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ABSTRACT 
 
 
 

DIFFRACTION OF THE PACKET-LIKE AND NON-DIFFRACTING 

PROPAGATING BEAMS BY AN OBSTACLE IN ATMOSPHERE. 
 

 

 

 

KARA, Mustafa 

M.Sc., Department of Electronic and Communication Engineering 

Supervisor: Assoc. Prof. Dr.Yusuf Ziya Umul 

 

 

June 2008, 50 pages 

 

 

 

 

This thesis takes two different solutions of homogenous wave equation into 

consideration. These solutions are named as packet-like solution and non-diffracting 

beam.First of all the propagation of these waves in the atmosphere is investigated. As 

a second step, an obstacle (a knife edge) is located on the propagation path of the 

diffracting beam and the diffraction effects are examined. The results are plotted 

numerically by using MATLAB. 

 
 
 

Keywords: Diffraction,Packet-like Wave,Gaussian Beam. 
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ÖZ 
 

 

 

PAKETİMSİ VE KIRILMAYAN IŞINLARIN 

ATMOSFERDE  

BİR ENGEL TARAFINDAN KIRILMASI 

 

 

 

KARA, Mustafa 

Yükseklisans, Elektronik ve Haberleşme Mühendisliği Bölümü 

Tez Yöneticisi:  Doç. Dr. Yusuf Ziya Umul 

 

 

Haziran 2008, 50 sayfa 

 

 

 

 

Bu tez homojen dalga denkleminin iki çözümünü incelemektedir. Bu çözümler 

paketimsi çözüm ve kırılmayan ışın olarak adlandırılabilir.İlk olarak bu dalgaların 

atmosferdeki yayılımı incelenmiştir. İkinci adımda bir engel (bıçak sırtı) ışının 

yayılım yoluna yerleştirilip kırılma etkileri incelenmiştir. Sonuçlar sayısal olarak 

MATLAB yardımıyla çizilmiştir.  

Anahtar Kelimeler: Kırılma, paketimsi dalga,Gauss ışını. 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 
A wave packet which can be expressed as a sum of waves with different frequencies 

is a special feature of wave motion [1]. This type of wave propagation has a wide 

application in beam and particle optics, electromagnetics and quantum mechanics. 

Schrödinger equation has solutions which are in the form of wave packets. A wave 

packet can be expressed as a modulated high-frequency wave with a localized 

waveform. As mentioned earlier by Bélanger certain packetlike beams are the 

solutions to homogenous Maxwell equations that were shown by Brittingham who 

proposed that these solutions are unique electromagnetic pulses satisfying the 

homogenous Maxwell equations. These solutions are known the beams that remain 

focused for all time along the propagation path. Because of this peculiarity of these 

beams Brittingham called them focus wave modes for which he found some 

mathematical formulations after an extensive study with various differential 

equations and concluded that focus wave modes are continuous, nonsingular, 

nondispersive and have a three-dimensional structure with the velocity of light 

propagating in straight lines [2,3]. Later some authors tried to obtain exact 

expressions for these modes by using the Maxwell equations or the concept of the 
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complex source [4,5]. Focus wave mode solution of the wave equation, which was 

first proposed by Brittingham, represents a localized wave in space [6]. It is 

composed of two waves propagating in opposite directions. He derived an equation, 

which is in the same form with the paraxial wave equation, by suggesting an ansatz 

based on the structure of a focus wave mode. He also showed that the solutions of the 

paraxial wave equation are also valid for his differential equation. All of these 

attempts in the literature were performed for the electromagnetic or optical waves 

which propagate with the speed of light. [7,8,9]. The focus wave modes are in the 

form of Gaussian beams. Their beam parameters depend on space and time. Gaussian 

beam parameters depend only on space. Gaussian beams are the solution of paraxial 

wave equation but the focus wavemodes have the solution of wave equation.[10].  

