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Abstract In this paper, we are going to deal with fractional operators (FOs) with non-singular ker-

nels which is not an easy task because of its restriction at the origin. In this work, we first show the

boundedness of the extended form of the modified Atangana-Baleanu (A-B) Caputo fractional

derivative operator. The generalized Laplace transform is evaluated for the introduced operator.

By using the generalized Laplace transform, we solve some fractional differential equations. The

corresponding form of the Atangana-Baleanu Caputo fractional integral operator is also estab-

lished. This integral operator is proved bounded and obtained its Laplace transform. The existence

and Hyers-Ulam stability is explored. In the last results, we studied the relation between our defined

operators. The operators in the literature are obtained as special cases for these newly explored

FOs.
� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction and preliminaries

Despite the commendable 325-year history of fractional calcu-
lus, there are still a lot of unresolved issues from both a theo-
retical and an applied perspective. Abel use the fractional

calculus in resolving the tautochrone problem [1]. This work
creates a big attention of researchers towards the applications
of fractional calculus in differential and integral equations [2].

Many other books are written by different researchers which
contain different theories, applications of FOs in [3–6]. A
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variety of FO classifications that have been put out in recent
years. Some researchers came to the conclusion that a single
FO, such as the Caputo ones, cannot be used to represent all

types of complex processes in science and engineering. Since
more experimental data are needed to confirm the validity of
the fractional models [7,8].

Numerous mathematicians and experts have paid close
attention to the field of fractional differential and integral
equations in recent years [9,10]. The fractional order deriva-

tives reflect physical models of various phenomena in various
disciplines, including biology, physics, mechanics, and dynam-
ical systems. Analysts are paying close attention to the exis-
tence theory of solutions, which is one of the top research

areas in fractional order differential equations. Finding an
exact solution to a fractional order differential equation is
extremely challenging.

In fractional calculus, dealing with the non singular kernel
is not an easy task. We can define the generalization of FOs by
generalizing their kernels [11–13]. In [12], Samraiz et al. intro-

duced the ðk; sÞ form of FOs with a non-singular kernel and
their applications in physics. Using such a form of FOs, they
established the Cauchy problems and obtained their solutions.

The Hilfer-Prabhakar fractional derivative was inroduced and
used to solve physical problems in [14]. In [15,16] the weighted
generalized form of FOs were introduced, containing the Mit-
tag–Leffler (M-L) function as a non-singular kernel. These

operators were used to detect Cauchy problems, which are
used in continuous time random walk theory. The authors of
[17] discuss the generalisation of FOs with the generalized

ðk; sÞ form of the multivariate M-L function as a non-
singular kernel. For more studies of FOs containing non-
singular kernels and their applications, we refer the reader to

[18,19,21,20,22–24].
Let’s recall the following basic definitions. The following

definitions of Gamma and Beta functions presented in [25].

Definition 1.1. The definition of Gamma function is charac-

terized by

Cðg1Þ ¼
Z 1

0

ug1�1e�udg1; Reðg1Þ > 0:

Definition 1.2. The Beta function Bðl1; m1Þ is defined by the
formula

Bðl1; m1Þ ¼
Z 1

0

sl1�1ð1� sÞm1�1
ds; Rðl1Þ > 0; Rðm1Þ > 0

and the identity which relates it with C function is

Bðl1; m1Þ ¼
Cðl1ÞCðm1Þ
Cðl1 þ m1Þ :

Prabhakar [26] introduced the following definition of three
parameter M-L function that generalized the previous forms

exists in literature.

Definition 1.3. Let n 2 N and g1; .1; c1 2 C;Reð.1Þ > 0;
Reðg1Þ > 0, then the M-L function is given by the following

expression

Ec1
.1 ;g1

ð#Þ ¼
X1
n¼0

ðc1Þn#n

Cð.1nþ g1Þn!
:

In 1888, Leonard James Rogers derived Hölder’s inequality
and later in 1889, it was given differently by Otto Ludwig
Hölder. The definition of Hölder inequality is given by the

following.

Definition 1.4. [27] Let p and q be real numbers such that

p; q > 1 and 1
p þ 1

q ¼ 1, then the Hölder inequality for integrals

states that

Z b

a

jfð‘Þgð‘Þjd‘ 6
Z b

a

jfð‘Þjpd‘
� �1

p
Z b

a

jgð‘Þjqd‘
� �1

q

;

where f; g 2 C1½a; b�.
The Lebesgue measurable functions with norm is defined by

Kilbas et al. in [2] by the following way.

Definition 1.5. Let f be a function defined on ½c; d�. The space
vqðc; dÞ; 1 6 q 6 1 of Lebesgue measurable functions for
which kukvq < 1, i.e.,

kukvq ¼
Z b

a

juðtÞjqdt
� �1

q

; 1 6 q < 1;

kukv1 ¼ ess supc6t6djuðtÞj < 1:

In the modern era, fractional calculus theory faces many
unresolved problems, as the Riemann and Caputo fractional
operators are insufficient to solve both theoretical and physical

problems. To address these gaps, researchers have developed
their own operators, but the theory still has many shortcom-
ings. To overcome these gaps, Atangana and Baleanu intro-

duced the well-known Atangana-Baleanu fractional
operators in both the Riemann and Caputo senses, which are
useful in solving many theoretical and physical problems.

For example, Panda et al. [29] utilized the A-B fractional oper-
ator in their study of the Willis aneurysm system, employing it
to solve a nonlinear singularity perturbed boundary value

problem. The A-B fractional operators have also found practi-
cal applications, as Panda et al. in [30] also used these opera-
tors to discuss the prevalence of COVID-19 in the United
States, Italy, and France. He presented new insights into the

existence and uniqueness of solutions for the 2019-nCOV mod-
els using fractional and fractal-fractional operators. Addition-
ally, the solution of the complex valued A-B integral operator

is discussed in [31] and in [32] discuss the solution of the A-B
fractional and Lp-Fredholm integral equations. A new form of
fractional operators in the Caputo sense are presented by the

following definition.

