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Abstract: This work aims to construct the Titchmarsh-Weyl M(λ)−theory for an even-dimensional left-definite
Hamiltonian system. For this purpose, we introduce a suitable Lagrange formula and selfadjoint boundary conditions
including the spectral parameter λ . Then we obtain circle equations having nesting properties. Using the intersection
point belonging to all the circles we share a lower bound for the number of Dirichlet-integrable solutions of the system.
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1. Introduction
In this paper, we aim to introduce a lower bound for the number of linearly independent integrable-square
solutions of the following 2m−dimensional left-definite Hamiltonian system

JY ′ = [λA+B]Y, x ∈ [a, b), (1.1)

with the aid of the M(λ) matrices and nested-surfaces related with selfadjoint boundary-value problems on
some compact subintervals of [a, b), where b is the only singular point of (1.1), λ is a complex parameter with
Imλ ̸= 0, J, A = A(x), B = B(x) are 2m× 2m matrices such that

J =

[
0 −I
I 0

]
, A(x) =

[
P (x) 0
0 0

]
, B(x) =

[
−B1(x) B̃∗(x)

B̃(x) B2(x)

]
.

Here I is the identity matrix of dimension m, P ∗(x) = P (x) is an m ×m matrix, B∗
1(x) = B1(x), B

∗
2(x) =

B2(x) and B̃(x) are m×m matrices such that

B1(x) ≥ 0, B2(x) ≥ 0.

Before passing to the details we shall share some background information on scalar and matrix-differential
equations.

The investigation of singular second-order scalar-differential equations has been initiated by Weyl [26]
with the aid of his famous limit-point/circle theory. This theory has been rehandled by Titchmarsh [22] and
according to Titchmarsh-Weyl theory the following second-order differential equation

−(py′)′ + qy = λwy, x ∈ [a, b), (1.2)
∗Correspondence: ekinugurlu@cankaya.edu.tr
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has at least one solution for Imλ ̸= 0 satisfying

b∫
a

w |y|2 dx <∞,

where b is the only singular point of (1.2), p, q, w are real-valued functions such that p−1, q, w are locally
integrable functions on [a, b) and w > 0. This result is obtained with the aid of the solution χ of the form
χ = φ+mψ and some selfadjoint boundary-value problems constructed on compact subintervals of [a, b), where
φ and ψ are the solutions of (1.2) satisfying

ψ(a, λ) = sinα, p(a)ψ′(a, λ) = − cosα,
φ(a, λ) = cosα, p(a)φ′(a, λ) = sinα,

and 0 ≤ α < π. Indeed, the selfadjoint boundary conditions

cosαy(a) + sinαp(a)y′(a) = 0,
cosβy(c) + sinβp(c)y′(c) = 0,

(1.3)

where 0 ≤ α, β < π and a < c < b, requires the form of m as the following

m = m(c, β, λ) = − cotβφ(c, λ) + p(b)φ′(c, λ)

cotβψ(c, λ) + p(b)ψ′(c, λ)
. (1.4)

Now (1.4) implies that there exists a circle equation in the m−plane corresponding to the point c and it can
be seen that this circle is totally contained in another circle corresponding to the point c1 for c1 < c ≤ b.

Consequently these circles have nesting properties.
The m = m(c, β, λ)− function given by (1.4) and the corresponding results are obtained for the right-

definite equation (1.2) as w > 0. However, it is possible, in some sense, to allow w having an arbitrary sign
on the given interval. For instance, if one imposes some certain signs on p and q (they are chosen as positive
functions) then it is possible to get some results on spectral properties of the equation (1.2). This case is
known as left-definite case. However, we shall note that there does not exist a global definition for left-definite
equations (see [14], [19], [27]). Among these definitions Krall’s approach depends on choosing the coefficients
p, q, w all positive functions and the corresponding inner product is given by

