition is valid:

L∆ <
1 − η1

ABC(η1)
η2aη2−1

L∆ +
η1η2

ABC(η1)Γ(η1)
L∆aη1+η2−3B1(η2, η1),

then the contraction supposition is fulfilled, thus, we have∥∥∥Λ∆1 − Λ∆2

∥∥∥ ≤ ∥∥∥∆1 − ∆2

∥∥∥
∞
.

Finally, the above process state that (3.3) has a unique solution. This completes the proof. In the next
subsection, we explain the numerical methods for the proposed divorce epidemic system.

5. Numerical approximations for the divorce epidemic model

Firstly, we established the numerical outcomes with the aid of the modified Adams-Bashforth
method via the ABC fractional derivative operator, and then we found the numerical results using
the Newton polynomial approach via the FF operator technique.

5.1. Modified Adams-Bashforth method

To begin, we employ the modified fractional Adams–Bashforth approach introduced by [52] to
assess the fractional system (4.1).

The foremost mechanisms in the construction strategy of the fractional divorce epidemic
system (4.1) are effectively described using a modified Adams-Bashforth technique. Following
implementing the ABC integral to construct (2.7), we currently get the following integral equation:

Φ(ζ) − Φ(0) =
1 − η1

ABC(η1)
Λ(ζ,Φ(ζ)) +

η1

ABC(η1)Γ(η1)

ζ∫
0

(ζ − τ)η1−1Λ(τ,Φ(τ))dτ.

Also, plugging ζ = ζs+1, where s = 0, 1, 2, ..., yields
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Φ(ζs+1) − Φ(0) =
1 − η1

ABC(η1)
Λ(ζs,Φ(ζs)) +

η1

ABC(η1)Γ(η1)

∫ ζs+1

0
(ζm1+1 − τ)η1−1Λ(τ,Φ(τ))dτ

=
1 − η1

ABC(η1)
Λ(ζs,Φ(ζs)) +

η1

ABC(η1)Γ(η1)

s∑
ℓ=0

∫ ζℓ+1

ζℓ

(ζm1+1 − τ)η1−1Λ(τ,Φ(τ))dτ.

(5.1)

Here, we compute the functional by attempting to use the interpolation polynomial technique
Λ(τ,Φ(τ)) on [ζℓ, ζℓ+1]:

Λ(τ,Φ(τ)) ≊ Pℓ(τ) =
τ − ζℓ−1

ℏ
Λ(ζℓ,Φ(ζℓ)) −

τ − ζℓ
ℏ
Λ(ζℓ−1,Φ(ζℓ−1)).

(5.1) diminishes to

Φ(ζs+1) = Φ(0) +
1 − η1

ABC(η1)
Λ(ζs,Φ(ζs))+

η1
ABC(η1)Γ(η1)

s∑
ℓ=0

(
Λ(ζℓ,Φ(ζℓ))

ℏ

ζℓ+1∫
ζℓ

(τ − ζℓ−1)(ζs+1 − τ)η1−1dτ

−
Λ(ζℓ−1,Φ(ζℓ−1))

ℏ

ζℓ+1∫
ζℓ

(τ − ζℓ)(ζs+1 − τ)η1−1dτ
)
. (5.2)

As a consequence of merging the integrals in (5.2), we obtained the following results:

Φ(ζs+1) = Φ(0) +
1 − η1

ABC(η1)
Λ(ζs,Φ(ζs))

+
η1

ABC(η1)

s∑
ℓ=0

(
ℏη1Λ(ζℓ,Φ(ζℓ))
Γ(η1 + 2)

(
(s + η1 − ℓ + 2)(s − ℓ + 1)η1 − (s − ℓ)η1(s − ℓ + 2(1 + η1))

)
−
ℏη1Λ(ζℓ−1,Φ(ζℓ−1))
Γ(η1 + 2)

(
(s − ℓ + 1)η1+1 − (sη1 − ℓ + 1 + η1)(s − ℓ)η1

))
.

5.2. Newton polynomial approach

Now, we perform a detailed evaluation of the mathematical system (3.4), which is based on a
promising means developed using the Newton polynomial strategy. This methodology, which was
initially envisioned in [53], seems to be more effective than the alternative methods available in the
investigation. To continue ahead, utilizing the plan, we employ the formula.

