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A B S T R A C T   

In the electrical transmission lines, the processing of cable signals distribution, computer networks, high-speed 
computer databases and discrete networks can be investigated by the modified Zakharov-Kuznetsov (mZK) 
equation as a data link propagation control model in the study of nonlinear Schrödinger type equations as well as 
in the analysis of the generalized stationary Gardner equation. The proposed Gerdjikov–Ivanov model can be 
used in the field of nonlinear optics, weakly nonlinear dispersion water waves, quantum field theory etc. In this 
work, we developed complete traveling wave solutions with specific t-type, kink type, bell-type, singular solu-
tions, and periodic singular solutions to the proposed mZK equation and the Gerdjikov-Ivanov equation with the 
aid of the double (G′/G, 1/G)- expansion method. These settled solutions are very reliable, durable, and authentic 
which can measure the fluid velocity and fluid density in the electrically conductive fluid and be able to analysis 
of the flow of current and voltage of long-distance electrical transmission lines too. These traveling wave so-
lutions are available in a closed format and make them easy to use. The proposed method is consistent with the 
abstraction of traveling wave solutions.   

Introduction 

It is well acquainted that the nonlinear evolution equations (NLEEs) 
are used to explain the various occurrences in the fields of plasma 
physics, solid state physics, relativistic physics, optics fibers, chemical 
physics, chemical kinematics, fluid mechanics, propagation of shallow 
water waves, flat wave propagation, river mobility, electromagnetic and 
so on [1–5]. The concept of soliton is involved in the propagation of a 
large-scale type of wave and most of the solutions of NLEEs are soliton 
types [6,7]. Hence in the field of science and technology, the exploration 
of soliton solutions of NLEEs keeps a vital role, especially in system 
analysis, nonlinear transmission lines, electric control themes, me-
chanical engineering, chemical engineering, signal processing, gas 

dynamics, optical telecommunication, electromagnetism, ocean engi-
neering, biomedical problems, nuclear physics, nanofiber technology, 
etc. Variant kinds of solutions of NLEEs can be recognized via the several 
types of the analytical process such as periodic waves, singular solutions, 
breather waves, rational wave solutions, optical solutions, rogue waves, 
and soliton types of solutions [8,9]. Lately, numerous potential and 
workable techniques have been investigated for getting constructive 
solutions for NLEEs. These techniques comprehend the Rieman- Hilbert 
method [10,11], the Jacobi elliptic function method [12,13], the Lie 
symmetric analysis [14,15], the auxiliary equation method [16,17], the 
Sine-Gordon expansion method [18,19], the tan-cot function method 
[20], the Sardar-subequation technique [21], the simple equation 
method [22], the modified simple equation method [23], the first 
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integral method [24,25], the Hirota’s bilinear method [26,27], the ho-
mogeneous balance method [28,29], the Darboux-Like transformation 
method [30] etc. Recently Ibrahim E. Inan et al. proposed the 
exp( − φ(ξ))-expansion method for some exact solutions of (2 + 1) and 
(3 + 1) dimensional constant coefficients KdV equations [31]. Further-
more, a few numbers of scientists have searched for another better 
technique that is more feasible and active than any other former tech-
niques such as Mia et al. executed the further investigations to extract 
abundant new exact traveling wave solutions of some NLEEs by 
employing the generalized (G′/G)-expansion method [32]. Further-
more, many investigators have used this method to get the proper so-
lutions for NLEEs [33–38]. Lately, Iqbal et al. and Miah et al. initiated 
the Study on the Date-Jimbo-Kashiwara-Miwa equation with Conform-
able Derivative Dependent on time parameter to find the exact dynamic 
wave solutions and the fifth order Caudrey-Dodd-Gibbon equation for 
exact travelling wave solutions respectively by applying the double 
(G′/G,1/G)-expansion method [39,40]. After all many researchers 
[41–45] are applying this technique to find the exact travelling wave 
solutions of NLEEs. In this research work, we present and apply the 
double (G′/G,1/G)-expansion method to investigate the mZK equation 
and the Gerdjikov-Ivanov equation respectively which are given bellow, 

The mZK equation is written in the following form: 

vt +Avvx +Bv2vx +Mvxxx +Nvxyy = 0 (1.1)  

where A, B, M and N are constants. 
And the Gerdjikov-Ivanov equation has the following form: 

iqt + qxx − iq2q*
x +

1
2
|q|4q = 0 (1.2)  

where q is a complex function of x and t and q* its complex conjugate. 
Eq. (1.1) plays a crucial role in illuminating the internal workings of 

concrete composite phenomena in the fields of deep-ocean wave 
behavior, plasma physics, two-dimensional discrete electrical lattice, 
and nonlinear optics. This equation is derived for the first time by Munro 
and Parkes [46] to explain how weakly non-linear ion-acoustic waves 
behave in a plasma of hot isothermal electrons and cold ions when a 
consistent magnetic field is present. 