Since focus wave modes have undistorted profile with respect to space and time they 

resemble plane waves with infinite energy which propagate without distortion. 

Packetlike or focus waves remain focused in some definite time intervals and the 

envelope of a focus wave is the Gaussian beam. 
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CHAPTER 2 

 

 

DIFFERENTIAL EQUATION OF WAVE PACKETS 
 

 

2.1 Theory 
 

 

In this section we will derive a differential equation for focus wave modes by using 

the paraxial approximation and the method of Bélanger [2]. We will propose a wave 

propagation having equal group and phase velocities.The envelope of this wave is 

supposed to be a focus wave mode. The homogenous wave equation of the carrier 

wave can be given by 

 

 

                            (2.1) 

 

 

Here T  is the Laplacian according to the transverse coordinates and .ctz To 

obtain packetlike solutions of this equation we start with the following ansatz[2]: 
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By inserting this ansatz into Equation (1) we obtain an expression which is analogous 

to the paraxial wave equation given below. 

                     

                                                                       

                                         (2.3) 

 

 

Here we consider the relation of 0
2

2U
 as the paraxial approximation.  

 

 

2.2 Spectral solution of the paraxial wave-packet equation 
 
 

We can solve the differential equation in Equation (2.3) by means of a Fourier 

transform and obtain a scattering integral by using the convolution property. The 

function ),,( yxU  can be defined as 

 

  

          (2.4) 

 

 

 

which is an inverse Fourier integral transform of W( , , ). Substituting the Equation  

 

(2.4) into the Equation (2.3) we get 
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In order to solve the differential equation in Equation (2.6),let 

 

 

                                       (2.7)                                                                                               

 

 

Substituting the Equation (2.7) into (2.6) we get  

 

  

                                           (2.8) 

 

As a result W is obtained as 
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where C(  ,  ) is a constant according to . Finally , ),,( yxU  is obtained as  
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The value of  C(  ,  ) can be determined by the conditions according to . If the 

value of ),,( yxU  at =0 is known as U(x,y,0)=U0(x,y) then the relation of 
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is obtained from the Equation (2.10) for =0. Equation (2.11) is an inverse Fourier 
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is obtained. Equation (2.12) is known as the Fourier transform of U0(x,y). 

 

 

2.3 Diffraction integral 
 
 

Now we need to derive a diffraction integral for wave-packet solution. A similar 

approach with Ref.[11] will be used. Equation (2.10) is the inverse Fourier transform of  

 

   
                                    (2.13) 

 

 

 

Therefore ),,( yxU  can be written as 
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where 1F  represents the inverse Fourier transform.Equation (2.14) leads to the  

 

relation of the convolution operation. 
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which can be partitioned as 

 
 

 

  

                 (2.17) 

 

 

The integrals in Equation (2.17) have the same form. In order to arrange the first 

integral we can perform the following steps: 
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Similarly, for the arguments of the second integral we write, 
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If we proceed the same steps used for A we obtain B as 
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and, as a result we obtain 

 

  

                                          (2.29) 

 

 

Similarly for the second integral by letting 

 

 

    

,                                   (2.30) 

we obtain   

 

  

                                          (2.31) 

 

 

Substituting these results into the Equation (2.26) we get 

 

 

  

                   (2.32) 

 

 

Since 

 

    

                                         (2.33) 

 

 

by using this integral result the Equation (2.32) can be rewritten as 

 

 

   

                                  (2.34) 

 

 

 

 

where  

 

  

                                  (2.35) 

 

 

 

.4 dt
k

ed
j

22

2
2

q
B

k
j

.4 dq
k

ed
j

..
)2(

),,( 222

2

)(
2222

dqedte
k

e
e

yxM

qt
j

BAj

,22

2

dpe

p

,
2

),,(
2

22 yx
jk

ejk
yxM

),(
2

2222 yx
k

BA



    10 

is obtained by using the Equations (2.22) and (2.24). Substituting Equation (2.34) in 

Equation (2.15) we obtain 

 

   

                           (2.36) 

 

 

 

 

which has a Gaussian profile stated by Bélanger [2] as  
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Figure 2.1 Gaussian beam with k, =2, 0=1. 