⟨y, z⟩ =
c∫

a

(py′z′ + qyz) dx− p(c)y′(c)z(c) + p(a)y′(a)z(a) (1.5)

which depends on the boundary conditions at regular (or singular) point c ≤ b. For the singular problem Krall
and Race [15] obtained for p, q, w > 0 such that ν1w ≤ q ≤ ν2w, where ν1, ν2 are positive constants, that
at least one solution of (1.2) should have a finite norm generated by the inner product (1.5). It is better to
note that the problem that Krall and Race considered contains both the right and left-definite cases. However,
according to Pleijel’s idea [19], [20], one may construct a norm by (1.5) without the additional terms and the
sign of w can be allowed to be an arbitrary sign on the given interval. Indeed, using (1.2) one obtains for the
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solution y(x, λ) and z(x, µ) of (1.2) corresponding to the parameters λ and µ, respectively, that

(µ− λ)
c∫
a

(py′z′ + qyz) dx = λ (p(c)y(c)z′(c)− p(a)y(a)z′(a))

−µ (p(c)y′(c)z(c)− p(a)y′(a)z(a)) ,
(1.6)

where a < c < b, p, q > 0 and there is no sign restriction on w. Now a selfadjoint problem requires the
conditions

λ cosαy(a) + sinαp(a)y′(a) = 0,
λ cosβy(c) + sinβp(c)y′(c) = 0,

(1.7)

where 0 ≤ α, β < π. χ = φ+mψ satisfies the second boundary condition in (1.7), where

ψ(a, λ) = 1
λ sinα, p(a)ψ′(a, λ) = − cosα,

φ(a, λ) = 1
λ cosα, p(a)φ′(a, λ) = sinα,

if m is of the form

m = m(c, β, λ) = −λ cotβφ(c, λ) + p(c)φ′(c, λ)

λ cotβψ(c, λ) + p(c)ψ′(c, λ)
. (1.8)

Now obviously the form of m given in (1.8) differs from the form given in (1.4).
In this paper instead of considering the scalar equation (1.2) in the left-definite form we will consider

the even-dimensional left-definite Hamiltonian system (1.1). We shall note that equation (1.2) and indeed any
rth−order scalar formally symmetric differential equation can be embedded into an equivalent-dimensional
Hamiltonian system [25]. Arbitrary-dimensional right-definite Hamiltonian system has been investigated by
Atkinson [2] and valuable contributions on this theory have been shared by Kogan and Rofe-Beketov [12],
Hinton and Shaw [7], [8], [9], [10], [11], Krall [13] and the others. Moreover, some results on left-definite matrix-
eigenvalue problems and Hamiltonian systems have been studied by Schäfke and Schneider [21], Bennewitz
[4], [5], Krall [16] and Vonhoff [24]. Here Krall [16] considered again right/left-definite Hamiltonian system
on a regular interval and Uğurlu et al. [23] using Krall’s approach investigated a singular right/left-definite
Hamiltonian system with the aid of the results obtained for right-definite Hamiltonian system. However, in
this work, we will consider only a left-definite singular Hamiltonian system and using Hinton-Shaw and Kralls’
approaches we will construct M(λ)−theory for the left-definite even-dimensional Hamiltonian system that helps
us to introduce a lower bound for the number of the linearly independent Dirichlet-integrable solutions of (1.1)
and it seems that this is the first work on this theory. However, for the scalar case (1.2) the readers may see
the book [6] and the papers [1], [3], [17], [18].

2. Basic results
In this section, we will introduce some basic results on the solutions of (1.1) and corresponding boundary value
problems.

Eq. (1.1) has the following equivalent form

−y′2 +B1y1 − B̃∗y2 = λPy1,

y′1 − B̃y1 −B2y2 = 0,
(2.1)
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where y1, y2 are m× 1 component vector-functions of Y as Y =

[
y1
y2

]
. Using (1.1) and (2.1) we obtain for

the solutions Y (x, λ) and Z(x, µ) of (1.1) corresponding to the parameters λ and µ, respectively, that

λ

c2∫
c1

Z∗AY dx = −z∗1y2 |c2c1 +

c2∫
c1

(z∗1B1y1 + z∗2B2y2) dx (2.2)

and

µ

c2∫
c1

Z∗AY dx = −z∗2y1 |c2c1 +

c2∫
c1

(z∗1B1y1 + z∗2B2y2) dx, (2.3)

where [c1, c2) ⊆ [a, b).

