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Magnetic dipole effects 
on unsteady flow 
of Casson‑Williamson nanofluid 
propelled by stretching 
slippery curved melting sheet 
with buoyancy force
Pradeep Kumar 1, Basavarajappa Nagaraja 1, Felicita Almeida 1, 
Abbani Ramakrishnappa AjayKumar 2, Qasem Al‑Mdallal 3* & Fahd Jarad 4,5*

In particular, the Cattaneo‑Christov heat flux model and buoyancy effect have been taken into 
account in the numerical simulation of time‑based unsteady flow of Casson‑Williamson nanofluid 
carried over a magnetic dipole enabled curved stretching sheet with thermal radiation, Joule 
heating, an exponential heat source, homo‑heterogenic reactions, slip, and melting heat peripheral 
conditions. The specified flow’s partial differential equations are converted to straightforward 
ordinary differential equations using similarity transformations. The Runge–Kutta–Fehlberg 4‑5th 
order tool has been used to generate solution graphs for the problem under consideration. Other 
parameters are simultaneously set to their default settings while displaying the solution graphs for 
all flow defining profiles with the specific parameters. Each produced graph has been the subject of 
an extensive debate. Here, the analysis shows that the thermal buoyancy component boosts the 
velocity regime. The investigation also revealed that the melting parameter and radiation parameter 
had counterintuitive effects on the thermal profile. The velocity distribution of nanofluid flow is also 
slowed down by the ferrohydrodynamic interaction parameter. The surface drag has decreased as 
the unsteadiness parameter has increased, while the rate of heat transfer has increased. To further 
demonstrate the flow and heat distribution, graphical representations of streamlines and isotherms 
have been offered.

Modern study in the topic is being encouraged by the expanded applications of multiphase flow of various 
fluid types across continuously extended surfaces. One such example is the movement of fluid across a curved 
stretched sheet. With a change in flow steering settings, the stretched sheet’s curved form alters how the flow 
behaves. This subject of research has benefited from the contributions of several experts from throughout the 
world. In their exploratory study of the mixed convective flow of water-based nanofluids across an extended 
curved surface, Hayat et al.1 found convergent series solutions. The impact of an exponential, space-dependent 
heat source on the Casson fluid flow across a stretched, curved sheet has been researched by Nagaraja and 
 Gireesha2. The stretching pace and flow model is time-independent in the aforementioned experiments. However, 
the sheet elongation may begin briefly or unsteadily in many engineering and technology challenges. Therefore, 
the need for testing the unsteady flow across stretched geometry has increased. For the dual stratified flow of 
Casson fluid Chen et al3 analysed heat and mass flux using Fourier’s and Fick’s laws. Waqas et al4–6 looked into 
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dynamics of various non-Newtonian fluid under different circumstances. Ramzan et al7 looked into the mixed 
convective flow Casson fluid in presence of gyrotactic microbes between two concentric cylinders. Nasir et al8 
analysed non-linear convective -radiative flow of Oldroyd B non-Newtonian fluid when subjected Robin’s bound-
ary condition. They have concluded that increasing relaxation parameter diminishes velocity profile. Further 
Nasir et al9 have also interpreted the results for Casson nanofluid over a vertical convective surface. The unsteady 
flow across curved geometry has been further studied by several other  researchers10,11.

