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Abstract This work establishes the lump periodic
and exact traveling wave solutions for the (3 +
1)-dimensional generalized Kadomtsev–Petviashvili
equation. We use the Hirota bilinear method, as well as
the robust integration techniques tanh–coth expansion
and rational sine–cosine, to provide such innovative
solutions. In order to explain specific physical difficul-
ties, innovative lump periodic and analytical solutions
have been investigated. These discoveries have been
proven to be useful in the transmission of long-wave
and high-power communications networks. It is impor-
tant to highlight that the results given in thiswork depict
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new features and reflect previously unknown physical
dynamics for the governing model.
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1 Introduction

Two ormore variables are involved in a partial differen-
tial equation (PDE) [1]. During the twentieth century,
therewas considerable advancement in the study of dif-
ferential equations. Themain cause for this is the grow-
ing number of mathematical applications in fields such
as medicine, engineering, computer science, mathe-
matical biology, and aerodynamics. Nonlinear PDEs
are used to mathematically characterize various phys-
ical phenomena [2–4].

The ability to get analytical solutions to travel-
ing waves traced by nonlinear differential equations
is a significant addition in nonlinear sciences since it
depicts heterogeneous natural events such as solitons,
vibrations, and speed distribution [5–7].

Solitons are nonlinear diffusive PDE solutions that
describe any physical system. A solitary wave, also
known as a soliton inmathematics and physics, is a spi-
ral wave feature thatmaintains its structure as it spreads
at an unchanging velocity [8].

PDEs are used to explain all real-world processes,
resulting in a complex collection of problems that can-
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not be solved perfectly but may be addressed analyt-
ically by considering their actual scenarios and theo-
retical potential. There have various ways to employ
PDEs and apply them in real-word problems such
as heat unsteady flow of a micropolar fluid over a
curved stretched surface [9–12]. Moreover, to exam-
ine analytic solutions of PDEs, several effective strate-
gies have been presented in the literature. Exploring
the dynamic behavior of tangible actual systems has
long been an important study subject for mathemati-
cians throughout history. During the twentieth century,
researchers began to investigate the in-depth analysis of
nonlinear systems and their centripetal compositions,
and much attention was paid to Chaos theory, which
states that PDEs and ODEs can exhibit astonishingly
diverse behavior, allowing around settled schemes to
be exponentially episodic for flaring time. Soliton the-
ory allows mathematicians to attest to the quasi-linear
behavior of nonlinear PDEs (systems) [8,13–20].

It is generally established that nonlinear interac-
tion solutions can be interpreted by lump solutions
[21]. Many researchers have studied lump solutions for
integrable equations during the last few decades [22–
25]. Furthermore, other investigations demonstrate the
occurrence of a collision between lumps and other
kinds of exact solutions to nonlinear aspects. It could be
noticed, however, that severalmethodologies have been
used to generate interaction phenomena for PDEs. To
guarantee that solutions exist, values are sometimes set
to these constant coefficients. It is important to remem-
ber that research on how to deal with these interac-
tion events is still lacking. Owing to this, we got the
motivation to consider the lump and exact solutions
for the (3+1)-dimensional generalized Kadomtsev–
Petviashvili equation provided by [26–29]

τxt + ατxxxx + β(ττxx + τ 2x ) + δ(τyy + τzz) = 0, (1)

where τ is the wave-amplitude function of x, y, z and
t . The parameter β is the coefficient of the nonlinear
terms, and α is the coefficient of the dispersion term.
The parameter δ is the coefficient of the dispersion-
less terms. With the change in the output is not equal
to the change in the input, nonlinearity results. Waves
of various wavelengths spread at various phase veloc-
ities when there is dispersion. The speed at which a
wave moves across a medium is referred to as its phase
velocity. This is the speed at which any particular fre-
quency portion of the wave moves in phase. Findings
have proven that wave pulses can sustain their form and

speed in the form of solitons during the transmission
processwhen the scattering effect and nonlinear impact
of the medium attain a stable equilibrium [26].

2 Lump-periodic solution

Here, the lump-periodic solutions to the variable coef-
ficients form of Eq. (1) are presented.