 

 

Figure 2.2 Gaussian beam with k1=2k, =2, 0=1. 
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Figure 2.3 Gaussian beam with k2=5k, =2, 0=1. 

 

 
Figure 2.4 Gaussian beam with k3=10k, =2, 0=1. 
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We see from the above figures that as k increases, the Gaussian profile becomes  

 

sharper. 

 

 

Figure 2.5 Gaussian beam with k4=10k, =3, 0=1. 
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Figure 2.6 Gaussian beam with  k5=10k, =5, and 0=1. 

 

 

 

We see that as  increases the Gaussian profile becomes broader. 
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Figure 2.7 Gaussian beam with k6=10k, =5, and 0=1. 

 

 

Figure 2.7 shows the change in the profile due to the range increase in x and y. As 

the range in x and y is increased the Gaussian profile becomes sharper. This change 

is due to the increase in aperture and as a result less dispersion occurs. 
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Figure 2.8 Gaussian beam with k7=10k, =5, and 0=5. 

Figure 2.8 is obtained from the previous one by just changing the parameter value of 

0 to 5. 
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Figure 2.9. Gaussian beam with k8=10k, =5, and 0=100. 

 

 

 

But if we increase  further the profile will disperse. If   is replaced by 100 the  

 

beam will be as shown in above figure. 
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Figure 2.10 A PEC half plane located along y-axis. 

 
 

 

The diffraction integral for our problem can be written as 
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where )','(0 yxU has a unit amplitude. The field is uniformly distributed in the half 

plane. The paraxial diffraction integral says that the field amplitudes at any z plane 
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operation with impulse response ),,( yxM which is found in the Equation (2.34). 
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This means that the impulse response gives the amplitude on a plane at a distance z 

away from a source which is located at the origin. Turning back to the Equation (2.2) 

we can rewrite it as 

 

  

             (2.39) 

 

 

 

which can be fractioned as 
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                                            (2.45) 

 

 

 is obtained. As a result the second integral becomes as 
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which can be written as 
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which can be regarded as the final expression of the scattered field. The diffracted 

field is shown in Figure 2.11 which can be obtained by means of Bessel function 

[12]. It is important to note that the form of the diffracted field is analogous to the 

diffraction function introduced by Mohinsky [13]. 

 

 

 

 
Figure 2.11 Intensity of diffracted wave. 

 

 

 

To rewrite the packet wave we substitute Equation (2.36) into Equation (2.2) by  

 

taking U0(x,y) as unity: 
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from which we can draw the packet wave as shown in Figure 2.12 

 

 

Figure 2.12 Packet wave. 
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CHAPTER 3 
 

 

 

PROPAGATION OF LIGHT IN THE PARAXIAL  

APPROXIMATION 
 

 

 

The classical description of light is as a transverse electromagnetic wave, but to work 

on many effects we can use a scalar instead of using the full wave equation. In free 

space, we have 

 

                                   

                          (3.1) 

 

 

 

In this equation  represents a component of the electric or magnetic field. For 

monochromatic, coherent light, we can write 

 

                                (3.2)                      

 

 

    

Substituting this into the wave equation, we obtain Helmholtz’s equation: 
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where k= /c is the free-space wave number and  is the radian frequency. Let us 

assume a propagation parallel to z axis, so that 

 

,                                   (3.4)  

                       

 

and suppose that fz(x,y) varies slowly with z.(Similar to a plane wave propagating 

parallel to the z axis, fz(x,y) is constant). Substituting Equation (3.4) into Helmholtz’s 

equation,Equation (3.3), yields 

 

                

.           (3.5) 
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f
 because of the slowly varying  

