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1. Introduction

In the theory of ordinary and fractional calculus, boundary value problems for differential
equations play an important role in the context of integral equations. They often occur in
approximation models of the real-world problems, for example, in physics, material sciences,
fractional calculus theory, ecology and epidemiology (see [1–5]). Also, it motivates the in-depth study
of these types of integral models aiming to prove existence or/and uniqueness of their solutions.

Fredholm, Volterra, and integro-differential equations have important properties and are frequently
used in many areas of mathematics. Particularly, nonlinear integro-differential equations which cannot
be expressed as the solution of a linear combination of the functions and their derivatives. These
equations are often difficult to solve and require numerical methods to approximate the solutions and
they have been studied and examined by many researchers. Thus, these types of integral problems
appear in many mathematical models, computational algorithms, engineering problems, and physics
as well as fractional calculus theory (cf. other articles [6–11]).

On the other hand, the Adomian decomposition and its modification are used frequently in many
branches of applied mathematics, especially in integral equation theory. Therefore, many scholars,
including Wazwaz and his students, have studied these numerical algorithms to tackle some difficult
problems and find effective results. These approaches have also been applied to the numerical
solution of Abel’s integral equations, the Bagley-Torvik equations, the Fredholm and Volterra integral
equations, the integro equations, and numbers that are involved in an important position in applied
mathematics to obtain meaningful relations and representations in previous articles, see [12–17] and
closed references therein.

On the other hands, the exploration and solution of integro differential equation of nonlinear Volterra
and Fredholm types have attracted more and more attention by using homotopy analysis methods. Over
the years, this method has been proposed to find solution of linear and nonlinear integral equations, for
example, see [18–23].

Among the already known findings and results in the study of BVPs that include the construction
of integro-differential equations are those obtained in previous studies. For instance, in this paper,
we will consider a nonlinear integro-differential Eq (1.1) and solving it by using modified Adomian
decomposition method (MADM) and homotopy analysis methods (HAM),

θψ
′′

(ζ) +A(ζ)ψ
′

(ζ) + B(ζ)ψ(ζ)

= f (ζ) + λ1

ζ∫
a0

K1(ζ, y)[ψ(y)]pdy + λ2

a1∫
a0

K2(ζ, y)[ψ(y)]pdy, for ζ ∈ [a0, a1],
(1.1)

with the following conditions
ψ(a0) = η1, ψ(a1) = η2, (1.2)

where p ≥ 0 and η1, η2 ∈ R, θ, λ1, λ2 are non zero real parameters, and the functions A,B, f and the
disjoint kernels K1,K2 are known functions satisfying certain conditions to be assigned in the next
section. Note that ζ 7→ ψ(ζ) is the sought function to be determined in the space C2([a0, a1],R).

The rest of our study is arranged as follows: In Section 2, we recall the main concepts, and existence
and uniqueness of the solution. Section 3 describes the methods of solution of (1.1) by the algorithms
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proposed in this article in detail in Subsections 3.1 and 3.2, respectively. Section 4 describes the
numerical results and analysis. Finally, Section 5 gives the conclusion of our study.

2. Basic tools and existence of solutions

In this section, we briefly review some basic elements of the Volterra-Fredholm integral equations
and integro-differential equations. For a comprehensive study on these topics, we refer the interested
reader to [24–29].

Definition 2.1. [24] Let X be a Banach space and let T : X → X be a self-operator, i.e. T (x) = x for
all x ∈ X. Then, the formula for T is simply T (x) = x for all x ∈ X.

First, we state the contraction mapping concept.

Definition 2.2. [25] A mapping τ : M → M is contraction mapping or contraction defined on the
Banach space (M , d), if there exists a constant ı with 0 ≤ ı < 1, such that d( f (ζ), f (y)) ≤ ıd(ζ, y)
∀ζ, y ∈M .

Next, we consider the Banach contraction principle.

Theorem 2.1. [26] if (X, d) is a complete metric space and T : X → X is a function, such that there
exists a constant 0 ≤ k < 1 for which

d(T (x),T (y)) ≤ k · d(x, y),

for all x, y ∈ X, then T has exactly one fixed point, i.e. there exists a unique x0 ∈ X such that T (x0) = x0.

Theorem 2.2. [29] Suppose that g(ζ) = lim`→∞g`(ζ) on I = [a, b], where g, g1, g2, . . . are all Riemann
integrable functions on I. If {gn(ζ)}∞`=1 is uniformly bounded on I, then one can have∫ a1

a0

g(τ)dτ = lim
`→∞

(∫ a1

a0

g`(τ)dτ
)

and

lim
`→∞

(∫ a1

a0

∣∣∣g`(τ) − g(τ)
∣∣∣dτ) = 0.

In the following theorem, we recall the Arzela-Ascoli theorem.

Theorem 2.3. [28] Suppose that a sequence { f`}∞`=0 is bounded and equicontinuous in C[a0, a1]. Then
{ f`}∞`=0 has a subsequence, which is a uniformly convergent.

Another important theorem in our study is the Krasnoselskii fixed point theorem, which is stated as
follows.

Theorem 2.4. [27] Let M be bounded, closed and convex subset in a Banach space X. Let A,B :
M →M be two operators satisfying the following conditions:

1) A is continuous and compact;
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2) Aζ + By ∈M , ∀ζ, y ∈M ;
3) B is a contraction.

Then, there exists z ∈M such thatAz + Bz = z.

Let us briefly recall the following concepts that will be involved in proving the next theorem of
existence and uniqueness of the solutions.
Main postulates:

(1) The functionsA,B ∈ C(I,R).
(2) The f ∈ C2(I,R), where f is a known free function.
(3) The known kernels (ζ, y) 7→ Ki(ζ, y), i = 1, 2 are continuous in for all ζ, y ∈ I with values in R.
(4) For each ζ ∈ I, γi > 0 and i = 1, 2, one have

a1∫
a0

(
Ki(ζ, y)

)2 dy


1
2

≤ γi.