We shall adopt the notation

⟨Y, Z⟩ |c2c1=
c2∫

c1

Z∗
[
B1

B2

]
Y dx.

From now on we will assume the following definiteness condition

⟨Y, Y ⟩ |ba> 0

for any nontrivial solution Y (x, λ) of (1.1).
Using (2.2) and (2.3) we obtain the Lagrange’s formula

(λ− µ) ⟨Y, Z⟩ |c2c1= [Yλ, Zµ](c2)− [Yλ, Zµ](c1), (2.4)

where Y =

[
y1
y2

]
, Z =

[
z1
z2

]
and

[Yλ, Zµ] :=
[
µz∗1 z∗2

]
J

[
λy1
y2

]
.

Now we shall impose some selfadjoint boundary conditions to the solutions of (1.1) on regular subintervals
of [a, b).

Let α1, α2 be some m×m matrices such that rank(α1, α2) = m satisfying

α1α
∗
1 + α2α

∗
2 = I, α1α

∗
2 − α2α

∗
1 = 0,

where I is the m×m identity matrix. We shall consider the following boundary condition at x = a

[
α1 α2

] [ Λ 0
0 I

] [
y1(a)
y2(a)

]
=

[
α1 α2

] [ λy1(a)
y2(a)

]
= 0, (2.5)

where Λ := λI.

Now let β1, β2 be some m×m matrices such that rank(β1, β2) = m satisfying
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β1β
∗
1 + β2β

∗
2 = I, β1β

∗
2 − β2β

∗
1 = 0,

and we shall consider the other boundary condition at a regular end point x = c, a < c < b, as

[
β1 β2

] [ Λ 0
0 I

] [
y1(c)
y2(c)

]
=

[
β1 β2

] [ λy1(c)
y2(c)

]
= 0. (2.6)

First result on the corresponding boundary-value problem can be given as follows.

Lemma 2.1. Let Y (x, λ) be an eigenfunction of the problem (1.1), (2.5), (2.6) corresponding to the
eigenvalue λ. Then λ should be real.

Proof First we shall note that (2.5) and (2.6) can be handled as[
λy1(a)
y2(a)

]
= Kv,

[
λy1(c)
y2(c)

]
= Lv, (2.7)

where v is a 2m× 1 vector and

K =

[
0 α∗

2

0 −α∗
1

]
, L =

[
β∗
2 0

−β∗
1 0

]
.

A direct calculation shows that
K∗JK = L∗JL = 0. (2.8)

On the other side (2.4) implies that

2iImλ ⟨Y, Y ⟩ |ca= v∗ (L∗JL−K∗JK) v. (2.9)

(2.8) and (2.9) complete the proof. 2

Let U(x, λ), Imλ ̸= 0, be an 2m× 2m fundamental solution of (1.1) satisfying

U(a, λ) =
[
λ−1α∗

1 −λ−1α∗
2

α∗
2 α∗

1

]
.

We shall consider the partition of U(x, λ) as follows

U =
[
Θ Φ

]
=

[
Θ1 Φ1

Θ2 Φ2

]
,

where Θ =

[
Θ1

Θ2

]
, Φ =

[
Φ1

Φ2

]
are 2m ×m matrix-function such that Θ1,Θ2,Φ1,Φ2 are m ×m matrix-

functions. Note that Φ satisfies the condition (2.5).
(2.4) and a direct calculation gives the following.

Lemma 2.2. Following equation holds

U∗(c, λ)

[
Λ∗ 0
0 I

]
J

[
Λ 0
0 I

]
U(c, λ) = J, Imλ ̸= 0.
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Lemma 2.3. Let ∆ = {λ : λ is an eigenvalue of (1.1),(2.5),(2.6)} . Then ∆ is denumerable. Let λk

denote the members of ∆ , where k belongs to a subset of the set of nonnegative integers. Then the series

∑
λk ̸=0

|λk|−1−ϵ

converges for any ϵ > 0.