The variable coefficients form of Eq. (1) is regulated
as

τxt + α(t)τxxxx + β(t)(ττxx

+ τ 2x ) + δ(t)(τyy + τzz) = 0. (2)

Plugging the transformation parameter

τ(x, y, z, t) = 12(lnψ(x, y, z, t))xx (3)

in (1), by taking β(t) = α(t), we reach

ψ2
y − δ(t)ψ2

z − ψ(ψzz + ψyy) + 3α(t)ψ2
xx

− ψx (ψt + 4α(t)ψxxx )

+ ψ(ψxt + α(t)ψxxxx ) = 0. (4)

Using the following as a result of Eq. (4)

ψ(x, y, z, t) = �1(t) cosh (ζ1)

+ �2(t) cos (ζ2) + �3(t) cosh (ζ3) ,

(5)

where ζ1 = d3(t)+d1y+d2z+x, ζ2 = d6(t)+d4y+
d5z + x, ζ3 = d9(t) + d7y + d8z + x .

Substituting Eq. (5) into (4) yields an equation in
powers of cos(·), cosh(·). Performing some symbolic
computations, we reach the following solutions:

(I): With

d5 = d2 − (d1 − d4) ,

d3(t) =
∫ (

d21 (−δ(t) − d22 δ(t) + 2α(t)
)
dt + K1,

d6(t) =
∫ (

d21δ(t) − 2d4d1δ(t) − d22δ(t)

+2
√
d22 (d1 − d4) 2

(−δ(t)2
) − 2α(t)

)
dt

+ K2, �2(t) = i�1(t), �3(t) = 0,
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we have

ψ I (x, y, z, t) = i�1(t) cos

( ∫ (
d21 δ(t)

− 2d4d1δ(t) + 2
√

−d22 (d1 − d4)2δ(t)2

− d22 δ(t) − 2α(t)

)
dt

+
z

(
d22 δ(t) −

√
−d22 (d1 − d4) 2δ(t)2

)

d2δ(t)

+ d4y + K2 + x

)

+ �1(t) cosh

( ∫ (
d21 (−δ(t)) − d22 δ(t)

+ 2α(t)

)
dt + d1y + d2z + K1 + x

)
. (6)

Thus,

τ I (x, y, z, t) = 12

(
(cosh(	2)�1(t)

− i cos(	1)�1(t))(cosh(	2)�1(t)

+ i cos(	1)�1(t)) − (sinh(	2)�1(t)

− i sin(	1)�1(t))
2
)/

(cosh(	2)�1(t)

+ i cos(	1)�1(t))
2, (7)

where 	1 = ∫
(d21δ(t) − 2d4d1δ(t)

+ 2
√

−d22 (d1 − d4)2δ(t)2 − d22 δ(t) − 2α(t))dt

+K2+
z

(
d22 δ(t)−

√
−d22 (d1−d4)2δ(t)2

)

d2δ(t)
+d4y+x ,	2 =∫ (

d21 (−δ(t)) − d22 δ(t) + 2α(t)
)
dt + K1+d1y

+d2z+x .
(II): With

d8=
d25δ(t)−

√
d25 (d4−d7) 2

(−δ(t)2
)

d5δ(t)
,

d6(t)=
∫ (

d24 (−δ(t))−d25 δ(t)−2α(t)
)
dt+K3,

d9(t)=
∫ (

d24δ(t)−2d7d4δ(t)−d25δ(t)

+2
√
d25 (d4−d7) 2

(−δ(t)2
)+2α(t)

)
dt

+K4, �1(t)=0, �2(t)=i�3(t),

we get

ψ I I (x, y, z, t)=�3(t) cosh

( ∫ (
d24δ(t)

+ −2d7d4δ(t)2
√

−d25 (d4−d7) 2δ(t)2

+ −d25 δ(t)+2α(t)
)
dt

+K4+
z

(
d25 δ(t)−

√
−d25 (d4−d7) 2δ(t)2

)

d5δ(t)

+d7y+x

)
+i�3(t) cos

(∫ (
d24 (−δ(t))

− d25 δ(t)−2α(t)
)
dt+K3+d4y+d5z+x

)
. (8)

Thus,

τ I I (x, y, z, t) = 12α(t)
(
(cosh(	3)�3(t)

− i cos(	4)�3(t))(cosh(	3)�3(t)

+ i cos(	4)�3(t)) − (sinh(	3)�3(t)

− i sin(	4)�3(t))
2
)/

β(t)(cosh(	3)�3(t)

+ i cos(	4)�3(t))
2, (9)

where 	3 = ∫ (
d24δ(t) − 2d7d4δ(t)

+2
√

−d25 (d4 − d7) 2δ(t)2 − d25 δ(t) + 2α(t)

)
dt

+ K4 +
z

(
d25 δ(t)−

√
−d25 (d4−d7)2δ(t)2

)

d5δ(t)
+ d7y + x ,

	4 = ∫ (
d24 (−δ(t)) − d25 δ(t) − 2α(t)

)
dt + K3 +

d4y + d5z + x .