FFDη1,η2
ζ ∆(ζ) = Ψ(ζ,∆(ζ)). (5.3)

Integrating (5.3) with respect to x over 0 to ζ, we find

∆(ζ) − ∆(0) =
1 − η1

ABC(η1)
η2ζ

η2−1Ψ(ζ,∆(ζ)) +
η1η2

ABC(η1)Γ(η1)

ζ∫
0

(ζ − x)η1−1xη2−1Ψ(ζ,∆(ζ))dx. (5.4)
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TakingW(ζ,∆(ζ)) = η2ζ
η2−1Ψ(ζ,∆(ζ)), then (5.4) reduces to

∆(ζ) − ∆(0) =
1 − η1

ABC(η1)
W(ζ,∆(ζ)) +

η1

ABC(η1)Γ(η1)

ζ∫
0

(ζ − x)η1−1W(x,∆(x))dx. (5.5)

At ζu+1 = (n + 1)∆ζ, we have

∆(ζu+1) − ∆(0) =
1 − η1

ABC(η1)
W(ζu,∆(ζu)) +

η1

ABC(η1)Γ(η1)

∫ ζu+1

0
(ζu+1 − x)η1−1W(x,∆(x))dx. (5.6)

Also, we get

∆(ζu+1) = ∆(0) +
1 − η1

ABC(η1)
W(ζu,∆(ζu)) +

η1

ABC(η1)Γ(η1)

u∑
κ=2

∫ ζκ+1

ζκ

(ζu+1 − x)η1−1W(x,∆(x))dx. (5.7)

Using the fact of the Newton polynomial to find the functionW(ζ,∆(ζ)), we have

Pu(x) =W(ζu−2,∆(ζu−2)) +
W(ζu−1,∆(ζu−1)) −W(ζu−2,∆(ζu−2))

∆ζ
(x − ζu−2)

+
W(ζu,∆(ζu)) − 2W(ζu−1,∆(ζu−1)) +W(ζu−2,∆(ζu−2))

2(∆ζ)2

×(x − ζu−2)(x − ζu−1). (5.8)

Substituting (5.8) into (5.5), gives

∆u+1 = ∆0 +
1 − η1

ABC(η1)
W(ζu,∆(ζu))

+
η1

ABC(η1)Γ(η1)

u∑
κ=2

∫ ζκ+1

ζκ

(ζu+1 − x)η1−1
(
W(ζℓ−2,∆

ℓ−2)

+
W(ζℓ−1,∆

ℓ−1) −W(ζℓ−2,∆
ℓ−2)

∆ζ
(x − ζℓ−2)

+
W(ζℓ,∆ℓ) − 2W(ζℓ−1,∆

ℓ−1) +W(ζℓ−2,∆
ℓ−2)

2(∆ζ)2 (x − ζℓ−2)(x − ζℓ−1)
)
dx. (5.9)

Simple computations yield, we have

∆u+1 = ∆0 +
1 − η1

ABC(η1)
W(ζu,∆(ζu))

+
η1

ABC(η1)Γ(η1)

u∑
κ=2

{∫ ζκ+1

ζκ

(ζu+1 − x)η1−1W(ζℓ−2,∆
ℓ−2)dx

+

∫ ζκ+1

ζκ

(ζu+1 − x)η1−1W(ζℓ−1,∆
ℓ−1) −W(ζℓ−2,∆

ℓ−2)
∆ζ

(x − ζℓ−2)dx

+

∫ ζκ+1

ζκ

(ζu+1 − x)η1−1W(ζℓ,∆ℓ) − 2W(ζℓ−1,∆
ℓ−1) +W(ζℓ−2,∆

ℓ−2)
2(∆ζ)2 (x − ζℓ−2)(x − ζℓ−1)dx

}
.
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Note that

∆u+1 = ∆0 +
1 − η1

ABC(η1)
W(ζu,∆(ζu))

+
η1

ABC(η1)Γ(η1)

u∑
κ=2

W(ζℓ−2,∆
ℓ−2)

∫ ζκ+1

ζκ

(ζu+1 − x)η1−1dx

+
η1

ABC(η1)Γ(η1)

u∑
κ=2

W(ζℓ−1,∆
ℓ−1) −W(ζℓ−2,∆

ℓ−2)
∆ζ

∫ ζκ+1

ζκ

(ζu+1 − x)η1−1(x − ζℓ−2)dx

+
η1

ABC(η1)Γ(η1)

u∑
κ=2

W(ζℓ,∆ℓ) − 2W(ζℓ−1,∆
ℓ−1) +W(ζℓ−2,∆

ℓ−2)
2(∆ζ)2

×

∫ ζκ+1

ζκ

(ζu+1 − x)η1−1(x − ζℓ−2)(x − ζℓ−1)dx.