(5)
(
α + h1|λ1|C

∗
1(1) + |λ2|C

∗
2(1)

)
≤ |θ|, where

α = (a1 − a0) (||A||∞ + (a1 − a0)||B||∞) ,

C∗i (m) =

(
p
m

)
γi(a1 − a0)2m+ 1

2 (d∗(m))
1
2

(2p − 2m + 1)
1
2

, for i = 1, 2,

d∗(m) =
{
η

2p−2m
2 + η

2p−2m−1
2 η1 + . . . + η

2p−2m
1

}
.

(6) (α + |λ1|Λ1 + |λ2|Λ2) ≤ |θ|, where

Λ1 =

p∑
m=1

e(m)hmC∗1(m)
(a1 − a0)3m−3 ,

Λ2 =

p∑
m=1

e(m)C∗2(m)
(a1 − a0)3m−3 .

Above I is a closed interval of [a0, a1]. In other words, I = [a0, a1], e(m) is a finite positive constants
depends on m, and e(1) = 1.

Theorem 2.5. Assume that conditions (1)–(3) holds. Then, the following nonlinear Volterra-Fredholm
integral equations (NVFIE)

θg(ζ) +

a1∫
a0

W (ζ, τ) − λ1

ζ∫
a0

R1(ζ, y; 1)H2(y, τ)dy − λ2

a1∫
a0

R2(ζ, y; 1)H2(y, τ)dy

 g(τ)dτ = F (ζ)

+ λ1

ζ∫
a0

p∑
m=2

R1(ζ, y; m)


a1∫

a0

H2(y, τ)g(τ)dτ


m

dy + λ2

a1∫
a0

p∑
m=2

R2(ζ, y; m)


a1∫

a0

H2(y, τ)g(τ)dτ


m

dy, (2.1)
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is equivalent to the boundary value problems (1.1) and (1.2), where

g(ζ) := ψ
′′

(ζ), (2.2)

W (ζ, τ) :=
1

(a1 − a0)


W1(ζ, τ) = (τ − a0)(A(ζ) − (a1 − ζ)B(ζ)), a0 ≤ τ ≤ ζ,

W2(ζ, τ) = (τ − a1)(A(ζ) − (a0 − ζ)B(ζ)), ζ ≤ τ ≤ a1,

(2.3)

Ri(ζ, y; m) :=
(

p
m

)
Ki(x, y)
(b − a)p

[
η1(a1 − y) + η2(y − a0)

]p−m , i = 1, 2, (2.4)

H2(y, τ) :=


(a1 − y)(a0 − τ), a0 ≤ τ ≤ y,

(a0 − y)(a1 − τ), y ≤ τ ≤ a1,

(2.5)

µ(ζ) :=
1

(a1 − a0)
(
η1

[
−A(ζ) + (a1 − ζ)B(ζ)

]
+ η2

[
A(ζ) + (ζ − a0)B(ζ)

])
, (2.6)

F (ζ) := f (ζ) − µ(ζ) + λ1

ζ∫
a0

R1(ζ, y; 0)dy + λ2

a1∫
a0

R2(ζ, y; 0)dy. (2.7)

Proof. Let ψ
′′

(ζ) = g(ζ), where the function ζ 7→ g(ζ) is an element of C(I,R). Therefore,

ψ
′

(ζ) = ψ
′

(a0) +

ζ∫
a0

g(τ)dτ (2.8)

and

ψ(ζ) = η1 + (ζ − a0)ψ
′

(a0) +

ζ∫
a0

(ζ − τ)g(τ)dτ. (2.9)

By using ζ = a1 in (2.9), and then using its result in (2.8) and (2.9), we obtain

ψ
′

(ζ) =
1

(a1 − a0)

(η2 − η1) +

a1∫
a0

H1(ζ, τ)g(τ)dτ

 , (2.10)

ψ(ζ) =
1

(a1 − a0)

η1(a1 − ζ) + η2(ζ − a0) +

a1∫
a0

H2(ζ, τ)g(τ)dτ

 , (2.11)

where

H1(ζ, τ) :=
{

(τ − a0), a0 ≤ τ ≤ ζ,

(τ − a1), ζ ≤ τ ≤ a1,

H2(ζ, τ) :=
{

(a1 − ζ)(a0 − τ), a0 ≤ τ ≤ ζ,

(a0 − ζ)(a1 − τ), ζ ≤ τ ≤ a1.
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More generally,

[ψ(ζ)]p =
1

(a1 − a0)p

p∑
m=0

(
p
m

) [
η1(a1 − ζ) + η2(ζ − a0)

]p−m


a1∫

a0

H2(ζ, τ)g(τ)dτ


m

. (2.12)

By using the assumption that ψ
′′

(ζ) := g(ζ), (2.10)–(2.12) in (1.1), it follows that

µg(ζ) +
A(ζ)

a1 − a0
(η2 − η1) +

1
a1 − a0

a1∫
a0

[
A(ζ)H1(ζ, τ) + B(ζ)H2(ζ, τ)

]
g(τ)dτ +

B(ζ)
a1 − a0

((a1 − ζ)η1 + (ζ − a0)η2)

= f (ζ) +
λ1

(a1 − a0)p

ζ∫
a0

p∑
m=0

(
p
m

)
K1(ζ, y)[(a1 − ζ)η1 + (ζ − a0)η2]p−m


a1∫

a0

H2(y, τ)g(τ)dτ


m

dy

+
λ2

(a1 − a0)p

a1∫
a0

p∑
m=0

(
p
m

)
K2(ζ, y)[(a1 − ζ)η1 + (ζ − a0)η2]p−m


a1∫

a0

H2(y, τ)g(τ)dτ


m

dy.