Definition 1.6. [28] Let f0 2 H1ð0;TÞ, then ABC-fractional
derivative operator of order 0 < r < 1 is defined by

ABCD
r
0fð‘Þ ¼

QðrÞ
1� r

Z ‘

0

Er �lr ‘� tð Þrð Þf0ðtÞdt; t P 0

and the corresponding integral operator is given by

ABCI
r
0fð‘Þ ¼

1� r
QðrÞ fð‘Þ þ

QðrÞ
1� r

Z ‘

0

‘� tð ÞrfðtÞdt; t P 0:

ð1:1Þ



Fig. 1 For NðtÞ ¼ t2 þ 1, we get Fig. 1, where 0<t < 1.
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The above mentioned operators are used to solve many
theoretical results. The spaces play an important role in the
applications of operators as explained by Al-Refai et al. in

[22]. For example, we choose fðxÞ 2 C1ð0;TÞ then the
differential equation ABCD

r
0fðxÞ ¼ kfðxÞ, gives the trivial solu-

tion i.e ABCD
r
0fð0Þ ¼ 0 and fractional equation ABCD

r
0fðxÞ ¼

�kfðxÞ þ hðxÞ gives the solution kfð0Þ þ hð0Þ ¼ 0. But here
the space is restrictive for the Caputo derivative. If we choose

the space vðfÞ ¼ f : f0 2 L1½0; 1�� �
, then for the fractional ini-

tial value problem

ABCD
r
0fðxÞ ¼

�kfðxÞ þ hðxÞ; x 2 ð0;TÞ;
f0; x ¼ 0;

�

with 0 < r < 1, we get the unique solution

fðxÞ ¼ f0Er;1ð�kxrÞ þ
Z x

0

ðx� sÞr�1 � Er;rð�kðx� sÞrÞhðsÞds:

and the corresponding homogenous equation also obtain non
trivial solution fðxÞ ¼ f0Er;1ð�kxrÞ. This proves the role of

space is considerable. To overcome this difficulty, Al-Refai

et al. presented an article [22] in which more wider space is
chosen to avoid from extra condition. In [33] weighted form
of A-B FOs are defined and discussed its applications in differ-
ential equations.

Definition 1.7. Let f0 2 L1ð0;TÞ, then the weighted ABC-
fractional derivative operator of order 0 < r < 1 is defined
as follows:

ABCD
r
0fð‘Þ ¼

QðrÞ
1� r

Z ‘

0

Er �lr ‘� tð Þrð ÞðwðtÞfðtÞÞ0dt; t P 0:

and the corresponding integral operator is defined by

ABCI
r
0fð‘Þ¼

1�r
QðrÞfð‘Þþ

QðrÞ
1�r

w�1ðtÞ
Z ‘

0

‘� tð ÞrwðtÞfðtÞdt; tP 0;

where QðrÞ, is a normalized function having property

Qð0Þ ¼ Qð1Þ ¼ 1.

Definition 1.8. Let f be a continuous function and

f0 2 L1ð0;TÞ, then the generalized form of MABC-fractional
derivative operator of order 0 < r < 1 is defined as follows:

MABCDr
0fð‘Þ ¼

QðrÞ
1� r

Z ‘

0

Er �lr ‘� tð Þrð Þf0ðtÞdt; t P 0:

By using integration by parts on (2.1) leads to

MABCDr
0fð‘Þ ¼ QðrÞ

1�r fð‘Þ � Er �lrð‘Þrð Þfð0Þ½
�lr

R ‘

0
ð‘� tÞr�1

Er;r �lr ‘� tð Þrð ÞX0ðtÞfðtÞdt
i
; t P 0;

where lr ¼ r
1�r and QðrÞ, is a normalized function having

property Qð0Þ ¼ Qð1Þ ¼ 1, and integral operator is given by

ABCI
r
0fð‘Þ ¼

1� r
QðrÞ fð‘Þ þ

QðrÞ
1� r

Z ‘

0

‘� tð ÞrfðtÞdt; t P 0:

Inspired by recent research in formulating fractional differ-
ential equations and determining their exact solutions through

diverse methods, we will present the fractional operator as a
tool to model several differential equations. To obtain precise
solutions for the investigated problems, we will apply the gen-
eralized Laplace transform. The findings of our study are
broader in scope than those reported in existing literature.
2. The Modified Form of A-B Fractional Derivative in Caputo

Sense Involving Generalized M-L Function in its Kernel

Atangana-Baleanu fractional integral operators still have lots

of problems in initialization. To avoid such problems,
researchers defined modified A-B fractional operators in which
the M-L function plays a key role as a non-singular kernel.
Many problems are resolved through these operators. The

M-L function is generalized in many ways by extending the
number of parameters. In our present work, we use the gener-
alized M-L function as a kernel. In the modified Atangana-

Baleanu fractional operator, the author used the difference
of two linear functions as a non-singular kernel, but in the pre-
sent work, we use the difference of generalized functions that

can be both linear and non-linear as a kernel. The generalized
version of the modified A-B Caputo (MABC) fractional
derivative operator, which incorporates a generalized M-L
function in its kernel is defined in the following definition.

(see Fig. 1)

Definition 2.1. Let f be a continuous function and

f0 2 L1ð0;TÞ, then the generalized form of MABC-fractional

derivative operator of order 0 < r < 1, with respect to @, is
defined as follows:

Dr
aþ fðuÞ ¼

QðrÞ
1� r

Z u

aþ
Er �lr @ðuÞ � @ðtÞð Þrð Þf0ðtÞdt; t; a P 0:

ð2:1Þ
Integrating by parts leads to

MABC
@ Dr

aþ fðuÞ ¼ QðrÞ
1�r fðuÞ � Er �lr @ðuÞ � @ðaþÞð Þrð ÞfðaþÞ½

�lr

R u

aþ ð@ðuÞ � @ðtÞÞr�1
Er;r �lr @ðuÞ � @ðtÞð Þrð Þ@0ðtÞfðtÞdt

i
;

where t P 0;@, a strictly increasing function, lr ¼ r
1�r

and QðrÞ, a normalized function having property

Qð0Þ ¼ Qð1Þ ¼ 1.

Remark 2.1. If we substitute @ðxÞ ¼ x in (2.1) then we get Def-
inition 1.8.
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In first result of this section, we prove the operator given by
the Definition 2.1 is bounded.

Theorem 2.1. Let f 2 Xpð0;TÞ, and @; lr ¼ r
1�r and QðrÞ,

admit the same properties as mentioned in Definition 2.1, then
the inequality

jDr
aþ fðuÞ

		 		j
Xp 6 QðrÞ

1�r jfðuÞj jjXp

þ jEr �lr @ðuÞ � @ðaþÞð Þrð ÞfðaþÞj jjXp

þ Er;r �lr @ðrÞ�@ðaþÞð Þrð Þ
ð@ðrÞ�@ðaþÞÞðrn�1Þ jjfjjXp ;

ð2:2Þ

holds for 1 6 p < 1.