Proof Any solution V (x, λ), Imλ ̸= 0, of (1.1) can be represented as

V (x, λ) =

[
λα1 α2

−λα2 α1

]
U(x, λ)V (a, λ). (2.10)

Using the boundary conditions given in (2.7) and (2.10) we get that{
L−

[
Λ 0
0 I

] [
λα1 α2

−λα2 α1

]
U(c, λ)

[
Λ−1 0
0 I

]
K

}
v = 0. (2.11)

Hence for v ̸= 0 we get from (2.11) that

det

{
L−

[
Λ 0
0 I

] [
λα1 α2

−λα2 α1

]
U(c, λ)

[
Λ−1 0
0 I

]
K

}
= 0

which coincides with the eigenvalues of the problem (1.1), (2.5), (2.6) and hence the eigenvalues should be a
discrete subset of the real-line.

(1.1) and Gronwall’s inequality imply that

U(c, λ) = O(exp(const. |λ|))

and hence the proof is completed. 2

3. Nested circles
In this section, we will construct circle equations and show that these circles have nesting properties.

Let us consider the following 2m×m matrix-function for Imλ ̸= 0

Ψ(x, λ) = U(x, λ)
[

I
M

]
, x ∈ [a, b), (3.1)

where M is an m×m matix. Note that Ψ is a solution of (1.1).
Ψ(x, λ) satisfies the boundary condition (2.6) if M is of the form

M =Mc(β1, β2, λ) = − (λβ1Φ1(c, λ) + β2Φ2(c, λ))
−1

(λβ1Θ1(c, λ) + β2Θ2(c, λ)) . (3.2)

We shall note that (λβ1Φ1(c, λ) + β2Φ2(c, λ))
−1 exists as otherwise λ with Imλ ̸= 0 would be an eigenvalue

of a selfadjoint boundary-value problem.
Consider the following expression
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E(Mc) :=
[
I M∗ ]

U∗(c, λ)

[
Λ∗ 0
0 I

]
(J/i)

[
Λ 0
0 I

]
U(c, λ)

[
I
M

]
and we shall adopt the following notation

U∗(c, λ)

[
Λ∗ 0
0 I

]
(J/i)

[
Λ 0
0 I

]
U(c, λ) = ε

[
K L∗

L N

]
, (3.3)

where ε = 1 when Imλ > 0 and ε = −1 when Imλ < 0. Therefore E(M) can also be represented as the
following

E(Mc) = ε
[
I M∗ ] [ K L∗

L N

] [
I
M

]
. (3.4)

If M is of the form (3.2) we get the equation

E(Mc) = 0. (3.5)

Lemma 3.1. We have the following

N = 2 |Imλ|
c∫

a

Φ∗
[
B1 0
0 B2

]
Φdx.

Proof (3.3) implies the form of N as

εN = Φ∗(c, λ)

[
Λ∗ 0
0 I

]
(J/i)

[
Λ 0
0 I

]
Φ(c, λ). (3.6)

On the other side a direct calculation gives that

Φ∗(a, λ)

[
Λ∗ 0
0 I

]
(J/i)

[
Λ 0
0 I

]
Φ(a, λ) = 0. (3.7)

Then (2.4), (3.6), (3.7) give the result. 2

Corollary 3.2. (i) N > 0,

(ii) as c increases N increases.

Expanding (3.5) we obtain the following form

(Mc − C)∗R−2
1 (Mc − C) = R2

2, (3.8)

where C = N−1L, R1 = N−1/2 and R2 = (L∗N−1L−K)1/2.

Lemma 3.3. We have the following
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εL = 2Imλ

c∫
a

Φ∗
[
B1 0
0 B2

]
Θdx− iI.

Proof From (3.3) we get that

L = Φ∗(c, λ)

[
Λ∗ 0
0 I

]
(J/i)

[
Λ 0
0 I

]
Θ(c, λ). (3.9)

Moreover, a direct calculation shows that

Φ∗(a, λ)

[
Λ∗ 0
0 I

]
(J/i)

[
Λ 0
0 I

]
Θ(a, λ) = −iI. (3.10)

Now (2.4), (3.9) and (3.10) complete the proof. 2

Lemma 3.4. L∗N−1L−K =N−1
> 0, where N−1

= N−1(λ).

