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1. Introduction

The study of fixed points (FPs) is an interesting topic because it has many applications not only in
non-linear analysis but also in many aspects of engineering and physics. FP technique has gained a
large number of readers due to its smoothness and ease of approach.

In the long term of studying functional analysis, the metric space (MS) is an important topic in it,
which has many generalizations and extensions in different formulas. One of these generalizations is
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motif of b-metric space [1] which open the wide field for researchers to develop metric fixed point
theory. In 1994, Matthews introduced another generalization of (MS) which is called partial metric
spaces (PMSs) [2] and studied some properties of this space. In 2014, Ma et al. [3] introduced a new
type of MSs which generalize the concepts of MSs and operator-valued MSs, they defined C∗-algebra-
valued MSs and gave some FP results. An M-metric space (MMS) was redacted by Asadi et al. [4]
in the same year of 2014, as an extension of (PMSs). Accordingly, some topological properties of
said space and FP results for contraction mapping have been discussed. Altun et al. [5] presented
some FP theorems for multivalued mappings of Feng-Liu type on complete MMSs. They inspected
of the topological characteristics of (MMS) and asserted that the sequential topology τs is larger than
the topology τm induced by open balls and the closure of a subset A of M-metric Ξ with respect to
τs is included the closure of a subset A of M-metric Ξ with respect to (wrt) τm. Sahin et al. [6]
generalized Feng-Liu techniques and discussed some new FP results for multivalued F-contraction
mappings. Very recently, Patle et al. [7] studied Pompeiu-Hausdorff distance induced by the MMSs.
Also, they established the Nadler and Kannan type FP theorems for set-valued mappings in such spaces.
Monfared et al. [8, 9] applied the notion of control and ultra altering distance functions ψ and φ for
single valued contraction mappings in an MMS. Meanwhile, Mlaiki et al. [10] introduced the concept
of Fm-expanding contractive mappings and graphic FP theorems in the mentied spaces. Mlaiki et
al. [11] generalized the MMS to Mb-metric space (MbMS) and proved the existence and uniqueness
of a FP under suitable contraction conditions. Recently, Hu and Gu [12] derived a new concept of
the probabilistic MS, which is called the Menger probabilistic S -metric space, and investigated some
topological properties of this space and proved related FP theorems for λ-contraction mapping.

In 1973, Geraghty [13] introduced a fruitful generalization of Banach contraction principle and
obtained FP results for a single-valued mapping. In 1989, Mizoguchi and Takahashi [14] relaxed
the compactness of value of a mapping Γ to closed and bounded subsets of Ξ and they obtained FP
results for multi-valued mappings of Geraghty contraction. Popescu [15] proved interesting result for
α-Geraghty contraction mappings in MSs. Arshad et al. [16] extended Popescu’s results to introduce
the new notion of α∗-Geraghty type F-contraction multivalued mapping in b-metric like space.

On the other hand, the notion of cyclic (α, β)-admissible mapping was discussed by Alizadeh et
al. [17] and several FP results under this idea were proved. Ameer et al. [18] investigated FPs of
cyclic (α∗, β∗)-type-γ-FG-contractive mappings and established some FP theorems in PbMSs. For
more details, see [19–28].

This manuscript is devoted to introduce the concept of η-cyclic (α∗, β∗)-admissible type F-
contraction multivalued mappings. Via this idea, some common FP results are obtained in MbMSs.
Finally, as an application, the existence of solution to a pair of ordinary differential equations (ODEs)
are given.

2. Preliminaries

In this part, we give some elementary discussions about MMSs.

Definition 2.1. [4] Let Ξ , ∅. If the function m : Ξ × Ξ → R+ fulfills the stipulations below, for all
λ, γ, κ ∈ Ξ :

(M1) m (λ, λ) = m (γ, γ) = m (λ, γ) iff λ = γ;
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(M2) mλ,γ ≤ m (λ, γ) ;
(M3) m (λ, γ) = m (γ, λ) ;
(M4)

(
m (λ, γ) − mλ,γ

)
≤

(
m (λ, κ) − mλ,κ

)
+

(
m (κ, γ) − mκ,γ

)
.