While Eq. (2.2) has an essential purpose in non-linear fiber optics. 
Moreover, photonic crystal fibers have numerous significant uses for it. 
Xu and He [47] found the rogue wave and the breather solution for this 
equation by the two-fold DT from a periodic “seed” with a constant 
amplitude. For the first time, the non-balanced Riccati-Bernoulli Sub- 
ODE and the balanced modified extended tanh-function methods are 
utilized in [48] to get the new optical solitons of this equation. 

The double (G′/G, 1/G)-expansion method is a general simple 
analytical method that can be used to investigate a variety of solutions 
with different geometrical structures for different NLEEs with constant 
or variable coefficients in different topics of science. Al-Shawba et al. 
[49] used an extension of this method to discuss the solutions behavior 
for the nonlinear time fractional clannish random Walker’s parabolic 
(CRWP) equation, nonlinear time fractional SharmaTassoOlver (STO) 
equation, and nonlinear space–time fractional KleinGordon equation. 
Further, Demiray et al. [33] investigated new solutions for Boussinesq 
type equations with the aid of the double (G′/G, 1/G)-expansion and (1/ 
G’)-expansion methods. 

This paper is organized as follows: In section 1, a short introduction 
has been given. The methodology of the double (G′/G,1/G)-expansion 
method has been given in section 2. The mZK equation has been pro-
posed and explored through the double (G′/G,1/G)- expansion method 
in section 3. In section 4, the Gerdjikov-Ivanov equation has been 
analyzed. We give the picturesque manifestation and discussion of the 
solutions in section 5 and finally, we give the conclusion in section 6. 

Exploration of the double (G′/G,1/G)-expansion method 

In this part, we succinctly recapitulate the premier keys to the double 
(G′/G,1/G)-expansion method for proposing the con-
structive wave solutions of the above alluded NLEEs. Now, we consider 
a supplementary first-degree ordinary differential equation (ODE) hav-
ing parameter coefficient as follows, 

d2G
dρ2 + λG = kG = G(ρ) (2.1)  

and considering the two new variables in the following model, 

T = G′/G,W = 1/G (2.2) 

Thus, we can assign in terms of T and W in the following, 

T
′

= − T2 + kW − λ,W
′

= − TW (2.3) 

The solution of Eq. (2.1) relies upon λ and according to its sign, we 
give three calcifications which are given below, 

Class I. For λ > 0, we get a complete solution of Eq. (2.1) as 
mentioned below, 

G(ρ) = Dsin
( ̅̅̅

λ
√

ρ
)
+Ecos

( ̅̅̅
λ

√
ρ
)
+

k
λ

(2.4)  

where the coefficients C and D are arbitrary constants. As a result, it 
allows 

W2 =
λ(T2 − 2kW + λ)

λ2α − k2
(2.5)  

where α = D2 + E2. 
Class II. For λ < 0, we get another general solution of Eq. (2.1) as 

mentioned below, 

G(ρ) = Dsinh
( ̅̅̅̅̅̅

− λ
√

ρ
)
+Ecosh

( ̅̅̅̅̅̅
− λ

√
ρ
)
+

k
λ

(2.6)  

and consequently, 

W2 = −
λ(T2 − 2kW + λ)

λ2β + k2
(2.7)  

where β = D2 − E2. 
Class III. For λ = 0, we get a rational function solution of Eq. (2.1) as 

mentioned below, 

G(ρ) = k
2
ρ2 +Dρ+E (2.8)  

and hence 

W2 =
(T2 − 2kW)

D2 − 2kE
(2.9) 

Now, we consider a nonlinear evolution equation in terms of three 
independent variables in the polynomial Z and its partial derivative, 
which is given below, 

Z
(

v, vx, vy, vt, vxx, vyy, vtt, vxy, vxt, vyt...
)
= 0 (2.10) 

Now, we allow the premier actions to the double 
(G′/G, 1/G)-expansion method stage-wise as follows, 

Stage I. Associating the arguments x, y and t into a single new 
variable, 

v(x, y, t) = v(ρ); ρ = x + y − ct, (2.11) 
where c is constants. Here, the resembling ordinary differential 

equation of Eq. (2.10) is mentioned below, 

U(v, − cv′

, v′

, v′, v′′, v′′,⋯) = 0 (2.12) 

where U be a polynomial in v(ρ) and the prime denotes the ordinary 
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derivative regarding ρ. 
Stage II. Let us express the solution of Eq. (2.12) in terms of T(ρ) and 

W(ρ) as mentioned bellow, 

v(ρ) = a0 +
∑S

l=1
(alTl + blTl− 1W) (2.13) 

Here al(l = 1, 2,⋯, S), bl(l = 1, 2,⋯,T), c, λ and k will be defined 
later and the value of S can be obtained with a homogeneous 
equilibrium. 