Figures 1 and 2 represent the propagation of the
obtained solutions (7) and (9), respectively.

3 Analytical solutions

In this section, we construct more new exact solitons
for the (3 + 1)-dimensional generalized Kadomtsev–
Petviashvili by means of two modified schemes, the
extended tanh–coth method, and the rational sine–
cosine method. First, we recall the proposed KP model
which is

τxt +ατxxxx +β(ττxx + τ 2x )+ δ(τyy + τzz) = 0. (10)
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Fig. 1 The 3D and contour profiles of solution (7) under α(t) = et , δ(t) = tanh(t)

Fig. 2 The 3D and contour profiles of solution (9) under α(t) = �3(t) = δ(t) = t
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Nonautonomous lump-periodic and analytical solutions 11433

Then, we convert the PDE (10) into an ODE via the
new independent variable ζ = x + ay + bz − ct . The
resulting ODE is

(
δ
(
a2 + b2

)
− c

)
U (ζ ) + 1

2
βU 2(ζ ) + αU ′′(ζ ) = 0,

(11)

whereU (ζ ) = τ(x, y, z, t). Next, we solve (11) by the
suggested schemes.

3.1 Tanh–coth expansion method

The extended tanh–coth expansion scheme [30–33]
provides the solution of (11) in the following form

U (ζ ) = A0 + A1Y + A2Y
2 + B1

Y
+ B2

Y 2 , (12)

forY = Y (ζ ) is the solution of the auxiliary differential
equations Y ′ = μ(1 − Y 2) with solution Y = tanh(ζ )
or Y = coth(ζ ). Differentiating (12) implicitly twice,
we reach

U ′′(ζ )

=
2μ2

(
Y 2 − 1

) (
A1Y

5 + A2
(
3Y 2 − 1

)
Y 4 + B2Y

2 − B1Y − 3B2
)

Y 4
.

(13)

By substitution of (12) and (13) in (11), and consid-
ering each coefficient of Y j : j = −4,−2, . . . , 4 to
zero, will provide a nonlinear algebraic system with
the unknowns A0, A1, A2, B1, B2 as well as the other
parameters a, b, c and μ.

0=B2

(
12αμ2+βB2

)
, 0=2B1

(
2αμ2+βB2

)
,

0=2B2

(
a2δ−8αμ2+A0β+b2δ−c

)
+βB2

1 ,

0=2
(
B1

(
a2δ−2αμ2+A0β+b2δ−c

)
+A1βB2

)
,

0=A0

(
2δ

(
a2+b2

)
−2c

)
+A2

0β

+2
(
A2

(
2αμ2+βB2

)
+A1βB1+2αB2μ

2
)

,

0=2
(
A1

(
a2δ − 2αμ2+A0β+b2δ−c

)
+A2βB1

)
,

0=2A2

(
a2δ−8αμ2+A0β+b2δ−c

)
+A2

1β,

0=2A1

(
2αμ2+A2β

)
,

0=A2

(
12αμ2+A2β

)
. (14)

In the above system, we have the following exact
solutions

τ1(x, y, z, t)=4αμ2

β
(1−3 tanh2(μ(−t (a2δ−4αμ2

+b2δ)+ay+bz+x))),

τ2(x, y, z, t)=12αμ2

β
sech2(μ(−t (a2δ+4αμ2+b2δ)

+ay+bz+x)),

τ3(x, y, z, t)=−12αμ2

β
tanh2(μ(−t (a2δ−16αμ2

+b2δ)+ay+bz+x))−12αμ2

β
coth2

(μ(−t (a2δ−16αμ2+b2δ)

+ay+bz+x))−8αμ2

β
,

and

τ4(x, y, z, t) = −48αμ2

β
csch2(2μ(−t (a2δ

+ 16αμ2 + b2δ) + ay + bz + x)),

τ5(x, y, z, t) = −12αμ2

β
csch2(μ(−t (a2δ

+ 4αμ2 + b2δ) + ay + bz + x)),

τ6(x, y, z, t) = 4αμ2

β
(1 − 3 coth2(μ(−t (a2δ

− 4αμ2 + b2δ) + ay + bz + x))).
(15)

In Fig. 3, we present the propagations of the obtained
solutions τ1 and τ2. Both are categorized as the motion
of periodic waves. Moreover, the other solutions τ3–τ4
are periodic moving waves.