The extensive research on non-Newtonian fluids meets a lot of the demands of contemporary industry. Specifi-
cally, the non-Newtonian nanofluid flow over continually stretched geometry. It has several uses in the polymer 
industry, thinning, and many other production sectors. As a result, non-Newtonian nanofluids are the principal 
subject of current study. Numerous scholars have investigated non-Newtonian nanofluid models such as Casson, 
Carreau, Maxwell, Jeffrey, etc. The novel topic of study that has already attracted the attention of many scientists 
is the merging of non-Newtonian fluid models like Casson-Micropolar, Carreau-Yasuda, and Casson-Carreau. 
In their study of the time-dependent 3-D flow of Casson-Carreau fluid across a continuously extended surface, 
Raju and  Sandeep12 discovered that the heat and mass transfer rates in Casson fluid are higher than those in 
Carreau fluid. Amjad et al.13 examined the Casson micropolar nanofluid flow over a porous curved stretching 
sheet and came to the conclusion that the curvature parameter reduces the microrotation profile. A comparison 
study of the 3-D Casson-Carreau fluid flow across a porous curved stretched surface was done by Akolade and 
 Tijani14. An investigation of the MHD flow of Casson-Williamson fluid across a magnetically enhanced stretch-
ing surface with numerous slip boundaries has been provided by Humane et al.15. They have illustrated how the 
thermal radiation and magnetic field influence the thermal profile.

The conversion of thermal radiation from fluid motion into electromagnetic radiation has applications in a 
wide range of industries, including solar energy products, car radiators, thermal power plants, and many more. 
A study by Naveed et al.16 examined the impact of thermal radiation on the flow of micropolar fluid powered 
by a curved stretching sheet and came to the conclusion that by enhancing the radiation parameter, the per-
formance of the thermal panel is enhanced. Megahed et al.17 investigated the problem of boundary layer MHD 
flow produced by an unsteady stretching sheet using variable fluid properties, heat flux, and thermal radiation. 
They concluded that as the radiation parameter increases, the thermal profile decreases near the boundary and 
then improves. Williamson fluid flow across stretching and shrinking geometry with thermal radiation has been 
examined by Ibrahim and  Negera18 in their work. Waqas et al19 studied the radiative effects on bioconvective 
micropolar nanofluid flow over a stretched surface whereas Pasha et al20 recorded the impact of radiation effects 
tangent hyperbolic flow under the consideration of Soret Dufour effects.

Dipole is an abstract system that makes field estimations using a challenging charge mechanism. Typically, a 
magnetic dipole serves as the source of a static magnetic field. It is undeniable that the magnetic dipole phenom-
enon is connected to the magnetic field and is thus frequently used in medicine. A magnetic dipole has advantages 
in NMR spectroscopy and magnotherapy. Yasmeen et al.21 analysed the magnetic dipole for homo-heterogenic 
processes when ferrous particles are suspended in the carrier fluid. Hayat et al.22 conducted more research on 
this dipole contribution to Williamson fluid. Gowda et al.23 investigated how a magnetised ferro fluid magnetic 
dipole might affect an extended sheet. By accelerating the transfer of heat, Stefan blowing presence illustrates 
its significance. Zeeshan and  Majeed24 investigated how a magnetic dipole affected the flow and heat transfer of 
Jeffery fluid across a stretched sheet. They have explained how the temperature and velocity of ferromagnetic 
interactions change. The study on the magnetic dipole influence on the unsteady flow of various fluids across 
stretching geometry has been supported by several more  researcher25.

Streams in the ocean, solar receivers, heterogeneously pushed air flows, and etc., are examples of naturally 
occurring phenomena where mixed convective (which includes both natural and forced) flows have a variety of 
uses. One such characteristic of mixed convection is the buoyancy force brought on by temperature and density 
variations. In their research on the flows of Walter’s-B fluid and tangent hyperbolic  nanofluid26,27, Khan et al.28 
took non-linear mixed convection into account.

Numerous chemically reactive structures incorporate homo-heterogenic processes, including catalysis, com-
bustion, and biological systems. A really complicated relationship exists between homo-heterogenic forms of 
responses. According to Imtiaz et al.29, homo-heterogenic reactions have an impact on the time-dependent 
flow over curved geometry. According to their findings, concentration distribution increases for heterogenic 
reaction parameters and decreases for homogenic reaction parameters. Pal and  Mandal30 investigated the effect 
of homo-heterogeneous reactions on the flow of CNT nanofluid across a stretched plate. The study on homo-
heterogenic reaction’s impact on various fluids over curved stretching geometry has been supported by several 
other  researchers31,32. Numerous renowned researchers have taken into account the slip flow and melting heat 
phenomena process at the interface for various fluid  flows33,34.