Stage III. Enter the value of S in Eq (2.13) and replace the modified 
equation into Eq. (2.12). By exercising Eq. (2.3), Eq. (2.5), Eq. (2.7) and 
Eq. (2.9), the left of Eq. (2.12) will be converted to a polynomial of T(ρ)
and W(ρ). Comparing the same indices of the polynomial to zero gen-
erates a group of equations in al(l = 1,2,⋯, S), bl(l = 1,2,⋯, S), c, λ(λ >

0), k,C and D. 
Stage IV. With the help of a computer program like Mathematica, 

the algebraic equations obtained in stage 3 gives the solutions in al, bl, c,
λ(λ > 0), k,C and D. Setting al, bl, c, λ(λ > 0) and k into the resolved Eq. 
(2.13), we can gain a travelling wave solution developed across the 
trigonometric functions of Eq. (2.12). After setting the wave conversion 
in Eq. (2.11) into Eq. (2.13), we attain the required solutions to the 
NEEs. 

Stage V. Likewise Stage III and Stage IV, we can attain two more 
solutions of Eq. (2.12) which are hyperbolic (for λ < 0) and rational (for 
λ = 0) function solutions. 

Exact solutions of the mZK equation 

Here, we assign the double (G′/G,1/G)-expansion method to look for 
the formative solutions of the above-mentioned equation. Now, we take 
the wave transformation, 

v(x, y, t) = v(ρ) and ρ = x + y − ct, (3.1). 
where ‘c’ denotes the wave number. Employing this conversion, we 

alter the mZK equation demonstrated in Eq. (1.1) into an ordinary dif-
ferential equation mention below, 

− cv+A
v2

2
+B

v3

3
+(M + N)v′′ = 0 (3.2) 

where the prime indicates the ordinary derivatives with respect to ρ. 
By employing the homogeneous balance rule in Eq. (3.2), we achieve the 
balance number S = 1. Putting this balance number in Eq. (2.13), we get 
the following form, 

v(ρ) = a0 + a1T(ρ)+ b1W(ρ) (3.3) 

where the functions T(ρ) and W(ρ) are mentioned in Eq. (2.2) and Eq. 
(2.3). Relying on the notations of λ, we acquire three basic solutions of 
Eq. (3.2) which have been cited in case-1, case-2 and case-3 orderly. 

Case-1. For, λ > 0. 
Differentiating Eq. (3.3) two times then using Eq. (2.3) and Eq. (2.5), 

we alter the left part of the equation (3.3) in terms of T and W. Now 
equalizing the mentioned values into the obtained polynomials to zero, 
we get a set of equations in terms of a0, a1, b1, λ and c. After closing this 
process and implicating the computer program Mathematica, we get one 
set of values of the constants mentioned below, 

a0 = 0, a1 = 0, b1 = −
6(M + N)k

A
,α =

k2
{

A2 − 6Bλ(M + N)
}

A2λ2 , c

= − λ(M + N) (3.4) 

Putting the values from Eq. (3.4) into Eq. (3.3), we get the solutions 
of Eq. (3.2) as follows, 

v(ρ) = −
6(M + N)k

A
1

[
Dsin

( ̅̅̅
λ

√
ρ
)
+ Ecos

( ̅̅̅
λ

√
ρ
)
+ k

λ

] (3.5) 

Now, putting D = 0 but k ∕= 0 and E =
k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(A2 − 6Bλ(M+N)

√

Aλ then setting 

ρ = (x + y − ct), we get the trigonometric function solution of Eq. (1.1) 
mention below, 

v(x, y, t) = −
6λ(M + N)

(
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A2 − 6Bλ(M + N)

√
cos

( ̅̅̅
λ

√
(x + y − ct)

)
+ A

(3.6) 

Now, putting E = 0 but k ∕= 0 and D =
k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(A2 − 6Bλ(M+N)

√

Aλ then setting ρ =

(x + y − ct), we get the following trigonometric function solution of Eq. 
(1.1) mention below, 

v(x, y, t) = −
6λ(M + N)

(
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A2 − 6Bλ(M + N)

√
sin

( ̅̅̅
λ

√
(x + y − ct)

)
+ A

(3.7) 

Case-2. For.λ < 0 
Analogous to case-1, we get another set of solutions mention below, 

a0 = − A
2B, a1 = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 3(M+N)

√
̅̅̅̅
2B

√ , b1 = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
36B2k2(M+N)

2
+A4(D2 − E2)

√

2AB ,.c = − A2

6B 

λ = A2

6B(M+N)
; B(M+N)〈0. (3.8). 