 

feature of fz with respect to z. This assumption results in the paraxial wave equation 
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CHAPTER 4 
 

 

 

GAUSSIAN BEAM OPTICS [14] 
 

 

 

Most of the time the laser beams need to be focused, modified, or shaped. By 

assuming that the laser beam has an ideal Gaussian intensity profile, like TEM00 

mode, we can approximate the beam propagation. In TEM00 mode, the beam is a 

perfect plane wave at the output of the laser and it has a Gaussian transverse intensity 

profile. Distortion may be created at some distance by aperture limitations or 

obstacles along the way. In order to specify the propagation characteristics, we need 

to determine the beam parameters. 

 

4.1 Gaussian Beams  
 

 

We will assume a beam propagating in z direction. In order to derive an expression,  

 

we will use the Helmholtz’s wave equation, 

 

 

,                                            (4.1) 

  

 

where u is the component of the electric or magnetic field. For the beam we can write 

 

 

,                                          (4.2)  
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where   represents the differences between a laser beam and a planewave. 

Following the steps between equations (3.3) and (3.6), we obtain the paraxial wave 

equation again: 

 

  

 ,                            (4.3) 

 

 

 

which has the same form of time dependent Schrödinger equation for   and it can be  

 

proved that 

 

  

,                                            (4.4) 

 

 

is a solution of this paraxial equation,where 

 

 

.                                              (4.5) 

   

 

Both P and q are the functions of z .P is a complex phase shift that occurs during 

propagation of the beam and q is the complex beam parameter which expresses the 

Gaussian variation with respect to r. Substituting Equation (4.4) into Equation (4.3) 

we get 
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then we can write 

 

,                                               (4.8) 

 

 

which means that the beam parameters in different planes are related in such a way  

 

that they are separated by a distance z. Now we will use the relation 

 

  

                                           (4.9) 

 

 

where  and R are also the functions of z.R is the radius of curvature which 

intersects the axis at z and  is called the beam radius or spot size which is the 

measure of decrease of the field amplitude. 2  is called the beam diameter. The 

Gaussian beam has a minimum diameter 2 0 at the beam waist where complex beam 

parameter q can be written as 

 

 

  

,                                       (4.10) 

 

 

 

and at any distance z from the beam waist q can be written as 
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and 

 

  

 

                                        (4.14) (12) 

 

 

finally we obtain 

 

  

 

.                            (4.15)  

 

 

 

Now let us equate the real and imaginary parts of  Equation (4.15) and Equation 

(4.9): 

 

For the real terms we write 
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and R is obtained as 
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For the imaginary terms we write 
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By assuming that z is much larger than /0  we can say that 1 can be ignored in  

 

Equation (4.19). As a result we obtain 

 

  

                                           (4.20) 

 

 

 

Since the beam contour is a hyperbola with asymptotes inclined to the axis at an 

angle 

  

,                                              (4.21) 

 

 

we can write it as 

  

 

,                                        (4.22) 

 

 

which is the far field diffraction angle. Dividing the Equation (4.17) by Equation  

 

(4.19) we write 
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the Equation (4.24) becomes 

 

 

 

  

.                                 (4.25) 

 

 

 

 

Substituting Equation (4.24) into Equation (4.25) we obtain 

 

 

  

 .                                          (4.26) 

 

 

By using this relation we reach the following results: 
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Complex phase shift can be found by integrating dP/dz in Equation (4.7) where q is 

taken as in Equation (4.12), 
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stands for the intensity decrease along the propagation. By using these results we can 

rewrite the Gaussian beam in Equation (4.1) as 

 

  

,                             (4.30) 

 

where 

 
  

.                                        (4.31) 

 

 

 

The Gaussian beam in Equation (4.30) is called fundamental mode. 