Then the pair (Ξ,m) is called an MMS.

It should be noted that the notion mλ,γ and Mλ,γ are defined by Asadi et al. [4] as follows:

mλ,γ = min {m (λ, λ) ,m (γ, γ)} ,

and
Mλ,γ = max {m (λ, λ) ,m (γ, γ)} .

Definition 2.2. [11] An MbMS on a non-empty set Ξ is a function mb : Ξ2 → R+ that fulfills the
assumptions below, for all λ, γ, κ ∈ Ξ,

(Mb1) mb (λ, λ) = mb (γ, γ) = mb (λ, γ) iff λ = γ;
(Mb2) mbλ,γ ≤ mb (λ, γ) ;
(Mb3) mb (λ, γ) = mb (γ, λ) ;
(Mb4) There is a coefficient s ≥ 1 so that for all λ, γ, κ ∈ Ξ, we have

mb (λ, γ) − mbλ,γ ≤ s
[(

mb (λ, κ) − mbλ,κ

)
+

(
mb (κ, γ) − mbκ,γ

)]
− mb (κ, κ) .

Then the pair (Ξ,mb) is called an MbMS.

Note. Symbols mbλ,γ and Mb
λ,γ

defined in [11] as follows:

mbλ,γ = min {mb (λ, λ) ,mb (γ, γ)} ,

and
Mb

λ,γ
= max {mb (λ, λ) ,mb (γ, γ)} .

Example 2.3. [11] Let Ξ = [0,∞) and p > 1 be a constant. Define mb : Ξ2 −→ [0,∞) by

mb (λ, γ) = (max {λ, γ})p + |λ − γ|p , ∀λ, γ ∈ Ξ.

Then (Ξ,mb) is an MbMS (with coefficient s = 2p) and not MMS.

Example 2.4. [29] Let Ξ = [0, 1] and mb : Ξ × Ξ −→ [0,∞) be defined by

mb (λ, γ) =

(
λ + γ

2

)2

, ∀λ, γ ∈ Ξ.

Then (Ξ,mb) is an MbMS (with coefficient s = 2) which is not an MMS.

Definition 2.5. [11] Let (Ξ,mb) be an MbMS. Then

• A sequence {λn} in Ξ converges to a point λ if and only if

lim
n→∞

(
mb (λn, λ) − mbλn ,λ

)
= 0.
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• A sequence {λn} in Ξ is called mb-Cauchy sequence iff

lim
n,m→∞

(
mb (λn, λm) − mbλn ,λm

)
and lim

n,m→∞

(
Mbλn ,λm

− mbλn ,λm

)
exist and finite.
• An MbMS is called mb-complete if every mb-Cauchy sequence {λn} converges to a point λ so that

lim
n→∞

(
mb (λn, λ) − mbλn ,λ

)
= 0 and lim

n→∞

(
Mbλn ,λ

− mbλn ,λ

)
= 0.

The first result concerning with the existence of FPs in the MbMS presented by Mlaiki et al. [11] as
follows:

Theorem 2.6. Let (Ξ,mb) be an MbMS with coefficient s ≥ 1 and Γ be a self-mapping on Ξ. If there
is k ∈ [0, 1) so that

mb (Γλ,Γγ) ≤ kmb (λ, γ) , ∀λ, γ ∈ Ξ.

Then Γ has a unique FP ς in Ξ.

The concepts of cyclic (α, β)-admissible and cyclic (α∗, β∗)-admissible mappings are showed in the
work of [17, 18] as follows:

Definition 2.7. Let Ξ , ∅, α, β : Ξ → [0,∞) be two functions. A mapping Γ : Ξ → Ξ is called cyclic
(α, β)-admissible if for some λ ∈ Ξ,

α (λ) ≥ 1⇒ β (Γλ) ≥ 1,

and
β (λ) ≥ 1⇒ α (Γλ) ≥ 1.