Simplifying the last identity, it follows that

θg(ζ) +

a1∫
a0

[
W (ζ, τ) − λ1

ζ∫
a0

R1(ζ, y; 1)H2(y, τ)dy − λ2

a1∫
a0

R2(ζ, y; 1)H2(y, τ)dy
]
g(τ)dτ

=F (ζ) + λ1

ζ∫
a0

p∑
m=2

R1(ζ, y; m)


a1∫

a0

H2(y, τ)g(τ)dτ


m

dy + λ2

a1∫
a0

p∑
m=2

R2(ζ, y; m)


a1∫

a0

H2(y, τ)g(τ)dτ


m

dy,

(2.13)

where Ri(ζ, y; m), i = 1, 2, H(ζ, τ), µ(ζ) and F (ζ) are as (2.4)–(2.7) in the statement of the theorem.
A straight forward calculation can give the converse of the theorem. Hence, the proof is done. �

To (2.13) has a continuous solution, we need the conditions (1)–(4) to be satisfied as stated in the
following theorem.

Theorem 2.6. Assume that the conditions (1)–(4) hold, then the NVFIE (2.13) possesses continuous
solution.

Proof. Suppose that Γr B
{
g ∈ C(I,R) : ‖g‖∞ = sup

ζ∈I

|g(ζ)| ≤ r
}

for which the radius r > 0 is a finite

solution for

|λ1|

p∑
m=1

(h1r)m
C∗1(m) + |λ2|

p∑
m=1

rmC∗2(m) + (α − |θ|) r + ‖F ‖∞ = 0,

where h1 is an upper bound of
∣∣∣W2(ζ, τ)

∣∣∣. Let g1, g2 ∈ Γr and
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(T g1)(ζ) =
1
θ
F (ζ)−

1
θ

a1∫
a0

[
W (ζ, τ)−λ1

ζ∫
a0

R1(ζ, y; 1)H2(y, τ)dy−λ2

a1∫
a0

R2(ζ, y; 1)H2(y, τ)dy
]
g(τ)dτ

and

(W g2)(ζ) =
λ1

θ

ζ∫
a0

p∑
m=2

R1(ζ, y; m)


a1∫

a0

H2(y, τ)g(τ)dτ)


m

dy+
λ2

θ

a1∫
a0

p∑
m=2

R2(ζ, y; m)


a1∫

a0

H2(y, τ)g(τ)dτ)


m

dy.

Now, we see that

|(T g1)(ζ)| ≤
1
|θ|
|F (ζ)| +

r
|θ|

a1∫
a0

|W (ζ, τ)|dτ +
|λ1|r
|θ|

a1∫
a0

ζ∫
a0

|R1(ζ, y; 1)||H2(y, τ)|dydτ

+
|λ2|r
|θ|

a1∫
a0

a1∫
a0

|R2(ζ, y; 1)||H2(y, τ)|dydτ

≤
1
|θ|
|F (ζ)| +

αr

|θ|
+

h1|λ1|pr
|θ|(a1 − a0)p−3

a1∫
a0

|K1(ζ, y)|
|(η1 − η2)y + (η2a1 − η1a0)|1−p dy

+
|λ2|pr

|θ|(a1 − a0)p−3

a1∫
a0

|K2(ζ, y)|
|(η1 − η2)y + (η2a1 − η1a0)|1−p dy

≤
1
|θ|
|F (ζ)| +

αr
|θ|

+ h1|λ1|
p(a1 − a0)

5
2 (d∗(1))

1
2 r

|θ|(2p − 1)
1
2


a1∫

a0

(K1(ζ, y))2dy


1
2

+ |λ2|
p(a1 − a0)

5
2 (d∗(1))

1
2 r

|θ|(2p − 1)
1
2


a1∫

a0

(K2(ζ, y))2dy


1
2

≤
1
|θ|
‖F (ζ)‖∞ +

1
|θ|

[
α + (h1|λ1|C

∗
1(1) + |λ2|C

∗
2(1))

]
r. (2.14)

By using similar arguments, it follows that

|(W g2)(ζ)| ≤
|λ1|

|θ|

ζ∫
a0

p∑
m=2

|R1(ζ, y; m)|


a1∫

a0

|H2(y, τ)g(τ)|dτ


m

dy

+
|λ2|

|θ|

a1∫
a0

p∑
m=2

|R2(ζ, y; m|)


a1∫

a0

|H2(y, τ)g(τ)|dτ


m

dy

≤ |λ1|

p∑
m=2

(
p
m

)
(a1 − a0)2m+ 1

2 (d∗(m))
1
2 (h1r)m

|θ|(2p − 2m + 1)
1
2


a1∫

a0

(K1(ζ, y))2dy


1
2

AIMS Mathematics Volume 8, Issue 6, 14572–14591.



14579

+ |λ2|

p∑
m=2

(
p
m

)
(a1 − a0)2m+ 1

2 (d∗(m))
1
2 rm

|θ|(2p − 2m + 1)
1
2


a1∫

a0

(K2(ζ, y))2dy


1
2

≤
1
|θ|

|λ1|

p∑
m=2

(h1r)m
C∗1(m) + |λ2|

p∑
m=2

rmC∗2(m)

 . (2.15)

In view of (2.14) and (2.15), we can deduce

‖T (g1) + W (g2)‖∞ ≤ ‖T (g1)‖∞ + ‖W (g2)‖∞

≤
1
|θ|
‖F (ζ)‖∞ +

r
|θ|

(α + (h1|λ1|C
∗
1(1) + |λ2|C

∗
2(1)) +

1
|θ|

|λ1|

p∑
m=2

C∗1(m)(h1r)m + |λ2|

p∑
m=2

C∗2(m)rm

 ,
or simply,

‖T (g1) + W (g2)‖∞ ≤
1
|θ|
‖F (ζ)‖∞ +

1
|θ|

|λ1|

p∑
m=1

C∗1(m)(h1r)m + |λ2|

p∑
m=1

C∗2(m)rm

 +
αr
|θ|

= r,

it follows that T (g1) + W (g2) ∈ Γr for each g1, g2 ∈ Γr.
On the other hand, suppose that ζ1, ζ2 ∈ I with ζ1 < ζ2. Note that the functions F , W1 and W2 are

continuous in ζ according to postulates (1)–(3), then it will follow that

∣∣∣(T g1)(ζ2) − (T g1)(ζ1)
∣∣∣ ≤ 1
|θ|
|F (ζ2) −F (ζ1)| +

r
|θ|(a1 − a0)