To examine the mechanism of heat transport under vivid conditions, a variety of models have been proposed, 
one of which is the Fourier convention model for heat conduction. However, this idea encountered a problem 
since it produced a parabolic thermal field and defied the causality principle. Thus, the thermal relaxation time 
came into play, allowing the transmission of heat through the propagation of thermal waves at a limited pace. 
The uses of this concept ranged from nanoliquid flow to skin blisters brought on by burning. In order to maintain 
the notion of the material-invariant,  Christov35 altered the Cattaneo law by adding a new term that combines 
the derivative of time with the derivative of Oldroyd’s upper convection. Furthermore, Ali et al.36 used the Cat-
taneo-Christov paradigm, which revealed the outcomes of the Soret-Dufour effects. According to their inquiry, 
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the velocities are known to improve when the parameter related to rotating fluid is enlarged. Further several 
 authors37,38 carried out the study for the nanofluid and hybrid nanofluid flow in presence of Cattaneo–Christov 
heat flux. Ahmad et al39 discussed double diffusion for the flow Eyring–Powell -liquid. Wang et al40 deliberated 
the Cattaneo–Christov heat-mass transfer for a third-grade fluid flow over a stretched surface and homotopy 
scheme was implemented to obtain the convergent solutions.

An examination of the above recent literature reveals that the present investigation which models the unsteady 
flow of a Casson-Williamson nanofluid, is innovative and an advancement in the field since combination of flow 
of two different non-Newtonian fluid models has many applications in the manufacturing sector. The modelling 
has been done in curvilinear coordinates, under the circumstances of the buoyancy effect, the Cattaneo-Christov 
heat flux model, thermal radiation, homo-heterogenic processes, Joule heating, exponential heat production, 
and the magnetic dipole moment. The slip and melting heat conditions are considered at the boundary of the 
stretching surface. When it comes to curved shape, considerable effects, and optimal peripheral circumstances, 
the innovative combination of Casson nanofluid and Williamson nanofluid in the current work is relatively worth 
analysing. The results of the present study are significant and welcome the further research in the field due to 
the showcase of lucid behavioural changes of all flow profiles for imperative parameters of engineering interest.

Mathematical articulation
Consider an unsteady flow of Casson-Williamson nanofluid along a curved stretching sheet. The sheet is vulner-
able to stretching around a semicircle of radius R by two equal and opposite pressures applied along the s-ori-
entation while maintaining the origin stationary and the r-orientation normal to it as portrayed in Fig. 1. Allow-
ing for uw(s) = as

1−α∗t as the sheet’s stretching speed, where t  is time, a is the stretching rate, and α∗ is a constant 
with dimension reciprocal of time. When analyzing the fluid flow behavior, the impact of the magnetic dipole 
moment is taken into account. In the r direction, the magnetic field Bm = B0√

(1−α∗t)
 is applied. To examine the 

flow properties of the aforementioned nanofluid, the influence of buoyancy is taken into consideration. To study 
the thermal behavior of the flow, the effects of thermal radiation, Joule heating, and an exponential space depend-
ent heat source are taken into account in the energy equation. In order to fully understand how it affects the flow, 
the Cattaneo-Christov heat flux model has been used. With the help of the slip condition, the melting surface’s 
boundary is enhanced.

To explain the mass transfer operation, two chemical samples A and B at corresponding concentrations Ca 
and Cb are studied for their homo-heterogenic reactions. A+ 2B → 3B with a rate of kcCaC

2
b is the homogenic 

reaction on the carrier surface, whereas A → B with a rate of ksCa is the heterogenic reaction.
These ideas lead to the formulation of the flow anchoring equations  as29.