Definition 2.8. Let Ξ , ∅, α, β : Ξ → [0,∞) be mappings and A, B be subsets of Ξ. A mapping
Γ : Ξ→ CB (Ξ) is called cyclic (α∗, β∗)-admissible if for some λ ∈ Ξ,

α (λ) ≥ 1⇒ β∗ (Γλ) ≥ 1,

and
β (λ) ≥ 1⇒ α∗ (Γλ) ≥ 1,

where β∗ (A) = infa∈A β (a) and α∗ (B) = infb∈B α (b) .

Theorem 2.9. [13] Let Ξ be a complete metric space and Γ : Ξ→ Ξ. If there is ϕ ∈ ξ so that

d(Γλ,Γγ) ≤ ϕ(d(λ, γ))d(λ, γ), ∀λ, γ ∈ Ξ,

holds, where ξ is the set of all functions ϕ : [0,∞) → [0, 1) satisfying lim
n→∞

tn = 0 whenever
lim
n→∞

ϕ (tn) = 1. Then Γ has a unique FP λ∗ ∈ Ξ and for each λ ∈ Ξ, the sequence {T nλ} converges
to λ∗.

In 2012, Wardowski [30] made a great contribution to the study of new theories related to fixed
points in the context of ordinary metric spaces. This contribution is called z-contraction mappings.

AIMS Mathematics Volume 8, Issue 1, 1530–1549.
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Definition 2.10. [30] Let z : R+ → R be a mapping fulfilling the stipulations below:

(z1) z is strictly increasing, i.e., if α < β, then z (α) < z (β), ∀α, β ∈ R+;
(z2) for any sequence {αn}

∞
n=1 of positive real numbers, lim

n→∞
αn = 0 iff lim

n→∞
z (αn) = −∞;

(z3) there is k ∈ (0, 1) so that lim
n→∞

αkz (αn) = 0.

Felhi [31] generalized the Definition 2.10 by adding the condition below to the stipulations (z1) −
(z3):

(z4) for any sequence {αn}
∞
n=1 of positive real numbers so that

τ + z (sαn) ≤ z (αn−1) , s ≥ 1,

for all n ∈ N and some τ > 0, then

τ + z (snαn) ≤ z
(
sn−1αn−1

)
, ∀n ∈ N.

Here, zw and zs denote the sets of all functions z fulfilling (z1) − (z3) and (z1) − (z4), respectively.

Remark 2.11. [32] If z is right continuous and satisfies (z1), then

z (inf A) = inf z (A) ∀z ⊂ (0,∞) with inf (z) > 0.

Assume that (Ξ,mb) is MbMS andCBmb (Ξ) is the family of all non-empty, bounded and closed
subsets of Ξ. For ℵ,Q ∈ CBmb(Ξ), define

Hmb (ℵ,Q) = max
{
δmb (ℵ,Q) , δmb (Q,ℵ)

}
,

where δmb (ℵ,Q) = sup {mb (p,Q) : p ∈ ℵ} and mb (p,Q) = inf {mb (p, q) : q ∈ Q} .
The following results are very useful in our study. These results are taken from [4, 7].

Lemma 2.12. Let ℵ be a non-empty set in an MbMS (Ξ,mb) , then p ∈ ℵ iff

mb (p,ℵ) = sup
λ∈ℵ

mbp,λ ,

where ℵ denotes the closure of ℵ wrt mb.

Lemma 2.13. Let ℵ,Q,< ∈ CBmb (Ξ) , then

(a) δmb (ℵ,ℵ) = sup
p∈ℵ

sup
q∈ℵ

mbpq

 ,
(b) for s ≥ 1, we haveδmb (ℵ,Q) − sup

p∈ℵ
sup
q∈Q

mbpq


≤ s

[(
δmb

(
ℵ,<

)
− inf

p∈ℵ
inf
r∈<

mbpr

)
+

(
δmb

(
<,Q

)
− inf

r∈<
inf
q∈Q

mbrq

)]
− inf

r∈<
mb (r, r) .
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Lemma 2.14. Let ℵ,Q,< ∈ CBmb (Ξ) , then

(1)

Hmb (ℵ,ℵ) = δmb (ℵ,ℵ) = sup
p∈ℵ

{
sup
q∈Q

mbp,q

}
,

(2) Hmb (ℵ,Q) = Hmb (Q,ℵ) ,
(3) for s ≥ 1, we getHmb (ℵ,Q) − sup

p∈ℵ
sup
q∈Q

mbpq


≤ s

[(
Hmb

(
ℵ,<

)
− inf

p∈ℵ
inf
r∈<

mbp,r

)
+

(
Hmb

(
<,Q

)
− inf

r∈<
inf
q∈Q

mbr,q

)]
− inf

r∈<
mb (r, r) .