(5.10)

After simplifying, we have∫ ζκ+1

ζκ

(ζu+1 − x)η1−1dx =
(∆ζ)η1

{
(u − κ + 1)η1 − (u − κ)η1

}
η1

,∫ ζκ+1

ζκ

(x − ζκ−2)(ζu+1 − x)η1−1dx

=
(∆ζ)η1+1{(u − κ + 1)η1(u − κ + 2η1 + 3) − (u − κ + 1)η1(u − κ + 3η1 + 3)

}
η1(η1 + 1)

,∫ ζκ+1

ζκ

(ζu+1 − x)η1−1(x − ζℓ−2)(x − ζℓ−1)dx =
(∆ζ)η1+2

η1(η1 + 1)(η1 + 2)

×
{
(u − κ + 1)η1

[
2(u − κ)2 + (3η1 + 10)(u − κ) + 2η2

1 + 9η1 + 12
]

−(u − κ)η1
[
2(u − κ)2 + (5η1 + 10)(u − κ) + 6η2

1 + 18η1 + 12
]}
.

(5.11)

It follows that

∆u+1 = ∆0 +
1 − η1

ABC(η1)
W(ζu,∆(ζu))

+
η1(∆ζ)η1

ABC(η1)Γ(η1 + 1)

u∑
κ=2

W(ζℓ−2,∆
ℓ−2)

{
(u − κ + 1)η1 − (u − κ)η1

}
+

η1(∆ζ)η1

ABC(η1)Γ(η1 + 2)

u∑
κ=2

{
W(ζℓ−1,∆

ℓ−1) −W(ζℓ−2,∆
ℓ−2)

}
×
{
(u − κ + 1)η1(u − κ + 2η1 + 3) − (u − κ + 1)η1(u − κ + 3η1 + 3)

}
+

η1(∆ζ)η1

2ABC(η1)Γ(η1 + 2)

u∑
κ=2

{
W(ζℓ,∆ℓ) − 2W(ζℓ−1,∆

ℓ−1) +W(ζℓ−2,∆
ℓ−2)

}
×
{
(u − κ + 1)η1

[
2(u − κ)2 + (3η1 + 10)(u − κ) + 2η2

1 + 9η1 + 12
]
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−(u − κ)η1
[
2(u − κ)2 + (5η1 + 10)(u − κ) + 6η2

1 + 18η1 + 12
]}
. (5.12)

Thus, the general approximate divorce epidemic model:

∆u+1 = ∆0 +
1 − η1

ABC(η1)
η2ζ

η2−1
u W(ζu,∆(ζu))

+
η1(∆ζ)η1

ABC(η1)Γ(η1 + 1)

u∑
κ=2

η2ζ
η2−1
κ−2 W(ζℓ−2,∆

ℓ−2)
{
(u − κ + 1)η1 − (u − κ)η1

}
+

η2η1(∆ζ)η1

ABC(η1)Γ(η1 + 2)

u∑
κ=2

{
ζ
η2−1
κ−1 W(ζℓ−1,∆

ℓ−1) − ζη2−1
κ−2 W(ζℓ−2,∆

ℓ−2)
}

×
{
(u − κ + 1)η1(u − κ + 2η1 + 3) − (u − κ + 1)η1(u − κ + 3η1 + 3)

}
+

η2η1(∆ζ)η1

2ABC(η1)Γ(η1 + 2)

u∑
κ=2

{
ζη2−1
κ W(ζℓ,∆ℓ) − 2tη2−1

κ−1 W(ζℓ−1,∆
ℓ−1) + ζη2−1

κ−2 W(ζℓ−2,∆
ℓ−2)

}
×
{
(u − κ + 1)η1

[
2(u − κ)2 + (3η1 + 10)(u − κ) + 2η2

1 + 9η1 + 12
]

−(u − κ)η1
[
2(u − κ)2 + (5η1 + 10)(u − κ) + 6η2

1 + 18η1 + 12
]}
. (5.13)

5.3. Results and discussion

In what follows, we numerically simulated the suggested systems (3.3) and (4.1) employing the
MATLAB programming and the system parameters listed in Table 1 to facilitate comprehension of the
examined outcomes via the FF operator in the Atangana-Baleanu context.