Setting the values from Eq. (3.8) into Eq. (3.3), we have the solution 
of Eq. (3.2) given below, 

v(ρ) = −
A
2B

±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3λ(M + N)

√

̅̅̅̅̅̅
2B

√
Dcosh

( ̅̅̅̅̅̅
− λ

√
ρ
)
+ Esinh

( ̅̅̅̅̅̅
− λ

√
ρ
)

Dsinh
( ̅̅̅̅̅̅

− λ
√

ρ
)
+ Ecosh

( ̅̅̅̅̅̅
− λ

√
ρ
)
+ k

λ  

±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

36B2k2(M + N)
2
+ A4(D2 − E2)

√

2AB
1

[
Dsinh

( ̅̅̅̅̅̅
− λ

√
ρ
)
+ Ecosh

( ̅̅̅̅̅̅
− λ

√
ρ
)
+ k

λ

]

(3.9) 

where λ = A2

6B(M+N)
; B(M+N)〈0. 

Now, taking E = 0, and k = 0 but D ∕= 0 and inserting ρ = (x +

y − ct), we have the hyperbolic function solution of Eq. (1.1) which is 
given below, 

v(x, y, t) = −
A
2B

[1 ± coth
( ̅̅̅̅̅̅

− λ
√

(x + y − ct)
)

±cosech
( ̅̅̅̅̅̅

− λ
√

(x + y − ct)
)
] (3.10) 

where = A2

6B(M+N)
; B(M+N)〈0. 

Case-3. For λ = 0. 
Corresponding to case-1 and case-2, we have another set mentioned 

below, 

a0 = −
3A
4B

, a1 = 0, b1 =
12k(M + N)

A
, c = −

3A2

16B
,E

=
24Bk2(M + N) + A2D2

2A2k
(3.11) 

Engaging Eq. (3.11) into Eq. (3.3), we attain the solution of Eq. (3.2) 
given below, 

v(ρ) = −
3A
4B

+
12k(M + N)

A
1

(
k
2ρ2 + Dρ + E

) (3.12) 

Now, putting D = 0, E =
12Bk(M+N)

A2 and k ∕= 0 then inserting ρ = (x +

y − ct), we acquire a rational function solution of Eq. (1.1) as the 
followings, 

v(x, y, t) = −
3A
4B

+
24A(M + N)

A2(x + y − ct)2
+ 24B(M + N)

(3.13)  

Investigation of the Gerdjikov-Ivanov equation 

In this part, we also engage the double (G′/G,1/G)-expansion 
method to look for the abstract solutions of the Gerdjikov-Ivanov 
equation. Consider the wave transformation, 

q(x, t) =
̅̅̅
h

√
e

i
p φ(x,t); h = h(x, t); p ∕= 0. (4.1). 

where h implies the density of fluid. Now Eq. (1.2) leads to. 
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ht +
(

2
p uh − 1

2h
2
)

x
= 0; u = φx. (4.2). 

With new wave conversion ρ = x − ct, we write Eq. (4.2) as the 
following form, 

− ch′

+

(
2
p

uh −
1
2
h2
)′

= 0 (4.3) 

By integrating, we have 

u =
p
2

(

c+
1
2

h+
a
h

)

(4.4) 

where a is integrating constant. On this occasion, the above- 
mentioned equation can be explained as follows: 

ut +
2
p

uux = p(h− 1
2(h1

2)xx)x +

(

hu +
2
p

h2
)

x
(4.5) 

By facilitating and integrating, Eq. (4.5) can be written as follows, 

− uht+hut − 2uhhx − h2ux − 2p2h2hx −
p
2
hxxx+2rhx+2

(∫

utdx
)

x
=0 (4.6) 

where r is a constant. Placing Eq. (4.4) into Eq. (4.6) leads to, 
(p

2
c2 −

p
2

a+ 2r
)

h′

−
3p
2

chh′

−
11p

4
h2h′

−
p
2
(
h3)′′′ = 0 (4.7) 

If we are setting the integrating constant a = 0 and integrating two 
times with refers to ρ, Eq. (4.7) will be of the following form, 

(h′)
2
=

(

c2 +
4
k

r
)

h2 − ch3 −
11
12

h4 (4.8) 

By engaging the homogeneous balance rule in Eq. (4.8), we find the 
balance number T = 1 and placing it in Eq. (2.13), the following form 
can be obtained, 

h(ρ) = a0 + a1T(ρ)+ b1W(ρ) (4.9) 

where the functions T(ρ) and W(ρ) have been narrated in Eq. (2.2) 
and Eq. (2.3). Depending on the signs of λ, we attain three fundamental 
solutions of Eq. (4.8) which are given below, 

Case-1. For λ > 0. 
Differentiation twice of Eq. (4.9) and employing Eq. (2.3) and Eq. 