ζ1∫
a0

|W1(ζ2, τ) −W1(ζ1, τ)|dτ

+
r

|θ|(a1 − a0)

ζ1∫
a0

|W2(ζ2, τ) −W2(ζ1, τ)|dτ +

ζ1∫
a0

|W1(ζ2, τ) −W2(ζ1, τ)|dτ

+
h1|λ1|pr

|θ|(a1 − a0)p−3

a1∫
a0

|K1(ζ2, y) − K1(ζ1, y)|
|(η1 − η2)y + (η2a1 − η1a0)|1−p dy

+
|λ2|pr

|θ|(a1 − a0)p−3

a1∫
a0

∣∣∣∣K2(ζ2, y) − K2(ζ1, y)
∣∣∣∣

|(η1 − η2)y + (η2a1 − η1a0)|1−p dy. (2.16)

As the right-hand side of Eq (2.16) is independent from u ∈ Γr, it tends to zero as ζ2 − ζ1 → 0. This
implies that |(T g1)(ζ2) − (T g1)(ζ1)| → 0 as ζ2 → ζ1.

Similarly, one can have

∣∣∣(W g2)(ζ2) − (W g2)(ζ1)
∣∣∣ ≤ |λ1|

|θ|

p∑
m=2

(
p
m

)
(a1 − a0)3m−p(h1r)m

a1∫
a0

|K1(ζ2, y)| − K1(ζ1, y)|
|(η1 − η2)y + (η2a1 − η1a0)|2m−2p dy

+
|λ2|

|θ|

p∑
m=2

(
p
m

)
(a1 − a0)3m−prm

a1∫
a0

|K2(ζ2, y) − K2(ζ1, y)|
|(η1 − η2)y + (η2a1 − η1a0)|2m−2p dy (2.17)
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and again it tends to zero whereas ζ2 − ζ1 tends to zero. Hence, the set (T + W )Γr is equicontinuous.
Furthermore, T g1,W g2 ∈ C(I,R), and consequently, T + W is an operator on Γr.

Now, we suppose that g, g∗ are two functions of Γr. So,

‖T (g) −T (g∗)‖∞ ≤
1
|θ|

(
α + h1|λ1|C

∗
1(1) + |λ2|C

∗
2(1)

)
‖g − g∗‖∞. (2.18)

Therefore, T is a contraction mapping on Γr due to postulate (5) and ‖T (g) −T (g∗)‖∞ ≤ ‖g − g∗‖∞.
Let g` be a sequence, such that g` → g in C[I,R]. Then, for each g`, g ∈ Γr and ζ ∈ I, we have

∣∣∣(W g`)(x) − (W g)(x)
∣∣∣ ≤ |λ1|

|θ|

ζ∫
a0

p∑
m=2

|R1(ζ, y; m)|




a1∫
a0

H2(y, τ)g`(τ)dτ


m

−


a1∫

a0

H2(y, τ)g(τ)dτ


m dy

+
|λ2|

|θ|

a1∫
a0

p∑
m=2

|R2(ζ, y; m)|




a1∫
a0

H2(y, τ)g`(τ)dτ


m

−


a1∫

a0

H2(y, τ)g(τ)dτ


m dy

≤
|λ1|

|θ|

ζ∫
a0

p∑
m=2

|R1(ζ, y; m)|e(m)


a1∫

a0

H2(y, τ)
∣∣∣g`(t) − g(t)

∣∣∣dτ
 dy

+
|λ2|

|θ|

a1∫
a0

p∑
m=2

|R2(ζ, y; m)|e(m)


a1∫

a0

H2(y, τ)
∣∣∣g`(τ) − g(τ)

∣∣∣dτ
 dy.

By applying the Arzela bounded convergence theorem on it, it follows that

lim
`→∞

∣∣∣(W g`)(x) − (W g)(ζ)
∣∣∣ ≤ |λ1|

|θ|

ζ∫
a0

p∑
m=2

|R1(ζ, y; m)|e(m)


a1∫

a0

H2(y, τ) lim
`→∞

∣∣∣g`(τ) − u(τ)
∣∣∣dτ

 dy

+
|λ2|

|θ|

a1∫
a0

p∑
m=2

|R2(ζ, y; m)|e(m)


a1∫

a0

H2(y, τ) lim
`→∞

∣∣∣g`(τ) − g(τ)
∣∣∣dτ

 dy = 0,

where e(m) depends on m and it is a finite positive constant. Thus, W is a continuous mapping on Γr.
Then we notice that the sequence W (g`) is uniformly bounded on I since

|W g(x)| ≤
1
|θ|

|λ1|

p∑
m=2

(h1r)m
C∗1(m) + |λ2|

p∑
m=2

rmC∗2(m)

 .
Moreover, the sequence W (g`) is equicontinuous since |W (g`)(ζ2) − W (g`)(ζ1)| < ε, as |ζ2 − ζ1| <

δ, for each ` ∈ N. Then, by applying the Arzela-Ascoli theorem it follows that W (g`) contains a
subsequence W (g`k), which is uniformly convergent. Thus, the set W Γr is compact and the operator W
is completely continuous. Consequently, all of the conditions of Krasnosel’skii theorem are fulfilled.
Hence, there is at least one fixed point in Γr for T + W , which can be a solution of NVFIE (2.13).
Thus, the proof is done. �
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In the following theorem, we prove the uniqueness of the continuous solution in the previous
theorem.