Proof. By using the Definition 2.1, we have

MABC
@ Dr

aþ fðuÞ


 



Xp 6 QðrÞ
1�r fðuÞ�Er �lr @ðuÞ�@ðaþÞð Þrð ÞfðaþÞk kXp

þ lr

R u

aþ ð@ðuÞ�@ðtÞÞr�1
Er;r �lr @ðuÞ�@ðtÞð Þrð Þ@0ðtÞfðtÞdt

 



Xp

6 QðrÞ
1�r fðuÞk kXp þ Er �lr @ðuÞ�@ðaþÞð Þrð ÞfðaþÞk kXp

þ lr

R u

aþ ð@ðuÞ�@ðtÞÞr�1
Er;r �lr @ðuÞ�@ðtÞð Þrð Þ@0ðtÞfðtÞdt

 



Xp :

ð2:3Þ

ConsiderR u

0
ð@ðuÞ � @ðtÞÞr�1

Er;r �lr @ðuÞ � @ðtÞð Þrð Þ@0ðtÞfðtÞdt

 


Xp

¼
X1
n¼0

jlr jn
jCðrnþrÞj

R u

0
@ðuÞ � @ðtÞð Þrn�1@0ðtÞfðtÞdt

 



Xp

¼
X1
n¼0

jlr jn
jCðrnþrÞj

R r

aþ
R u

aþ @ðuÞ � @ðtÞð Þrn�1@0ðtÞfðtÞdt		 		p@0ðuÞdu
� �1

p

:

By substituting h ¼ @ðuÞ and b ¼ @ðtÞ, we have

¼
X1
n¼0

jlrjn
jCðrnþ rÞj

Z @ðrÞ

@ðaþÞ

Z @ðuÞ

@ðaþÞ
h� bð Þrn�1

fðtÞdb
					

					
p

dh

 !1
p

:

Using the generalized Minkowski’s inequality, we have

6
X1
n¼0

jlr jn
jCðrnþrÞj

R @ðrÞ
@ðaþÞ jfð@�1ðbÞÞjp R @ðrÞ

b h� bð Þðrn�1Þp
dh

� �1
p

db

¼
X1
n¼0

jlr jn
jCðrnþrÞj

R @ðrÞ
@ðaþÞ jfð@�1ðbÞÞjp @ðrÞ�bð Þðrn�1Þpþ1

ðrn�1Þpþ1

� �1
p

db:

Using Hölder inequality, we have

6
X1
n¼0

jlr jn
jCðrnþrÞj

R @ðrÞ
@ðaþÞ jfð@�1ðbÞÞjpdb

� �1
p R @ðrÞ

@ðaþÞ
@ðrÞ�bð Þðrn�1Þpþ1

ðrn�1Þpþ1

� �q
p

db

� �1
q

6
X1
n¼0

jlr jn
jCðrnþrÞj

R @ðrÞ
@ð0Þ jfð@�1ðbÞÞjpdb

� �1
p @ðrÞ�@ðaþÞð Þðrn�1Þ

ðrn�1Þ ;

where 1
p
þ 1

q
¼ 1. By substituting @�1ðbÞ ¼ t, we obtain

¼
X1
n¼0

jlr jn
jCðrnþrÞj

@ðrÞ�@ðaþÞð Þðrn�1Þ

ðrn�1Þ
R @ðrÞ
@ðaþÞ jfðtÞjp@0ðtÞdt

¼ Er;r lr @ðrÞ�@ðaþÞð Þrð Þ
ð@ðrÞ�@ðaþÞÞðrn�1Þ jjfjjXp :
By using this values in (2.3), we have the result (2.2).

Now, we present some illustrative examples of new frac-
tional derivative operator.

Example 2.1. Let we have a constant function fðtÞ ¼ C and
0 < r < 1. By using the Definition 2.1, we can write

ðMABC
@ Dr

aþCÞðtÞ ¼ QðrÞ
1�r C� Er �lr @ðuÞ � @ðaþÞð Þrð ÞC½

�lr

R u

aþ ð@ðuÞ � @ðtÞÞr�1
Er;r �lr @ðuÞ � @ðtÞð Þrð Þ@0ðtÞCdt

i
¼ QðrÞ

1�r C� Er �lr @ðuÞ � @ðaþÞð Þrð ÞC½

�lr
�1
lr

Er �lr @ðuÞ � @ðaþÞð Þrð Þ � 1ð Þ
� �

C

ðMABC
@ Dr

0CÞðtÞ ¼ 0

i.e., the derivative of constant is zero.

Example 2.2. Consider the piecewise continuous function f

fðtÞ ¼ @�1
2 ðtÞ; t– 0;

A; t ¼ 0:

(
ð2:4Þ

Now by choosing A 2 R n f0g; r ¼ 1
2
; ur ¼ 1 and QðrÞ ¼ 1 in

Definition 2.1, we obtain

MABC
@ D

1
2

0þ fðuÞ¼ 2 fðuÞ�AE1
2
� @ðuÞ�@ð0þÞð Þ12
� �h

�l1
2

R u

0þ ð@ðuÞ�@ðtÞÞ�1
2E1

2;
1
2
� @ðuÞ�@ðtÞð Þ12
� �

@0ðtÞ@�1
2 ðtÞdt

i
¼ 2 fðuÞ�AE1

2
� @ðuÞ�@ð0þÞð Þ12
� �

� ffiffiffi
p

p
E1

2
� @ðuÞ�@ð0þÞð Þ12
� �h

¼ 2 fðuÞ�ðAþ ffiffiffi
p

p ÞE1
2
� @ðuÞ�@ð0þÞð Þ12
� �h i

:

ð2:5Þ

If we choose E1
2
� @ðuÞ � @ð0þÞð Þ12
� �

¼ 0, then we get

MABC
@ D

1
2
0fðtÞ ¼ �2

ffiffiffi
p

p
– 0;

which is solution of problem presented by Al-Refai et al. in
[22, Example 2].

For the graphical representation, we have the following

special case.