(2.5), we alter the left-hand part of the equation (4.9) in terms of 
T and W. Now equating the constants of coefficients into the attained 
expressions equal to zero, we have a group of algebraic equations in a0, 
a1, a2, b1, b2, λ and c. After ending this process and engaging the com-
puter software Mathematica, we get set the solution as follows, 

a0 = 0, a1 = 0, b1 = ±
2λ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3(D2 + E2)

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3c2 − 11λ

√ , k = ±
cλ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3(D2 + E2)

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3c2 − 11λ

√ , r

= −
p
4
(c2 + λ) (4.10) 

By putting the above values into the Eq. (4.9), we have trigonometric 
function solutions of Eq. (4.8) mentioned below, 

h(ρ) = ±
2λ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3(D2 + E2)

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3c2 − 11λ

√
1

[
Dsin

( ̅̅̅
λ

√
ρ
)
+ Ecos

( ̅̅̅
λ

√
ρ
)
+ k

λ

] (4.11) 

By putting D = 0, k = ± cλ
̅̅̅
3

√
E̅̅̅̅̅̅̅̅̅̅̅̅̅

3c2 − 11λ
√ but E ∕= 0 then inserting ρ = (x − ct) 

in Eq. (4.11), we have. 
h(x, t) = 2λ

c[mcos(
̅̅
λ

√
(x− ct) )+1]

. [By taking ‘+’ sign] (4.12). 

Now engaging Eq. (4.12) into Eq. (4.4) and using the relation u = φx 
then integrating with respect to x, we have 

φ(x, t) =
p
2
[
(

1 +
a
2λ

)
cx +

2
̅̅̅
λ

√
tanh− 1

{ ̅̅̅̅̅̅̅̅̅
(m− 1)
(m+1)

√
tan[12

̅̅̅
λ

√
(x − ct)]

}

c
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√

+
acmsin

( ̅̅̅
λ

√
(x − ct)

)

2λ
3
2

] (4.13)  

m =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3c2 − 11λ

√

c
̅̅̅
3

√

By using Eq. (4.12) and Eq. (4.13) in Eq. (4.1), we find a trigono-
metric function solution of Eq. (1.2) as follows,   

m =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3c2 − 11λ

√

c
̅̅̅
3

√

Again putting E = 0, k = ± cλ
̅̅
3

√
D̅̅̅̅̅̅̅̅̅̅̅̅̅

3c2 − 11λ
√ but D ∕= 0 then inserting ρ =

(x − ct), we have. 
h(x, t) = 2λ

c[msin(
̅̅
λ

√
(x− ct) )+1]

. [By taking ‘+’ sign] (4.15). 

By using Eq. (4.15) and Eq. (4.4) in Eq. (4.1), we find a trigonometric 
function solution of Eq. (1.2) as follows, 

q(x,t)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2λ

c[msin
( ̅̅̅

λ
√

(x − ct)
)
+1]

√

e
i
2[

(
1+ a

2λ

)
cx+

2
̅̅
λ

√
tanh− 1

{
m+tan[12

̅̅
λ

√
(x− ct)]̅̅̅̅̅̅̅

1− m2
√

}

c
̅̅̅̅̅̅̅
1− m2

√ −
acmcos(

̅̅
λ

√
(x− ct))

2λ
3
2

]

(4.16)  

m =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3c2 − 11λ

√

c
̅̅̅
3

√

Case-2. For λ < 0 

Alike to case-1, we get another set of solutions as follows, 

a0 = 0, a1 = 0, b1 = ±
2λ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3(D2 − E2)

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
11λ − 3c2)

√ , k = ±
cλ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3(D2 − E2)

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
11λ − 3c2

√ , r

= −
p
4
(c2 + λ) (4.17) 

By putting the above values into the Eq. (4.9), we have hyperbolic 
function solutions of Eq. (4.8) mentioned below, 

h(ρ) = ±
2λ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3(D2 − E2)

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
11λ − 3c2)

√
1

[
Dsinh

( ̅̅̅̅̅̅
− λ

√
ρ
)
+ Ecosh

( ̅̅̅̅̅̅
− λ

√
ρ
)
+ k

λ

] (4.18) 

Placing D = 0, k = ± cλ
̅̅
3

√
E̅̅̅̅̅̅̅̅̅̅̅̅̅

3c2 − 11λ
√ but E ∕= 0 then inserting ρ = (x − ct), we 

have. 
h(x, t) = − 2λ

c[mcosh(
̅̅̅̅̅
− λ

√
(x− ct) )+1]