Theorem 2.7. If the conditions (1)–(3) and (5) hold, then the NVFIE (2.13) has a unique continuous
solution.

Proof. Since T and W are two operators, T + W is also an operator on Γr. Rewrite (2.18) as follows∥∥∥∥T (x) −T (x∗)
∥∥∥∥
∞
≤

1
|θ|

(
α + h1|λ1|C

∗
1(1) + |λ2|C

∗
2(1)

)
‖x − x∗‖∞, (2.19)

‖W (x) −W (x∗)‖∞ ≤
1
|θ|

|λ1|

p∑
m=2

hm
1 e(m)C∗1(m)

(a1 − a0)3m−3 + |λ2|

p∑
m=2

e(m)C∗2(m)
(a1 − a0)3m−3

 ‖x − x∗‖∞, (2.20)

for x, x∗ ∈ Γr. Then by using (2.19) with e(1) = 1 and (2.20), it follows that∥∥∥∥(T + W )(x) − (T + W )(x∗)
∥∥∥∥
∞
≤

∥∥∥∥T (x) −T (x∗)
∥∥∥∥
∞

+
∥∥∥∥W (x) −W (x∗)

∥∥∥∥
∞

≤
1
|θ|

(
α + h1|λ1|C

∗
1(1) + |λ2|C

∗
2(1)

)
‖x − x∗‖∞

+
1
|θ|

|λ1|

p∑
m=2

e(m)hm
1C
∗
1(m)

(a1 − a0)3m−3 + |λ2|

p∑
m=2

e(m)C∗2(m)
(a1 − a0)3m−3

 ‖x − x∗‖∞

≤
1
|θ|

(α + (|λ1|Λ1 + |λ2|Λ2)‖x − x∗‖∞

≤ ‖x − x∗‖∞. (2.21)

Consequently, by applying the Banach fixed point theorem and condition (6), we can deduce the
operatoris contraction on Γr. Hence, the NVFIE (2.13) posses a unique continuous solution in Γr.
Thus, the proof is completed. �

3. Methods of solutions

Our main section is divided into two subsections which concern the method of solutions to the
proposed nonlinear equation.

3.1. The modified Adomain decomposition method solution

Recall the MADM (see [13]), given by g(ζ) :=
∞∑̀
=0

g`(ζ), which approximates the NVFIE (2.13)

such that the conditions of Theorem 2.7 are satisfied. With F (ζ) := F1(ζ) + F2(ζ), we see that

g0(ζ) =
1
θ
F1(ζ), (3.1)

g1(ζ) =
1
θ
F2(ζ) −

1
θ

[ a1∫
a0

[
W (ζ, τ) − λ1

ζ∫
a0

R1(ζ, y; 1)H2(y, τ)dy − λ2

a1∫
a0

R2(ζ, y; 1)H2(y, τ)dy
]
g0(τ)dτ

]
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+
λ1

θ

ζ∫
a0

p∑
m=2

R1(ζ, y; m)A0(y, τ)dy +
λ2

θ

a1∫
a0

p∑
m=2

R2(ζ, y; m)A0(y, τ)dy, (3.2)

and for ` ≥ 2,

g`(x) = −
1
θ

[ a1∫
a0

[
W (ζ, τ) − λ1

ζ∫
a0

R1(ζ, y; 1)H2(y, τ)dy − λ2

a1∫
a0

R2(ζ, y; 1)H2(y, τ)dy
]
g`−1(τ)dτ

]

+
λ1

θ

ζ∫
a0

p∑
m=2

R1(ζ, y; m)A`−1(y, τ)dy +
λ2

θ

a1∫
a0

p∑
m=2

R2(ζ, y; m)A`−1(y, τ)dy, (3.3)

whereA` given by

A`(g0(ζ), g1(ζ), . . . , g`(ζ), y; m) =
1
`!

 d`

dρ`


a1∫

a0

H2(y, τ)
∞∑

i=0

ρigi(τ)dτ


m

∣∣∣∣∣∣
ρ=0

, (3.4)

is the Adomain’s polynomial for ` ≥ 0.
If Theorem 2.7 is met, then the following consequence follows:

Theorem 3.1. The solution g(ζ) for the NVFIE (2.13) obtained from (3.1)–(3.3) converges to the exact
solution as the number of iterations ` increases

(
i.e., lim`→∞ β`(ζ) = g(ζ)

)
.

Proof. Assume that {βk(ζ)} is a sequence of partial sums with

βk(ζ) =

ı∑
i=0

gi(ζ),

and let `,  ∈ Z+ with ` >  ≥ 1. Then we have

‖β`(ζ) − β (ζ)‖∞ =

∣∣∣∣∣∣∣ ∑̀i= +1

gi(ζ)

∣∣∣∣∣∣∣
≤

1
|θ|

a1∫
a0

∣∣∣W (ζ, τ)
`−1∑
i= 

gi(τ)
∣∣∣dτ +

|λ1|

|θ|

a1∫
a0

ζ∫
a0

∣∣∣R1(ζ, y; 1)H2(y, τ)
`−1∑
i= 

gi(τ)
∣∣∣dydτ

+
|λ2|

|θ|

a1∫
a0

a1∫
a0

∣∣∣R2(ζ, y; 1)H2(y, τ)
`−1∑
i= 

gi(τ)|dydτ +
|λ1|

|θ|

ζ∫
a0

p∑
m=2

∣∣∣R1(ζ, y; m)
`−1∑
i= 

Ai(y, τ)
∣∣∣dydτ

+
|λ2|

|θ|

a1∫
a0

p∑
m=2

∣∣∣R2(ζ, y; m)
`−1∑
i= 

Ai(y, τ)
∣∣∣dydτ

≤
α

θ
‖β`−1 − β −1‖∞ +

h1|λ1|

|θ|
(a1 − a0)3

a1∫
a0

∣∣∣R1(ζ, y; 1)
`−1∑
i= 

gi(τ)
∣∣∣dτ
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+
|λ2|

|θ|
(a1 − a0)3

a1∫
a0

∣∣∣R2(ζ, y; 1)
`−1∑
i= 

gi(τ)
∣∣∣dτ

+
|λ1|

|θ|

ζ∫
a0

p∑
m=2

∣∣∣R1(ζ, y; m)


