
ÇANKAYA UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

ELECTRONIC AND COMMUNICATION ENGINEERING

MASTER THESIS

APPLICATIONS OF RECONFIGURABLE MANUFACTURING SYSTEMS:

A LABORATORY CASE STUDY

HARITH M. KHALID HENDI

FEBRUARY 2014

ABSTRACT

APPLICATIONS OF RECONFIGURABLE MANUFACTURING SYSTEMS:

A LABORATORY CASE STUDY

HENDI, Harith M. Khalid

M.Sc., Department of Electronics and Communication Engineering

Supervisor: Assoc. Prof. Dr. Klaus Werner SCHMIDT

February 2014, 122 pages

Reconfiguration control for discrete events system (DES) is applicable to the de-

sign of industrial manufacturing systems in order to support changes in the variety

and the quantity of products. Hereby, reconfiguration control is concerned with

the realization of different system configurations that become active on request. A

manufacturing system that is subject to reconfiguration control is denoted as a re-

configurable manufacturing system (RMS). In practice, RMS are of large size with

many manufacturing components and hence come with a large design complexity.

In this thesis, we develop a method for the reconfiguration control of large-

scale RMS and reconfigurable machine tools (RMT). We propose to first construct

modular reconfiguration supervisors that realize the desired configurations and

configuration changes for modular components of the overall RMS. Then, we apply

abstraction-based control in order to combine the operation of the different RMS

modules. As a result, we obtain a hierarchy of reconfiguration supervisors that

allow changes to any desired configuration at any time. Since, we use the technique

of hierarchical abstraction, our method is applicable to large-scale RMS, different

from all existing approaches in the literature that focus on a monolithic design.

We demonstrate the applicability of our method by a large-scale laboratory RMS

with 18 manufacturing components and a controller hierarchy with 4 levels.

Keywords: Reconfigurable manufacturing systems, Reconfigurable machine

tools, Discrete events systems, Supervisory control, Abstraction.

iv

ÖZ

Yeniden Yapılandırılabilir Üretim Sistemleri Uygulamaları: Bir Örnek

Laboratuvar Calışması

HENDI, Harith M. Khalid

Yüksek Lisans, Elektronik ve Haberleşme Mühendisliği

Tez Yöneticisi: Assoc. Prof. Dr. Klaus Werner SCHMIDT

Şubat 2014, 122 pages

Ayrık olaylı sistemlerde yeniden yapılandırılabilir kontrol, üretim sistemlerinin

ürün çeşitliliği ve kalitesini değiştirmek için kullanılır. Bu noktada, yeniden

yapılandırılabilir kontrol, istek yapıldıktan sonra farklı sistem konfigürasyonlarının

gerçekleştirilmesini amaçlamaktadır. Yeniden yapılandırılabilir kontrol yapısını

kullanan üretim sistemleri, yeniden yapılandırılabilir üretim sistemleri (recon-

figurable manufacturing systems - RMS) olarak adlandırılmaktadır. Yeniden

yapılandırılabilir üretim sistemleri, farklı birçok üretim birimlerinden

oluşabilmekte ve bunun sonucunda yüksek tasarım karmaşıklığına sahip olabilmek-

tedir.

Bu tezde, genişölçekli yeniden yapılandırılabilir üretim sistemleri tasarımı ve

yeniden yapılandırılabilir makina araçları (reconfigurable machine tool - RMT)

tasarımı için bir metod geliştirilmiştir. Öncelikle, istenen konfigürasyonlar için

modüler yeniden yapılandırılabilir kontrolcüler oluşturulmuştur. Sonrasında, farklı

konfigürasyonları birleştirmek için model boyutlarını küçülten soyutlama tabanlı

kontrol algoritması kullanılmıştır. Sonuçta, herhangi bir zamanda istenilen kon-

figürasyona geçişi sağlayan hiyerarşik yapıda yeniden yapılandırılabilir kontrolcü

elde edilmiştir. Hiyerarşik yeniden boyutlama metodu kullanıldığı için, literatürde

v

tanımlı monolitik çözümlerin aksine farklı birçok birimden oluşan geniş ölçekli

yeniden yapılandırılabilir üretim sistemlerine uygulanabilen bir metod

geliştirilmiştir. Bu metodun uygulanabilirliğini göstermek için, laboratuvarda,

18 farklı birimden ve 4 seviye hiyerarşik kontrolcüden oluşan geniş ölçekli yeniden

yapılandırılabilir üretim sistemi modellenmiştir.

Anahtar Kelimeler: Yeniden yapılandırılabilir üretim sistemleri, Yeniden

yapılandırılabilir makina araçları, Ayrık olaylı sistemler, Kontrolcü taşarımı,

Yeniden boyutlama.

vi

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my thesis advisor Assoc.Prof. Dr.

Klaus Werner SCHMIDT, who has encouraged and guided me throughout this

thesis patiently.

I also would like to express my deepest gratitude to the force, my father whose

support makes my way of successes. To the big heart, my mother whose prayers

makes me hopeful in my life.

I also would like to express my sincere gratitude to my aunt, who supported and

encouraged me along my life. To the happiness of my life, my lovely sisters and

brothers.

I also thank and appreciate the Scientific and Technological Research Council of

Turkey (TÜBİTAK), in the provision of material and financial support (during

my thesis). Note, that this thesis was supported by TÜBİTAK [Career Award

110E185].

I also thank the University of Çankaya, and especially the department of mecha-

tronics engineering , as well as the department of electronic and communication

engineering, for their support and create the appropriate requirements of labora-

tories and equipment necessary during periods of study and research.

vii

TABLE OF CONTENTS

STATEMENT OF NON–PLAGIARISM iii

ABSTRACT. iv

ÖZ. v

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . xi

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS xviii

CHAPTERS:

INTRODUCTION . 1

I BASIC NOTATION . 4

1.1 DISCRETE EVENTS SYSTEMS 4

1.2 FORMAL LANGUAGE 5

1.3 AUTOMATA . 6

1.4 SUPERVISORY CONTROL 8

1.5 STATE ATTRACTION 10

1.6 ABSTRACTION-BASED SUPERVISORY CONTROL . . . 11

II RECONFIGURABLE MANUFACTURING TOOL (RMT):

MODELING AND ABSTRACTION 14

2.1 RMT MODELING. 14

2.1.1 The Conveyor Belt Model 15

2.1.2 Machine Head Model . 16

2.1.3 Machine Tool Model . 17

2.1.4 Uncontrolled RMT Model 18

viii

2.1.5 RMT Supervisor . 19

2.2 RECONFIGURATION CONTROL FOR THE RMT 20

III ABSTRACTION-BASED RECONFIGURATION CONTROL

FOR RECONFIGURABLE MANUFACTURING SYSTEMS

(RMS) . 29

3.1 ILLUSTRATIVE EXAMPLE SYSTEM 30

3.1.1 Example Overview . 30

3.1.2 Module 1 . 31

3.1.3 Module 2 . 36

3.2 RECONFIGURATION CONTROL FOR RMS WITH ONE

MODULE. 38

3.2.1 Reconfiguration control For RMS module 1 38

3.2.2 General Formulation of the Reconfiguration Problem . . . 40

3.2.3 Reconfiguration Control for Module 2 46

3.3 RECONFIGURATION CONTROL WITH HIERARCHICAL

ABSTRACTION . 48

3.3.1 Description of Abstraction-Based Control 48

3.3.2 Formalization of the Reconfiguration Problem 52

3.3.3 Overall Example System 53

3.4 SUMMARY . 53

IV APPLICATION EXAMPLE OF OVERALL RMS 55

4.1 MODELS OF NEW RMS COMPONENTS. 56

4.1.1 Rail Transport Systems . 56

4.1.2 Model Of The Exit Slide 59

4.2 ABSTRACTION-BASED RECONFIGURATION SUPERVI-

SORS OF OVERALL RMS. 61

4.3 RMS MODULE 1 . 65

4.4 RMS MODULE 2 . 66

4.5 RMS MODULE 3 . 66

4.6 RMS MODULE 4 . 68

4.7 RMS MODULE 5 . 70

4.8 RMS MODULE 6 . 76

4.9 RMS MODULE 7 . 77

4.10 RMS MODULE 8 . 80

4.11 RMS HIGH-LEVEL MODULE 12 82

ix

4.12 RMS HIGH-LEVEL MODULE 3456 83

4.13 RMS HIGH-LEVEL MODULE 123456. 88

4.14 RMS HIGH-LEVEL MODULE 12345678. 92

4.15 SUMMARY OF ABSTRACTION-BASED RECONFIGURA-

TION SUPERVISORS 93

4.16 RMS SIMULATION 96

CONCLUSION . 98

FUTURE WORK . 100

REFERENCES . 101

APPENDIX . 104

x

LIST OF TABLES

Table 2.1 Conveyor belt events. 16

Table 2.2 Machine head events . 17

Table 2.3 Machine tools events . 18

Table 3.1 Stack feader events . 32

Table 3.2 Rotary table events . 34

Table 3.3 Production machine events 36

Table 3.4 Module 1 supervisors . 40

Table 3.5 Module 2 supervisors . 48

Table 3.6 Reconfiguration supervisors 53

Table 4.1 Rail transport system events RTS1 58

Table 4.2 Conveyor belt events CO15 59

Table 4.3 Rail transport system events RTS2 60

Table 4.4 Conveyor belt events CO16 61

Table 4.5 Exit slide events . 61

Table 4.6 Module 1 reconfiguration supervisors 66

Table 4.7 Module 2 reconfiguration supervisors 67

Table 4.8 Module 3 reconfiguration supervisors 68

Table 4.9 Module 4 reconfiguration Supervisors. 70

xi

Table 4.10 Module 5 reconfiguration Supervisors. 73

Table 4.11 Module 6 reconfiguration supervisors 77

Table 4.12 Module 7 reconfiguration supervisors 81

Table 4.13 Module 8 configuration supervisors 81

Table 4.14 Module 8 reconfiguration supervisors 82

Table 4.15 Module 12 reconfiguration supervisors 83

Table 4.16 Module 3456 reconfiguration supervisors 88

Table 4.17 Module 123456 reconfiguration supervisors 92

Table 4.18 Module 12345678 reconfiguration supervisors 93

xii

LIST OF FIGURES

Figure 1.1 Simple machine . 7

Figure 1.2 Hierarchical and decentralized control architecture. 11

Figure 2.1 Picture of the RMT example system. 14

Figure 2.2 Picture of the conveyor belt. 15

Figure 2.3 GBelt . 16

Figure 2.4 Gvertical . 17

Figure 2.5 Grotation . 17

Figure 2.6 Gprocess . 18

Figure 2.7 Specification automata: (a) C1, (b) C3, (c) C2, (d) C4, (e) C5, (f)

C6, (g) C7 . 21

Figure 2.8 Abstraction ŜRMT of the RMT. 22

Figure 2.9 Reconfiguration process. 23

Figure 2.10 Configuration supervisor Sact.. 23

Figure 2.11 Reconfiguration overview 26

Figure 2.12 RA
RMT . 27

Figure 2.13 RB
RMT . 28

Figure 3.1 Overview RMS example 30

Figure 3.2 Module 1: picture of the physical system (left) and schematic

(right). 31

xiii

Figure 3.3 Picture of the stack feeder (left) and rotary table (right). 32

Figure 3.4 GSF1 . 33

Figure 3.5 Ghigh
SF1 . 33

Figure 3.6 Ghigh
RT1 . 34

Figure 3.7 GMA1 . 35

Figure 3.8 Ghigh
MA1 . 35

Figure 3.9 Ghigh
MA2 . 36

Figure 3.10 Schematic of module 2 . 36

Figure 3.11 Ghigh
RT2 . 37

Figure 3.12 Ghigh
MA3 . 37

Figure 3.13 Ghigh
MA4 . 38

Figure 3.14 Specification 1 . 39

Figure 3.15 Specification 2 . 40

Figure 3.16 Supervisor for configuration 1 (left) and configuration 2 (right). . 41

Figure 3.17 Attractor supervisor for configuration 2 42

Figure 3.18 Reconfiguration supervisor process 43

Figure 3.19 Reconfiguration supervisor for configuration 1 44

Figure 3.20 Automatoa of P conf1 . 47

Figure 3.21 Specification of configuration 1 48

Figure 3.22 Specification of configuration 2 48

Figure 3.23 Module 2 supervisors . 49

Figure 3.24 Module 2 Rcon1 . 49

Figure 3.25 Module 2 Rcon2 . 50

xiv

Figure 3.26 High level supervisors . 51

Figure 3.27 State attraction supervisors for the high-level supervisors 51

Figure 3.28 Modified state attraction supervisors 51

Figure 3.29 High level reconfiguration supervisor 1 and 2 52

Figure 4.1 Picture of overall RMS . 56

Figure 4.2 Picture of a rail transport system. 56

Figure 4.3 RTS components RTS1 and RTS2. 57

Figure 4.4 Abstracted RTS1 . 58

Figure 4.5 Abstracted CO15 . 58

Figure 4.6 Abstracted RTS2 . 60

Figure 4.7 Abstracted CO16. 60

Figure 4.8 Picture of the exit slide 62

Figure 4.9 Automata models of the exit slide. 62

Figure 4.10 RMS overview. 63

Figure 4.11 Overview of RMS hierarchical modules 64

Figure 4.12 Overview of RMS modules 65

Figure 4.13 RMS module 1 . 65

Figure 4.14 RMS module 2 . 66

Figure 4.15 RMS module 3 . 67

Figure 4.16 Low level model Of CO3 67

Figure 4.17 High level model Of CO3. 68

Figure 4.18 Module 3 configuration 1 specifications 68

Figure 4.19 Module 3 configuration 2 specifications 69

xv

Figure 4.20 RMS module 4 . 69

Figure 4.21 Module 4 configuration 1 specifications 69

Figure 4.22 Module 4 configuration 2 specifications : (a), (b), (c), (d), (e). . . 71

Figure 4.23 RMS module 5 . 72

Figure 4.24 Module 5 configuration 1 specifications : (a), (b), (c), (d), (e), (f),

(g), (h). 74

Figure 4.25 Module 5 configuration 2 specifications : (a), (b), (c), (d). 75

Figure 4.26 RMS module 6 . 76

Figure 4.27 High level model of MA9 76

Figure 4.28 Module 6 configuration 1 specifications 77

Figure 4.29 Module 6 configuration 2 specifications 77

Figure 4.30 RMS module 7 . 78

Figure 4.31 Abstracted RT6 . 78

Figure 4.32 Abstracted MA10 . 79

Figure 4.33 Abstracted RT7 . 79

Figure 4.34 Abstracted MA11 . 80

Figure 4.35 Module 7 configuration 1 specifications : (a), (b), (c), (d). 80

Figure 4.36 Module 7 configuration 2 specifications : (a), (b), (c), (d). 81

Figure 4.37 RMS module 8 . 82

Figure 4.38 RMS high-level module 12 82

Figure 4.39 P 1
12 coordination automaton 84

Figure 4.40 P 2
12 coordination automaton 85

Figure 4.41 RMS high-level module 3456 86

xvi

Figure 4.42 Module 3456 configuration 1 specifications : (a), (b), (c), (d). . . 87

Figure 4.43 Module 3456 configuration 2 specifications: (a), (b), (c), (d), (e),

(f), (g), (h). 89

Figure 4.44 P 1
3456 coordination automaton 90

Figure 4.45 P 2
3456 coordination automaton 91

Figure 4.46 RMS high-level module 123456 92

Figure 4.47 RMS high-level module 12345678 92

Figure 4.48 Module 12345678 configuration 1 specifications 93

Figure 4.49 Module 12345678 configuration 2 specifications 93

Figure 4.50 P 1
12345678 automata . 94

Figure 4.51 P 2
12345678 automata . 95

Figure 4.52 Hierarchical and decentralized RMS control 96

Figure 4.53 RMS simulation . 97

xvii

LIST OF ABBREVIATIONS

DES Discrete events systems

DML Dedicated manufacturing lines

FMS Flexible manufacturing systems

RMS Reconfigurable manufacturing systems

RMT Reconfigurable machine tools

xviii

xix

INTRODUCTION

Traditional manufacturing systems can be classified into dedicated manufactur-

ing lines (DML) and flexible manufacturing systems (FMS), whereby both types

produce products with a fixed system structure. In contrast, the new type of

reconfigurable manufacturing systems (RMS) is developed in order to keep pace

with the evolution in the field of manufacturing industries. Reconfiguration con-

trol gives the ability to change the system configuration depending on the product

demand in terms of product type and quantity [11, 15, 4, 10]. Application areas

for RMSs can for example be determined in the production of automobile parts

[8, 4, 3].