Figures 2–4 show that couples who attend marital information sessions and have a sense of
reconciling in addressing respective conflicts have a better chance of progressing or enduring in their
relationship for a longer period of time. However, if the aforesaid rules are disregarded, the relationship
can simply disintegrate. Figures 2–4 depict the influence of anti-divorce regulation on separated
individuals via the FF derivative operator. While rapprochement and anti-divorce counseling are
lacking, and incidences of marital dissolution (divorce) continue consistently in the parental network.
Additionally, the findings show that by using regulations, separated instances in marital establishments
may be eradicated, and married couples who stay married for up to 3 decades can have a compassionate
domestic framework and no more separate their mates when there is decrease in fractional-order and a
significant boost in the fractal-dimension, respectively.

Figures 5–7 show how increasing the incidence of unification benefits fractured communities
by reconnecting them and thus increasing the proportion of incidents healed via the FF derivative
operator in the Atangana-Baleanu context. Lacking a proper rapprochement procedure, estranged
or emancipated couples will stay dysfunctional. Furthermore, Figures 5–7 show the effect of β2 on
divorcees. The significant variability in β2 diminishes the number of marriages that end in disaster. As
a result, it is reasonable to conclude that re-marriage between the divorcing aids in the reunification
of fractured communities when the fractional-order increases and there is a significant decrease in
fractal-dimension.

The delimited instances in Figures 8–10 expand rapidly in comparison to the marital situations
via the FF derivative in the context of the Atanagan-Baleanu operator. This suggests that as long as
couples remain united, domestic dysfunction in the form of relationship breakdown is likely to occur.
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Alternatively, divorce cannot occur in the absence of a marital relationship, and the greater the number
of incidents of people getting married, the greater the number of divorced couples. We noticed the
system’s reproductive quantities’ behavioral tendencies in relation to the variant R̄c < R̄b < R̄ad < R̄u.

This represents the fact that using an amalgamation of rapprochement and anti-divorced procedures is
more effective in preserving relationships than using a solitary therapy incorporating the decrease in
fractional-order and keeping fractal-dimension fixed, respectively.

In Figures 11–13, the estimate grows in the situation where the individuals have not received
adequate preconception counseling and also don’t resolve their disagreements on a regular basis with
the FF derivative operator in the Atangana-Baleanu perspective. Furthermore, the findings suggest that
matrimonial individuals who have been together for more than 1.5 decades without separating are less
predisposed to breakup when fractal-dimension is increased and fractional-order is assumed to be 1,
respectively.
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Figure 2. Nature of the singles S1(ζ) and married cases M(ζ) when η1 decreases and η2

increases for the scheme 5.2.
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Figure 3. Nature of the divorced D(ζ) and separated cases S2(ζ) when η1 decreases and η2

decreases for the scheme 5.2.
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Figure 4. Nature of the restored marital cases R(ζ) when η1 decreases and η2 increases for
the scheme 5.2.
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Figure 5. Nature of the singles S1(ζ) and married cases M(ζ) when η1 increases and η2

decreases for the scheme 5.2.
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Figure 6. Nature of the divorced D(ζ) and separated cases S2(ζ) when η1 increases and η2

decreases for the scheme 5.2.
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Figure 7. Nature of the restored marital cases R(ζ) when η1 increases and η2 decreases for
the scheme 5.2.