(1)
∂

∂r
{(R + r)v} + R

∂u

∂s
= 0,

(2)
ρ

r + R
u2 =

∂p

∂r
,

Figure 1.  Graphical delineation of flow problem.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12770  | https://doi.org/10.1038/s41598-023-39354-5

www.nature.com/scientificreports/

associated auxiliary conditions  are33

Here (u, v)-velocities along (s, r)-orientations, p-pressure, ρ-density, ν-kinematic viscosity, β-Casson param-
eter, Ŵ-material time constant, g-acceleration, βT-coefficient of thermal expansion, µ0-magnetic permeability, M
-magnetization, H-magnetic field, σ-electrical conductivity, B0-constant magnetic field, T-temperature, α-thermal 
diffusivity, cp-specific heat, τ-ratio of the effective heat capacity, qr-radiative heat flux, Q0-space dependent heat 
source, �1-relaxation time of heat, DCa-diffusion coefficient of A , DCb

-diffusion coefficient of B , Tw-temperature 
of the fluid at the surface, T∞-ambient fluid temperature, DT-thermophoretic diffusion coefficient, (kc , ks)-rate 
constants, Ls-velocity slip coefficient, �l-latent heat of the fluid, cs-heat capacity of the solid surface, Tm-melting 
temperature, T0-temperature of the solid surface and k-thermal conductivity.

Given by the Rosseland estimation, the radiative heat flow is,

where the Stefan-Boltzmann constant and the coefficient of mean absorption, respectively, are written as σ ∗ 
and k∗.

Magnetic dipole. The apparent magnetic dipole and its scalar strength � cause the magnetic field to have 
the following effects on the liquid stream:

where d is the distance between the dipoles and γ is the intensity of the magnetic field at the source. The char-
acteristics of associated magnetic field H41 are as follows

(3)
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A direct variation of magnetic force is quantity of H , which is established by the following relation.

Temperature T may be estimated linearly from magnetization M as shown below.

Where K1 is the ferromagnetic coefficient.
The following morphing catalysts are explored in order to understand the simplified form of flow steering 

equations,

where the non-dimensional velocity, pressure, temperature, homogenic concentration, and heterogenic con-
centration regimes are listed in that order: f ′(η), P(η), θ(η) , φ(η) and h(η) . In terms of the cohesive variable η , 
prime resembles differentiation; κ is the curvature parameter and C0 is the constant.

Expression (1) is identically verified and equations (2) to (6) become

The following are the transfused boundary conditions:
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-thermal Buoyancy Parameter, Gr
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When pressure P(η) is removed from Eqs. (14) and (15), it results in.

When DCa = DCb
 , δ = 1  and φ(η)+ h(η) = 1 are both true.

Now equations (17) and (18) become

with boundary conditions.

The following skin friction coefficient and the Nusselt number, are characteristics of engineering prominence.

here τw-wall shear stress and qw-wall heat flux which are given by.

Reduced form of above is

where Re = as2

ν
 denotes local Reynolds number.

Numerical procedure
It is possible to ensure the accuracy of the IVP solution by repeating the simplified equations twice with step 
lengths of h and h/2.

To establish good synergy, this process must first undergo extensive simulation due to the shorter step length. 
One of these methods, the Runge–Kutta Fehlberg scheme, contains a protocol to determine whether the appro-
priate step length is being used. Every step yields two accurate approximations of the solution, which are then 
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Table 1.  Comparison of f ′′(0)− f ′(0)
κ

 between present study and previous  study42.

κ Zhang et al.41 Present results

5 1.15763 1.15763

10 1.07349 1.07349

20 1.03561 1.03561

30 1.02353 1.02353

40 1.01759 1.01759

50 1.01405 1.01405

Figure 2.  Curves of f ′(η) for M∗.