The controller design for RMS requires several properties listed as follows.

• In each individual system configuration, the desired operation should be

realized.

• If a configuration change is requested, then the change has to be possible

and it should be realized as fast as possible.

• A suitable controller design method must be usable for large-scale systems.

In the existing literature, there are different methods for the reconfiguration con-

trol of DES. The realization of reconfiguration supervisors was studied without a

synthesis algorithm in [5]. Later, synthesis approaches for reconfiguration con-

trollers were realized in [12, 13, 18, 7, 6] according to different assumptions,

whereby all the cited methods only focus on monolithic synthesis. That is, none

of the existing methods is applicable to large-scale RMS that are typically en-

countered in practice.

A new line of research on RMS in the framework of supervisory control for discrete

event systems (DES) was initiated in the scope of the TÜBİTAK project 110E185

”A Formal Framework and Continuous Workflow for the Controller Design, Failure

Diagnosis and Failure Recovery of Reconfigurable Manufacturing Systems”. In the

scope of this project, also several approaches for the monolithic controller design

1

for RMS are developed [16, 21, 22, 24, 23]. The work in this thesis extends these

approaches to a design method that is suitable for large-scale RMS.

The main subject of this thesis is a new method for the design of reconfiguration

supervisors for large-scale RMS that comprise multiple components. Such RMS

is divided into smaller modules and the idea of abstraction-based supervisory

control [20, 19] is applied to obtain modular supervisors that realize each system

configuration. In addition, a modified version of state attraction supervisors [1, 2]

is employed in order to achieve completion of an existing configuration whenever

a new configuration is requested. Combining the abstraction-based supervisors

and the state attraction supervisors, the thesis presents an algorithm for the

computation of a modular reconfiguration supervisor for each RMS module. These

modular reconfiguration supervisors have a small size, which makes the proposed

method applicable to large-scale RMS. In addition, the thesis develops a modeling

framework for reconfigurable machine tools (RMT) that are basic building blocks

of RMS.

In summary, the main contributions of the thesis are

• the application of abstraction-based supervisory control to RMS.

• the generalization of state attraction to modular state-attraction that can

be applied without a monolithic system model.

• a construction algorithm for modular reconfiguration supervisors.

• a modeling framework for RMTs.

In addition, the developed method is applied to a large-scale laboratory model of

an RMS with 18 components. The resulting design leads to a controller hierarchy

with 4 levels and shows considerable computational savings compared to a mono-

lithic design. Here, we do not only compute the supervisors for this RMS example

but we also evaluate the correctness of the design by extensive simulations of the

RMS behavior. This simulation underlines that the realization of our reconfigura-

tion supervisors never needs the evaluation of a monolithic model of the system.

Some of the results in the thesis are published in the conference paper [9] that

also formally states the correctness of the proposed design.

The remainder of this thesis is organized such that Chapter I contains all the basic

notation about discrete event systems, supervisory control, abstraction-based con-

2

trol. Chapter II gives all discussion about the modeling and abstraction of RMT.

It contains the modeling of the RMT in Section 2.1, and the reconfiguration con-

trol for the RMT in Section 2.2. Moreover, the abstraction-based reconfiguration

controller design for RMS is developed in Chapter III. Here, Section 3.2 considers

the design for a single RMS module and Section 3.3 introduces hierarchical ab-

straction. Chapter IV presents the details of a large application example including

an RMS simulation.

3

CHAPTER I

BASIC NOTATION

In this chapter, we present the basic notation and the background literature. The

chapter is organized as follows, Section 1.1 shows the concept of discrete events

system DES, Section 1.2 gives the basic notation in regard to the formal language.

In Section 1.3 automata are introduced and Section 1.4 describes the supervisory

control of discrete events system DES. In Section 1.5 the concept of state at-

traction, strong attraction is outlined, while section 1.6 explains the approach

of abstraction-based supervisory control and decentralized control. Finally, all

definitions about the natural observer projections are given also in Section 1.6.

1.1 DISCRETE EVENTS SYSTEMS

The concept of discrete event systems (DES) is introduced for systems whose state

space is a discrete Set, such as {0,1,2,3,...}. For such systems, state transitions

are possible at discrete times and they are triggered by the occurrence of discrete

events.

Characteristic properties of discrete event systems are

• Finite number of discrete states where the system spends time.

• The discrete events occur instantaneously.

• The discrete transitions change the system state due to occurrence of events.

DES are widely used in different domains and have been applied in various fields.

Such examples of discrete events systems are manufacturing systems, traffic sys-

tems, and computer systems. A lot of system’s performance and behaviors can

be clarified by DES model, for example an operation of a device (ON,OFF), a

4

message to travel from source to destination in communication systems or calls as

in telephone networks.

A small example of DES is a simple machine with

• Three discrete states as modes of operation {IDLE, BUSY, DOWN}.

• Four discrete events {START, BREAK, REPAIR, FINISH}.

• Four discrete transitions.

Initially, the machine is in the first state IDLE and the possible transition START

leads to the second state BUSY. From this state there are two possible transitions.

First, FINISH leads back to the IDLE state. Second, BREAK leads to the state

DOWN, from where a transition REPAIR leads to the IDLE state. That means,

the machine starts when it is idle and finishes after some time. The machine

can break during operation and be repaired after breakdown, finally the machine

restarts after the repair happened.

A formal language can be used to model and shape the behavior of DES as de-

scribed in the next section.

1.2 FORMAL LANGUAGE

We consider the concept of languages to model the behavior of DES. The finite set

of events is called alphabet and is denoted as Σ. A finite event sequence from Σ is

called a string. For each string s, |s| is written the length of this string such that

|s| defines the number of events in s. ǫ is the empty string with length |ǫ| = 0,

such that sǫ = ǫs = s. The kleene closure Σ∗ is the set of all finite strings over a

finite alphabet Σ.

Now we recall the example of a simple machine. Here, the alphabet is Σ ={start,

break, repair, finish}. Example strings are given by s1 =start finish with length

|s1| = 2 or s2 =start break repair start finish with length |s2| = 5. The Kleene

closure for this example is written as Σ∗ = {ǫ, start, break, repair, finish, start

finish, start break repair, start break repair start finish,,}.

The concatenation of two strings s1, s2 ∈ Σ∗ is written as s = s1s2 and s1 is a

prefix of s and s2 is a suffix of s. A language over Σ is a subset L ⊆ Σ∗. The

5

prefix closure L of L is defined as L = {s1 ∈ Σ∗|∃s ∈ L s.t. s1 ≤ s}. If L = L,

then the language L ∈ Σ∗ is called prefix closed. For string s ∈ L and a language

L ∈ Σ∗ the set of suffixes of s in L is written as L/s = {t ∈ Σ∗|∃st ∈ L}.

For the natural projection we first introduce Σ̂ as a subset of Σ. Then, the natural

projection removes all events in Σ that do not belong to Σ̂. The natural projection

is written as p : Σ∗ → Σ̂∗ such that

p(ǫ) = ǫ; p(σ) = σ if σ ∈ Σ̂ and p(σ) = ǫ otherwise; p(sσ) = p(s)p(σ) for s ∈ Σ∗

and σ ∈ Σ.

The inverse projection is given as p−1 : Σ∗ → 2Σ
∗

such that for each t ∈ Σ∗ :

p−1(t) = {s ∈ Σ∗|p(s) = t}.

Consider that Σ̂={start} for the simple machine example. If the natural projection

is applied to the string s2 = start break repair start finish, then the result is p(s2)

= start start. All other events are removed by the projection.

1.3 AUTOMATA

DES can be modeled by a finite state automaton G that is represented by a five-

tuple G = (X,Σ, δ, x0, Xm) with the finite set of states X; a finite set of events Σ;

a partial transition function δ : X × Σ → X; the initial state denoted by x0 ∈ Σ

and the marked states Xm ⊆ X. Here, the marked states are desired states that

should be reached.

Automata can be graphically represented by state transition diagrams or graph

representations. The automata model for the simple machine example is given

by the simple state transition diagram shown in fig. 1.1. Here circles represent

states, arrows represent transitions that are labeled by events, the incoming arrow

indicates the initial state and double circles represent marked states.

Two subset languages of Σ∗, the closed language L(G) and the marked language

Lm(G) are used to characterized the finite states automaton G. All event se-

quences that follow transitions starting from the initial state are included in L(G)

and all stings starting from the initial state and leading to a marked state will be

in Lm(G). If Lm(G) = L(G), the automaton G is called nonblocking. This means

that every string in G can be extended to a marked state. Closed language and

6

Figure 1.1: Simple machine

marked language are formally defined by

L(G) = {s ∈ Σ∗|∃δ(x0, s)!} (1.1)

Lm(G) = {s ∈ L(G)|∃δ(x0, s) ∈ Xm} (1.2)

In a finite state automaton G, if a string starts from a state and follows transitions

in G back to the same state, then G has a cycle. If an auotmaton G has no cycles,

it is called acyclic.

Important automata operations are :

• Accessible: G is called accessible if all states in X can be reached from x0:

∀x ∈ X, ∃s ∈ Σ∗ s.t. δ(x0, s) = x (1.3)

The operation Acc(G) is used to make an automaton G accessible by re-

moving all states that are not reachable from the initial state x0.

• Coaccessible: G is called coaccessible if a marked state in Xm can be reached

from any state of X:

∀x ∈ X, ∃s ∈ Σ∗ s.t. δ(x0, s) ∈ Xm (1.4)

The operation CoAcc(G) is used to make an automaton G coaccessible by

removing all states in G from where no marked state is reachable. It has to

be noted that all coaccessible automata are nonblocking.

• Trim: If an automaton G is accessible and coaccessible at the same time,

then G is trim. Such that Trim(G) = ACC(CoAcc(G)) = CoAcc(Acc(G)).

Our simple machine example automaton G=(X, Σ, δ, x0, Xm) has three states,

four events in it’s alphabet, and four transitions such that X = {Idle, Busy,

7

Down}; Σ ={start, break, repair, finish}; δ is defined by δ (Idle, start) = Busy;

δ (Busy, finish) = Idle; δ (Busy, break) = Down; δ (Down, repair) = Idle. Fur-

thermore, x0 = Idle is the initial state and Xm ={Idle} as the set of marked

states.

Here, all states are reachable from x0 and Xm is reachable from any state. This

means that an automata G is accessible and coaccessible and hence also trim. It

can also be seen that G is cyclic.

Consider automata G = (X,Σ, δ, x0, Xm) and G′ = (X ′,Σ, δ′, x′
0, X

′
m). G′ is a

subautomaton of G written as G′ ⊑ G, if G′ is an empty automaton (X ′ = 0) or

X ′ ⊆ X, x′
0 = x0 and for all x ∈ X ′ and σ ∈ Σ, holding that δ′(x, δ)! ⇒ δ′(x, δ) =

δ(x, σ). This means that G′ is obtained by removing states and transitions from

G.

Finally, we consider discrete event systems with multiple components (more than

one component). Such systems can be modeled by multiple finite state automata.

Then, the overall model as one single automaton is obtained by applying the

synchronous composition, This composition synchronizes the occurrence of events

that are shared in at least two automata, while other events happen independently.

let G1 = (X1,Σ1, δ1, x0,1, Xm,1 and G2 = (X2,Σ2, δ2, x0,2, Xm,2) be two automata.

The synchronous composition is described as:

G1||G2 = G12 = (X12,Σ12, δ12, x0,12, Xm,12) (1.5)

The synchronous composition defined such that the states are (X12 = X1 × X2;

events are Σ12 = Σ1 ∪ Σ2; initial state is x0,12 = (x0,1, x0,2); marked states are

Xm,12 = Xm,1 ×Xm,2; and the transition relation is defined for (x1, x2) ∈ X12 and

σ ∈ Σ12 as

δ12((x1, x2), σ) =

(δ1(x1, σ), δ2(x2, σ) if σ ∈ Σ1 ∩ Σ2 ∧ δ1(x1, σ)! ∧ δ2(x2, σ)!

(δ1(x1, σ), x2) if σ ∈ Σ1 \ Σ2 ∧ δ1(x1, σ)!

(x1, δ2(x2, σ)) if σ ∈ Σ2 \ Σ1 ∧ δ2(x2, σ)!

(1.6)

1.4 SUPERVISORY CONTROL

In [17] Ramadge and Wonham introduce the theory of supervisory control for

DES. The concept of this theory is how to design and apply control for DES. The

8

controller is denoted as supervisor and is capable of allowing or preventing the

occurrence of some events in the DES in order to achieve the desirable behavior.

Consider G=(X, Σ, δ, x0, Xm) a deterministic finite state automaton as a DES

plant, Σc is a controllable events set, Σu is an uncontrollable events set. Then the

alphabet of the plant Σ can be described as

Σ = Σc ∪ Σu (1.7)

The supervisor S is also realized by a finite state automaton as

S = (Q,Σ, ν, q0, Qm) (1.8)

This supervisor S, can disable all events in Σc the controllable events, but for the

uncontrollable events in Σu can not be disabled. In the simple machine example,

the ”start” event is an example for a controllable events, whereas the ”break”

event is an uncontrollable events.

Here, the synchronous composition G||S of the plant G and the supervisor S

will give the desired behavior of the controlled system (closed loop behavior).

Furthermore L(G)||L(S) will be the closed language for the closed loop, and

Lm(G)||Lm(S) the marked language of the closed loop. If G||S is nonblocking

then S will be nonblocking supervisor. Also, for all s ∈ L(G) ∩ L(S) and σ ∈ Σu

with sσ ∈ L(G) and we have sσ ∈ L(S). This is because S is not allowed to

disable events in Σu, and if σ can happen after s in G, then σ must be possible

after s in S.