Lemma 2.15. Let ℵ,Q ∈ CBmb (Ξ) and h > 1, then for all p ∈ ℵ, there is q ∈ Q so that

(i) mb (p, q) ≤ hHmb (ℵ,Q) ,
(ii) mb (p, q) ≤ Hmb (ℵ,Q) + h.

Proof. (i) Suppose that there exists an p ∈ ℵ such that

mb (p, q) > hHmb (ℵ,Q) ,

for all q ∈ Q. This implies that
inf {mb (p, q) : q ∈ Q} .

Now
mb (ℵ,Q) ≥ δmb (ℵ,Q) = sup {mb (p,Q) : p ∈ ℵ} ≥ mb (p,Q) ≥ Hmb (ℵ,Q) ,

this is a contradiction since Hmb (ℵ,Q) , 0 and h > 1. Hence,

mb (p, q) ≤ hHmb (ℵ,Q) .

(ii) Suppose that there exists p ∈ ℵ such that mb (p, q) > Hmb (ℵ,Q) + h for all q ∈ Q, then we have

mb (ℵ,Q) + h ≤ mb (p, q) ≤ δmb (ℵ,Q) ≤ Hmb (ℵ,Q) + h,

a contradiction again. Since Hmb (ℵ,Q) , 0 and h > 1. Thus,

mb (p, q) ≤ Hmb (ℵ,Q) + h.

�

Remark 2.16. For all λ, γ, κ in an MbMS (Ξ,mb), then

(1) Mbλ,γ + mbλ,γ = mb (λ, λ) + mb (γ, γ) ,
(2) Mbλ,γ − mbλ,γ = |mb (λ, λ) − mb (γ, γ)| ,
(3) For s ≥ 1, we have

Mbλ,γ − mbλ,γ ≤ s
[(

Mbλ,κ − mbλ,κ

)
+

(
Mbκ,γ − mbκ,γ

)]
.

Notice that:
If s = 1, then we get Remark 1.1 in [4].

AIMS Mathematics Volume 8, Issue 1, 1530–1549.
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3. The results

In this part, the following are established:

• Definition of η-cyclic (α∗, β∗)-admissible mappings,
• The notion of Geraghty contraction type mappings,
• Some new common FP theorem for a pair of generalized (α∗, β∗)-Geraghty z-contraction

multivalued mapping in an MbMS.

Definition 3.1. Let Ξ , ∅, α, β, η : Ξ → [0,∞) be mappings and A, B be subsets of Ξ. A mapping
Γ : Ξ→ CBmb (Ξ) is called η-cyclic (α∗, β∗)-admissible if for some λ ∈ Ξ,

α (λ) ≥ η (λ)⇒ β∗ (Γλ) ≥ η∗ (Γλ) ,

and
β (λ) ≥ η (λ)⇒ α∗ (Γλ) ≥ η∗ (Γλ)

where β∗ (A) = infa∈A β (a) and α∗ (B) = infb∈B α (b) .

Definition 3.2. Let Ξ , ∅, α, β, η : Ξ → [0,∞) be mappings and A, B be subsets of Ξ. Two mappings
=,Γ : Ξ→ CBmb (Ξ) are called η-cyclic (α∗, β∗)-admissible if for some λ ∈ Ξ,

α (λ) ≥ η (λ)⇒ β∗
(
=λ

)
≥ η∗

(
=λ

)
,

and
β (λ) ≥ η (λ)⇒ α∗ (Γλ) ≥ η∗ (Γλ) .