. [By taking ‘-’ sign] (4.19) 

q(x, t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2λ

c[mcos
( ̅̅̅

λ
√

(x − ct)
)
+ 1]

√

e
i
2 [

(
1+ a

2λ

)
cx+

2
̅̅
λ

√
tanh− 1

{ ̅̅̅̅̅̅̅
(m− 1)
(m+1)

√
tan[12

̅̅
λ

√
(x− ct)]

}

c
̅̅̅̅̅̅̅
m2 − 1

√ +
acmsin(

̅̅
λ

√
(x− ct))

2λ
3
2

]

(4.14)   
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m =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3c2 − 11λ

√

c
̅̅̅
3

√

By using Eq. (4.19) and Eq. (4.4) in Eq. (4.1), we a get a hyperbolic 
function solution of Eq. (1.2) as follows,   

m =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3c2 − 11λ

√

c
̅̅̅
3

√

Case-3. For λ = 0. 
Alike to case-1 and case-2, we get another set of solutions as follows, 

a0 = 0, a1 = 0, b1 =
2(− 3cE ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9c2E2 − 33D2

√
)

11
, k

=
c

11

(
3Ec ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9c2E2 − 33D2

√ )
, r = −

c2p
4

(4.21) 

By putting the above values into the Eq. (4.9), we have the solutions 
of Eq. (4.8) mention below, 

h(ρ) = 2(− 3cE ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9c2E2 − 33D2

√
)

11
1

(
k
2ρ2 + Dρ + E

) (4.22) 

Taking D = 0 but E ∕= 0 and k = 6Ec2

11 then inserting ρ = (x − ct), we 
have 

h(x, t) = −
12c

3c2(x − ct)2
+ 11

(4.23) 

By using Eq. (4.23) and Eq. (4.4) in Eq. (4.1), we a get a rational 
function solution of Eq. (1.2) as follows, 

Fig. 1a. The 3D figure of |q(x, t)| implies the periodic soliton of the Eq. (3.6) 
within the range (x, t) ∈ [− 10,10] for the parameters |u(x, t)|λ = 1, M = 1, N =

1, A = 4, B = 1, and c = − 2. 

Fig. 1b. The figure of |q(x, t)| implies the contour shape of the Eq. (3.6) within 
the range (x, t) ∈ [− 10, 10] for the parameters λ = 1, M = 1, N = 1, A = 4, 
B = 1, and c = − 2. 

Fig. 1c. The 2D surface of |q(x, t)| implies the projection of 3D form of Eq. (3.6) 
within the range x ∈ [ − 5,5] for the parameters λ = 1, M = 1, N = 1, A = 4, 
B = 1, c = − 2 and t = 1. 

Fig. 2a. The 3D figure of |q(x, t)| implies the singular periodic soliton of the Eq. 
(3.10) within the range (x, t) ∈ [− 5,5] for the parameters λ = − 2

3, M = 1, N =

1, A = 4, B = − 2, and c = 4
3. 

q(x,t)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
2λ

c[mcosh
( ̅̅̅̅̅̅

− λ
√

(x− ct)
)
+1]

√

e
i
2[

(
1+ a

2λ

)
cx+

2
̅̅̅
− λ

√
tan− 1

[
[(m− 1)tanh[12

̅̅̅
− λ

√
(x− ct)]]̅̅̅̅̅̅̅̅̅̅̅

− (1+m2)
√

]

c
̅̅̅̅̅̅̅̅̅
(m2 − 1)

√ −
acmsinh(

̅̅̅
− λ

√
(x− ct))

2(− λ)
3
2

]

(4.20)   
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Fig. 2b. The figure of |q(x, t)| implies the contour shape of the Eq. (3.10) within 
the range (x, t) ∈ [− 5, 5] for the parameters λ = − 2

3, M = 1, N = 1, A = 4, B =

− 2, and c = 4
3. 

Fig. 2c. The 2D surface of |q(x, t)| implies the projection of 3D form of Eq. 
(3.10) within the range x ∈ [ − 5,5] for the parameters λ = − 2

3, M = 1, N = 1, 
A = 4, B = − 2, c = 4

3 and t = 2. 

Fig. 3a. The 3D figure of |q(x, t)| implies the singular kink shape soliton of the 
Eq. (3.13) within the range (x, t) ∈ [− 10,10] for the parameters M = 1, N = 1, 
A = 4, B = − 2, and c = 3

2. 

Fig. 3b. The figure of |q(x, t)| implies the contour shape of the Eq. (3.13) within 
the range (x, t) ∈ (x, t) ∈ [− 10,10] for the parameters M = 1, N = 1, A = 4, B =

− 2, and c = 3
2. 