Until now, we haveG as a DES plant and S as a supervisor. It is possible to specify

the desired closed-loop behavior using an automaton C = (Y,Σ, β, y0, Ym) whose

language K = Lm(C) is denoted as the specification language. The specification

contains all desirable strings such that the supervisor must disable all undesired

strings that are in the plant but not in the specification. This is only possible

if the supervisor does not need to disable uncontrollable events. That is, the

specification K should be controllable w.r.t. plant G and uncontrollable events

Σu. Formally, this holds if

KΣu ∩ L(G) ⊆ K (1.9)

Here, K is the prefix closure of K, and KΣu describes the set of strings, that start

with a prefix in K and are followed by an event from Σu. In this case, any string

9

belonging to the specification K and that can be extended by an uncontrollable

event and that belongs to the plant G should also belong to the specification.

If the specification K is not controllable with respect to plant G and uncon-

trollable events Σu, then the supremal controllable sublanguage of K should by

implemented. The concept of this SupCon algorithm is to findKsub ⊆ K such that

Ksub is controllable for G and Σu, where Ksub is the largest possible sublanguage,

and SupC(K,L(G),Σu) contains all controllable sublanguages of K.

SupC(K,L(G),Σu) =
⋃

{K ′ ⊆ K|K ′ controllable for G and Σu} (1.10)

Also, we can write Lm(S//G) = SupC(K,L(G),Σu) and we know that such

supervisor is nonblocking.

1.5 STATE ATTRACTION

In order to discuss the state attraction concept, we will introduce strong attraction

and weak attraction notions. Let G = (X,Σ, δ, x0, Xm) be a finite state automaton

representing the plant of DES, Σu as a set of uncontrollable events, invariant set

and a weakly invariant set X ′ ⊆ X.

X ′ ⊆ X is an invariant set in G if no outgoing transition from the states of X ′

leads to states that do not belong to X ′ described as, ∀x ∈ X ′ and σ ∈ Σ holds

that δ(x, σ)! ⇒ δ(x, σ) ∈ X ′.

We next define the concept of strong and weak attraction.

Definition 1. Let A ⊆ X ′ ⊆ X given that A,X ′ are invariant sets in G. A is a

strong attractor for X ′ in G if

• the (strict subautomaton) of G with state set X ′ \ A is acyclic

• ∀x ∈ X ′, there is u ∈ Σ⋆ s.t. δ(x, u) ∈ A

That means that A is reached from any state in X ′ after the occurrence of a

bounded number of events.

10

Definition 2. Let A ⊆ X ′ ⊆ X and assume A,X ′ are invariant sets in G,

uncontrollable set Σu. A is described as a weak attractor for X ′ ∈ G if there

exists a state-feedback supervisor S ⊑ G s.t. for X ′ in S, A is a strong attractor.

Next, let ΩG(A) ⊆ X be the supremal subset of X such that A is a weak attractor

for ΩG(A) in the plant G with uncontrollable events set Σu. The supremal subset

algorithm can be used to compute ΩG(A). The complexity for this algorithm is

O(|X| · |Σ|) and as we know |X| described states number and |Σ| described the

events number. Notice that this algorithm with complexity O(|X|2) will be used

to find S, when S ⊑ G and A is a strong attractor for ΩG(A).

1.6 ABSTRACTION-BASED SUPERVISORY CONTROL

The combination of decentralized control and hierarchical control can be applied to

DES with many components in order to handle large-scale DES. Such approach

is important, considering that the number of plant states grows exponentially

with the number of the system components (state space explosion problem). The

following architecture is used to perform computations with small automata.

Figure 1.2: Hierarchical and decentralized control architecture.

Let Gi, i = 1,, n be n finite plant automata for a DES with more than one

component over the corresponding alphabets Σi = Σi,c ∪ Σi,u, the controllable

events denoted by Σi,c and the uncontrollable events by Σi,u.

Implementation of abstraction required to introduce the abstraction alphabet also

called high-level alphabet. Here, it is important to preserve the shared behavior

in the abstracted level. Hence, we introduce the set of shared events of each

component as Σi,∩ =
⋃n

k=1,k 6=i(Σi ∩ Σk).

11

For the overall system, G = ‖ni=1Gi is the overall plant model and Σ =
⋃n

i=1 Σi is

the overall alphabets, while the global shared events are given as Σ∩ =
⋃n

i=1 Σi.

Moreover ∀i, k, i 6= k,Σi,u ∩ Σk,c = 0 it must hold σu =
⋃n

i=1 Σi,u and Σc =
⋃n

i=1 Σi,c. In words, the controllability status of these shared events of different

components must be the same.

As we noticed before in previous section, the desired behavior for any DES can be

achieved by computing a according to the given specification (K). In this case the

desired behavior will given by multiple specifications Ki ⊆ Lm(Gi), i = 1, ..., n,

and the overall specification will be K̂ ⊆ Σ̂∗, by assuming that Σ∩ ⊆ Σ̂ ⊆ Σ.

Using this setting, the abstraction approach proceeds as follow

• Computation of the components supervisors Si, i = 1, ..., n, such that

Lm(Si) = SupC(Ki, L(Gi),Σu,i (1.11)

• Using the projections pi : Σ∗
i → Σi ∩ Σ̂∗ to get the abstraction for the

obtained low-level closed loop (Gn // Sn). Then Ĝi , i = 1, ..., n, are the

abstracted closed loops that serve as plants for the high level.

• The parallel composition is applied to obtain the overall abstracted plant

Ĝ = ‖ni=1Ĝi. Then Ŝ the abstraction-based supervisor is computed using

the given specification K̂, as

Lm(Ŝ) = SupC(K̂, L(Ĝ),Σu ∩ Σ̂) (1.12)

• The final result for the overall closed loop is given by

Ŝ||(‖ni=1Si||Gi) (1.13)

The described procedure leads to nonblocking control if the projections pi that

are used for the abstraction have the natural observer property:

Definition 3. Considering of G an automaton, Σ as the alphabet, and let that

Σ̂ ⊆ Σ, then define p : Σ∗ → Σ̂∗ as a natural projection. Here p is an Natural

observer if ∀s ∈ L(G) and ∀t ∈ Σ̂∗ it holds that

p(s)t ∈ p(Lm(G)) ⇒ ∃u ∈ Σ̂∗ s.t. p(u) = t and su ∈ Lm(G) (1.14)

12

In words, for the projection of string s extended to a marked string in the marked

language of (Ĝ) by t, then the original strings also must have an extension u to a

marked string in L(G).

If all the projections pi are natural observers, then the closed-loop system for the

abstraction-based design is nonblocking.

Theorem 4. Regarding the computation of abstraction-based supervisors as de-

scribed above, if all projections natural observers, then the obtained supervisors

are nonblocking:

Lm(Ŝ||(‖ni=1Si||Gi)) = L(Ŝ||(‖ni=1Si||Gi)) (1.15)

13

CHAPTER II

RECONFIGURABLE MANUFACTURING TOOL (RMT):

MODELING AND ABSTRACTION

2.1 RMT MODELING

The reconfigurable manufacturing tool (RMT) is one of the main building blocks

of a reconfigurable Manufacturing system (RMS). It has to be designed such that

its structure change can be done rapidly. In this thesis, we focus on an RMT

example from an RMS laboratory model as is shown in Figure 2.1.

Figure 2.1: Picture of the RMT example system.

The RMT is in the middle of two neighbor components, denoted as R for the right

neighbor and L for the left neighbor. We write MA for the RMT that is composed

of three main components:

• One conveyor belt : The main function of the conveyor belt is to move prod-

ucts to MA (product input) and remove products from MA (product out-

put).

14

• One machine head : The machine head holds three different machine tools.

It can rotate in order to make each desired machine tool ready for operation.

In addition, the machine head can move up and down in order to move the

active machine tool toward a product that is located on the conveyor belt.

• Three machine tools : Each machine tool is responsible for a different me-

chanical processing operation. In our system, we consider drilling (D),

milling (M) and polishing (P).

We next develop an overall model of the RMT from models of its components.

Hereby, we use the discrete event formalism as introduced in Chapter I.

2.1.1 The Conveyor Belt Model

The hardware component of the conveyor belt that can be shown in Figure 2.2,

contains one actuator motor and one sensor that is positioned in the middle of

the conveyor belt. The purpose of the motor is to move products to and from

the conveyor belt, whereby motion to the right and to the left are possible. The

sensor detects if a product arrives at or leaves from the conveyor belt. Hence, the

conveyor belt manages the input and output of products to the RMT. In order to

obtain an automata model of the conveyor belt, we introduce the relevant events

in the Table 2.1.

Figure 2.2: Picture of the conveyor belt.

Using these events, the automaton GBelt in Figure 2.3 represents the discrete event

15

Table 2.1: Conveyor belt events.

EVENTS NAMES DESCRIPTION STATUS

R-ma SW move products (right to RMT) C

ma-R SW move products (RMT to right) C

L-ma SW move products (left to RMT) C

ma-L SW move products (RMT to left) C

ma bm+ motor switch on (right direction) C

ma bm- motor switch on (left direction) C

ma wpar sensor detects product arrives unC

ma boff motor switch off (stop) C

ma wplv sensor detects product leaves unC

ma lvtoR leave to right neighbor unC

ma lvtoL leave to left neighbor unC

model of the conveyor belt. Hereby, state #1 represents the empty conveyor belt

without motion and state #6 represents the conveyor belt holding a product.

Figure 2.3: GBelt

2.1.2 Machine Head Model

This hardware component contains two motors and three sensors. The machine

head can move vertically from its upper rest position to the lower operational po-

sition and vice versa. This motion is supported by two sensors that are positioned

in the upper and lower position, respectively. In addition, the machine head can

turn to three diffident positions, each position according to the individual opera-

tion of the corresponding machine tool. The arrival of a tool at the center position

is detected by a sensor. In summary the machine head provides a vertical and

a rotational motion. We present automata models for both motions as shown in

Figure 2.4 and 2.5. Hereby, Gvertical in Figure 2.4 represents the vertical motion

and Grotation in Figure 2.5 represents the rotational motion.

16

Figure 2.4: Gvertical

Figure 2.5: Grotation

The related events are explained in Table 2.2.

Table 2.2: Machine head events

EVENTS NAMES DESCRIPTION STATUS

ma pm+ motor on and moves (up-down) C

ma ps+ machine head arrives at upper position unC

ma poff motor off (stop) C

ma pm- motor on and moves (down-up) C

ma ps- machine head arrives at lower position unC

ma-A SW turns to position (operation A) C

ma-B SW turns to position (operation B) C

ma-C SW turns to position (operation C) C

ma tcw turns the head (clockwise) C

ma tccw turns the head (counter clockwise) C

ma toff switch off (stop) C

ma trd acknowledgment of finish C

2.1.3 Machine Tool Model

Since the RMT comprises several machine tools, it can realize more than one

operation. The operation of each tool requires the rotation of the respective

tool that is performed by a motor. Since our RMT has three machine tools,

it can operate in three different configurations that are described as A, B, C,

17

whereby the active configuration depends on the rotational position of the machine

head. In each configuration, the same operation is performed in order to run the

respective machine tool. This operation is modeled by the automation Gprocess in

Figure 2.6. When start of operation is requested with the event ma start SW, the

operation of the machine tool is initiated (ma on). If the completion of processing

is acknowledged (ma ack), the machine tool stops its operation (ma off). The

events of this operational sequence are summarized in Table 2.3.

Figure 2.6: Gprocess

Table 2.3: Machine tools events

EVENTS NAMES DESCRIPTION STATUS

ma start SW start the operation C

ma mon switch motor on C

ma mack finish the operation unC

ma moff switch motor off unC

2.1.4 Uncontrolled RMT Model

The overall uncontrolled model of the RMT is computed as the synchronous com-

position of all components that introduced before: GBelt, Gvertical, Grotation, and

Gprocess. We write GRMT and compute

GRMT = GBelt||Gvertical||Grotation||Gprocess (2.1)

Since this automaton is too big for representation in this thesis, we only provide

the basic statistics. GRMT has 4680 states, 27 events, and 20376 transitions. Fur-

thermore, to achieve the desired behavior of the RMT, a supervisor should be

computed and this supervisor will depend on the desired specification as intro-

duced next.

18

2.1.5 RMT Supervisor

The basic desired operation of the RMT can be verbally described as follows.

If a product enters the RMT, it can be processed by one of the machine tools

and then leave the RMT after processing is finished. At the same time, certain

safety specifications should be obeyed such as not moving the conveyor belt during

processing. We next formulate the RMT behavior specification as the composition

of multiple small component specifications, each of which will realize one part of

the overall task. These specifications are modeled by seven finite state automata

denoted as Ci with i = 1, ..., 7. Then, the overall specification CRMT is the

synchronous composition of all the small specification automata:

CRMT = ‖7i=1Ci (2.2)

The specifications are listed as follows:

• When the conveyor belt is moving, then the machine head should be standing

in the upper position and all machine tools should be non-operational. The

corresponding specification automaton C1 is shown in Figure 2.7 (a).

• Only if there is a product on the conveyor belt, then the machine head is

allowed to move to the lower position. The corresponding specification au-

tomaton C2 is shown in Figure 2.7 (c).

• Whenever the machine head moves from the upper position to the lower

position a tool must operate. The conveyor belt must not move while the

machine head is not in the upper position. The corresponding specification

automation C3 is shown in Figure 2.7 (b).

• The machine head should not move while a machine tool is operating. The

corresponding specification automaton C4 is shown in Figure 2.7 (d).

• When the machine head is turning, the conveyor belt should not move. The

corresponding specification automaton C5 is shown in Figure 2.7 (e).

• The machine head is allowed to turn if the conveyor belt is empty and does

not move. The corresponding specification automaton C6 is shown in Fig-

ure 2.7 (f).

19

• If any operation is requested, then the machine tool start to operate and only

after the operation is finished, the machine head can be allowed to move to

the upper position. The corresponding specification automaton C7 is shown

in Figure 2.7 (g).

Finally, the computation of the RMT supervisor SRMT can be done by applying

the SupCon algorithm, for the plant GRMT and the uncontrollable events Σu such

that

Lm(SRMT) = SupC(CRMT , L(GRMT),Σu) (2.3)

The computed supervisor has 78 states and is nonblocking according to Section

1.4. In the next step, it is possible to determine an abstraction of SRMT as de-

scribed in Section 1.6. This also can be done by applying the natural projection to

the correct shared events Σ̂ = {R-ma SW, ma-R SW, L-ma SW, ma-L SW, ma start SW,

ma-A SW, ma-B SW, ma-C SW} with the neighboring components. The resulting ab-

stracted automaton is shown in Figure 2.8.

It can be verified that the natural projection is a natural observer and locally

control consistent for SRMT and Σu. That is, the abstracted automaton ŜRMT in

Figure 2.8 can be used for a further supervisor design for the RMT and will lead

to a nonblocking and maximally permissive result according to Section 1.6.

2.2 RECONFIGURATION CONTROL FOR THE RMT

As we presented in the previous section, the RMT contains three different machine

tools, that can perform three different operations. In a reconfigurable manufac-

turing system, usually one of the tools will be used in a single configuration and

changes between tools are required whenever a different configuration is requested.