Example 2.3. If we choose NðtÞ ¼ t2 þ 1 in Eq. (2.5), the

derivative of given function is

MABC
@ D

1
2

0þ fðuÞ ¼ 2 ðu2 þ 1Þ�1
2 � ð1þ ffiffiffi

p
p Þ

X1
n¼0

ð�uÞn
" #

: ð2:6Þ

The comparison of graph of function NðtÞ ¼ t2 þ 1 and of
derivative presented in (2.6) is given as

The generalized Laplace transform and convolution defined
in [20], can also be written by the following definitions with a

choice of weight wðtÞ ¼ 1.
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Definition 2.2. Let w and @ be defined on ½a;1Þ, where @ a

monotonically increasing, then the Laplace transform of w is
given by
L@ðwÞðsÞ ¼
Z 1

a

e�sð@ðuÞ�@ðaÞÞ@0ðuÞwðuÞdu

such that for all values of s, the Eq. (2.2) is true.

Definition 2.3. The convolution of / and - with respect to w is

defined as

ð/�w-ÞðxÞ ¼
Z x

a

/ w�1 wðxÞ þ wðaÞ � wðtÞð Þ� �
-ðtÞw0ðtÞdt:

The convolution form of FO in Definition 2.1 is given by

MABC
@ Dr

aþ fðuÞ ¼ QðrÞ
1�r fðuÞ � Er �lr @ðuÞ � @ðaþÞð Þrð ÞfðaþÞ½

�lr

R u

aþ ð@ðuÞ � @ðtÞÞr�1
Er;r �lr @ðuÞ � @ðtÞð Þrð Þ@0ðtÞfðtÞdt

i
¼ QðrÞ

1�r fðuÞ � Er �lr @ðuÞ � @ðaþÞð Þrð ÞfðaþÞ½

�lrð@ðuÞ � @ðaþÞÞr�1
Er;r �lr @ðuÞ � @ðaþÞð Þrð Þ � fðtÞ

i
:

ð2:7Þ
Next, we evaluate the Laplace transform of M-L function
involved in new defined operator given by Definition 2.1 in
the following lemma.

Lemma 2.1. If @ is the increasing function and 0 < r < 1, then
we have
L@ Er �lr @ðuÞ � @ðaþÞð Þrð Þð ÞðsÞ ¼ sr�1

sr þ lr

; j lr

sr
j < 1:

Proof. By using Definition 2.2, we have

L@ Er �lr @ðuÞ � @ðaÞð Þrð Þð ÞðsÞ ¼ R1
a

e�sð@ðuÞ�@ðaÞÞ@0ðuÞ
�Er �lr @ðuÞ � @ðaÞð Þrð Þdu

¼
X1
n¼0

ð�lrÞn
Cðrnþ1Þ

R1
a

e�sð@ðuÞ�@ðaÞÞ@0ðuÞ @ðuÞ � @ðaÞð Þrndu:

Substituting ð@ðuÞ � @ðaÞÞ ¼ t, we obtain

¼
X1
n¼0

ð�lrÞn
Cðrnþ1Þ

R1
a

e�sttrndt ¼
X1
n¼0

ð�lrÞn
Cðrnþ1ÞLftrng

¼
X1
n¼0

ð�lrÞrn
srnþ1 ¼ sr�1

srþlr
:

Hence the result is proved.

Theorem 2.2. Let f be a continuous function and f0 2 L1ð0;TÞ,
then the generalized Laplace transform of the MABC-
fractional derivative operator in Definition 2.1 with
0 < r < 1, be given as

L@
MABC
@ Dr

aþ fðuÞ
� �ðsÞ ¼ QðrÞ

1� r
srL@ffðuÞg � sr�1fðaþÞ

sr þ lr

;

where j lr
sr
j < 1.
Proof. By using the Eq. (2.7), we have

L@fDr
aþ fðuÞgðsÞ ¼ QðrÞ

1�r L@ffðuÞg � fðaþÞ � L@ Er �lr @ðuÞ � @ðaÞð Þrð Þð Þ
�lrL@ @ðuÞ � @ðaÞð Þr�1

Er �lr @ðuÞ � @ðaÞð Þrð Þ � fðuÞ
� �
¼ QðrÞ

1�r L@ffðuÞg � fðaþÞ sr�1

srþlr
� lr

P1
n¼0

ð�lrÞn
CðrnþrÞ

�L@ @ðuÞ � @ðaÞð Þr @ðuÞ � @ðaÞð Þrn�1
� �

L@ffðuÞg

¼ QðrÞ
1�r L@ffðuÞg � fðaþÞ sr�1

srþlr
��lr

P1
n¼0

ð�lrÞn
CðrnþrÞ

�L@ @ðuÞ � @ðaÞð Þrðnþ1Þ�1
� �

L@ffðuÞg

¼ QðrÞ
1�r L@ffðuÞg � fðaþÞ sr�1

srþlr
þP1

n¼0

ð�lrÞnþ1

srðnþ1Þ L@ffðuÞg
� �

¼ QðrÞ
1�r L@ffðuÞg � fðaþÞ sr�1

srþlr
� lr

srþlr L@ffðuÞg
� �

¼ QðrÞ
1�r

srL@ffðuÞg�sr�1fðaþÞ
srþlr

:

Hence the result is proved.

Example 2.4. For the choice of parameters 0 < r < 1, with the
condition j lr

sr
j < 1, the solution to the equation

MABC
@ Dr

0fðuÞ ¼ C

is given by

fðtÞ ¼
Cð1�rÞ
QðrÞ 1þ lr

tr

Cðrþ1Þ

� �
; t– 0;

0; t ¼ 0:

(

Proof. Since fð0Þ ¼ 0, therefore for t > 0

L@fMABC
@ Dr

0fðsÞg ¼¼ QðrÞ
1�r

sr

srþlr
L@ffðtÞgðsÞð Þ

¼ C sr

srþlr
L@ 1þ lr

tr

Cðrþ1Þ

� �
ðsÞ

¼ C sr

srþlr
1
s
þ lr

srþ1

� �
¼ C

s
:

This can be written as

L@fMABC
@ Dr

0fðsÞg ¼ L@ðCÞ:
Hence the result is proved.
3. The Modified Form of A-B Fractional Integral in Caputo

Sense Involving Generalzed M-L Function in its Kernel

In this section, we introduce a revised version of the A-B frac-

tional integral in the Caputo sense that includes the generalized
M-L function.