Fig. 3c. The 2D surface of |q(x, t)| implies the projection of 3D form of Eq. 
(3.13) within the range x ∈ [ − 10,10] for the parameters M = 1, N = 1, A = 4, 
B = − 2, c = 3

2 and t = 1. 

Fig. 4a. The 3D figure of |q(x, t)| implies the periodic soliton of the Eq. (4.14) 
within the range (x, t) ∈ [− 5,5] for the parameters c = 3, λ = 1, and m = 4

3
̅̅
3

√ . 
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Fig. 4b. The figure of |q(x, t)| implies the contour shape of the Eq. (4.14) within 
the range (x, t) ∈ [− 5, 5] for the parameters c = 3, λ = 1, and m = 4

3
̅̅
3

√ . 

Fig. 4c. The 2D surface of |q(x, t)| implies the projection of 3D form of Eq. 
(4.14) within the range x ∈ [ − 5,5] for the parameters c = 3, λ = 1, m = 4

3
̅̅
3

√

and, t = 1. 

Fig. 5a. The 3D figure of |q(x, t)| implies the bell shape soliton of the Eq. (4.20) 
within the range (x, t) ∈ [− 5,5] for the parameters c = 3, λ = − 1, and m =
̅̅̅̅
38

√

3
̅̅
3

√ . 

Fig. 5b. The figure of |q(x, t)| implies the contour shape of the Eq. (4.20) within 
the range (x, t) ∈ [− 5,5] for the parameters c = 3, λ = − 1, and m =

̅̅̅̅
38

√

3
̅̅
3

√ . 

Fig. 5c. The 2D surface of |q(x, t)| implies the projection of 3D form of Eq. 
(4.20) within the range x ∈ [ − 5,5] for the parameters c = 3, λ = − 1, m =

̅̅̅̅
38

√

3
̅̅
3

√

and t = 1. 

Fig. 6a. The 3D figure of |q(x, t)| implies the anti-bell shape soliton of the Eq. 
(4.24) within the range (x, t) ∈ [− 5,5] for the parameter c = − 2. 
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q(x, t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
12c

3c2(x − ct)2
+ 11

√

ei
2 [(c−

a(11+3c4 t2)
12c )x+1

4 atc2x2 − 1
12 acx3 − 2

̅̅̅
3
11

√
tan− 1 [

̅̅̅
3
11

√
c(x− ct)]]

(4.24) 

where c is negative. 

Graphical representation and discussion 

Here, we delineate the graphical illustration as well as its physical 
significances of our gained traveling wave solutions to the proposed 
equations. As the characteristic of investigative solutions relies on the 
geometrical composition so we obvious several form of soliton solutions 
like periodic soliton, singular periodic soliton, anti-kink shape soliton, 
bell shape soliton, and anti-bell shape solitons are traced in this part 
with 3D, contour, and 2D form. Here, we have explained our six attained 
solutions. Firstly, we draw the figures of the of Eq. (3.6) in three formats 
which are 3D, contour and the projection of 3D i.e. 2D figure and the 
type of solution is periodic soliton within the range (x, t) ∈ [ − 10,10] for 
the parameters λ = 1, M = 1, N = 1, A = 4, B = 1, and c = − 2 which is 
given in Fig. 1(a). The contour shape of Eq. (3.6) has been displayed in 
Fig. 1(b) for the same range and same parameters. In Fig. 1(c) the 2D 
surface i.e. the projection of 3D form within the range x ∈ [ − 5,5] for the 
parameters λ = 1, M = 1, N = 1, A = 4, B = 1, c = − 2 and t = 1 has 
been shown. Now the Eq. (3.10) implies the singular periodic soliton 

within the range (x, t) ∈ [− 5, 5] for the parameters λ = − 2
3, M = 1, N =

1, A = 4, B = − 2, and c = 4
3 which is shown in Fig. 2(a) and the cor-

responding contour shape and 2D shape are given in Figs. 2(b) and 2(c) 
respectively. The Eq. (3.13) signifies the singular kink shape soliton 
within the range (x, t) ∈ [− 10, 10] for the parameters M = 1, N = 1, A =

4, B = − 2, and c = 3
2 which is shown in Fig. 3(a) and its resembling 

contour shape and 2D shape are given in Figs. 3(b) and 3(c) respectively. 
The Eq. (4.14) implies the periodic soliton within the range (x, t) ∈
[− 5, 5] for the parameters c = 3, λ = 1, and m = 4

3
̅̅
3

√ which is shown in 
Fig. 4(a) and its analogous contour shape and 2D shape are given in 
Figs. 4(b) and 4(c) respectively. The Eq. (4.20) indicates the bell shape 
soliton within the range (x, t) ∈ [− 5, 5] for the parameters c = 3, λ =

− 1, and m =
̅̅̅̅
38

√

3
̅̅
3

√ which is shown in Fig. 5(a) and its corresponding 
contour shape and 2D shape are given in Figs. 5(b) and 5(c) respectively. 
Finally, Fig. 6(a) of the Eq. (4.24) implies the anti-bell shape soliton 
within the range (x, t) ∈ [− 5,5] for the parameter c = − 2 and its corre-
sponding contour shape and 2D shape are plotted in Figs. 6(b) and 6(c) 
respectively. 