 

 

 

4.2 Gaussian beam obtained from a complex line source 

 

 

 

We use optical components like irises, knife edges, etc. for their blocking and 

shadowing properties. Gaussian-like optical fields cannot be described by ordinary 

rays. Therefore when an optical component is illuminated by a beam its shadow is 

not described by geometrical optics. Optical fields are commonly described in the 

form of bounded beams. For the Gaussian beams, we consider the rays as emanating 

from a source which has complex coordinates. These rays are regarded as traveling 

through complex space and intersecting real space at one point. We already know 

that when the source coordinates are complex the free-space Green’s function yields 

the fields of a Gaussian beam. If we use the point-source Green’s function we obtain 

a circular cross sectional Gaussian beam. But if we use a line source Green’s 

function we obtain a ribbon having a Gaussian profile. The reason why we use the 

Green’s function to obtain a beam field is that the Green’s function we can use the 
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propagation and diffraction expressions that are already derived for the line source 

excited fields. [15]. For this study we will consider a two-dimensional or ribbon 

beam propagating parallel to z axis with no variation along x, and the electric field is 

polarized along x. Let a line source be placed along x-axis as shown in Figure 4.1. 

 
 

                   
Figure 4.1 Line source located along x-axis. 

 

 

 

The vector potential can be written as 
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Then the vector potential becomes as 

 

   

 

,                                  (4.34)                                       

 

 

where  

         

                                 (4.35)                                      

 

 

Letting,  
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.                                     (4.42) 

 

 

Therefore line source yields the Hankel function which produces a Gaussian profile  

 

when complex coordinates are assigned to the source. Figures 4.2 and 4.3 show the  

 

Gaussian beams produced by complex line sources: 

 

 
Figure 4.2 Radiation pattern produced by complex line source with  being positive. 

 

 

 

If  , which is the cylindrical coordinate, is chosen positive, radiation pattern  

 

depicted in Figure 4.2 in Figure 4.3. 
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Figure 4.3 Radiation pattern produced by a complex line source with  being         

                  negative.  

 

 

 

Now we will examine this result obtained in Equation (4.42) asymptotically, 

assuming that kR>>1 which means that either k or R is very large when compared to 

1. When k is very large, we say that frequency is very large due to k being  

k . When R is very large, we are in the far field region. In order to find an 

expression by using the asymptotic approach we will start with the stationary phase 

method which is described in detail in appendix. Let us consider the integral 
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where g(x) is the phase function and f(x) is the amplitude function. At the stationary 
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phase point xs the first derivative of the phase function will be zero by definition. 

 

                                       (4.44) 

  

 

 

We write the Taylor series expansion of g(x) around the stationary point xs as 
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Taking the first three terms and discarding the higher order ones of the Taylor 

expansion we can write the approximate expression of it as 
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                           (4.50) 
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asymptotic evaluation of the integral becomes as 

  

  

 

                                 (4.58) 

 

 

 

Now let us go back to the Equation (4.39) 
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Substituting these results into Equation (4.58) we get 

   
 
                                        (4.67) 

 

 

 

As a result the vector potential found in Equation (4.59) can be rewritten as  
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where 
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e jkR

 is called the cylindrical wave  factor and the minus sign in front of jkR 

means that the wave is outgoing. In order to find the electric field we will multiply 

the vector potential by –jω 
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If we let      
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Finally we obtain the electric field produced by the line source as 
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In order to get a Gaussian beam from the line source we need to assign complex  

 

values to the line source coordinates as described by Felsen[15]. By adopting the  

 

procedure and considering Figure 4.4. [15], we carry out the following steps: 

 

 

Let, 
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then R becomes 
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where  

 

 

                                     (4.76) 

 

 

 

Using Equation (4.76) into Equation (4.75) we write 
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Figure 4.4 Line source located at complex plane to produce a Gaussian beam. 