Definition 3.1. For f 2 L1ð0;T� the modified form of MABC-

fractional integral operator of order 0 < r < 1 with respect to
@ is defined as

MABC
@ Ir

aþ fðuÞ ¼
1� r
QðrÞ fðuÞ þ

r
QðrÞCðrÞ

�
Z u

aþ
ð@ðuÞ � @ðtÞÞr�1@0ðtÞfðtÞdt: ð3:1Þ

Firstly, we prove this operator is bounded.
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Theorem 3.1. Let f 2 Xpð0;TÞ;@, be a strictly increasing

function, lr ¼ r
1�r and QðrÞ, is a normalized function having

property Qð0Þ ¼ Qð1Þ ¼ 1, then the following inequality holds

for 1 6 p < 1.

MABC
@ Ir

aþ fðuÞ


 



Xp 6
1� r
QðrÞ fðuÞk kXp þ r

QðrÞCðrÞ fk kXp

� ð@ðrÞ � @ðaþÞÞr�1

r� 1
: ð3:2Þ

Proof. By using the Definition 3.1, we have

MABC
@ Ir

aþ fðuÞ


 



Xp 6 1�r
QðrÞ fðuÞk kXp þ r

QðrÞCðrÞR u

aþ ð@ðuÞ � @ðtÞÞr�1@0ðtÞfðtÞdt

 


Xp

¼ 1�r
QðrÞ fðuÞk kXp þ r

QðrÞCðrÞ
R r

0

R u

aþ ð@ðuÞ � @ðtÞÞr�1@0ðtÞfðtÞdt		 		p@0ðuÞdu
� �1

p

:

Substituting # ¼ @ðuÞ and b ¼ @ðtÞ, we have

MABC
@ Ir

aþ fðuÞ


 



Xp 6 1�r
QðrÞ fðuÞk kXp þ r

QðrÞCðrÞ

� R @ðrÞ
@ðaþÞ

R #

@ð0Þ ð#� bÞr�1
fð@�1ðbÞÞdb

			 			pd#� �1
p

¼ 1�r
QðrÞ fðuÞk kXp þ r

QðrÞCðrÞ

� R @ðrÞ
@ðaþÞ jfð@�1ðbÞÞjp R @ðrÞ

b ðh� bÞr�1
			 			pd#� �1

p

db

¼ 1�r
QðrÞ fðuÞk kXp þ r

QðrÞCðrÞ

� R @ðrÞ
@ðaþÞ jfð@�1ðbÞÞj R @ðrÞ

b ðh� bÞpðr�1Þ
d#

� �1
p

db

¼ 1�r
QðrÞ fðuÞk kXp þ r

QðrÞCðrÞ

� R @ðrÞ
@ðaþÞ jfð@�1ðbÞÞj ð@ðrÞ�bÞpðr�1Þþ1

pðr�1Þþ1

� �1
p

db:

By using Hölder, inequality we have

MABC
@ Ir

aþ fðuÞ


 



Xp 6 1�r
QðrÞ fðuÞk kXp þ r

QðrÞCðrÞ
R @ðrÞ
@ðaþÞ jfð@�1ðbÞÞjpdb� �1

p

� R @ðrÞ
@ðaþÞ

ð@ðrÞ�bÞpðr�1Þþ1

pðr�1Þþ1

� �q
p

db

� �1
q

;

where 1
p
þ 1

q
¼ 1, Now substituting @�1ðbÞ ¼ t, we have

MABC
@ Ir

aþ fðuÞ


 



Xp 6 1�r
QðrÞ fðuÞk kXp þ r

QðrÞCðrÞ
R r

aþ jfðtÞjp@0ðtÞdtð Þ1p

� R @ðrÞ
@ðaþÞ

ð@ðrÞ�@ðtÞÞpðr�1Þþ1

pðr�1Þþ1

� �q
p@0ðtÞdt

� �1
q

¼ 1�r
QðrÞ fðuÞk kXp þ r

QðrÞCðrÞ
R @ðrÞ
@ðaþÞ jfðtÞjp@0ðtÞdtð Þ1p

� R @ðrÞ
@ðaþÞ

ð@ðrÞ�@ðtÞÞpðr�1Þþ1

pðr�1Þþ1

� �q
p@0ðtÞdt

� �1
q

6 1�r
QðrÞ fðuÞk kXp þ r

QðrÞCðrÞ þ fk kXp
ð@ðrÞ�@ðaþÞÞr�1

r�1
:

Next, we find the Laplace transform of our generalized

fractional integral operator.
Theorem 3.2. For f 2 L1ð0;T�, the modified form of MABC-

fractional integral involving generalized M-L function as
kernel of order 0 < r < 1, with respect to @, is defined as

L@ðMABC
@ Ir

aþ fðuÞÞ ¼
1� r
QðrÞ

sr þ lr

sr
L@ðfðuÞÞ:

Proof.

By using the Definition 3.1, we have

L@ðMABC
@ Ir

aþ fðuÞÞ ¼ 1�r
QðrÞL@ðfðuÞÞ þ r

QðrÞCðrÞL@ ð@ðuÞ � @ðaÞÞr�1 � fðuÞ
� �

¼ 1�r
QðrÞL@ðfðuÞÞ þ r

QðrÞCðrÞL@ ð@ðuÞ � @ðaÞÞr�1
� �

L@ðfðuÞÞ
¼ 1�r

QðrÞL@ðfðuÞÞ þ r
QðrÞsr L@ðfðuÞÞ

¼ 1�r
QðrÞ

srþlr
sr

L@ðfðuÞÞ:

This completes the proof.

Theorem 3.3. Let f0 2 L1ð0;TÞ, and 0 < r < 1, then we have
the following result.

MABC
@ Dr

aþ
MABC
@ Ir

aþ
� �

fðuÞ ¼ fðuÞ � fð0ÞEr �lr @ðuÞ � @ðaÞð Þrð Þ:
ð3:3Þ

Proof. By using the Definition of Laplace transform, we have

L@ MABC
@ Dr

aþ
MABC
@ Ir

a

� �
fðuÞ� �

¼ QðrÞ
1�r

sr

srþlr
L@ MABC

@ Ir
afðuÞ

� �� QðrÞ
1�r

sr�1

srþlr
MABC
@ Ir

afð0Þ
� �

¼ sr

srþlr

srþlr
sr

� �
L@ðfðuÞÞ � sr�1

srþlr
fð0Þ:

By using inverse Laplace transform, we obtain

MABC
@ Dr

a
MABC
@ Ir

a

� �
fðuÞ� � ¼ fðuÞ � fð0ÞEr �lr @ðuÞ � @ðaÞð Þrð Þ:

Hence the result is proved.