Figure 3.  Curves of f ′(η) for βm.
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discussed. If the two answers closely synergize, the accuracy of the approximation is impaired; otherwise, the step 
size is reduced. If the answer settles on more digits, the step length is adjusted. Each step results in values as below:

k1 = hf
(

xi , yi
)

,

k2 = hf

(

xi +
h

24
, yi +

k1

4

)

,

k3 = hf

(

xi +
3h

8
, yi +

3k1

32
+

9k2

32

)

,−11k.

Figure 4.  Curves of f ′(η) for δ∗.

Figure 5.  Curves of f ′(η) for �T.
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Then an approximation using  4thorder RK-method is.

k4 = hf

(

xi +
12h

13
, yi +

1932k1

2197
−

7200k2

2197
+

7296k3

2197

)

,

k5 = hf

(

xi + h, yi +
439k1

216
− 8k2 +

3680k3

513
−

845k4

4104

)

,

k6 = hf

(

xi +
h

2
, yi +

8

27
k1 + 2k2 −

3544k3

2565
+

1859k4

4104
−

11k5

40

)

.

Figure 6.  Curves of f ′(η) for L1.

Figure 7.  Curves of f ′(η) for b.
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It is noteworthy that k2 value is not counted in the above given formula. The other value of y is known by 
 5thorder RK-method as:

If 
∣

∣yi+1 + y∗i+1

∣

∣  is small enough, then the method is terminated; or else the simulation is carried on using 
lesser step size h . The local truncation error is yi+1 − y∗(i+1).

yi+1 = yi +
25k1

216
+

1408k3

2565
+

2197k4

4104
−

1k5

5
.

y∗i+1 = yi +
16k1

135
+

6656k3

12825
+

28561k4

56430
−

9k5

50
+

2k6

55
.

Figure 8.  Curves of θ(η) for Q.

Figure 9.  Curves of θ(η) for �m.
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Results and their deliberation
A continuously elongated magnetic dipole-enabled curved melting surface equipped with a magnetic field, Joule 
heating, an exponential space-based heat source, thermal radiation, and homo-heterogenic reactions has been 
envisioned mathematically, with special attention paid to the Cattaneo-Christov heat flux model and buoyancy 
effect. The slip condition is enhanced at the melting surface boundary. The use of similarity catalysts converts 
the preset equations into straightforward ordinary differential equations. The examined flow issue is repre-
sented graphically using the Runge–Kutta–Fehlberg 4-5th order approach, an effective numerical tool. The rest 
of the parameter values have been preserved at their usual values as β = 2, κ = 4,We = 0.1,M∗ = 1, �T = 2.5,

CH = 0.3, δ∗ = 0.1,βm = 1, b = 1,Ec = 0.1,Rd = 1.5,Pr = 7,Nt = 0.01,Nb = 0.01,Q = 0.1, �m = 0.5, ǫ = 0.5,

Sc = 7, k1 = 0.1, k2 = 0.1, L1 = 0.1,Me = 0.7 while carrying out numerical extractions for all flow fields against 
the relevant parameters. Table 1 compares the bvp4c methodology developed by Zhang et al.42 with the present 

Figure 10.  Curves of θ(η) for Me.

Figure 11.  Curves of θ(η) for δ∗.
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numerical method to provide validation. There appears to be a reasonable amount of consistency among the 
data in the table. Significantly more detail has been provided on each resulting graph.

Plots of the behavioral changes in the velocity panel (f ′(η)) for the magnetic parameter (M∗) , ferrohydrody-
namic interaction parameter (βm) , unsteady factor (δ∗) , thermal buoyancy factor (�T ) , velocity slip factor (L1) 
and dipole distance (b) are shown in Figs. 2, 3, 4, 5, 6 and 7, respectively. The variations in velocity ( f ′(η) ) for 
ascending magnetic attribute ( M∗ ) values are clearly shown in Fig. 2, which is declining in nature. The Lorentz 
force, which is present and amplified by the increase in M∗ , is the cause of this velocity impedance. When increas-
ing values of βm are present, it is clear from Fig. 3 that the velocity panel de-escalates. The velocity distribution 
is decreased as a result of the dominance of the ferrohydrodynamic interaction factor and increased Lorentz 
force. The fluid’s behavior increases as it moves farther from the sheet, as seen by the indicated behavior of the 
velocity distribution in Fig. 4 for expanding values of δ∗ . The explanation for this is because a rise in δ∗ causes an 

Figure 12.  Curves of θ(η) for �T.