Proof Using Lemma 2.2 we obtain that{
J

[
Λ 0
0 I

]
U(x, λ)

}{
−JU∗(x, λ)

[
Λ∗ 0
0 I

]}
= I, (3.11)

where I denotes the identity matrix of dimension 2m. Multiplying by J from the left of (3.11) we get that[
Λ 0
0 I

]
U(x, λ)JU∗(x, λ)

[
Λ∗ 0
0 I

]
= J.

Hence

J = U∗(x, λ)

[
Λ∗ 0
0 I

]
J

[
Λ 0
0 I

]
U(x, λ) = U∗(x, λ)

[
Λ∗ 0
0 I

]
×{

−J
[

Λ 0
0 I

]
U(x, λ)JU∗(x, λ)

[
Λ∗ 0
0 I

]}
J

[
Λ 0
0 I

]
U(x, λ)

or [
0 −I
I 0

]
= −

[
K L∗

L N

] [
0 −I
I 0

] [
K L∗

L N

]
. (3.12)

Using (3.12) we obtain that

N−1
= L∗N−1L−K

and this completes the proof. 2

Corollary 3.5. (i) R2 = R1, Imλ ̸= 0.

(ii) limc→bR1(c, λ) = Rb(λ) ≥ 0, limc→bR2(c, λ) = Rb(λ) ≥ 0.

Theorem 3.6. As c→ b E(Mc) = 0 are nested.

Proof The interior of the circle E(Mc) = 0 is described by

εΨ∗(c, λ)

[
Λ∗ 0
0 I

]
(J/i)

[
Λ 0
0 I

]
Ψ(c, λ) ≤ 0. (3.13)
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On the other side, (3.13) is equivalent to the following

2 |Imλ|
c∫

a

Ψ∗
[
B1 0
0 B2

]
Ψdx± (M∗ −M) /i ≤ 0. (3.14)

Let us choose a point c1 which is smaller than c. Then Mc is contained in the circle corresponding to the point
c1. This completes the proof. 2

Theorem 3.7. limc→b C(c, λ) = Cb(λ).

Proof Using Corollary 3.2, Lemma 3.4, Corollary 3.5, and (3.8) we may introduce the following equation(
R−1

1 (Mc − C)R
−1

1

)∗ (
R−1

1 (Mc − C)R
−1

1

)
= I,

and hence
Mc = C +R1UR1, (3.15)

where U is a unitary matrix.
Let Cc1 and Cc2 be the centers of the circles E(Mc1) = 0 and E(Mc2) = 0, respectively. Using (3.15)

we may write the equations
Mc1 = Cc1 +R1(c1)U1R1(c1)

and
Mc2 = Cc2 +R1(c2)U2R1(c2). (3.16)

We have seen for c1 < c2 ≤ b that the circle E(Mc2) = 0 associated with the point c2 is totally contained in
the circle E(Mc1) = 0 associated with the point c1. Therefore (3.16) can be written as

Mc2 = Cc1 +R1(c2)V1R1(c2), (3.17)

where V1 is a contractive matrix. Using (3.16) and (3.17) we get that

V1 = R−1
1 (c1)

(
Cc2 − Cc1 +R1(c2)U2R1(c2)

)
R

−1

1 (c1). (3.18)

(3.18) shows that there exists a mapping F from the unit ball into itself defined by F (U2) = V1 so that (3.18)
can also be represented as

F (U2) = R−1
1 (c1)

(
Cc2 − Cc1 +R1(c2)U2R1(c2)

)
R

−1

1 (c1). (3.19)

F is a continuous mapping. Indeed, from (3.19) one obtains the equation

F (U2)− F (V1) = R−1
1 (c1)R1(c2) (U2 − V1)R1(c2)R

−1

1 (c1).

Hence F has a fixed point by Brauwer’s fixed point theorem. Replacing U2 and V1 by U we get that

∥Cc1 − Cc2∥ ≤ ∥R1(c1)∥
∥∥R1(c2)−R1(c1)

∥∥+
∥∥R1(c2)

∥∥ ∥R1(c1)−R1(c2)∥ .