Theorem 3.4. Let f0 2 L1ð0;TÞ; a ¼ 0 and 0 < r < 1, then we

have the following result.

MABC
@ Ir

0
MABC
@ Dr

0

� �
fðuÞ ¼ fðuÞ � fð0Þ:

Proof. By using the Definition 2.1 and 3.1, we have

MABC
@ Ir

0
MABC
@ Dr

0

� �
fðuÞ ¼ 1�r

QðrÞ
MABC
@ Dr

0

� �
fðuÞ þ r

QðrÞCðrÞ
R t

0
ð@ðuÞ � @ðtÞÞr�1

�@0ðtÞ MABC
@ Dr

0

� �
fðtÞdt

¼ R u

0
Er �lr @ðuÞ � @ðtÞð Þrð Þf0ðtÞdtþ QðrÞ

1�r
r

QðrÞCðrÞ
R u

0
ð@ðuÞ � @ðtÞÞr�1

�@0ðtÞ R t

0
Er �lr @ðtÞ � @ðzÞð Þrð Þf0ðzÞdz

¼ R u

0
Er �lr @ðuÞ � @ðtÞð Þrð Þf0ðtÞdtþ r

ð1�rÞCðrÞ
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� R u

0
f0ðzÞ R u

z
ð@ðuÞ � @ðtÞÞr�1@0ðtÞEr �lr @ðtÞ � @ðzÞð Þrð Þdtdz

¼ R u

0
Er �lr @ðuÞ � @ðtÞð Þrð Þf0ðtÞdtþ r

ð1�rÞCðrÞ
X1
n¼0

ð�lrÞn
Cðrnþ1Þ

� R u

0
f0ðzÞ R u

z
ð@ðuÞ � @ðtÞÞr�1@0ðtÞ @ðtÞ � @ðzÞð Þrndtdz

¼ R u

0
Er �lr @ðuÞ � @ðtÞð Þrð Þf0ðtÞdtþ r

ð1�rÞCðrÞ
X1
n¼0

ð�lrÞn
Cðrnþ1Þ

� R u

0
f0ðzÞ @ðuÞ � @ðzÞð Þrðnþ1Þ�1 R u

z

@ðuÞ�@ðtÞ
ð@ðuÞ�@ðzÞÞ

� �r�1 @ðtÞ�@ðzÞ
ð@ðuÞ�@ðzÞÞ

� �rn
@0ðtÞdtdz

¼ R u

0
Er �lr @ðuÞ � @ðtÞð Þrð Þf0ðtÞdtþ r

ð1�rÞCðrÞ
X1
n¼0

ð�lrÞn
Cðrnþ1Þ

�Bðrnþ 1; rÞ R u

0
f0ðzÞ @ðuÞ � @ðzÞð Þrðnþ1Þ

dz

¼ R u

0
Er �lr @ðuÞ � @ðtÞð Þrð Þf0ðtÞdtþ lr

CðrÞ
X1
n¼0

ð�lrÞn
Cðrðnþ1ÞÞ

� Cðrnþ1ÞCðrÞ
Cðrðnþ1Þþ1Þ

R u

0
f0ðzÞ @ðuÞ � @ðzÞð Þrðnþ1Þ

dz

¼ R u

0
Er �lr @ðuÞ � @ðtÞð Þrð Þf0ðtÞdt�

X1
n¼0

ð�lrÞnþ1

Cðrðnþ1Þþ1Þ

� R u

0
f0ðzÞ @ðuÞ � @ðzÞð Þrðnþ1Þ

dz

¼
X1
n¼0

ð�lrÞn
Cðrnþ1Þ

R u

0
f0ðtÞ @ðuÞ � @ðtÞð Þrndt

�
X1
n¼0

ð�lrÞnþ1

Cðrðnþ1Þþ1Þ
R u

0
f0ðtÞ @ðuÞ � @ðtÞð Þrðnþ1Þ

dt

¼
X1
n¼0

ð�lrÞn
Cðrnþ1Þ

R u

0
f0ðtÞ @ðuÞ � @ðtÞð Þrndt

�
X1
n¼1

ð�lrÞn
CðrðnÞþ1Þ

R u

0
f0ðtÞ @ðuÞ � @ðtÞð Þrndt

¼ R u

0
f0ðtÞdt ¼ fðuÞ � fð0Þ:

Hence the result is proved.
4. Hyers-Ulam Stability of MABC Fractional Operator

Involving Generalized M-L Function

In this section, we will explore the necessary and sufficient con-

ditions for solving fractional differential equations (FDEs) in
hybrid systems that incorporate MABC fractional operators
with a generalized M-L function as the kernel. Our approach

differs from the previous research in [34], which mainly
focused on solving FDEs in hybrid systems that include
MABC fractional operators and established Hyers-Ulam sta-
bility criteria. Instead of using MABC fractional operators,

we employ fractional operators that involve a generalized M-
L function as the kernel. We will not only find solutions to
FDEs but also establish existence, uniqueness and Hyers-

Ulam stability criteria for the introduced operators.

MABC
@ Dri

0 wiðtÞ �
Xn
i¼1

Giðt;wiðtÞÞ
" #

¼ �v�i ðt;wiðtÞÞ; t 2 I ¼ ½0; 1�

ð4:1Þ
wið0Þ ¼ fi;Giðt;wiðtÞÞjt¼0 ¼ 0; ð4:2Þ
where 0 < ri < 1; fi 2 R, the functions wi 2 CðIÞ, with
i ¼ 1; 2; 3; . . . ; n; v�i ;Gi : I� R ! R; ði ¼ 1; 2; 3; . . . ;mÞ are con-
tinuous and satisfy the Caratheodory assumptions. MABC

@ Dri
0 ,

the MABC fractional operators involving generalized M-L
function for i ¼ 1; 2; . . . ; n.
Lemma 4.1. The solution to the n-coupled system of hybrid

fractional differential equations containing MABC fractional
operators with generalized M-L function given in (4.1) can be
expressed as follows:
wiðtÞ ¼ fi þ
Xn
i¼1

Giðt;wiðtÞÞ þ
1� ri

QðriÞ v
�
i ðt;wiðtÞÞ þ

ri

QðriÞCðriÞ

�
Z t

aþ
ð@ðtÞ � @ðsÞÞri�1@0ðsÞv�i ðs;wiðsÞds:

Proof. By applying MABC
@ Iri

0 to the system of differential equa-

tions presented in (4.1) for i ¼ 1; 2; . . . ; n, and utilizing Theo-
rem 3.4, we obtain the following

wiðtÞ �
Xn
i¼1

Giðt;wiðtÞÞ � wið0Þ ¼ ðMABC
@ Iri

0 Þv�i ðt;wiðtÞÞ; i

¼ 1; 2; . . . ; n:

By the using the conditions wið0Þ ¼ fi, we get the following

wiðtÞ ¼ fi þ
Xn
i¼1

Giðt;wiðtÞÞ þ ðMABC
@ Iri

0 Þv�i ðt;wiðtÞÞ

¼ fi þ
Xn
i¼1

Giðt;wiðtÞÞ þ 1�ri
QðriÞ v

�
i ðt;wiðtÞÞ

þ ri
QðriÞCðriÞ

R t
aþ ð@ðtÞ � @ðsÞÞri�1@0ðsÞv�i ðs;wiðsÞds:

Hence the result is proved.

To proceed with the primary outcomes of this paper, we
assume Banach space.

B ¼ fwiðtÞ : wiðtÞ 2 Cð½0; 1�;RÞ; t 2 ½0; 1�g;
with the norm

jjwijj ¼ max jwiðtÞj; i ¼ 1; 2; . . . ; n:

Assume that Ti : Cð½0; 1�;RÞ ! Cð½0; 1�;RÞ, with operators for
i ¼ 1; 2; . . . ; n, where

TiðwiðtÞÞ ¼ fi þ
Xn
i¼1

Giðt;wiðtÞÞ þ 1�ri
QðriÞ v

�
i ðt;wiðtÞÞ

þ ri
QðriÞCðriÞ

R t
aþ ð@ðtÞ � @ðsÞÞri�1@0ðsÞv�i ðs;wiðsÞÞds:

ð4:3Þ

Lemma 4.2. Assume that for some f1i ; f
2
i 2 R, and

wi;
�wi 2 C; t 2 ½0; k�, we have
jv�i ðt;wiÞ � v�i ðt; �wiÞj 6 f1i jwi � �wij;
jGiðt;wiÞ � Giðt; �wiÞj 6 f2i jwi � �wij

and

gi ¼
Xn
i¼1

f2i þ
f1i

BðriÞCðriÞ ; ð4:4Þ

where gi < 1, for all i ¼ 1; 2; . . . ; n. Now we can say that the
solution to the n-coupled hybrid-system of MABC-FDEs
given by (4.1) and represented by (4.3) is unique.
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Proof. Assume that supt2½0;k�jv�i ðtÞj ¼ q1 < 1, and

supt2½0;k�jGiðt;0Þj ¼ q2 <1, Sgi ¼fwi 2Cð½0;k�;RÞ : jjwijj< gig,
for k P 1 and i ¼ 1; 2; . . . ; n. For wi 2 Sgi and t 2 ½0; k�, we
have from [34, Lemma 2.2]

jv�i ðt;wðtÞÞj 6 f1i gi þ q1; ð4:5Þ
and for wi 2 Sgi ; t 2 ½0; k�, we have

jG�
i ðt;wðtÞÞj 6 f2i gi þ q2; ð4:6Þ

and from 4.3, for t P s, we have

jTiðwiðtÞÞj ¼ fi þ
Xn
i¼1

Giðt;wiðvÞÞ þ 1�ri
QðriÞ v

�
i ðt;wiðtÞÞ

					
þ ri

QðriÞCðriÞ
R t
aþ ð@ðtÞ � @ðsÞÞri�1@0ðsÞv�i ðs;wiðsÞÞds

			
6 fi þ nðf2i gi þ q2Þ þ 1�ri

QðriÞ ðf
1
i gi þ q1Þ

þ ri
QðriÞCðriÞ

R t
aþ ð@ðtÞ � @ðsÞÞri�1@0ðsÞ þ ðf1i gi þ q1Þds

6 fi þ nðf2i gi þ q2Þ þ 1�ri
QðriÞ þ 1

QðriÞCðriÞ

� �
ðf1i gi þ q1Þ:

From the given statement, we can conclude that TiðSgiÞ is a

subset of Sgi , where Ti is defined as the mapping from Sgi to

itself. Additionally, we assume that wi and ui are complex-
valued functions belonging to Cð½0; 1�;RÞ, and k is a positive
integer. Moreover, it is true that for t P s 2 ½0; 1�, we have

the following inequality:

jTiwiðtÞ � TiuiðtÞj ¼ fi þ
Xn
i¼1

Giðt;wiðtÞÞ þ 1�ri
QðriÞ v

�
i ðt;wiðtÞÞ

					
þ ri

QðriÞCðriÞ
R t
aþ ð@ðtÞ � @ðsÞÞri�1@0ðsÞv�i ðs;wiðsÞÞds

�fi þ
Xn
i¼1

Giðt;uiðtÞÞ þ 1�ri
QðriÞ v

�
i ðt;uiðtÞÞ

þ ri
QðriÞCðriÞ

R t
aþ ð@ðtÞ � @ðsÞÞri�1@0ðsÞv�i ðs;w�

i ðsÞÞds
			

6
Xn
i¼1

f2i jwi � uij þ 1�ri
QðriÞ f

1
i jwi � uij þ 1

BðriÞCðriÞ f
1
i jwi � uij:

Given that gi’s defined in (4.4) are less than 1, the operators Ti

are contractions. Using the Banach fixed point theorem, we
can conclude that the n-coupled hybrid system of MABC-
FDEs given by (4.1) has a unique solution, which can be
obtained as fixed points of the operators Ti, where

i ¼ 1; 2; . . . ; n.

Theorem 4.1. Suppose that the condition of the Lemma 4.2
holds then, the hybrid m-coupled-system MABC-FDEs (4.1)

has a solution (4.3).