Hence, we now determine a reconfiguration supervisor RRMT for the RMT with

the following objectives:

• RRMT handles changes between configurations internally.

• To the outside, RRMT always performs the same operation. The first two

objectives will help reducing the state size of RRMT .

• RRMT is composed of one modular component for each configuration. This

objective will help adding new configurations if required.

20

(a) (b)

(c)

(d) (e)

(f)

(g)

Figure 2.7: Specification automata: (a) C1, (b) C3, (c) C2, (d) C4, (e) C5, (f) C6,

(g) C7

21

Figure 2.8: Abstraction ŜRMT of the RMT.

Consider the high level supervisor for the RMT ŜRMT as computed in the previous

section. We use this supervisor as the plant model for the further RMT supervisor

design.

In general, we use the notation G = (X,Σ, δ, x0, Xm) for the plant automaton

and identify G = ŜRMT for the further discussion. In addition, we use the set of

uncontrollable events Σu and denote different configurations of the RMT by a set

of configurations C = {1, ...,m}. That is, each individual configuration can be

denoted by j s.t. j ∈ C. We introduce the start state for each configuration by

xj
st, whereby configuration j should start its operation from xj

st. Next, we divide

each reconfiguration process into three parts as shown in Figure 2.9.

Our reconfiguration process for each configuration j ∈ C consists of the active

operation of j, the completion of j and the inactive state of j whenever another

configuration is active. In order to change between the three parts of each config-

uration, we introduce reconfiguration events for each configuration j as follows:

• Reconfiguration request event jreq: this event can happen if another config-

uration is active and the activation of configuration j is requested. We write

Σreq =
⋃

j∈C jreq.

• Reconfiguration finish event jfin: this event happens if the operation of

22

jreq kfin

jst

kreq jfin

kst

Figure 2.9: Reconfiguration process.

Figure 2.10: Configuration supervisor Sact.

configuration j is completed after another configuration was requested. We

write Σfin =
⋃

j∈C jfin.

• Reconfiguration start event jst: this event happens if the operation of con-

figuration j can start. We write Σst =
⋃

j∈C jst.

The set of all events is then Σrec = Σ
⋃

Σreq

⋃

Σst

⋃

Σfin. Using the notation

introduced above, we compute the modular reconfiguration supervisor Rj
RMT =

(Z j,Σrec, νj, zj0, Z
j
m), for each j ∈ C. First, we determine a supervisor for the

active operation of each configuration. We denote this supervisor as Sact =

(Qact,Σ, αact, qact0 , Qact
m). It is important to note that we determine Sact such that it

is identical for each configuration as discussed in Section 2.1. Sact for our example

RMT is shown in Figure 2.10.

23

The modular reconfiguration supervisor Rj
RMT will follow Sact if configuration

j is active. In addition to Sact, each modular reconfiguration supervisor Rj
RMT

will contain the plant automaton G and one copy of the plant automaton G′ =

(X ′,Σ, δ′,−,−). Rj
RMT will follow these copies if the configuration becomes in-

active. Finally, we introduce start automata for the start of each configuration

j ∈ C. The automaton F j,k = (V j,k,Σ, ξj,k, vj,k0 , V j,k
m). s.t. j ∈ C and k ∈ C \ {j}

moves the plant to the start state xj
st of configuration j whenever configuration k

is completed.

Based on the notation introduced above, it is now possible to formulate an algo-

rithm that computes the modular reconfiguration supervisor Rj
RMT .

NEW ALGORITHM

We compute the modular reconfiguration supervisor Rj
RMT = (Z j,Σrec, νj, zj0, Z

j
m),

for each configuration j ∈ C and j = 1, ...,m.

• Input: plant automaton G = (X,Σ, δ, x0, Xm), copy of plant automaton

G′ = (X ′,Σ, δ′,−,−), supervisor automaton Sj = (Qj,Σ, αj, qj0, Q
j
m), and

start configuration automaton F j,k = (V j,k,Σ, ξj,k, vj,k0 , V j,k
m).

Z j = Qjf
⋃

X
⋃

X ′
⋃

V j,k (2.4)

Z j
m = Qj

m

⋃

Xm

⋃

V j,k
m (2.5)

zj0 = qj0 for j = 1 otherwise zj0 = x1
st (2.6)

For each q ∈ Qj and σ ∈ Σ

αj(q, σ)! → νj(q, σ) = αj(q, σ) (2.7)

For each q ∈ Qj and σ ∈ Σreq \ {jreq}

νj(q, σ) = q (2.8)

For each x ∈ X and σ ∈ Σ

δ(x, σ)! → νj(x, σ) = δ(x, σ) (2.9)

For each x′ ∈ X ′ and σ ∈ Σ

δ′(x′, σ)! → νj(x′, σ) = δ′(x′, σ) (2.10)

24

For each q ∈ Qj s.t. q = qj0 ,σ = jfin and x = x1
st ∈ X

νj(q, σ) = x (2.11)

For each x ∈ X , x′ ∈ X ′ and σ ∈ Σreq when j = 1

νj(x, σ) = x′ (2.12)

For each x′ ∈ X ′ with j 6= 1 and σ ∈ Σfin \ {jfin}

νj(x′, σ) = vj,k0 (2.13)

For each v ∈ V j,k and σ ∈ Σ

ξj,k(v, σ)! → νj(v, σ) = ξj,k(v, σ) (2.14)

For v ∈ V j,k
m and σ = jst

νj(v, σ) = zj0 (2.15)

In words, the function of the reconfiguration supervisor Rj
RMT can be summarized

by ”Perform the task of configuration j if it is active and switch to another con-

figuration if it requested after completing the active configuration j”. Each part

of the reconfiguration supervisor will take care of one of the described tasks. The

supervisor Sact is used when the configuration j ∈ C is active. If another con-

figurations is requested, Rj
RMT keeps following Sact until the configuration finish

event jfin occurs. Then, it moves to the plant automaton G and follows it until

configuration j is requested again with jreq. In that case, Rj
RMT switches to the

copy of the plant G′ and follows this copy until a state is reached where the cur-

rently active configuration k is completed. Then, it is only required to move to

the configuration start state xj
st in order to start configuration j, which is per-

formed by the automaton F j,k. After F j,k completes its operation, configuration

j is started with jst and Rj
RMT moves to Sact. The basic procedure is shown in

Figure 2.11.

The result of the above computation is one modular reconfiguration supervisor

Rj
RMT for each configuration j ∈ C. The overall reconfiguration supervisor of the

RMT is hence given by the synchronous composition of these modular reconfigu-

ration supervisors as

RRMT = ||j∈CR
j
RMT . (2.16)

25

Supervisor
automata

(S)

Plant automata
(G)

Plant copy
automata
(G-prime)

Configuration start
automata

(F)

J_fin J_req

Other_req

Other_finJ_st

Figure 2.11: Reconfiguration overview

The resulting reconfiguration supervisors RA
RmT and RB

RmT are shown in Fig-

ure 2.12 and 2.13.

Furthermore, we recall the notation of the abstraction-based control and abstract

the result of our composition. The high level supervisor is found identical to the

RMT operation in each configuration in Figure 2.10 with only two states. That

is, our RMT supervisor can be conveniently used for a further design.

26

Figure 2.12: RA
RMT

27

Figure 2.13: RB
RMT

28

CHAPTER III

ABSTRACTION-BASED RECONFIGURATION CONTROL FOR

RECONFIGURABLE MANUFACTURING SYSTEMS (RMS)

In these days, we know that the manufacturing industry can be impacted by

the customers and market demands. The requirement to produce a large variety

products in a short time at a reasonable cost, drive these industries to invent

and develop new technologies. Reconfigurable manufacturing systems (RMS) are

targeted to enable these manufacturers to improve the capacity and the quality

of production, and produce a large variety products with less cost and time.

The concept of reconfiguration can be defined as how to produce different products

and product types with the same machine components of a manufacturing systems.

In this context, reconfiguration control is needed to change the active operation

of the system.

In this thesis, we develop the idea of the reconfiguration control for large-scale

RMS. This idea is based on the modular controller design which is possible since

RMS are usually composed of multiple components including RMTs.

The design of reconfiguration control is subject to the following requirements:

• In each configuration, the desired behavior for the mode of operation should

be achieved.

• If a new configuration is requested, then the switching to the requested

configuration should be performed as fast as possible.

• The design should be capable to handle large scale systems.

In this chapter, we introduce a new approach for the design of reconfiguration

supervisors that is based on the computation of modular configuration supervisors

and state attraction supervisors (used to complete each active configuration). We

29

develop the different steps of the computation using an illustrative example that

is described in Section 3.1. Then, we explain the supervisor computation first

for a single RMS module in Section 3.2. Then, we show how abstraction-based

supervisory control can be used in order to achieve nonblocking control for large-

scale RMS in Section 3.3. The presented results are obtained based on the previous

results in [9, 16, 21, 24, 23]

3.1 ILLUSTRATIVE EXAMPLE SYSTEM

3.1.1 Example Overview

Our RMS example system consists of different manufacturing components as

shown in Figure 3.1. We first introduce the models of these components sepa-

rately, and then we separate the RMT into two modules.

Config_1 : yellow arrow

Config_2 : blue arrow

Module_2

Module_1

Ma2 Rt1 Sf1Ma4 Rt2Ma3

Ma1

Exit1

Exit2

Figure 3.1: Overview RMS example

The components of the example RMS are

• One stack feeder SF1

• Two rotary tables RT1 and RT2

• Two RMTs MA2 and MA3

• Two single production machines MA1 and MA4

30

We consider two configurations of the RMS that are described as follows.

Configuration (1):

Products enter the system from SF1 and are transported to MA1 for processing by

the rotary table RT1. Then, products are moved back to RT1 and are transported

to MA2 for processing. From MA2, products are transported to RT2 and to MA3.

Processing is performed by MA3 and then products are moved out by RT2.

Configuration (2):

Products enter from SF1 and are moved to RT1 and then MA2 for processing.

Then, products are moved back by RT1 and MA1. After processing in MA1, the

products are transport out of the RMS from MA1.

Since the RMS consists of multiple manufacturing components, we divide the

overall system into two modules. These modules are described in the sequel.

3.1.2 Module 1

We consider the subpart of the RMS in Figure 3.2 as module 1. This module

consists of one stack feeder (SF1), one rotary table (RT1), one RMT denoted by

(MA2), and one single production machine (MA1). The exits slides Exit1 and

Exit2 symbolize the output of products from the considered module. We next

Rt1 Sf1Ma2

Ma1

Exit2

Exit1

Config_1 : yellow arrow

Config_2 : blue arrow

Figure 3.2: Module 1: picture of the physical system (left) and schematic (right)

model all of the system components by automata and then compute the overall

model of the module by the synchronous composition of its components models.

31

Stack Feader (SF1)

Products can enter the system by SF1. The stack feeder moves unprocessed

products to the neighbor component which is RT1 in our example. This hardware

component shown in Figure 3.3 consist of many parts. First, a stack feeder tower

holding products. Second, a conveyor belt with a block to push products and

move them to the neighbor. Third, a magnetic sensor to detect the position of

the block, and a motor that turns the belt. Table 3.1 shows the explanations for

all events that are used for modeling of SF1.

Figure 3.3: Picture of the stack feeder (left) and rotary table (right)

Table 3.1: Stack feader events

EVENTS NAMES DESCRIPTION STATUS

sf1-rt1 SW move products (SF1 to RT1) C

sf1 fdon SF on C

sf1 fdoff SF off C

sf1 fdhome SF in home position unC

sf1 wpar sensor detects products arrives unC

sf1 wplv sensor detects products leaves unC

sf1 lvtort1 products leaves to (RT1) unC

rt1 lvtosf1 products leaves to (SF1) unC

The plant behavior of SF1 is modeled by the automaton GSF1 in Figure 3.4 and

an abstraction of this DES plant is computed according to Section 1.6. Hereby,

set of shared events include the event (sf1-rt1 SW), because this event is the only

32

shared event between SF1 and its neighbor RT1. The resulting abstraction Ghigh
SF1

is shown in Figure 3.5.

Figure 3.4: GSF1

Figure 3.5: Ghigh
SF1

Rotary Table (RT1)

Figure 3.3 shows the picture of the actual rotary table. It can rotate in two direc-

tions, either clockwise or counter clockwise, and stop at a horizontal or vertical

position. Accordingly, RT1 can receive and deliver products in four directions that

are UP, DOWN, LEFT, RIGHT. From the Figure of the RMS example we can

notice that RT1 is located between three components, SF1 from the right, MA2

from the left, and MA1 in the upper position. We denote the plant automaton for

RT1 as GRT1. Since this automaton contains a large number of states, (38 states,

22 events, and 50 transitions), we only show the high level automaton that will

be used in the overall plant of the RMS. In Table 3.2, all events that describe

the behavior of RT1 are listed, and the abstracted automaton Ghigh
RT1 is depicted in

Figure 3.3.

33

Figure 3.6: Ghigh
RT1

Table 3.2: Rotary table events

EVENTS NAMES DESCRIPTION STATUS

sf1-rt1 SW move products (SF1 to RT1) C

rt1-sf1 SW move products (RT1 to SF1) C

ma2-rt1 SW move products (MA2 to RT1) C

rt1-ma2 SW move products (RT1 to MA2) C

ma1-rt1 SW move products (MA1 to RT1) C

rt1-ma1 SW move products (RT1 to MA1) C

ns-rt1 SW move products (NS to RT1) C

rt1-ns SW move products (RT1 to NS) C

rt1 rcw turns RT1 (clockwise) C

rt1- rccw turns RT1 (counter clockwise) C

34

Manufacturing Production Machine (MA1)

The production machine contains conveyor belt, machine head, and one single ma-

chine tool. For this reason, the components models and the overall model of MA1

is almost the same as the overall model for the RMT as discussed in section 2.1.

The only difference is that there is no rotation movement, because there is just

one machine tool. The overall model for the MA1is equal to the parallel compo-

sition of these components models, denoted by GMA1 = GBelt||Gvertical||Gprocess,

as introduced before. GMA1 is shown in Figure 3.7, and its abstraction Ghigh
MA1 is

depicted in Figure 3.8. Hereby, all related events are summarized in Table 3.3.

MA1 is located between RT1 and CO15.

Figure 3.7: GMA1

Figure 3.8: Ghigh
MA1

Reconfigurable Machine Tool RMT (MA2)

In section 2.1, we introduced the general model of the RMT. The same model is

used here with the neighbor components RT1 at the right position and RT2 at

the left. The plant automaton Ghigh
MA2 is shown in in Figure 3.9.

The overall plant model for the RMS is denoted as GRMS1 and is computed as the

synchronous composition of SF1, RT1, MA1, and MA2. The result is too big to

35

Table 3.3: Production machine events

EVENTS NAMES DESCRIPTION STATUS

rt1-ma1 SW move products (RT1 to MA1) C

ma1-rt1 SW move products (MA1 to RT1) C

co15-ma1 SW move products (CO15 to MA1) C

ma1-co15 SW move products (MA1 to CO15) C

ma1 start SW start the operation of (MA1) C

Figure 3.9: Ghigh
MA2

be shown, (48 states, 19 events, and 312 transition).