a1∫

a0

`−1∑
i= 

gi(τ)dτ


m∣∣∣dy +

|λ2|

|θ|

a1∫
a0

p∑
m=2

∣∣∣R2(ζ, y; m)


a1∫

a0

`−1∑
i= 

gi(τ)dτ


m∣∣∣dy

≤
1
|θ|

(α + (h1|λ1|C
∗
1(1) + |λ2|C

∗
2(1)))‖β`−1 − β −1‖∞

+
|λ1|

|θ|

ζ∫
a0

p∑
m=2

(a1 − a0)3e(m)|R1(ζ, y; m)|dy +
|λ2|

|θ|

a1∫
a0

p∑
m=2

(a1 − a0)3e(m)|R2(ζ, y; m)|dy

≤
1
θ

α + h1|λ1|C
∗
1(1) + |λ2|C

∗
2(1) + |λ1|

p∑
m=2

e(m)hmC∗1(m)
(a1 − a0)3m−3 + |λ2|

p∑
m=2

e(m)C∗2(m)
(a1 − a0)3m−3

 ‖β`−1 − β −1‖∞.

For h1 = 1, it follows that

‖β`(ζ) − β (ζ)‖∞ ≤
1
|θ|

α + |λ1|

p∑
m=1

e(m)hmC∗1(m)
(a1 − a0)3m−3 + |λ2|

p∑
m=1

e(m)C∗2(m)
(a1 − a0)3m−3

 ‖β`−1 − β −1‖∞

=
1
|θ|

(α + |λ1|Λ1 + |λ2|Λ2) ‖β`−1 − β −1‖∞

= ϑ‖β`−1(x) − β −1(ζ)‖∞, (3.5)

where ϑ :=
(α + |λ1|Λ1 + |λ2|Λ2)

|θ|
with ϑ < 1. For ` =  + 1, it follows that

‖β +1 − β ‖∞ ≤ ϑ‖β (ζ)− β −1(ζ)‖∞ ≤ ϑ2‖β −1(ζ)− β −2(ζ)‖∞ ≤ · · · ≤ ϑ ‖β1(ζ)− β0(ζ)‖∞ = ϑ ‖g1‖∞.

(3.6)

By substituting (3.6) in (3.5) and applying the triangle inequality with ` >  > N ∈ N, we can deduce

‖β` − β ‖∞ ≤
ϑ`

1 − ϑ
‖g1‖∞ = ε,

where lim`→∞ ϑ
` = 0. Therefore,

‖β` − β ‖∞ < ε, for each `,  ∈ N.

Thus, the sequence β`(ζ) is a Cauchy sequence in C(I,R), and hence lim`−→∞ β`(ζ) = g(ζ), as desired.
�

3.2. The Homotopy analysis method solution

In this section, we establish an analysis for the NVFIE (2.13) under the conditions of Theorem 2.7
by applying the HAM (see [20]) to (1.2) as follows:
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g(ζ) −
1
θ


a1∫

a0

W (ζ, τ) − λ1

ζ∫
a0

R1(ζ, y; 1)H2(y, τ)dy − λ2

a1∫
a0

R2(ζ, y; 1)H2(y, τ)dy

 g(τ)dτ

 +
1
θ
F (ζ)

+
λ1

θ

ζ∫
a0

p∑
m=2

R1(ζ, y; m)


a1∫

a0

H2(y, τ)g(τ)dτ


m

dy +
λ2

θ

a1∫
a0

p∑
m=2

R2(ζ, y; m)


a1∫

a0

H2(y, τ)g(τ)dτ


m

dy = 0.

(3.7)

We define the nonlinear operator N as follows:

N[g(ζ)] = g(ζ) +
1
θ


a1∫

a0

W (ζ, τ) − λ1

ζ∫
a0

R1(ζ, y; 1)H2(y, τ)dy − λ2

a1∫
a0

R2(ζ, y; 1)H2(y, τ)dy

 g(τ)dτ


−

1
θ
F (ζ)−

λ1

θ

ζ∫
a0

p∑
m=2

R1(ζ, y; m)


a1∫

a0

H2(y, τ)g(τ)dτ


m

dy−
λ2

θ

a1∫
a0

p∑
m=2

R2(ζ, y; m)


a1∫

a0

H2(y, τ)g(τ)dτ


m

dy.

(3.8)

Considering (3.7) and (3.8), we have

N[g(ζ)] = 0, for ζ ∈ I.

On the other hand, if we define the homotopy of g(ζ) as follows:

σ∗[κ(ζ; ~, %)] = (1 − %)L(κ(ζ; ~, %) − g0(ζ)) − %~N[κ(ζ; ~, %)], (3.9)

then we notice that

(i) the function g0(ζ) is the initial approximation solution of g(ζ);
(ii) non-zero real parameter ~ is used to manage the convergence of suggested models;

(iii) the homotopy parameter % ∈ [0, 1] is embedded in (3.9);
(iv) the auxiliary linear operator L can satisfy the property L[%(ζ)] = 0, where %(ζ) = 0;
(v) the operator N can be represented in (3.8); that is,

N
[
κ(ζ; ~, %)

]
= κ(ζ; ~, %)+

1
θ


a1∫

a0

W (ζ, τ) − λ1

ζ∫
a0

R1(ζ, y; 1)H2(y, τ)dy − λ2

a1∫
a0

R2(ζ, y; 1)H2(y, τ)dy

 κ(τ; ~, %)dτ

−1
θ
F (ζ)