Proof. Based on the assumptions made in Lemma 4.2, we can
conclude that the operators Ti are bounded for i ¼ 1; 2; . . . ; n,
and for t1; t2 2 ½0; k� with t2 > t1, where k � 1. Now consider

the following:
jTiwiðt2Þ � Tiwiðt1Þj ¼ fi þ
Xn
i¼1

Giðt2;wiðt2ÞÞ þ 1�ri
QðriÞ v

�
i ðt2;wiðt2ÞÞ

					
þ ri

QðriÞCðriÞ
R t2
aþ ð@ðt2Þ � @ðsÞÞri�1@0ðsÞv�i ðs;wiðsÞÞds

�fi þ
Xn
i¼1

Giðt1;wiðt1ÞÞ þ 1�ri
QðriÞ v

�
i ðt1;wiðt1ÞÞ

þ ri
QðriÞCðriÞ

R t1
aþ ð@ðt1Þ � @ðsÞÞri�1@0ðsÞv�i ðs;w�

i ðsÞÞds
			

6
Xn
i¼1

jGiðt2;wiðt2ÞÞ � Giðt1;wiðt1ÞÞj þ 1�ri
QðriÞ jv�i ðt2;wiðt2ÞÞ � v�i ðt1;wiðt1ÞÞj

þ 1
QðriÞCðriÞ jð@ðt2Þ � @ðaþÞÞr � ð@ðt1Þ � @ðaþÞÞri jðf1i jwi � uiÞ:

As t2 ! t1, we have Tiwiðt2Þ � Tiwiðt1Þ ¼ 0. Therefore,
jTiwiðt2Þ � Tiwiðt1Þj ! 0, as t2 ! t1. Hence, we can say that

the operators Ti are equicontinuous for i ¼ 1; 2; . . . ; n and
for s 6 t. Moreover, for u 2 u 2 Cð½0; k�;RÞ : u ¼ �hTiðuÞ;
for; �h 2 ½0; 1�, we have the following:

jjwijj ¼ max
t2I

jTiwj ¼ fi þ
Xn
i¼1

Giðt2;wiðt2ÞÞ þ 1�ri
QðriÞ v

�
i ðt2;wiðt2ÞÞ

					
þ ri

QðriÞCðriÞ
R t2
aþ ð@ðt2Þ � @ðsÞÞri�1@0ðsÞv�i ðs;wiðsÞÞds

			
6 fi þ

Xn
i¼1

ðf2i jjwijj þ q2Þ þ 1�ri
QðriÞ ðf

1
i jjwijj þ q1Þ

þ ðf1i jjwi jjþq1Þ
QðriÞCðriÞ

¼ v1i þ v2i jjwijj;
ð4:7Þ

where

v1i ¼ fi þ q2 þ
1� ri

QðriÞ q1 þ
q1

QðriÞCðriÞ
and

v2i ¼
Xn
i¼1

f2i þ
1� ri

QðriÞ f
1
i þ

f1i
QðriÞCðriÞ :

For i ¼ 1; 2; . . . ; n. From (4.7), we have

jjwijj 6
v1i

1� v2i
; i ¼ 1; 2; . . . ; n: ð4:8Þ

Therefore, we can apply Leray–Schauder’s alternative theorem

and conclude that (4.1) has a solution.

Every fixed point of Ti corresponds to a solution of the sys-

tem of differential equations given in (4.1).
Next, we will establish the Hyers-Ulam stability (HU stabil-

ity) criteria for our operator. To do this, we will use the follow-

ing definition from [34].

Definition 4.1. The coupled integral system (4.3) is considered
to be HU stable if, for some fi > 0, we have Di > 0 and wi

satisfies

jjwi � Twijj < Di; ð4:9Þ
where

�wiðtÞ ¼ T �wiðtÞ ð4:10Þ
and

jjwiðtÞ � �wiðtÞjj < Difi; i ¼ 12; . . . ; n: ð4:11Þ



Modified Atangana-Baleanu fractional operators involving generalized Mittag-Leffler function 647
Theorem 4.2. Assuming that the conditions of Lemma 4.2

hold, we can conclude that the hybrid system of MABC-
FDEs given by (4.1) is stable. Alternatively, we can say that
the HU is stable.

Proof. Assuming that wi 2 C for i ¼ 1; 2; . . .with the property

(4.9), and let w�
i 2 C be the solution for the coupled-system

(4.1) satisfying (4.3). Then, we can conclude that

jTiwiðtÞ � Tiw
�
i ðtÞj ¼ fi þ

Xn
i¼1

Giðt;wiðtÞÞ þ 1�ri
QðriÞ v

�
i ðt;wiðtÞÞ

					
þ ri

QðriÞCðriÞ
R t
aþ ð@ðtÞ � @ðsÞÞri�1@0ðsÞv�i ðs;wiðsÞÞds

�fi þ
Xn
i¼1

Giðt;w�
i ðtÞÞ þ 1�ri

QðriÞ v
�
i ðt;w�

i ðtÞÞ

þ ri
QðriÞCðriÞ

R t
aþ ð@ðtÞ � @ðsÞÞri�1@0ðsÞv�i ðs;w�

i ðsÞÞds
			

6
Xn
i¼1

f2i jwi � w�
i j þ 1�ri

QðriÞ f
1
i jwi � w�

i j þ 1
BðriÞCðriÞ f

1
i jwi � w�

i j:

For gi < 1, where g0is are given by (4.4), for i ¼ 1; 2; . . . ; n. By
the (4.9), (4.10) and (4.11), consider the following norm

jjwi � �w�
i jj ¼ jjwi � Tiwi þ Tiwi � �w�

i jj
6 jjwi � Tiwijj þ jjTiwi � �w�

i jj
6 Di þ gijjwi � �w�

i jj;
where i ¼ 1; 2; . . . ;m. Furthermore

jjwi � �w�
i jj 6

Di

1� gi

with fi ¼ 1
1�gi

. Therefore, we can conclude that the coupled sys-

tem (4.3) is stable, which further implies the stability of the
coupled hybrid MABC-FDEs system (4.1).
5. Conclusion

The FOs introduced in this are the extended forms of MAB
fractional integral and derivative in Caputo sense. The space
of these operators is more wider than Hölder space. By using
these new operators, we established some differential equa-

tions and explored their solutions by using generalized Laplace
transform. Such differential equations are not solvable with
ABC fractional derivative. The defined operators are proved

bounded in Xp with norm. The Laplace transform of both
the FOs is evaluated. The inverse property of the operators
exists with a condition fð0Þ ¼ 0. The existence, uniqueness

and stability in Hyers-Ulam sense for the Cauchy model
involving generalized MABC fractional derivative operator is
proved. The presented work proved the importance of the role

of space in fractional calculus. This work motivate the
researchers to explore such modified forms that are helpful
to model new differential equations and find out the ways to
explore their solutions.
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