GRMS1 = Ghigh
SF1 ||G

high
RT1||G

high
MA1||G

high
MA2 (3.1)

3.1.3 Module 2

Module 2 consists of the remaining components of our example RMS as can be

seen in Figure 3.10. It comprises one rotary table (RT2), one RMT (MA3), and

one single production machine (MA4).

Rt2Ma3Ma4

Config_1 : yellow arrow Module_2

Figure 3.10: Schematic of module 2

36

Rotary Table (RT2)

The automaton for modeling RT2 is the same as we discussed before for RT1,

with different neighbor components. Figure 3.11 shows this automaton.

Figure 3.11: Ghigh
RT2

Reconfigurable Machine Tool RMT (MA3)

As in section 2.1, the same model is used for the RMT only with different neighbor

components. The plant automaton Ghigh
MA3 is shown in Figure 3.12.

Figure 3.12: Ghigh
MA3

Single Production Machine (MA4)

The automaton Ghigh
MA4 is shown in Figure 3.13. The neighbors are MA3 from the

right position and L in the left position

The overall plant model for module 2 is denoted as GRMS2 and is computed as

the synchronous composition of RT2, MA3, and MA4. The result is too big to be

37

Figure 3.13: Ghigh
MA4

shown, (48 states, 19 events, and 300 transition).

GRMS2 = Ghigh
RT2||G

high
MA3||G

high
MA4 (3.2)

3.2 RECONFIGURATION CONTROL FOR RMS WITH ONE

MODULE

3.2.1 Reconfiguration control For RMS module 1

As described before, we consider two configurations of the RMS. In the first config-

uration, products can enter the system from SF1, move to RT1 then to MA1. After

processing in MA1, products move through RT1 to MA2, are processed in MA2

and then transported out of the system. In the second configuration, products can

enter the system from SF1, move to processing in MA2 via RT1. Products then

move back through RT1 to MA1 and leave the system after processing at MA1.

The specification for each individual configuration can given as: specification1

for configuration1 will be equal to the synchronous composition of three small

specifications shown in Figure 3.14, s.t. specification1 = C1,con1||C2,con1||C3,con1.

The component automata for specification2 for configuration2 are shown in

Figure 3.15 such that

specification2 = C1,con2||C2,con2||C3,con2 (3.3)

Now, according to the classical supervisory control theory, the supervisor for each

configuration with each related specification can be computed to achieve the de-

sired operation. We obtain supervisorcon1 and supervisorcon2 such that

Lm(supervisorcon1) = SupC(Lm(specification1), GRMS1,Σu) (3.4)

38

Figure 3.14: Specification 1

and

Lm(supervisorcon2) = SupC(Lm(specification2), GRMS1,Σu) (3.5)

The resulting automata are depicted in Figure 3.2.1. Until here, we presented the

plant, the specifications, and the supervisors that represent the desired operation

for each configuration. In the next step, we address the reconfiguration problem

and how to design the reconfiguration supervisors for a single module of the RMS.

In order to change between configurations, we suggest to first complete the cur-

rently active configuration before starting a new configuration. This task is ac-

complished by computing a supervisor for state attraction (see Section 1.5) that

moves the system back to its initial state. The supervisors for state attraction

are too big to shown for module 1, we introduce the supervisor attractor for the

second configuration as in Figure 3.17.

Next, we combine the supervisor for the desired operation of each configuration

and the completion of the configuration. Hereby, we use events conf1req/conf2req

that happen if configuration 1/2 is requested, conf1fin/conf2fin which happen if

configuration 1/2 is completed and conf1st/conf2st that happen if configuration

1/2 are started. The supervisor and state attractor are connected with these

events as shown for the reconfiguration process is in Figure 3.18 and an example,

the reconfiguration supervisor 1 in Figure 3.19.

That is, the reconfiguration supervisor moves from the supervisor part to the state

39

Figure 3.15: Specification 2

attractor part with the event conf1req. This means that in the active configuration

2, configuration 1 is requested. That is configuration 2 has to be completed

by moving to the initial state using the state attractor. After the initial state

is reached, the event conf2fin happens, which indicates that the configuration

2 is completed. This event leads to a waiting state, where configuration 2 is

inactive and waits to be activated. Activation is performed when the event conf2st

happens. In this case, the operation of configuration 2 starts again. Finally, the

statistics for the results are illustrated as in Table 3.4.

Table 3.4: Module 1 supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

supervisorcon1 21 16 33

supervisorcon2 19 16 29

Rcon1 43 22 110

Rcon2 39 22 100

3.2.2 General Formulation of the Reconfiguration Prob-

lem

Modular Reconfiguration Supervisors

We formalize the reconfiguration problem according to the previous discussion.

We consider that the RMS is composed of n modules For each module, we intro-

40

Figure 3.16: Supervisor for configuration 1 (left) and configuration 2 (right)

41

Figure 3.17: Attractor supervisor for configuration 2

42

Supervisor
automata

(S)

Attractor
automata

(T)

Waiting
state
(W)

J_req K_fin

K_st

Supervisor
automata

(S)

Attractor
automata

(T)

Waiting
state
(W)

K_req J_fin

J_st

Figure 3.18: Reconfiguration supervisor process

duce a plant automaton Gi and uncontrollable events Σu,i for i = 1, . . . , n. We

want to realize a set of m configurations C = {1, . . . ,m}, whereby each config-

uration j ∈ C comprises component specifications Kj
i ⊆ Lm(Gi), i = 1, . . . , n,

and a global specification K̂j ⊆ (Σ̂j)⋆. Each configuration j ∈ C is realized by

supervisor components Sj
i = (Qj

i ,Σi, ν
j
i , q

j
0,i, Q

j
m,i) for i = 1, . . . , n . In order

to model the reconfiguration, we introduce a reconfiguration request event jreq,

a reconfiguration finish event jfin and a reconfiguration start event jst for each

j ∈ C. We write Σreq =
⋃

j∈C{jreq}, Σfin =
⋃

j∈C{jfin}, Σst =
⋃

j∈C{jst} and

Σrec
i = Σi ∪ Σreq ∪ Σfin ∪ Σst.

Using the introduced notation, we compute the reconfiguration supervisors Rj
i =

(Zj
i ,Σ

rec, αj
i , z

j
0,i, Z

j
m,i) for each module i = 1, . . . , n and each configuration j ∈ C.

We have Qj
i a states set for all Sj

i , assume that automata T j
i = (Qj

i ,Σ, ω
j
i ,−,−) ⊑

Sj
i are computed such that {qj0,i} is a strong attractor forQ

j. This means that T j
i is

a state attractor for module i and configuration j that completes the configuration

by moving to the initial state. The construction of the reconfiguration supervisor

for module i and configuration j is now done as described for module 1 in the

previous section. The exact computation rules are given as follows.

Zj
i = Qj

i ∪ {q′|q ∈ Qj
i} ∪ {W} (3.6)

Zj
m = Qj

m ∪ {W} (3.7)

zj0,i = qj0,i if j = 1 and zj0,i = W otherwise (3.8)

43

Figure 3.19: Reconfiguration supervisor for configuration 1

44

For each q ∈ Qj
i and σ ∈ Σ

νj
i (q, σ)! ⇒ αj

i (q, σ) = νj
i (q, σ) (3.9)

ωj
i (q, σ)! ⇒ αj

i (q
′, σ) = q̃′ for ωj

i (q, σ) = q̃ (3.10)

For each q ∈ Qj
i and σ ∈ Σreq \ {jreq}

αj
i (q, σ) = q′ (3.11)

For each σ ∈ Σrec \ {jst}

αj
i (W, σ) = W (3.12)

αj
i (W, jst) = qj0,i and αj

i (q
j′
0,i, jfin) = W (3.13)

This means, that the request event can happen from each state of the supervisor

states Qj
i , leading to the corresponding state in the supervisor for state attraction

T j
i . After the active configuration is finished, the finish event jfin occurs and

leads the reconfiguration supervisor Rj
i to the waiting state W . From there, a

transition with the start event jst starts the configuration from the initial state of

the supervisor Sj
i .

For our example, we have the automata Rconf1
1 and Rconf2

1 for the two configura-

tions conf1 and conf2. These reconfiguration supervisors are big automatons to

shown here.

Reconfiguration Coordinator Automata

In order to enforce the change between configurations, we introduce the coor-

dination automaton P j = (V j,Σrec, ξj , vj0, V
j
m) for each j ∈ C. This automaton

performs the sequence of events jreq → jfin → jst that are necessary in a recon-

figuration. The automaton P j for configuration j ∈ C is constructed with the

following rules:

V j = {1, 2, 3} and vj0 = 1 and V j
m = {1} (3.14)

ξj(1, jreq) = 2 and ξj(1, σ) = 1 for all σ ∈ Σrec \ {1req} (3.15)

ξj(2, kfin) = 3, k ∈ C \ {j} and ξj(2, σ) = 2, σ ∈ Σrec \ Σfin (3.16)

ξj(3, jst) = 1 (3.17)

45

In words, this automaton is constructed with three states, and the transitions

between these state are

• from state 1 to state 2 there is a transition with the request event jreq and

there are selfloop transitions with all other events in state 1. That is, P j
i is

able to follow any configuration in state 1 until a request for configuration

j happens.

• from state 2 to state 3, there is a transition with the finish event kfin ∈

Σfin \ {jfin} and there are selfloops with all events in state 2. That is, P j
i

is able to wait in state 2 until any other configuration k is completed and

then execute the finish event kfin

• from state 3, there is only a transition with the start event jst. That is,

configuration j starts after the previous configuration is finished.

As an example, the coordination automaton P conf1 for configuration 1 of our

example system is shown in Figure 3.20.

3.2.3 Reconfiguration Control for Module 2

We use the plant model of module 2 as we introduced before. The realization

of the desired behavior for each configuration, can be done by following a safety

specification and computing the relevant configuration supervisors. Here, we in-

troduce the specifications for this module and for each configuration. We consider

C1
2 for configuration (1) and C2

2 for configuration (2).

In configuration 1, the product enters from (MA2) to (RT2) in the second mod-

ule, is processed in MA3 and then moves back to (RT2) and delivered to the

outside. For configuration 2, C2
2 is an empty automaton because module 2 does

not participate in configuration 2. We can see all the specification automata in

Figure 3.21 and Figure 3.22. Here, S1
2 and S2

2 for module 2 can be determined

using the SupCon algorithm for the plant and the related specifications of our

configurations. The automaton of S2
2 is depicted in Figure 3.23, and satisfies that

Lm(S
1
2) = SupC(Lm(C

1
2), GRMS2,Σu) and Lm(S

2
2) = SupC(Lm(C

2
2), GRMS2,Σu).

Now, the computation of the reconfiguration supervisor for module 2 is performed

using the method in section 3.2.2. The statistics for the resulting supervisors are

46

Figure 3.20: Automatoa of P conf1

47

Figure 3.21: Specification of configuration 1

Figure 3.22: Specification of configuration 2

given in Table 3.5. The automata for the reconfiguration supervisors, are shown

in Figure 3.24 and Figure 3.25

Table 3.5: Module 2 supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

supervisorcon1 7 16 7

supervisorcon2 11 6 0

Rcon1 15 22 44

Rcon2 3 22 24

3.3 RECONFIGURATION CONTROL WITH HIERARCHICAL

ABSTRACTION

3.3.1 Description of Abstraction-Based Control

In the previous section, the computation of modular reconfiguration supervi-

sors for each RMS module is described. We next address the computation of

abstraction-based supervisors that coordinate the operation of the different mod-

48

Figure 3.23: Module 2 supervisors

Figure 3.24: Module 2 Rcon1

ules. The basis for this computation are the previously determined supervisors

for the first module S1
1 and S2

1 and for the second module S1
2 and S2

2 .

Using the method in section 1.6, we first compute an abstraction-based supervisor

Ŝ1 (low-level models S1
1 and S1

2) for configuration 1 and Ŝ2 (low-level models S2
1

and S2
2) for configuration 2. The resulting automata are shown in Figure 3.26.

As the next step, we compute the reconfiguration supervisors for the abstraction-

based supervisors. To this end, we need state attraction supervisors in order to

complete each active configuration. The state attraction supervisors for configu-

ration 1 and configuration 2 are shown in Figure 3.27.

However, we now note that the abstraction-based approach requires a modifica-

tion of the state attraction supervisors. The reason is that state attraction only

needs to be achieved in the high level, whereas the low-level supervisors will follow

the operation of the high level-supervisor. That is, we propose to use a modified

state attraction supervisor in the low level, whereby all transitions with events

that are shared with the high-level supervisor are preserved when computing the

supervisor for state attraction. This idea is illustrated comparing the supervisors

49

Figure 3.25: Module 2 Rcon2

for state attraction in Figure 3.27 and 3.28. Although the transitions with event

sf-rt1 SW in Figure 3.28 are removed when computing the state attraction super-

visor in Figure 3.28, there are preserved in the modified state attraction supervisor

since sf-rt1 SW is considered as a shared event. The same idea is applied to all

transitions that appear in Figure 3.28 but not in Figure 3.27.

Finally, the automata for the computed high level reconfiguration supervisors are

in Figure 3.29. Note that these reconfiguration supervisors are constructed from

the supervisors automata and the modified state attraction supervisors.

50

Figure 3.26: High level supervisors

Figure 3.27: State attraction supervisors for the high-level supervisors

Figure 3.28: Modified state attraction supervisors

51

Figure 3.29: High level reconfiguration supervisor 1 and 2

3.3.2 Formalization of the Reconfiguration Problem

We use the same notation as before. In addition, we assume that the realization

of any configuration j ∈ C can be done by abstraction-based supervisors, such

that Sj
i = (Qj

i ,Σi, ν
j
i , q

j
0,i, Q

j
m,i) are the component supervisors as in Section 3.2.2

and Ŝj = (Q̂j, Σ̂j , ν̂j, qj0, Q
j
m) for the high-level supervisors for i = 1, . . . , n. In

order to achieve a nonblocking supervisors for each configuration j ∈ C, presented

as (||ni=1S
j
i)||Ŝ

j||G ⊆ (||ni=1K
j
i)||K̂

j, we suppose that the natural projections pji :

Σ⋆
i → (Σi ∩ Σ̂j)⋆ are natural observers.

We compute a modular reconfiguration supervisors Rj
i = (Zj

i ,Σ
rec
i , αj

i , z
j
0,i, Z

j
m,i)

as described in Section 3.2.2 with the modification that the transitions with

shared events are added in the supervisors for state attraction T j
i . In addi-

tion, we compute the abstraction-based modular reconfiguration supervisor R̂j =

(Ẑj , Σ̂j,rec, α̂j , ẑj0, Ẑ
j
m) for each configuration j ∈ C using the computation in Sec-

tion 3.2.2.

The overall reconfiguration supervisor is then given as the synchronous composi-

52

tion of all the modular reconfiguration supervisors

Supervisorrec = ||j∈C
(

(||ni=1R
j
i)||R̂

j||P j
)

. (3.18)

It has to be noted that all supervisors are computed with polynomial complexity.

3.3.3 Overall Example System

We summarize the previously obtained results for configuration 1 and 2 of the

example RMS. The computed modular reconfiguration supervisors and the high

level supervisors are denoted as R1
1, R

2
1, R

1
2, R

2
2, and R̂1, R̂2. The related statistics

are listed in Table 3.6.