Figure 13.  Curves of θ(η) for Rd.



13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12770  | https://doi.org/10.1038/s41598-023-39354-5

www.nature.com/scientificreports/

increase in the reciprocity of time factor, which slows the pace at which the sheet stretches. The velocity regime 
for the parameter �T is shown in Fig. 5. The relative variable impact of the thermal floating force on the flow of 
nanofluid is personified by it. As seen in Fig. 5, the increase in thermal buoyancy force causes the flow to move 
more quickly. Figure 6 clearly illustrates the influence of the velocity slip factor’s de-escalation on the velocity 
distribution. In stretched sheets and fluid flows, an increase in L1 creates heterogenic velocity, which results in 
a decrease in the velocity distribution. The effect of a magnetic dipole’s dimensionless distance on the veloc-
ity regime is briefly explored in Fig. 7. The velocity regime is shown to steadily grow as b increases, despite the 
dipole distance increasing.

The fluctuations of the thermal regime are shown in Figs. 8, 9, 10, 11, 12, 13, 14 and 15 for the components of 
exponential heat generation (Q) , heat dissipation (�m) , melting heat (Me) , unsteadiness (δ∗) , thermal buoyancy 
(�T ) , radiation (Rd) , Curie temperature (ǫ) and thermal relaxation (CH )  in sequential order. Figure 8 shows the 

Figure 14.  Curves of θ(η) for ǫ.

Figure 15.  Curves of θ(η) for CH.
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changes of the thermal panel for changing Q , and it thrives as a result of the heat creation within the nanofluid 
flow. Temperature panel changes in response to rising heat dissipation factor values. The temperature panel 
reduces as �m grows due to an increase in the transfer of heat away from the sheet, as seen in Fig. 9. Because of 
the combined effects of radiation and the melting heat phenomena, which is depicted in Fig. 10, the thermal 
regime decreases with increasing values of Me . Figure 11 depicts the growing behaviour of the thermal distribu-
tion for expanding values of δ∗ as a result of the cyclical behaviour of the stretching sheet. For rising levels of �T , 
Fig. 12 shows the thermal regime’s decrementing characteristic. Because there are more thermal floating forces 
present when the temperature is raised, the hotness of the fluid is replaced by coolness, which causes the thermal 
panel to sink. Figure 13 shows how the radiation parameter (Rd) affects the temperature panel. Because of the 
decrease in mean absorption coefficient, the thermal profile improves at higher values of Rd . Figure 14 shows 
the thermal regime curves with rising Curie temperature values. The thermal regime thrives as the value of it is 

Figure 16.  Curves of φ(η) for δ∗.

Figure 17.  Curves of φ(η) for k1.
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raised because it raises the ambient temperature close to the sheet, while the thermal regime deteriorates for the 
fluid farther from the sheet. Figure 15 depicts how the temperature regime changes as CH values increase. The 
reason for this is thought to be due to the thermal boundary layer eroding.