0 20 40 60 80 100 120

1

2

3

4

5

6 1
 =1, 

2
 = 1

1
 =0.9, 

2
 = 1

1
 =0.8, 

2
 = 1

1
 =0.7, 

2
 = 1

1
 =0.6, 

2
 = 1

1
 =0.5, 

2
 = 1

(a)

0 20 40 60 80 100 120

5

10

15

20

25

30

35 1
 =1, 

2
 = 1

1
 =0.9, 

2
 = 1

1
 =0.8, 

2
 = 1

1
 =0.7, 

2
 = 1

1
 =0.6, 

2
 = 1

1
 =0.5, 

2
 = 1

(b)

Figure 8. Nature of the single S1(ζ) and married casesM(ζ) when η1 decreases and η2 = 1
for the scheme 5.2.
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Figure 9. Nature of the divorced D(ζ) and separated cases S2(ζ) when η1 decreases and
η2 = 1 for the scheme 5.2.
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Figure 10. Nature of the restored marital cases R(ζ) when η1 decreases and η2 = 1 for the
scheme 5.2.
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Figure 11. Nature of the single S1(ζ) and married casesM(ζ) when η1 = 1 and increase in
η2 for the scheme 5.2.
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Figure 12. Nature of the divorcedD(ζ) and separated cases S2(ζ) when η1 = 1 and increase
in η2 for the scheme 5.2.
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Figure 13. Nature of the restored marital cases R(ζ) when η1 = 1 and increase in η2 for the
scheme 5.2.

Figures 14–16 show that using the Atanagan-Baleanu fractional derivative in the Caputo context
and the scheme developed in subsection 5.1 reduces breakup significantly in the early stages. This
rise in difficulty encourages individuals to seek counseling; that increases in the first few weeks
but then falls and stabilizes after several months, implying that it drives the wider community to
marry, but as counseling declines, remarriage declines as well. Figures 17–19 show the numerical
and graphical results, which show that these two numerical algorithms produce the same results with
minor differences. Also, we investigated the effect of fractal dimensions and fractional orders on
these simulations. Also, the effect of different values for the average number of separated people
and the restored cases was simulated in some graphs under the Adams-Bashforth method. This study
showed that we can predict the next behavior of the FF divorce epidemic model via the two mentioned
numerical methods and their results are more accurate and identical.

Additionally, it is critical to note that, as indicated in [2], peace in family reunification is preferable
to marital seminars/courses.
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Figure 14. Nature of the single S1(ζ) and married casesM(ζ) with and without control when
η1 = 0.95 for the scheme 5.1.
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Figure 15. Nature of the divorcedD1(ζ) and separated cases S2(ζ) with and without control
when η1 = 0.95 for the scheme 5.1.
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Figure 16. Nature of the restored marital casesR(ζ) with and without control when η1 = 0.95
for the scheme 5.1.
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Figure 17. Numerical illustrations in the Comparison of the numerical solutions of the
Adams-Bashforth method with Newton polynomials method under the η1 = η2 = 0.9 for
the single S1(ζ) and married casesM(ζ).
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Figure 18. Numerical illustrations in the Comparison of the numerical solutions of the
Adams-Bashforth method with Newton polynomials method under the η1 = η2 = 0.9 for
the divorcedD(ζ) and separated cases S2(ζ).
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Figure 19. Numerical illustrations in the Comparison of the numerical solutions of the
Adams-Bashforth method with Newton polynomials method under the η1 = η2 = 0.9 for
the restored cases R(ζ).

6. Conclusions

The evolution of the divorce pandemic combined with anti-divorce counseling has been established
and investigated by considering two novel fractional derivative operator techniques depending on the
generalized Mittag-Leffler function. At both equilibria, the structures were shown to be locally and
globally asymptotically robust. At a divorce-free steady state, four basic reproduction number R̄ have
been estimated, indicating that separation will never be an outbreak in the population if counseling
is provided. The Picard-Lendelöf mechanism is performed to prove its existence and uniqueness.
In the following experiments, the proposed divorce epidemic system is reconstructed using a novel
fractional-fractal operator in the Atangana-Baleanu perspective. The existence and uniqueness of the
fractional-fractal divorce epidemic framework are shown. Additionally, powerful and robust methods
were used to examine both the aforesaid fractional frameworks. We conclude that the fractal-fractional
model provides a solid understanding of epidemic dynamics and may be implemented as a trustworthy
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modeling approach based on the graphical outcomes. The investigation’s numerical findings imply that
the existence of corrective measures, including marital seminars/courses and rapprochement attempts,
can assure protracted successful marriages and avoid or restore social dynamics breaches (detachment
or separation).
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Torvik and Painlevé equations in Hilbert space, Chaos Solitons Fract., 117 (2018), 161–167.
https://doi.org/10.1016/j.chaos.2018.10.013

23. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr.
Fract. Differ. Appl., 2 (2015), 73–85.