 

 

 
                        (4.78) 

 

 

is obtained. Since the binomial expansion is 

 

 

 for x<<1,                         (4.79) 

 
 

We can use this for the square-root term as 
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Substituting Equation (4.81) into Equation (4.73) electric field becomes 
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CHAPTER 5 

 

 

 

CONCLUSION 
 

 

 
In this study, a differential equation is obtained by considering the focus wave mode  

 

solution of the wave equation in the sense of paraxial approximation. The equation is  

 

solved in the spectral domain by using a Fourier integral transform and a diffraction  

 

integral which enables the investigation of the scattering of wave packets by a PEC  

 

half plane. It is observed that the results are consistent with the theory. 
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APPENDIX 
 

 

 

METHOF OF STATIONARY PHASE [16] 

 

 

 

Radiation integrals consist of an amplitude function times a phase function. In many  

 

cases an asymptotic evaluation can be made if the amplitude function slowly varies  

 

and the phase function rapidly varies. Consider the integral 

 

   

,                                         (A1) 

 

 

where f(x) and (x) are real functions, and  is a large number. The integral 

endpoints can be infinite. If f(x) is slowly varying and (x) is a rapidly varying 

function over the interval of integration due to  being large, the main contribution 

from the integral comes from the stationary phase point. If there exist more than one 

stationary points,the contribution of all these stationary points will be summed up. A 

stationary phase point is defined as a point where the first derivative of the phase 

function  is equal to zero: 

.0
dx

d
, which means that the function )(x is maximum at x0. If )(x is multiplied  

 

by ,the difference between the maximum-valued  and any other x-valued  will 

rapidly increase yielding a rapid exponential growth of the integrand. Therefore the 

significant contribution to the integral will come from the points that are close to x0.
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If we expand the phase function in a Taylor series around the point of stationary 

phase,we get the following expression: 

 

       

    ,                  (A2) 

 

 

where 
'

0  and 
''

0  represent the derivatives of  with respect to x, evaluated at x0. 

Now '

0  is assumed as zero by definition in the neighborhood of the point of 

stationay phase the quantity (x-x0) is small so that the high-order terms(i.e.,order 3 

and higher) in Equation (A2) may be ignored. If there is only one stationay point x0 

in the interval from a to b,and x0 is not close to either a or b,we can write the 

Equation (A1) as 

 

 

  ,                              (A3) 

 

 

 if )0( ''

0 where  represents a small number. By doing this we reduce the range 

of integration  to a small neighborhood about the point of stationary phase. If f(x) is 

slowly varying,we can approximate it over this small interval. Thus Equation (A3) 

becomes 
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variations will cancel each other because of the slowly varying characteristics of  

f(x). Now let us consider the integral 

    

,                                                 (A5) 

 

 

                                                   

which can be written by using the Euler’s formula as 
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By solving this equation we obtain 

 

 

,                                              (A7) 

 

 

 

where  

 

                      

  

                                       (A8)            

 

 

If we use Equation (A5) to evaluate Equation (A4), the stationary phase  

 

approximation results in 
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this case, we need to use the third-order term in Equation (A2). In addition,Equation 

(A9) becomes invalid if one of the limits of integration is close to the point of 

stationary phase x0. For this case we can express the integral in the form of a Fresnel 

integral. One more problem occurs if there exist two or more stationay points close 

together in the range of integration.  To obtain the endpoint contribution,it is best to  

write Equation (A1) as 

 

 

   

,         (A10) 

 

 

 

 

or 
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The evaluation of I0 has been done in Equation (A9).Ib, for instance, can be evaluated 

by using integration by parts with the wave number to be complex and to have a 

small amount of loss(i.e.,small ) so that the contribution to the integral by the upper 

limit at infinity vanishes,and then letting the wave number to be approximated by 

,as before. Thus, 
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When the stationary point is coupled to the endpoint,we write 

 

  

  (A13) 

 

 

where 

 

u=unit step function 

 

)(vF is the Fresnel integral 
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)(
)(

2
)()sgn())sgn((

''

0

)(

000

2

vF
b

ebfxbIxbuI jvbj

b



,0)('' b

.
)(2

''

0''

0 b
v