−
λ1

θ

ζ∫
a0

p∑
m=2

R1(ζ, y; m)


a1∫

a0

H2(y, τ)κ(τ; ~, %)dτ


m

dy−
λ2

θ

a1∫
a0

p∑
m=2

R2(ζ, y; m)


a1∫

a0

H2(y, τ)κ(τ; ~, %)dτ


m

dy,

σ∗[κ(ζ; ~, %)] = 0.
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Solving Eq (3.9) to get

(1 − %)L
[
κ(ζ; ~, %) − g0(ζ)

]
= %~N

[
κ(ζ; ~, %)

]
,

g(ζ) = g0(ζ) +

∞∑
ı=1

gı(ζ) =

∞∑
ı=0

gı(ζ),

where

gı(ζ) =
1
ı!
∂ıκ(ζ; ~, %)

∂%ı

∣∣∣∣∣∣
%=0

,

g1(ζ) = ~R1
[
g0(ζ)

]
,

g`(ζ) = g(`−1)(ζ) + ~R`

[
g(`−1)(ζ)

]
, for ` ≥ 2,

where

g(`−1)(ζ) =
(
g0(ζ), g1(ζ), . . . , g`−1)

)
,

and

R`

[
g`−1(ζ)

]
=

1
(` − 1)!

 ∂`−1

∂%`−1N

 ∞∑
i=0

gi(ζ)%i

 ∣∣∣∣∣∣
%=0

 .
4. Numerical results

As an application of the construction of the above algorithms in Theorems 2.6 and 2.7, we can now
present some numerical examples. Data calculations and graphs are implemented by MATLAB 2022a.

Example 4.1. Consider the boundary value problem

θψ′′(ζ) + cos(ζ)ψ′(ζ) + sin(ζ)ψ(ζ) = f (ζ) + λ1

∫ ζ

0
exp(ζ − τ)ψ2(τ)dτ + λ2

∫ 1

0
exp(ζ + τ)ψ2(τ)dτ,

ψ(0) = 1, ψ(1) = exp(1), (4.1)

where f (ζ) = (θ + cos(ζ) + sin(ζ))eζ − λ1(e2ζ − eζ) − λ2( eζ+3−eζ
3 ), θ = 1.6 × 102, λ1 = 1

600 , and λ2 = 1
200 .

Note that the exact solution for this problem is ψ(x) = exp(x), for t ∈ [0, 1].
Repeating the above process as in Section 2 by setting g(ζ) := ψ′′(ζ), we can deduce a nonlinear

Volterra-Fredholm integral equation in the form of (2.1). Moreover, (4.1) can satisfy the condition
postulate (5). Thus, Theorem 2.7 confirms the uniqueness of solution of this problem. Finally, we
tabulate the numerical results in Table 1 with ~ = −0.3332987 for the proposed methods and their
absolute errors between them with the exact value. Moreover, we have drawn it graphically in Figure 1
for the same value of ~.
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Table 1. Numerical solutions for Example 4.1 solved by the MADM (gMADM) and HAM
(gHAM).

ζ gexact gMADM gHAM ‖gexact − gMADM‖ ‖gexact − gHAM‖

0 1.000000000000000 0.999984104835638 0.999581887186063 0.000015895164362 0.000418112813937
0.200000000000000 1.221402758160170 1.221388089863198 1.221049812943067 0.000014668296972 0.000352945217103
0.400000000000000 1.491824697641270 1.491814748366577 1.491543753272788 0.000009949274693 0.000280944368483
0.600000000000000 1.822118800390509 1.822119095098361 1.821920429564758 0.000000294707852 0.000198370825751
0.800000000000000 2.225540928492468 2.225559875518119 2.225437477606285 0.000018947025652 0.000103450886183
1.000000000000000 2.718281828459045 2.718331874761669 2.718283517373330 0.000050046302623 0.000001688914284
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Figure 1. Plot of the proposed methods compared with the exact solution of Example 4.1.

Example 4.2. In our second example, we consider the boundary value problem

θψ′′(ζ) − 2ψ′(ζ) + exp(ζ)ψ(ζ) = f (ζ) + λ1

∫ ζ

0
sin(ζ − τ)ψ2(τ)dτ + λ2

∫ π
2

0
cos(ζ − τ)ψ2(τ)dτ,

ψ(0) = 1, ψ(
π

2
) = 0, (4.2)

where, f (ζ) = −θ cos(ζ) + 2 sin(ζ) + eζ cos(ζ) − λ1

(
sin2(ζ)−cos(ζ)+1

3

)
− λ2

(
2 cos(ζ)+sin(ζ)

3

)
, θ = 2 × 103,

λ1 = −1 × 10−4, and λ2 = 2 × 10−4. It is worth mentioning that the exact solution for this problem is
ψ(ζ) = cos(ζ), for ζ ∈

[
0, π2

]
.

Again, by repeating the above process as in Section 2 with g(ζ) := ψ′′(ζ), we can deduce a
nonlinear Volterra-Fredholm integral equation in the form of (2.1). Further, (4.2) satisfies the
condition postulate (5). Therefore, Theorem 2.7 confirms the uniqueness of solution of this problem.
Finally, we tabulate the numerical results in Table 2 with ~ = −0.3335010 for the proposed methods
and their absolute errors between them with the exact value. In addition, we have shown graphically
the proposed method together with the exact solution in Figure 2 for the same value of ~.
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Table 2. Numerical solutions for Example 4.2 solved by the MADM (gMADM) and HAM
(gHAM).