24. A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory
and application to heat transfer model, Therm. Sci., 20 (2016), 763–769.

25. Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Modeling and analysis of novel COVID-19
under fractal-fractional derivative with case study of Malaysia, Fractals, 29 (2021), 2150020.
https://doi.org/10.1142/S0218348X21500201

26. Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Qualitative analysis of fractal-fractional order
COVID-19 mathematical model with case study of Wuhan, Alex. Eng. J., 60 (2021), 477–489.
https://doi.org/10.1016/j.aej.2020.09.020

27. S. Rezapour, J. K. Asamoah, A. Hussain, H. Ahmad, R. Banerjee, S. Etemad, et al., A theoretical
and numerical analysis of a fractal-fractional two-strain model of meningitis, Results Phys., 39
(2022), 105775. https://doi.org/10.1016/j.rinp.2022.105775

AIMS Mathematics Volume 8, Issue 3, 5233–5265.



5264

28. S. Rezapour, S. Etemad, M. Sinan, J. Alzabut, A. Vinodkumar, A mathematical analysis on the
new fractal-fractional model of second-hand smokers via the power law type kernel: numerical
solutions, equilibrium points, and sensitivity analysis, J. Funct. Spaces, 2022 (2022), 1–26.
https://doi.org/10.1155/2022/3553021

29. M. Al Qurashi, S. Rashid, S. Sultana, F. Jarad, A. M. Alsharif, Fractional-order partial differential
equations describing propagation of shallow water waves depending on power and Mittag-Leffler
memory, AIMS Math., 7 (2022), 12587–12619. https://doi.org/10.3934/math.2022697

30. S. Rashid, R. Ashraf, F. Jarad, Strong interaction of Jafari decomposition method with nonlinear
fractional-order partial differential equations arising in plasma via the singular and nonsingular
kernels, AIMS Math., 7 (2022), 7936–7963. https://doi.org/10.3934/math.2022444

31. S. Rashid, F. Jarad, A. G. Ahmad, K. M. Abualnaja, New numerical dynamics
of the heroin epidemic model using a fractional derivative with Mittag-Leffler
kernel and consequences for control mechanisms, Results Phys., 35 (2022), 105304.
https://doi.org/10.1016/j.rinp.2022.105304

32. H. Najafi, S. Etemad, N. Patanarapeelert, J. K. K. Asamoah, S. Rezapour, T. Sitthiwirattham,
A study on dynamics of CD4+ T-cells under the effect of HIV-1 infection based on
a mathematical fractal-fractional model via the Adams-Bashforth sscheme and Newton
polynomials, Mathematics, 10 (2022), 1366. https://doi.org/10.3390/math10091366

33. W. Sintunavarat, A. Turab, A unified fixed point approach to study the existence of solutions for
a class of fractional boundary value problems arising in a chemical graph theory, PLoS ONE, 17
(2022), e0270148. https://doi.org/10.1371/journal.pone.0270148

34. S. Rezapour, S. Etemad, R. P. Agarwal, K. Nonlaopon, On a Lyapunov-type inequality for
control of a ψ-model thermostat and the existence of its solutions, Mathematics, 10 (2022), 4023.
https://doi.org/10.3390/math10214023

35. W. Chen, Time-space fabric underlying anomalous diffusion, Chaos Solitons Fract., 28 (2006),
923–929. https://doi.org/10.1016/j.chaos.2005.08.199

36. R. Kanno, Representation of random walk in fractal space-time, Phys. A, 248 (1998), 165–175.
https://doi.org/10.1016/S0378-4371(97)00422-6

37. W. Chen, H. Sun, X. Zhang, D. Korosak, Anomalous diffusion modeling by
fractal and fractional derivatives, Comput. Math. Appl., 59 (2010), 1754–1758.
https://doi.org/10.1016/j.camwa.2009.08.020

38. H. G. Sun, M. M. Meerschaert, Y. Zhang, J. Zhu, W. Chen, A fractal Richards’ equation to capture
the non-Boltzmann scaling of water transport in unsaturated media, Adv. Water Resour., 52 (2013),
292–295. https://doi.org/10.1016/j.advwatres.2012.11.005

39. A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and
fractional calculus to predict complex system, Chaos Solitons Fract., 102 (2017), 396–406.
https://doi.org/10.1016/j.chaos.2017.04.027
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