Table 3.6: Reconfiguration supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

R1
1 43 22 110

R2
1 39 22 100

R1
2 15 25 47

R2
2 3 25 27

R̂1 13 14 35

R̂2 7 14 24

We also note that the coordination automata P 1 and P 2 were computed before

in section 3.2.2.

3.4 SUMMARY

The abstraction-based reconfiguration control is useful to deal with large-scale

RMS with many components. Our new method allows the design of reconfigura-

tion supervisors such that

• the active configuration is completed before starting a new configuration,

• a new configuration can be requested at any time

53

• the new configuration becomes active after a bounded number of event oc-

currences

We further note an important fact of our design. The modular reconfiguration

supervisors on the low level and on the high level have the same structure. As a

result, it is possible to apply the described method not only for hierarchies with

two levels but for hierarchies with an arbitrary number of levels. An example of

reconfiguration control with 4 levels is given in the next chapter.

54

CHAPTER IV

APPLICATION EXAMPLE OF OVERALL RMS

In this chapter, we apply the method we presented in chapter II and III to a part

of a large-scale RMS example that is available at the Department of Mechatronics

Engineering, Çankaya University. The picture of the RMS components is depicted

in Figure 4.1. This application example of an RMS, consists of 18 different com-

ponents, such that it is necessary to divide the RMS into several modules and

apply the abstraction-based design in order to reduce the design complexity.

This RMS example consist of

• One stack feeder: SF1,

• One exit slide: RC,

• Four rotary tables: RT1, RT2, RT6, and RT7,

• Three conveyor belts: CO3, CO15, and CO16,

• Two rail transport systems: RTS1 and RTS2,

• Four single production machines: MA1, MA4, MA9 and MA11,

• Three RMTs: MA2, MA3 and MA10.

Before introducing the RMS modules, we first present the models of the RMS

components in the form of automata. Hereby, the models of the rotary tables,

conveyor belts, stack feeder single production machines and RMTs are analogous

to the models introduced in chapter II and III. Hence, we focus on the models of

the components that were not considered up to now.

55

Figure 4.1: Picture of overall RMS

4.1 MODELS OF NEW RMS COMPONENTS

4.1.1 Rail Transport Systems

A picture of this component of the RMS is shown in Figure 4.2. The rail transport

Figure 4.2: Picture of a rail transport system.

system (RTS) consists of two main parts. A cart that moves on a rail and a

conveyor belt. The cart can stop at different positions, whereas the conveyor belt

can transport products to the upper and lower direction. In the RMS, there are

two different RTS components that are located on the same rail as can be seen in

Figure 4.3.

In the following, we model each RTS component by a finite state automaton that

is composed of one model for the cart and one model of the conveyor belt.

56

Ma1

RTS1

Co16

Ma11 Ma9

Co3

Co15
RTS2

Figure 4.3: RTS components RTS1 and RTS2.

Model Of RTS1

The operation of RTS1 is realized by the composition of the conveyor belt CO15

and the movement of the RTS denoted by MOV1. There are four fixed positions

where RTS1 can stop which are denoted as position 5 to position 2. Position

5 is the initial position of RTS1 on the right-hand side. In each position there

are multiple neighbor components, where the conveyor belt CO15 can move the

products between the RTS1 and its neighbors. Due to this, the RTS1 component

can move and transport products to different places. The plant automaton of

CO15 is denoted as GCO15 and it has 20 states, 25 events, and 37 transitions. The

movement automaton of RTS1 has 28 states, 21 events, and 41 transitions and is

denoted as GMOV1.

Moreover, we recall the concept of the abstraction-based supervisory control and

abstract these models such that we obtain small automata for each of our two

components. We write Ghigh
CO15 and Ghigh

MOV1 for the abstracted models and the

overall model of RTS1 is

GRTS1 = Ghigh
CO15||G

high
MOV1. (4.1)

The abstracted automata for each CO15 and MOV1 are shown in Figure 4.4 and

Figure 4.5. All related events for the RTS1 movement are listed in Table 4.1 and

for events for CO15 are shown in Table 4.2.

Finally, the overall plant result automata for the rail transport system RTS1 has

40 states, 22 events, and 222 transitions.

57

Figure 4.4: Abstracted RTS1

Table 4.1: Rail transport system events RTS1

EVENTS NAMES DESCRIPTION STATUS

rts1 5-4 RTS1 can move from position 5 to 4 C

rts1 4-5 RTS1 can move from position 4 to 5 C

rts1 4-3 RTS1 can move from position 4 to 3 C

rts1 3-4 RTS1 can move from position 3 to 4 C

rts1 3-2 RTS1 can move from position 3 to 2 C

rts1 2-3 RTS1 can move from position 2 to 3 C

rts2 c2off RTS1 stop (motor switch off) C

crash If RTS1 and RTS2 arrives in same position unC

Figure 4.5: Abstracted CO15

58

Table 4.2: Conveyor belt events CO15

EVENTS NAMES DESCRIPTION STATUS

co15-ma1 SW move products from (CO15) to (MA1) C

ma1-co15 SW move products from (MA1) to (CO15) C

co15-ma5 SW move products from (CO15) to (MA5) C

ma5-co15 SW move products from (MA5) to (CO15) C

co15-co3 SW move products from (CO15) to (CO3) C

co3-co15 SW move products from (CO3) to (CO15) C

co15-co8 SW move products from (CO15) to (CO8) C

co8-co15 SW move products from (CO8) to (CO15) C

co15-ma8 SW move products from (CO15) to (MA8) C

ma8-co15 SW move products from (MA8) to (CO15) C

co15-ma9 SW move products from (CO15) to (MA9) C

ma9-co15 SW move products from (MA9) to (CO15) C

co15-rc SW move products from (CO15) to (RC) C

rts2 b2off conveyor belt stop (motor switch off) C

Model Of RTS2

The plant model of the rail transport system RTS2 is analogous to the plant model

of RTS1. The only difference is that the initial position of RTS2 is position 1,

and RTS2 only can stop as positions 1 to 4. The overall plant automaton GRTS2

has has 40 states, 20 events, and 202 transitions and is composed of GCO16 with

18 states, 22 events, and 32 transitions and GMOV2 with 28 states, 20 events, and

45 transitions.

From the abstraction-based supervisory control we have the abstracted automata

for Ghigh
CO16 and Ghigh

MOV2 which are depicted in Figure 4.6 and Figure 4.7. The related

events for the RTS2 movement and for CO16 are listed in Table 4.3 and Table 4.4,

respectively. That is

GRTS2 = Ghigh
CO16||G

high
MOV2 (4.2)

4.1.2 Model Of The Exit Slide

The processed products can leave the RMS through the exit slide. The arrival

of a products inside the exit slide is indicated by a hardware sensor. In fact,

59

Figure 4.6: Abstracted RTS2

Table 4.3: Rail transport system events RTS2

EVENTS NAMES DESCRIPTION STATUS

rts2 1-2 RTS2 can move from position 1 to 2 C

rts2 2-1 RTS2 can move from position 2 to 1 C

rts2 2-3 RTS2 can move from position 2 to 3 C

rts2 3-2 RTS2 can move from position 3 to 2 C

rts2 3-4 RTS2 can move from position 3 to 4 C

rts2 4-3 RTS2 can move from position 4 to 3 C

rts2 c1off RTS2 stop (motor switch off) C

crash If RTS2 and RTS1 arrives in same position unC

Figure 4.7: Abstracted CO16.

60

Table 4.4: Conveyor belt events CO16

EVENTS NAMES DESCRIPTION STATUS

co16-ma11 SW move products from (CO16) to (MA11) C

ma11-co16 SW move products from (MA11) to (CO16) C

co16-ma9 SW move products from (CO16) to (MA9) C

ma9-co16 SW move products from (MA9) to (CO16) C

co16-ma8 SW move products from (CO16) to (MA8) C

ma8-co16 SW move products from (MA8) to (CO16) C

co16-co3 SW move products from (CO16) to (CO3) C

co3-co16 SW move products from (CO3) to (CO16) C

co16-co8 SW move products from (CO16) to (CO8) C

co8-co16 SW move products from (CO8) to (CO16) C

co16-rc SW move products from (CO16) to (RC) C

rts2 b1off conveyor belt stop (motor switch off) C

the component exit slide is represented as the storage or the deposit area for the

products after processing in the system. The picture of the exit slide is shown in

Figure 4.8. In our RMS, products can leave the system from RTS1 or RTS2 to

the exit slide RC with the events (co16-rc SW and co15-rc SW). The automaton

for modeling the exit slide and its high-level abstraction are shown in Figure 4.9.

The related events are illustrated in Table 4.5.

Table 4.5: Exit slide events

EVENTS NAMES DESCRIPTION STATUS

co16-rc SW product move from (CO16) to (RC) C

co15-rc SW product move from (CO15) to (RC) C

rc wpar sensor detects products arrives unC

rc wplv sensor detects products leaves unC

4.2 ABSTRACTION-BASED RECONFIGURATION

SUPERVISORS OF OVERALL RMS

In this section, the method of abstraction-based reconfiguration control is ap-

plied on the large-scale RMS example. We introduce the the models of plants,

specifications, configuration supervisors, and reconfiguration supervisors for the

large-scale RMS example. Figure 4.11 shows the overview of the system.

61

Figure 4.8: Picture of the exit slide

Figure 4.9: Automata models of the exit slide.

62

Ma2 Rt1 Sf1Rt2Ma3Ma4

RC

Co3
Ma1

RTS1

Co15

RTS2

Co16

Ma11

Rt7 Ma10

Ma9

Rt6 Config_1 : yellow arrow

Config_2 : blue arrow

Figure 4.10: RMS overview.

We consider two main configurations for our RMS. These configurations are given

by the product paths in Figure 4.10 and are denoted as configuration 1 and con-

figuration 2 :

• Configuration(1) : in this configuration, products can enter the system from

SF1, move to RT1 and then to MA1. After processing in MA1 products

move back to RT1 and leave to processing in MA2 with the first machine

tool. From MA2, they move to RT2 and to MA3 where processing happens

and they move again to RT2. Then, products move to CO3. When the

products are in CO3, the component RTS2 moves from its initial position

and stops at position 3. RTS2 takes the products from CO3 and transports

them to MA9 in position 2. Products are processed by MA9 and move to

RT6. Furthermore, products leave to RT6 and from there to MA10. After

processing, products finally move through RT7 and MA11 to RTS2 again

and are deposited in the exit slide RC.

• Configuration(2): In this configuration, products also enter from SF1. After

moving to RT1, they move to MA2 and are processed by the second machine

tool of this RMT. Then, products move back to RT1 and are forwarded for

processing in MA1. The component RTS1 then transport products from MA1

in position 5 to MA9 in position 2. There is no processing in MA9, and prod-

ucts directly move through RT6, MA10, and RT7 to MA11. After processing

in MA11, RTS2 transports products to RC.

63

Since the RMS has a large number of components we next divide the RMS into

8 different modules. These modules are shown in Figure 4.11. The description of

the modules is given as follows:

• Module 1 consists of SF1, RT1, MA1, and MA2,

• Module 2 consists of RT2, MA3, and MA4,

• Module 3 consists of CO3,

• Module 4 consists of RTS1, and CO15,

• Module 5 consists of RTS2, and CO16,

• Module 6 consists of MA9,

• Module 7 consists of RT6, MA10, RT7, and MA11,

• Module 8 consists of RC.

Note that the modules are chosen such that always neighboring components that

form functional entities are put into the same module.

21 6543 7

12 3456

12345678

123456

RMS Modules : (1-2-3-4-5-6-7-8)

8

Figure 4.11: Overview of RMS hierarchical modules

We next perform an abstraction-based design of the reconfiguration supervisor

for our RMS in four different levels. The basic strategy of the abstraction-based

design is shown in Figure 4.11 and Figure 4.12. The computation for the different

modules and levels is performed in the sequel.

64

Ma2 Rt1 Sf1Rt2Ma3Ma4

RC

Ma1

RTS1

Co15

RTS2

Co16

Ma11

Ma10

Ma9

Rt6

M3 M1

M2

M4

M8

M5

M6

M7

Figure 4.12: Overview of RMS modules

4.3 RMS MODULE 1

The supervisor design for this module is already described in section 3.2.1. The

structure of the design is shown in Figure 4.13. The plant for this module can be

written as

G1 = Ghigh
SF1 ||G

high
RT1||G

high
MA1||G

high
MA2 (4.3)

Module 1

RT1 MA1SF1 MA2

Figure 4.13: RMS module 1

The overall plant automaton G1 is too big to be shown here. It has 16 states, 16

events, and 88 transitions. In addition, we use the same specifications as before

for computing the configuration supervisors. The statistics of all supervisors and

the abstraction supervisors are summarized in Table 4.6.

65

Table 4.6: Module 1 reconfiguration supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

S1
1 21 16 33

S2
1 19 16 29

Ŝ1
1 3 5 4

Ŝ2
1 3 5 4

R1
1 43 22 113

R2
1 39 22 103

4.4 RMS MODULE 2

The reconfiguration supervisor design for this module is analogous to the descrip-

tion in section 3.3. The overall structure of this module is shown in Figure 4.14.

The overall plant automaton has 16 states, 16 events, and 84 transitions. It is

denoted as

G2 = Ghigh
RT2||G

high
MA3||G

high
MA4 (4.4)

Module 2

RT2 MA3 MA4

Figure 4.14: RMS module 2

The computation for the configuration supervisors and the reconfiguration super-

visors are as in section 3.3 and the resulting statistics are shown in Table 4.7.

4.5 RMS MODULE 3

This module only consists of one conveyor belt as in Figure 4.15.

66

Table 4.7: Module 2 reconfiguration supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

S1
2 7 16 7

S2
2 1 16 0

Ŝ1
2 2 4 2

Ŝ2
2 1 4 0

R1
2 15 25 47

R2
2 3 25 27

Module 3

CO3

Figure 4.15: RMS module 3

The model for the conveyor belt CO3 is realized according to its neighbors. The

lower neighbor component is RT2, and from the upper side the products can arrive

to CO3 or leave to RTS1 or RTS2 with the events(co15-co3 SW, co3-co15 SW) for

RTS1, and (co16-co3 SW, co3-co16 SW) for RTS2. The low level model of CO3

is shown in Figure 4.16, The abstracted automata that can be the plant model of

CO3 is written as Ghigh
CO3 and it is depicted in Figure 4.17.

G3 = Ghigh
CO3 (4.5)

Figure 4.16: Low level model Of CO3

In the first configuration of module 3, products can move from RT2 to CO3 and

after that should leave to CO16 on RTS2. For the second configuration module 3

is not used. The associated specifications are shown in Figure 4.18 and 4.19.

67

Figure 4.17: High level model Of CO3

Figure 4.18: Module 3 configuration 1 specifications

Finally, by using these specifications, the configuration supervisors are computed

and Table 4.8 shows these results.