Conclusion 

In this research work, we attain exact travelling wave solutions of the 
mZK equation and Gerdjikov-Ivanov equation. These solutions are in-
dividual which are trigonometric function, hyperbolic and rational 
function. In the various conditions and situations, these wave solutions 
are going to be very obligate. The obtained solutions are stable, adapt-
able, and capable to travel long dimensions. The attained solutions 
explain the flow of current and voltage which can be applied to sketch 
the electrical transmission lines. So, these solutions may be sharp to 
resolve the complex occurrence blooming in science and engineering 
and susceptible to amplifying the impression on further investigation. 
These investigations exhibit through the double (G′/G,1/G)-expansion 
method, which is completely proficient and, well fitted to search the 
closed form wave solution for the difficulties deliberated in this paper. 
We believe that this method will be of great help in solving a variety of 
real and complex nonlinear evolution equations in the future. At the 
same time, we hope to have more innovative methods to provide new 
ideas for the two equations investigated in this work. 
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[37] Güner Ö, Bekir A, Karaca F. Optical soliton solutions of nonlinear evolution 
equations using ansatz method. Optik 2016;127(1):131–4. 

[38] Park C, Nuruddeen RI, Ali KK, Muhammad L, Osman MS, Baleanu D. Novel 
hyperbolic and exponential ansatz methods to the fractional fifth-order 
Korteweg–de Vries equations. Adv Differ Equations 2020;2020(1):627. 

[39] Iqbal MA, Wang Y, Miah MM, Osman MS. Study on Date-Jimbo- Kashiwara-Miwa 
equation with conformable derivative dependent on time parameter to find the 
exact dynamic wave solutions. Fractal Fract 2022;6:4. 

[40] Miah MM. “The fifth order Caudrey-Dodd-Gibbon equation for exact travelling 
wave solutions”, Springer proceedings in complexity, Proceedings pf the ICNDA 
2022. Scopus, Springer: Accepted; 2022. 

[41] Chowdhury MA, Miah MM, Ali HMS, Chu YM, Osman MS. An investigation to the 
nonlinear (2+1)-dimensional soliton equation for discovering explicit and periodic 
wave solutions. Results Phys 2021;23:104013. 

[42] Miah MM, Ali HMS, Akbar MA, Wazwaz AM. Some applications of the G’G, 1G- 
expansion method to find new exact solutions of NLEEs. Eur Phys J Plus 2017;132: 
252. 

[43] Siddique I, Jaradat MM, Zafar A, Mehdi KB, Osman MS. Exact traveling wave 
solutions for two prolific conformable M-Fractional differential equations via three 
diverse approaches. Results Phys 2021;28:104557. 

[44] Liu JG, Wazwaz AM, Zhu WH. Solitary and lump waves interaction in variable- 
coefficient nonlinear evolution equation by a modified ansätz with variable 
coefficients. J Appl Anal Comput 2022;12(2):517–32. 

[45] Liu JG, Zhao H. Multiple rogue wave solutions for the generalized (2+ 1)-dimen-
sional Camassa–Holm–Kadomtsev–Petviashvili equation. Chin J Phys 2022;77: 
985–91. 

[46] Munro S, Parkes EJ. The derivation of a modified Zakharov-Kuznetsov equation 
and the stability of its solutions. J Plasma Phys 1999;62(3):305–17. 

[47] Xu S, He J. The rogue wave and breather solution of the Gerdjikov-Ivanov 
equation. J Math Phys 2012;53(6):063507. 

[48] Shehata MS, Rezazadeh H, Jawad AJ, Zahran EH, Bekir A. Optical solitons to a 
perturbed Gerdjikov-Ivanov equation using two different techniques. Revista 
mexicana de física 2021;67(5):050704. 

[49] A A. Al-Shawba, F. A. Abdullah, A. Azmi and M. A. Akbar, “An Extension of the 
Double (G′/G,1/G)-Expansion Method for Conformable Fractional Differential 
Equations”, Complexity, 2020, Article ID 7967328, 2020. 

M.A. Iqbal et al.                                                                                                                                                                                                                                