To identify the distinctive differences in the solutal regime for the components of the unsteady factor (δ∗) , 
homogenic reaction strength (k1) , heterogenic reaction strength (k2) and velocity slip factor (L1) , Figs. 16, 17, 18 
and 19 are successively detailed. The mass movement in the flow is impeded by the flow’s enhanced unsteadiness. 
As a result, mass distribution slows down as δ∗ increases in magnitude, as seen in Fig. 16. Figure 17 shows the 
concentration panel’s curves for the upshot values of k1 . The concentration profile is discouraged by a rise in k1 . 
The link between the concentration panel and k2 is further explained in Fig. 18. Due to an increase in mass diffu-
sion, a rising influence of k2  deescalates the mass transfer profile. The influence of the velocity slip parameter on 
the mass transfer regime is shown as a result in Fig. 19. Here, when L1 increases, the mass transfer panel decreases.

Figure 18.  Curves of φ(η) for k2.

Figure 19.  Curves of φ(η) for L1.
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Figure 20.  3D depiction of Cf s(Re)
1
2 for δ∗ against βm.

Figure 21.  3D depiction of Cf s(Re)
1
2 for δ∗ against �T.

Figure 22.  3D depiction of Nus(Re)
− 1

2 for Rd against �m.
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The 3D skin friction coefficient is represented against the unsteadiness parameter (δ∗)  in Fig. 20 for changing 
ferrohydrodynamic interaction parameter (βm) . Skin friction co-efficient increased due to the unsteadiness 
parameter’s amplification. Every time the ferrohydrodynamic interaction parameter increases, the surface drag 
decreases. Figure 21 explains how the unsteadiness parameter behaves in relation to the thermal buoyancy 
parameter (�T ) . Surface drag is shown to decrease as the unsteadiness parameter (δ∗) approaches its maximum 
value. The skin friction coefficient increases with the thermal buoyancy parameter. Figure 22 illustrates how the 
radiation parameter (Rd) responds to the heat dissipation factor (�m) on Nusselt number 

(

NuSRe
− 1

2

)

 . The heat 
transfer rate marginally decreases when the sheet is exposed to intense radiation. The rate is also slightly increased 
by magnifying (�m) . The higher the heat dissipation factor number, the greater the rate of heat transmission. 
Figure 23 illustrates the characteristics of the unsteadiness parameter (δ∗) for different heat dissipation factors 
(�m) . Increases in the unsteadiness parameter (δ∗) result in the lowest heat transfer rate.

In a 2D contour plot (streamlines) Fig. 24, the trajectory followed by the Casson-Williamson fluid particles 
is described for magnetic parameter at M∗ = 0.1 and M∗ = 3 . In Fig. 25, the streamlines for the unsteadiness 
parameters δ∗ = −0.5 and  δ∗ = 0.2  are also explained. Figure 26 shows a plot with contours (isotherms) show-
ing similar temperatures at places over a stretched area for Ec = 0.01 and Ec = 0.9.

Figure 23.  3D depiction of Nus(Re)
− 1

2 for δ∗ against �m.

Figure 24.  Flow streamlines at M∗ = 0.1 and M∗ = 3.
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Concluding reviews
After all considerations and parametric study on each solution graph, the following list summarizes key findings 
from the current study:

• Increase in the ferrohydrodynamic interaction factor (βm) and velocity slip factor (L1) obstruct the velocity 
profile (f ′(η)) , whereas the thermal buoyancy factor (�T ) promotes it.

• The unsteady factor’s (ǫ) velocity profile ( f ′(η) ) has a dual character, decreasing close to the sheet and rising 
distant from the sheet.

• When the thermal buoyancy factor (�T ) and melting heat parameter increase ( Me ), the thermal distribution 
( θ(η) ) is drained.

• In terms of thermal distribution ( θ(η) ), the Curie temperature (ǫ) exhibits a dual nature, increasing close to 
the sheet and decreasing far from the sheet.

Figure 25.  Flow streamlines at δ∗ = −0.5 and δ∗ = 0.2.

Figure 26.  Flow isotherms at Ec = 0.01 and Ec = 0.9.
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• With growing homo-heterogenic strengths ( k1 and k2) and an unsteadiness parameter (δ∗) , the mass distri-
bution (φ(η)) exhibits negative behaviour.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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