Table 4.8: Module 3 reconfiguration supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

S1
3 2 6 2

S2
3 1 6 0

Ŝ1
3 2 6 2

Ŝ2
3 1 6 0

R1
3 5 12 19

R2
3 3 12 14

4.6 RMS MODULE 4

The plant for module 4 is realized by the rail transport system RTS1 and CO15,

such that the overall plant is composed of the high-level abstraction of RTS1 and

the high-level abstraction of CO15, as shown in Figure 4.20. That is, using the

68

Figure 4.19: Module 3 configuration 2 specifications

result from section 4.1, we compute

G4 = Ghigh
RTS1||G

high
CO15 (4.6)

Module 4

CO15RTS1

Figure 4.20: RMS module 4

The overall plant automata has 40 states, 22 events, and 222 transitions. The

desired operation of module 4 is described as follows.

• In configuration 1, RTS1 and CO15 should never operate. Due to this, all

events are disabled. The corresponding specification automaton C1
4 is shown

in Figure 4.21.

Figure 4.21: Module 4 configuration 1 specifications

• In configuration 2, products should move from MA1 to CO15 only if RTS1 in

its initial position (position 5). The corresponding specification automaton

C2,1
4 is shown in Figure 4.22 (a).

• In configuration 2, RTS1 moves from position 5 to position 4, position 3,

and finally to position 2. Then products are delivered by CO15 to Ma9. The

corresponding specification automaton C2,2
4 is shown in Figure 4.22 (b).

69

• In configuration 2, if a product was moved from CO15 to MA9, then RTS1

should move back to position 5 through position 2,3, and 4. The correspond-

ing specification automaton C2,3
4 is shown in Figure 4.22 (c).

• If the rail transport system RTS1 is moving, then the conveyor belt CO15

should not move. The corresponding specification automaton C2,4
4 is shown

in Figure 4.22 (d).

• If the conveyor belt CO15 is moving products, then the rail transport system

RTS1 should not move. The corresponding specification automaton C2,5
4 is

shown in Figure 4.22 (e).

Using the described specifications, the configuration supervisors and reconfigura-

tion supervisors are computed. The resulting sizes are listed in Table 4.9.

Table 4.9: Module 4 reconfiguration Supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

S1
4 1 22 0

S2
4 16 22 26

Ŝ1
4 1 19 0

Ŝ2
4 8 19 8

R1
4 3 28 30

R2
4 33 28 87

4.7 RMS MODULE 5

RTS2 and CO16 are the components of this module as described in section 4.1.

The structure of the module is shown in Figure 4.23. The plant automaton is

computed as

G5 = Ghigh
RTS2||G

high
CO16 (4.7)

and it has 40 states, 20 events, and 202 transitions. In this module, the first

configuration has to be obtained for two different paths. In path 1, the rail

transport moves products from CO3 to processing in MA9, and in path 2 the rail

transport system moves products from MA11 to the exit slide RC.

70

(a)

(b)

(c)

(d) (e)

Figure 4.22: Module 4 configuration 2 specifications : (a), (b), (c), (d), (e).

71

Module 5

CO16RTS2

Figure 4.23: RMS module 5

In the second configuration only one path to move products from MA11 to RC is

required. The specification for each configuration is computed by the synchronous

composition of multiple small specifications that are listed as follows.

Configuration 1

• We consider the specification automaton C1,1
5 in Figure 4.24 (a). State 1

and state 2 describe path 1. Here, RTS2 moves from position 2 to position

3 after moving from position 1 to position 2. The second path is covered by

states 1, 3, 4. Here, RTS2 moves to position 2 and transports products to

RC if products move from MA11 to CO16.

• RTS2 should move from position 2 to position 3 first. Then it moves to

position 4. The corresponding specification automaton C1,2
5 is shown in

Figure 4.24 (b).

• If RTS2 arrives at position 4, then products move from CO3 to CO16. After

that, RTS2 moves to position 3. The corresponding specification automaton

C1,3
5 is shown in Figure 4.24 (c).

• Products move from CO16 to MA9, just after RTS2 arrives at position 2.

If products move to MA9, then RTS2 moves from position 2 to 1. The

corresponding specification automaton C1,4
5 is shown in Figure 4.24 (d).

• Products first move to CO16 from MA11, then RTS2 moves to position 2.

The corresponding specification automaton C1,5
5 is shown in Figure 4.24 (e).

• After products leave RTS2 to RC, then RTS2 move´s back to its initial po-

sition. The corresponding specification automaton C1,6
5 is shown in Fig-

ure 4.24 (f).

72

• If the rail transport system RTS2 is moving, then the conveyor belt CO16

should not move. The corresponding specification automaton C1,7
5 is shown

in Figure 4.24 (g).

• If the conveyor belt CO16 is moving products, then the rail transport system

RTS2 should not move. The corresponding specification automaton C1,8
5 is

shown in Figure 4.24 (h).

Configuration 2

• If products moves from MA11 to CO16, then RTS2 moves to position 2

and stops. Afterwards, RTS2 moves back to position 1 and stops. The

corresponding specification automaton C2,1
5 is shown in Figure 4.25 (a).

• Products move to RC from CO16 just if RTS2 arrived at position 2. Fur-

thermore, RTS2 moves from position 2 to position 1 just if products left

CO16 to RC. The corresponding specification automaton C2,2
5 is shown in

Figure 4.25 (b).

• If the rail transport system RTS2 is moving, then the conveyor belt CO16

should not move. The corresponding specification automaton C2,3
5 is shown

in Figure 4.25 (c).

• If the conveyor belt CO16 is moving products, then the rail transport system

RTS2 should not move. The corresponding specification automaton C2,4
5 is

shown in Figure 4.25 (d).

Finally, the computational results for the configuration supervisors and reconfig-

uration supervisors are shown in Table 4.10.

Table 4.10: Module 5 reconfiguration Supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

S1
5 22 20 39

S2
5 8 20 12

Ŝ1
5 10 17 11

Ŝ2
5 4 17 4

R1
5 45 26 111

R2
5 17 26 55

73

(a)

(b)

(c)

(d)

(e) (f)

(g) (h)

Figure 4.24: Module 5 configuration 1 specifications : (a), (b), (c), (d), (e), (f),

(g), (h).

74

(a)

(b)

(c) (d)

Figure 4.25: Module 5 configuration 2 specifications : (a), (b), (c), (d).

75

4.8 RMS MODULE 6

The single production machine MA9 is the only component of this module whose

structure is shown in Figure 4.26. A product can enter to MA9 for processing,

either from the rotary table RT6 on the upper side, or from RTS1 or RTS2 at the

lower side of the machine. The abstracted model of MA9 is shown in Figure 4.27

and is denoted as

G6 = Ghigh
MA9 (4.8)

Module 6

MA9

Figure 4.26: RMS module 6

Figure 4.27: High level model of MA9

The operation of MA9 in the two configurations of the RMS are described as

follows.

Configuration 1

• If products arrive to MA9 from CO16, then the machine starts processing.

After processing, products leave MA9 to RT6. The corresponding specifica-

tion automaton C1
6 is shown in Figure 4.28.

76

Figure 4.28: Module 6 configuration 1 specifications

Configuration 2

• If products arrive at MA9, they are directly forwarded to RT6. The corre-

sponding specification automaton C2
6 is shown in Figure 4.29.

Figure 4.29: Module 6 configuration 2 specifications

In this case, the configuration supervisors are identical to the respective specifi-

cation. The statistics are summarized in Table 4.11.

Table 4.11: Module 6 reconfiguration supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

S1
6 3 7 3

S2
6 2 7 2

Ŝ1
6 2 6 2

Ŝ2
6 2 6 2

R1
6 7 13 23

R2
6 5 13 20

4.9 RMS MODULE 7

This module consists of the rotary table RT6, the RMT MA10, the rotary table

RT7, and the single production machine MA11. The structure of the module

is shown in Figure 4.30. The abstracted plant models for these components are

shown in Figure 4.31, Figure 4.32, Figure 4.33, and Figure 4.34. The overall plant

77

automaton

G7 = Ghigh
RT6||G

high
MA10||G

high
RT7||G

high
MA11 (4.9)

has 64 states, 24 events, and 464 transitions. The operation of module 7 in the

Module 7

MA10 RT7RT6 MA11

Figure 4.30: RMS module 7

Figure 4.31: Abstracted RT6

two configurations of the RMS is described as follows.

Configuration 1

• Products move from MA9 to RT6 after RT6 rotates in clockwise direction.

After rotating back in counter-clockwise direction, products move to MA10.

The corresponding specification automaton C1,1
7 is shown in Figure 4.35 (a).

• If products arrived at MA10, then the machine starts processing. After-

wards, products move to RT7. If products arrived at RT7, then the rotary

table rotates to deliver products to MA11. The corresponding specification

automaton C1,2
7 is shown in Figure 4.35 (b).

78

Figure 4.32: Abstracted MA10

Figure 4.33: Abstracted RT7

• If products arrived at MA11 from RT7, then they leave MA11 to RTS2. The

corresponding specification automaton C1,3
7 is shown in Figure 4.35 (c).

• If products were moved from RT7 to MA11 and RT7 is empty, then RT7

rotates back counter-clockwise. The corresponding specification automaton

C1,4
7 is shown in Figure 4.35 (d).

Configuration 2

These specifications are analogous to the specifications for configuration 1. The

only difference is that processing is performed by MA11 instead of MA10. The

corresponding specifications automata C2,1
7 , C2,2

7 , C2,3
7 , and C2,4

7 are shown in

Figure 4.36 (a), (b), (c), (d).

The results of the supervisors for configuration 1 and 2 are summarized in Ta-

ble 4.12.

79

Figure 4.34: Abstracted MA11

(a)

(b)

(c)

(d)

Figure 4.35: Module 7 configuration 1 specifications : (a), (b), (c), (d).

4.10 RMS MODULE 8

This module only consists of the exit slide RC.

G8 = Ghigh
RC (4.10)

The structure of the module is shown in Figure 4.37 and statistics are summarized

in Table 4.13.

80

(a)

(b)

(c)

(d)

Figure 4.36: Module 7 configuration 2 specifications : (a), (b), (c), (d).

Table 4.12: Module 7 reconfiguration supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

S1
7 28 24 51

S2
7 36 24 70

Ŝ1
7 5 5 7

Ŝ2
7 5 5 7

R1
7 57 30 164

R2
7 73 30 210

Table 4.13: Module 8 configuration supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

S1
8 3 4 4

S2
8 3 4 4

Ŝ1
8 1 2 2

Ŝ2
8 1 2 2

81

Module 8

RC

Figure 4.37: RMS module 8

Table 4.14: Module 8 reconfiguration supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

R1
8 7 10 22

R2
8 7 10 22

4.11 RMS HIGH-LEVEL MODULE 12

In this section, the RMS module 12 is introduced to describe the high-level control

for module 1 and module 2 together as shown in Figure 4.38. The low-level

configuration supervisors were computed before in chapter III, and are denoted

as S1
1 and S2

1 respectively for the two configurations of module 1. Similarly, S1
2

and S2
2 were computed for configuration 1 and 2 of module 2. Furthermore, the

abstraction-based approach was applied to these supervisors with the result Ŝ1
1

and Ŝ2
1 for module 1, and Ŝ1

2 , Ŝ
2
2 for module 2. For the plant of this module,

Module 1

Module 12

Module 2

Figure 4.38: RMS high-level module 12

that is realized by the synchronous composition of the high-level abstractions, we

introduce G1
12 for the first configuration G2

12 for the second configuration. These

automata computed as

G1
12 = Ŝ1

1 ||Ŝ
1
2 (4.11)

82

with 6 states, 7 events, and 9 transitions and

G2
12 = Ŝ2

1 ||Ŝ
2
2 (4.12)

with 3 states, 7 events, and 4 transitions.

In order to compute a supervisor for the two configurations of module 12, we note

that the desired behavior was already achieved by the supervisor computation for

module 1 and module 2. Here, it is only required to make module 12 nonblock-

ing, which is achieved by using the nonblocking part of G12 as a specification for

module 12. The statistics of the resulting supervisor computation are summa-

rized in Table 4.15. In addition, we need the coordinating automata P 1
12 and P 2

12

respectively in Figure 4.39 and Figure 4.40 to complete the reconfiguration.

Table 4.15: Module 12 reconfiguration supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

S1
12 6 7 9

S2
12 3 7 4

Ŝ1
12 4 5 6

Ŝ2
12 3 5 4

R1
12 13 10 39

R2
12 7 10 26

4.12 RMS HIGH-LEVEL MODULE 3456

This module is the high-level of multiple modules, module 3, module 4, module

5, and module 6. The structure of this module is shown in Figure 4.41, t The

abstractions Ŝ1
3 and Ŝ2

3 for module 3, Ŝ1
4 , Ŝ

2
4 for module 4, Ŝ1

5 and Ŝ2
5 for mod-

ule 5 and Ŝ1
6 , Ŝ

2
6 for module 6 are used to compute the plant automata G1

3456

(configuration 1) and G2
3456 (configuration 2):

G1
3456 = Ŝ1

3 ||Ŝ
1
4 ||Ŝ

1
5 ||Ŝ

1
6 (4.13)

G2
3456 = Ŝ2

3 ||Ŝ
2
4 ||Ŝ

2
5 ||Ŝ

2
6 (4.14)

As a result, G1
3456 has 40 states, 40 events, and 80 transitions, and G2

3456 has

64 states, 40 events, and 156 transitions. We use the following specifications for

module 3456.

83

Figure 4.39: P 1
12 coordination automaton

84

Figure 4.40: P 2
12 coordination automaton

85

Module 3

Module 3456

Module 4 Module 5 Module 6

Figure 4.41: RMS high-level module 3456

Configuration 1

• If products were transported from RT2 to CO3, then RTS2 moves from po-

sition 1 to 2. Then, CO3 moves products to CO16. In addition, if MA11

moves products to RTS2 then RTS2 moves to position 2, and products are

transported to RC. Then, RTS2 moves back to position 1. The corresponding

specification automaton C1,1
3456 is shown in Figure 4.42 (a).

• If CO3 moves products to CO16, then CO16 moves them to MA9. The

corresponding specification automaton C1,2
3456 is shown in Figure 4.42 (b).

• If CO16 moves products to MA9, then MA9 transports products to RT6.

The corresponding specification automaton C1,3
3456 is shown in Figure 4.42

(c).

• Just if products were moved from CO16 to MA9, then RTS2 moves from

position 2 to position 1. The corresponding specification automaton C1,4
3456

is shown in Figure 4.42 (d).

Configuration 2

• If Ma11 moves products to CO16, then CO16 moves products to RC. The

corresponding specification automaton C2,1
3456 is shown in Figure 4.43 (a).

• If CO15 moves products to MA9, then MA9 moves products to RT6. The

corresponding specification automaton C2,2
3456 is shown in Figure 4.43 (b).

• Just if products were moved from MA1 to CO15, then RTS1 moves from

position 5 to position 4. If RTS1 arrives at position 4, then it moves back

to position 5. The corresponding specification automaton C2,3
3456 is shown in

Figure 4.43 (c).

86

(a)

(b)

(c)

(d)

Figure 4.42: Module 3456 configuration 1 specifications : (a), (b), (c), (d).