3.2 Rational sine–cosine method

The enhanced rational sine–cosine approach provides
the following solution for (11) [34–38]:

U = U (ζ ) = 1 + A sin(μζ )

B + F cos(μζ )
, (16)

for A, B, F are constants to be reached later. Now,
we insert (16) in (11) and collect the coefficients of
the functions sini (ζ ) : i = 0, 1, 2, 3, cos(ζ ) and
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Fig. 3 a 3D plot of τ1. b 2D plot of τ1. c 3D plot of τ2. d 2D plot of τ2

sin(ζ ) cos(ζ ). We reach the system

0 = 2a2B2δ + 2a2δF2 + 2b2B2δ + 2b2δF2

− 2B2c + βB − 2cF2 + 2αF2μ2,

0 = F
(
B

(
4a2δ + 2αμ2 + 4b2δ − 4c

)
+ β

)
,

0 = 2A
(
B2

(
a2δ − αμ2 + b2δ − c

)

+F2
(
a2δ + 2αμ2 + b2δ − c

)
+ βB

)
,

0 = AF
(
B

(
2a2δ + αμ2 + 2b2δ − 2c

)
+ β

)
,

0 = −2F2
(
a2δ − αμ2 + b2δ

)
+ A2βB + 2cF2,

0 = A2βF, 0 = 2AF2
(
c − δ

(
a2 + b2

))
. (17)

Computing the equations above,we reach the following
new two solutions

τ7(x, y, z, t)

= 1

F cos

(√
β
(
−δt(a2+b2)+ay+bz+ βt

6F +x
)

√
6
√

α
√
F

)
− F

,

τ8(x, y, z, t)

= 1

F cosh

(√
β
(
−t

(
δ(a2+b2)+ β

6F

)
+ay+bz+x

)
√
6
√

α
√
F

)
+ F

.

(18)

Figure 4 shows the physical implication of both τ7 and
τ8. It can be observed that they are periodic and bell-
shaped, respectively.

3.3 Rational cosine–sine method

Here, we solve (11) by considering the following ratio-
nal form

U (ζ ) = 1 + A cos(ζ )

B + sin(ζ )
. (19)

Applying the same steps as the preceding section, we
provide the following solutions:

τ9(x, y, z, t)

= −1

F ∓ F sin

(√
β
(
−δt(a2+b2)+ay+bz+ βt

6F +x
)

√
6
√

α
√
F

) ,

Fig. 4 a 3D plot of τ7. b 2D plot of τ7. c 3D plot of τ8. d 2D plot of τ8
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τ10(x, y, z, t)

= 1

F ∓ i F sinh

(√
β
(
−t

(
δ(a2+b2)+ β

6F

)
+ay+bz+x

)
√
6
√

α
√
F

) .

(20)

We point here that the physical structures of τ9 and τ10
are similar to τ7 and τ8.

4 Conclusion

In this work, the lump periodic and exact traveling
wave solutions for the (3 + 1)-dimensional gener-
alized Kadomtsev–Petviashvili problem were deter-
mined using a robust integration method. The Hirota
bilinearmethodology, aswell as the effective tanh–coth
expansion and rational sine–cosine procedures, were
used to develop such innovative solutions. The above-
mentioned approach was utilized to effectively extract
the obtained solutions. Among the discovered solutions
are lump periodic, trigonometric, rational, and hyper-
bolic functions, which form a fascinating pattern of
waves in nonlinear physical phenomena. The derived
solutions’ interesting physical patterns have been pre-
sented in 3D and 2D as well as the contour surfaces.
Furthermore, all of the offered solutions satisfied the
original equation. The reported nonautonomous lump-
periodic and analytical solutions in this study could be
helpful in explaining the physical meaning of different
nonlinear models.
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