Consequently, the centers constitute a Cauchy sequence and converge.
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Using Lemma 3.1 and Lemma 3.3 we obtain the form of the center Cc as

Cc = −

2Imλ

c∫
a

Φ∗
[
B1 0
0 B2

]
Φdx

−1 2Imλ

c∫
a

Φ∗
[
B1 0
0 B2

]
Θdx− iI


and as we have seen that the limit limc→b Cc = Cb exists. This completes the proof. 2

4. Dirichlet-integrable solutions

We say that a solution Y (x, λ) of (1.1) is Dirichlet-integrable on [a, b) if the inequality

b∫
a

Y ∗(x, λ)

[
B1(x) 0

0 B2(x)

]
Y (x, λ)dx <∞

holds.
From Corollary 3.5 and Theorem 3.7, we may infer that the limiting point

Mb = Cb +RbURb (4.1)

is well-defined and exists.
Now we may introduce the following.

Theorem 4.1. Let Mb be the matrix defined by (4.1) and Ψ(x, λ), Imλ ̸= 0, be of the form

Ψ(x, λ) = U(x, λ)
[

I
Mb

]
.

Then Ψ(x, λ) is Dirichlet-integrable on [a, b).

Proof Using (4.1) we may consider the circle E(Mb) = 0. For Imλ > 0 we get that Mb is contained in
another circle E(Mc) = 0, where c < b. Hence a direct calculation shows that

2Imλ

c∫
a

Ψ∗(x, λ)

[
B1 0
0 B2

]
Ψ(x, λ)dx ≤ (Mb −M∗

b ) /i. (4.2)

(4.2) shows that the term (Mb −M∗
b ) /2iImλ is an upper bound for the Dirichlet integral and passing to the

limit as c→ b we complete the proof for Imλ > 0.

For the case Imλ < 0 the proof can be introduced similarly and hence the proof is completed. 2

Theorem 4.2. There exist at least ν, m ≤ ν ≤ 2m, Dirichlet-integrable solutions of (1.1), where
ν = min(rankRb, rankRb).

Proof Let Ψ1(x, λ) and Ψ2(x, λ) be 2m×m matrix functions with Imλ ̸= 0 defined by U(x, λ)
[

I
Cb

]
and

U(x, λ)
[

I
Mb

]
, respectively, where Mb = Cb +RbURb and U is a unitary matrix. Hence we have

[
Ψ1(x, λ) Ψ2(x, λ)

]
= U(x, λ)

[
I I
Cb Mb

]
. (4.3)
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The matrix appearing at the most right hand-side of (4.3) can be handled as the following[
I I
Cb Mb

]
=

[
I 0
Cb RbURb

] [
I I
0 I

]
. (4.4)

Using Krall’s results ([13], p. 671) we obtain from (4.4) that

rank

[
I I
Cb Mb

]
= m+min(rankRb, rankRb). (4.5)

Note that the right hand-side of (4.4) and U(x, λ) are invertible. Hence (4.3) and (4.5) complete the proof. 2

Finally, we shall share a result for the location of the additional Dirichlet-integrable solutions of (1.1).

Theorem 4.3. Let η1(c) ≤ ... ≤ ηm(c) be the eigenvalues of N and let exactly ν solutions of (1.1) be
Dirichlet-integrable, where m ≤ ν ≤ 2m. Then the values limc→b η1(c), ..., limc→b ηm−ν(c) remain finite and the
others go to infinity for Imλ ̸= 0.

Proof Let ξc be a unit eigenvector of N corresponding to the eigenvalue η(c) and set Ψ = Φξc. Then one
gets for Imλ ̸= 0 that

2iImλ

c∫
a

Ψ∗
[
B1 0
0 B2

]
Ψdx = ξ∗cΦ

∗(c, λ)JΦ(c, λ)ξc = iεη(c),

where ε =
{

1, Imλ > 0
−1, Imλ < 0

. Hence

c∫
a

Ψ∗
[
B1 0
0 B2

]
Ψdx =

η(c)

2 |Imλ|
<

const.

2 |Imλ|
. (4.6)

We shall choose a convergent subsequence of {ξc} as c → b and we shall construct a solution Ψ = Φξ which

is Dirichlet-integrable by (4.6). However, from Theorem 4.1 Ψ = U
[

I
Mb

]
constitutes m of such solutions.

Hence this completes the proof. 2
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