• If Ma1 moves products to CO15, then CO15 moves products to MA9. The

corresponding specification automaton C2,4
3456 is shown in Figure 4.43 (d).

• Just if products move from CO15 to MA9, then RTS1 moves from position

2 to position 3. The corresponding specification automaton C2,5
3456 is shown

in Figure 4.43 (e).

• To prevent crash in position 2, if RTS2 moves from position 1 to 2, then

RTS1 can move from position 3 to 2 only if RTS2 was moved back from

position 2 to 1, and vice versa. The corresponding specification automaton

C2,6
3456 is shown in Figure 4.43 (f).

• To prevent crash in position 3, if RTS2 moves from position 2 to 3, then

RTS1 can move from position 4 to 3 only if RTS2 was moved back from

position 3 to 2, and vice versa. The corresponding specification automaton

C2,7
3456 is shown in Figure 4.43 (g).

• To prevent crash in position 4, if RTS2 moves from position 3 to 4, then

RTS1 can move from position 5 to 4 only if RTS2 was moved back from

87

position 4 to 3, and vice versa. The corresponding specification automaton

C2,8
3456 is shown in Figure 4.43 (h).

Finally, we use the SupCon algorithm for the plants and the related specifications

to compute the configuration supervisors for this module. The results are shown

in Table 4.16. The coordinating automata P 1
3456 and P 2

3456 are shown in Figure 4.44

and Figure 4.45.

Table 4.16: Module 3456 reconfiguration supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

S1
3456 24 40 37

S2
3456 56 40 130

Ŝ1
3456 5 20 9

Ŝ2
3456 14 22 31

R1
3456 49 46 145

R2
3456 113 46 363

4.13 RMS HIGH-LEVEL MODULE 123456

We introduce module 123456 as the high-level for module 12 and module 3456.

The structure of the module is shown in Figure 4.46. The model of the plant for the

first configuration is denoted as G1
123456 and the model of the second configuration

is G2
123456. Hereby, G1

123456 is obtained for configuration 1 by the synchronous

composition of the abstraction configuration supervisors Ŝ1
12 with 4 states, 5 events

and 6 transitions and Ŝ1
3456 with 3 states, 5 events and 4 transitions. In addition,

G2
123456 for configuration 2, is obtained by the synchronous composition of the

abstraction configuration supervisors Ŝ2
12 with 5 states, 20 events and 9 transitions,

and Ŝ2
3456 with 14 states, 22 events, and 31 transitions. The overall model of the

plant for both configurations is obtained as

G1
123456 = Ŝ1

12||Ŝ
1
3456 (4.15)

G2
123456 = Ŝ2

12||Ŝ
2
3456 (4.16)

For the computation of the configuration supervisors for configuration 1 and con-

figuration 2, we use the nonblocking part of the plant as the specification. The

results of this computation are summarized in Table 4.17.

88

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.43: Module 3456 configuration 2 specifications: (a), (b), (c), (d), (e), (f),

(g), (h). 89

Figure 4.44: P 1
3456 coordination automaton

90

Figure 4.45: P 2
3456 coordination automaton

91

Module 3456

Module 123456

Module 12

Figure 4.46: RMS high-level module 123456

Table 4.17: Module 123456 reconfiguration supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

S1
123456 20 21 49

S2
123456 42 23 115

R1
123456 41 27 146

R2
123456 85 29 302

4.14 RMS HIGH-LEVEL MODULE 12345678

The high-level module for the overall RMS is given by this module whose structure

is shown in Figure 4.47. It is composed of module 123456, module 7 and module 8.

We compute the overall plant for the first and second configuration using Ŝ1
123456,

Ŝ1
7 , and Ŝ1

8 as

G1
12345678 = Ŝ1

123456||Ŝ
1
7 ||Ŝ

1
8 (4.17)

G2
12345678 = Ŝ2

123456||Ŝ
2
7 ||Ŝ

2
8 (4.18)

Module 123456

Module 12345678

Module 7 Module 8

Figure 4.47: RMS high-level module 12345678

The overall plant automata is too big to shown here. It has 96 states, 9 events,

and 226 transitions for configuration 1, and it has 150 states, 10 events, and 379

92

transitions for configuration 2. For this module, we use a specification in config-

uration configuration 1 such that RT6 should only rotate if products are moved

from RT2 to CO3. Similarly, for configuration 2, we want that RT6 should only

rotate if RTS1 is moved from position 3 to position 2, as is shown in Figure 4.48

and Figure 4.49.

Figure 4.48: Module 12345678 configuration 1 specifications

Figure 4.49: Module 12345678 configuration 2 specifications

The overall configuration supervisors are computed according to the above speci-

fications. The results are summarized in Table 4.18. P 1
12345678 and P 2

12345678 are the

coordinating automata for this module as shown in Figure 4.50 and Figure 4.51.

Table 4.18: Module 12345678 reconfiguration supervisors

SUPERVISORS STATES EVENTS TRANSITIONS

S1
12345678 68 9 154

S2
12345678 108 10 257

R1
12345678 137 15 341

R2
12345678 217 16 559

4.15 SUMMARY OF ABSTRACTION-BASED

RECONFIGURATION SUPERVISORS

In the previous sections, we computed reconfiguration supervisors for all modules

of the RMS. The hierarchical structure of the overall supervisor design is shown

in Figure 4.52. It shows that our design requires 4 levels with a total number

of 12 supervisors on these levels. The overall reconfiguration supervisor for the

RMS is then given by the synchronous composition of these supervisors. Note

93

Figure 4.50: P 1
12345678 automata

94

Figure 4.51: P 2
12345678 automata

95

however, that this synchronous composition does not need to be computed for a

controller implementation. In a practical implementation, it is sufficient to run all

supervisors in parallel. Hence, the overall state size of the RMS reconfiguration

supervisor is given by the sum of the state sizes of the module supervisors which

is in the order of 1000 states.

Here, the advantage of the abstraction-based design can be seen if the obtained

result is compared to a monolithic design (computation for a single plant model

of the RMS). In that case, a supervisor with an estimated state size of 1028 states

would be needed which is computationally infeasible and cannot be realized in

any physical controller device.

2 3 4 5 6 7 8

12 3456

123456

12345678

1

L1

L3

L2

L4

Figure 4.52: Hierarchical and decentralized RMS control

4.16 RMS SIMULATION

In addition to the controller computation, a simulation model of the RMS example

is developed. This simulation is based on the software FlexFact for the simulation

of the physical RMS and the software DESTool for the simulation of the controller

automata. In addition, a realt-time simulation of the controller automata with

the software simfaudes is performed. All software tools are distributed together

with the libfaudes software library for DES [14].

A screenshot of the simulation environment is shown in Figure 4.53. On the upper

side, the FlexFact graphical user interface is shown. It represents the RMS plant

96

behavior as described before. The lower side shows DESTool which simulates the

DES controllers.

Figure 4.53: RMS simulation

The overall supervisory control loop for the RMS example in this chapter was

implemented in FlexFact and DESTool and the correctness of the supervisor com-

putation was confirmed by extensive simulation studies.

97

CONCLUSION

In this thesis, we consider the supervisory control of large-scale reconfigurable

manufacturing systems (RMS). RMS are used for the fast response to variable

changes in product types and product volumes that are prominent in today’s

manufacturing industry. As an important system component, RMS include re-

configurable machine tools (RMT) that are able to perform multiple operations

depending on their active configuration.

In principle, the control design for RMS should make it possible to change be-

tween different system configurations at any time. If such change is requested, it

is desired to first complete the currently active configuration before starting up

the newly requested configuration. In each such change, both the manufacturing

processes of all RMS components must be finished and in each start-up, the con-

figuration of each RMT has to be adjusted according to the desired operation in

the new configuration. Such reconfiguration design should be possible both for

medium size as well as large-scale RMS.

All the described issues are addressed in this thesis in the framework of supervisory

control for discrete event systems (DES). Hereby, the developed design method

is based on the idea of abstraction-based supervisory control. First, a modeling

framework for RMTs is introduced and applied to an example RMT. The ad-

vantage of the modeling framework is that arbitrary configuration changes of the

RMT are possible, whereas the resulting RMT model is represented by an au-

tomaton with a small number of states. Second, we describe a new algorithms for

the construction of reconfiguration supervisors for RMSs. This algorithm suggests

the computation of a modular reconfiguration supervisor for each configuration.

Each such supervisor realizes the desired operation of the respective configura-

tion and allows completing each configuration before starting a new configuration

based on the idea of state attraction. In addition, we extend the framework to the

application of abstraction-based control in order to enable the use of small system

models. An important advantage of the proposed method is its application in

supervisor hierarchies with an arbitrary number of levels. The applicability of the

98

developed method is demonstrated by a large-scale laboratory RMS with 18 sys-

tem components. It is shown that the resulting supervisors have a maximum state

size of 217 states, whereas a classical monolithic design would require a state size

in the order of 1028 states. The correctness of the design method is also verified

by a simulation study of the laboratory RMS.

99

FUTURE WORK

In future work, it is desired to apply the designed reconfiguration supervisors

to the real laboratory system by using the Libfaudes simulator plug-in and the

IOdevice plug-in.

In addition, the computation of the modified state attractors is currently under

investigation.

A further observation is that, in the current design, the start-up of a new config-

uration has to wait until the previous configuration is completed. It is envisaged

to perform this start-up as early as possible without waiting for the completion

of the previous configuration. A first result in this direction is given by [22].

100

REFERENCES

[1] Y. Brave and M. Heymann, “Stabilization of discrete-event processes,”

Int. J. Control, vol. 51, pp. 1101–1117, 1990.

[2] Y. Brave and M. Heymann, “On optimal attraction of discrete-event pro-

cesses,” Information Sciences, vol. 67, pp. 245–276, 1993.

[3] A. Dashchenko (Ed.), Reconfigurable manufacturing systems and trans-

formable factories. Springer, 2006.

[4] H. A. ElMaraghy, Changeable and Reconfigurable Manufacturing Systems.

Springer Series in Advanced Manufacturing, 2009.

[5] E. W. Endsley, E. E. Almeida, and D. M. Tilbury, “Modular finite state ma-

chines: Development and application to reconfigurable manufacturing cell

controller generation,” Control Engineering Practice, vol. 14, no. 10, pp.

1127–1142, 2006.

[6] G. Faraut, L. Piétrac, and E. Niel, “Formal approach to multimodal con-

trol design: Application to mode switching,” Industrial Informatics, IEEE

Transactions on, vol. 5, no. 4, pp. 443–453, 2009.

[7] H. E. Garcia and A. Ray, “State-space supervisory control of reconfigurable

discrete event systems,” Int. J. Control, vol. 63, no. 4, pp. 767–797, 1996.

[8] R. Harrison, A. Colombo, A. West, and S. Lee, “Reconfigurable modular

automation systems for automotive power-train manufacture,” International

Journal of Flexible Manufacturing Systems, vol. 18, no. 3, pp. 175–190, Sep.

2006.

[9] Harith M. Khalid, M. S. Kırık, and K. W. Schmidt, “Abstraction-based su-

pervisory control for reconfigurable manufacturing systems,” Workshop on

Dependable Control of Discrete Systems, York, United Kingdom, 2013, pp.

157–162.

[10] Y. Koren, The global manufacturing revolution. Wiley, 2010.

101

[11] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, and

H. V. Brussel, “Reconfigurable manufacturing systems,” CIRP Annals –

Manufacturing Technology, vol. 48, pp. 527–540, 1999.

[12] R. Kumar, S. Takai, M. Fabian, and T. Ushio, “Maximally permissive mu-

tually and globally nonblocking supervision with application to switching

control,” Automatica, vol. 41, no. 8, pp. 1299–1312, 2005.

[13] J. Li, X. Dai, and Z. Meng, “Automatic reconfiguration of petri net controllers

for reconfigurable manufacturing systems with an improved net rewriting

system-based approach,” Automation Science and Engineering, IEEE Trans-

actions on, vol. 6, no. 1, pp. 156–167, 2009.

[14] libFAUDES. (2006–2011) libFAUDES software library for discrete event

systems. [Online]. Available: www.rt.eei.uni-erlangen.de/FGdes/faudes

[15] M. G. Mehrabi, A. G. Ulsoy, and Y. Koren, “Reconfigurable manufacturing

systems: Key to future manufacturing,” Journal of Intelligent Manufactur-

ing, vol. 11, pp. 403–419, 2000.

[16] A. Nooruldeen, “Supervisory control for reconfigurable manufacturing sys-

tems: Structural changes and re-usability of controllers,” Master’s thesis,

Department of Electronic and Communication Engineering, Çankaya Uni-

versity, 2012.

[17] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete

event processes,” SIAM J. Control Optim., vol. 25, no. 1, pp. 206–230, 1987.

[18] R. Sampath, H. Darabi, U. Buy, and L. Jing, “Control reconfiguration of dis-

crete event systems with dynamic control specifications.” Automation Science

and Engineering, IEEE Transactions on, vol. 5, no. 1, pp. 84–100, 2008.

[19] K. Schmidt and C. Breindl, “Maximally permissive hierarchical control of

decentralized discrete event systems,” Automatic Control, IEEE Transactions

on, vol. 56, no. 4, pp. 723–737, 2011.

[20] K. Schmidt, T. Moor, and S. Perk, “Nonblocking hierarchical control of de-

centralized discrete event systems,” Automatic Control, IEEE Transactions

on, vol. 53, no. 10, pp. 2252–2265, 2008.

102

[21] K. W. Schmidt, “Computation of supervisors for reconfigurable machine

tools,” Workshop on Discrete Event Systems, Guadalajara, Mexico, 2012,

pp. 227–232.

[22] K. W. Schmidt, “Optimal configuration changes for reconfigurable manufac-

turing systems,” IEEE Conference on Decision and Control, Florence, Italy,

2013.

[23] K. W. Schmidt, “Computation of supervisors for reconfigurable machine

tools,” Journal of Discrete Event Dynamic Systems (accepted for publica-

tion), 2014.

[24] K. W. Schmidt and A. Nooruldeen, “State attraction under language specifi-

cation for the reconfiguration of discrete event systems,” IEEE Transactions

on Automatic Control (accepted for publication), 2014.

103

APPENDIX

CURRICCULUM VITAE

PERSONAL INFORMATION

Surname, Name: Hendi, Harith M. Khalid

Nationality: Iraqi (IRAQ)

Date and Place of Birth: 21 October 1985 , Baghdad

Marital Status: Single

Phone: +90 538 010 24 02/ +964 790 182 61 96

Email: harithhindi85@yahoo.com

EDUCATION

Degree Institution Year of Graduation

MS Çankaya Univ. Electronic and 2013/2014

Communication Engineering

BS Univ. of Technology/Baghdad 2006/2007

Control and Systems Engineering

Department, Mechatronics branch

High School Al-Mutamizean (Special Students) 2002/2003

FOREIGN LANGUAGES

Arabic, English, familiar with (French)

PUBLICATIONS

Harith M. Khalid, M. S. Kırık, and K. W. Schmidt, “Abstraction-based supervi-

sory control for reconfigurable manufacturing systems” Workshop on Dependable

Control of Discrete Systems, York, United Kingdom, 2013, pp. 157–162.

HOBBIES

Reading, Sport, Movies

104