ζ gexact gMADM gHAM ‖gexact − gMADM‖ ‖gexact − gHAM‖

0 -1.000000000000000 -0.999999736951218 -1.000927604126402 0.000000263048782 0.000927604126402
0.314159265358979 -0.951056516295154 -0.951056324364335 -0.951684585338327 0.000000191930819 0.000628069043174
0.628318530717959 -0.809016994374947 -0.809016933053865 -0.809326057611100 0.000000061321082 0.000309063236153
0.942477796076938 -0.587785252292473 -0.587785406837625 -0.587805387326148 0.000000154545152 0.000020135033675
1.256637061435917 -0.309016994374947 -0.309017459304380 -0.308835063094412 0.000000464929432 0.000181931280536
1.570796326794897 -0.000000000000000 -0.000000754517346 0.000242283168664 0.000000754517346 0.000242283168664
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Figure 2. Plot of the proposed methods compared with the exact solution of Example 4.2.

Example 4.3. Consider the following problem

θψ′′(ζ) + 2ψ′(ζ) = f (ζ) + λ1

ζ∫
0

ζ(3τ2 − 2)ψ3(τ)dτ + λ2

1∫
0

ζ2(3τ2 − 2)ψ3(τ)dτ,

ψ(0) = 1, ψ(1) = 0, (4.3)

where,

f (ζ) = 6ζθ+6ζ2−4−λ1

ζ2 ·
(
ζ11 − 8ζ9 + 4ζ8 + 24ζ7 − 24ζ6 − 26ζ5 + 48ζ4 − 8ζ3 − 28ζ2 + 24ζ − 8

)
4

+λ2
ζ2

4
,

ψ(ζ) = ζ3 − 2ζ + 1, θ = 600, λ1 = 1
200 , and λ2 = 1

400 . Note that the exact solution for this problem is
ψ(ζ) = ζ3 − 2ζ + 1, for ζ ∈ [0, 1].

By repeating the procedure in Section 2 by setting g(ζ) := ψ′′(ζ), a nonlinear Volterra-Fredholm
integral equation of the form (2.1) can be deduced. Moreover, (4.3) can satisfy the condition
postulate (5), and this implies that the problem (4.3) has a unique solution by Theorem 2.7. Finally,
the numerical results are tabulated in Table 3 with ~ = −0.333335660493482 for the proposed
methods and their absolute errors between them with the exact value. Furthermore, it has been drawn
graphically in Figure 3 for the same value of ~.
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Table 3. Numerical solutions for Example 4.3 solved by the MADM (gMADM) and HAM
(gHAM).

ζ gexact gMADM gHAM ‖gexact − gMADM‖ ‖gexact − gHAM‖

0 0 0.000000000902758 -0.002221604293149 0.000000000902758 0.002221604293149
0.200000000000000 1.200000000000000 1.200000557975028 1.197157654809369 0.000000557975028 0.002842345190631
0.400000000000000 2.400000000000000 2.400001016543842 2.397069458186190 0.000001016543842 0.002930541813811
0.600000000000000 3.600000000000000 3.600001360727028 3.597513742673720 0.000001360727029 0.002486257326280
0.800000000000000 4.800000000000001 4.800001758680223 4.798490618826795 0.000001758680223 0.001509381173205
1.000000000000000 6.000000000000000 6.000002075477893 5.999999960429999 0.000002075477893 0.000000039570001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

2

3

4

5

6

7

g

g
exact

g
MADM

g
HAM

Figure 3. Plot of the proposed methods compared with the exact solution of Example 4.3.

Example 4.4. Finally, we consider the following problem

θψ′′(ζ) + sin(x)ψ′(ζ) + cos(x)ψ(ζ) = f (ζ) + λ1

ζ∫
0

sinh(ζ − τ)ψ2(τ)dτ + λ2

log(2)∫
0

cosh(ζ − τ)psi2(τ)dτ,

ψ(0) = 1, ψ(log(2)) = 2, (4.4)

where, f (ζ) = (θ + cos(ζ) + sin(ζ)) eζ − λ1

(
3(e2ζ − eζ) + eζ − e2ζ

)
6

+ λ2

(
6eζ + 15e−ζ

)
8

, θ = 2 × 103,

λ1 = 1
1200 , and λ2 = 1

2400 .

Numerical results for this example are tabulated and shown in Table 4 and Figure 4, respectively.
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Table 4. Numerical solutions for Example 4.4 solved by the MADM (gMADM) and HAM
(gHAM).
ζ gh1HAM gh2HAM gh3HAM gM ADM
0 1.000000002395460 1.000000000895461 0.999999999395461 0.999999591561626
0.138629436111989 1.148660177561804 1.148660175838817 1.148660174115830 1.148698031776195
0.277258872223978 1.319463455596505 1.319463453617322 1.319463451638140 1.319507684383564
0.415888308335967 1.515702866711945 1.515702864438419 1.515702862164893 1.515716463317634
0.554517744447956 1.741158734029968 1.741158731418281 1.741158728806595 1.741101190901671
0.693147180559945 2.000170959481061 2.000170956480888 2.000170953480715 2.000000298539512
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Figure 4. Plot comparison of the proposed methods in Example 4.4.

5. Conclusion and future directions

We have studied a nonlinear boundary value problem for a Volterra-Fredholm integro equation-
type subjected to certain boundary conditions. For the auxiliary problem (1.1) with the simplified
right-hand side, we have explicitly constructed its existence and uniqueness by applying Arzela-Ascoli
Krasnoselskii fixed point theorems. In addition, based on the theory of the Banach contraction principle
index, we prove existence of at most one continuous solution to the original problem as pointed out in
Theorem 2.6. For a better understanding on the resulting boundary models, we have provided some
numerical discussions and clear graphical demonstrations for Volterra-Fredholm integro problems for
some eigenvalues and homotopy parameters. Many solutions have been obtained and represented in
Figures 1–4.

As a consequence, (HAM and MADM) have the best approximate solutions to solve nonlinear
integral equations in both circumstances, but we found that the HAM has much lower running durations
than the MADM.

The fractional differential problems of Volterra-Fredholm integro type are great prospect as a kind
of highly integrated boundary value problem in integrated fractional operators, although there is still
room for improvement in transmission efficiency and numerical solutions, which is also the future
direction of our work.
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