Notice that:

• If η = η∗ = 1 and = = Γ, then we get Definition 2.2 in [18].
• Definition 3.2 reduces to Definition 3.1, if we put = = Γ.

Example 3.3. Let Ξ = [0,∞). Define the mappings =,Γ : Ξ → CBmb (Ξ) and α, β, η : Ξ → [0,∞) by
=λ = {3λ}, Γλ =

{
λ2

}
, η (λ) = λ, ∀λ ∈ Ξ,

α(λ) =

{
e3λ2

, if λ > 0,
1, otherwise,

and β (λ) =

{
52λ, if λ > 0,
1, otherwise.

For all λ > 0, we get

α (λ) = e3λ2
≥ λ = η(λ)⇒ β∗

(
=λ

)
= β∗ (3λ) = 56λ ≥ 3λ = η∗

(
=λ

)
.

Similarly,
β (λ) = 52λ ≥ λ = η (λ) .

Otherwise, for λ = 0 the conditions of definition are satisfied. Then the pair (=,Γ) is η-cyclic (α∗, β∗)-
admissible mappings.

In the setting of the MbMS, we define a generalized (α∗, β∗)-Geraghty z-contraction mappings as
follows:

AIMS Mathematics Volume 8, Issue 1, 1530–1549.
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Definition 3.4. Let (Ξ,mb) be an MbMS, α, β, η : Ξ→ [0,∞) be functions. Two multivalued mappings
=,Γ : Ξ → CBmb(Ξ) is called a pair of generalized (α∗, β∗)-Geraghty z-contraction mappings if there
exist ϕ ∈ ξ and z ∈ zs so that for all λ, γ ∈ Ξ, s ≥ 1 and τ ∈ R+ with Hmb(=λ,Γγ) > 0,

β∗
(
=λ

)
α∗ (Γγ) ≥ η∗

(
=λ

)
η∗ (Γγ)

=⇒ τ + z
(
sHmb(=λ,Γγ)

)
≤ z

(
ϕ
(
Mmb(λ, γ)

)
Mmb(λ, γ)

)
, (3.1)

where

Mmb(λ, γ) = max{mb(λ, γ),mb(λ,=γ),mb(γ,Γγ),
mb(λ,=λ)mb(γ,Γγ)

s + mb(λ, γ)
}. (3.2)

Theorem 3.5. Let (Ξ,mb) be a complete MbMS, α, β, η : Ξ → [0,∞) be a given functions, and
=,Γ : Ξ→ CBmb(Ξ) be two multivalued mappings satisfy the postulates below:

(1) the pair
(
=,Γ

)
is generalized (α∗, β∗)-Geraghty z-contraction;

(2) the pair
(
=,Γ

)
is η-cyclic (α∗, β∗)-admissible;

(3) either there is λ0 ∈ Ξ so that α∗(Γλ0) ≥ η∗ (Γλ0) or γ0 ∈ Ξ so that β∗
(
=γ0

)
≥ η∗

(
=γ0

)
.

Then = and Γ have a common FP λ∗ ∈ Ξ.

Proof. Let λ0 ∈ Ξ so that α (λ0) ≥ η (λ0), by axiom (2) ∃λ1 ∈ =λ0 and λ2 ∈ Γλ1 so that

α (λ0) ≥ η (λ0)⇒ β (λ1) ≥ β∗
(
=λ0

)
≥ η∗

(
=λ0

)
and

α (λ2) ≥ α∗ (Γλ1) ≥ η∗ (Γλ1) .

Therefore
α∗ (Γλ1) β∗

(
=λ0

)
≥ η∗ (Γλ1) η∗

(
=λ0

)
,

Since F is right continuous, then from Remark 2.11, we have

z (smb (λ1,Γλ1)) = inf
γ∈Γλ1
z (smb (λ1, γ)) .

Thus, there is γ = λ2 ∈ Γλ1, so that

z (smb (λ1, λ2)) ≤ z
(
sHmb

(
=λ0,Γλ1

))
≤ z

(
ϕ
(
Mmb(λ0, λ1)

)
Mmb(λ0, λ1)

)
− τ, (3.3)

where

Mmb(λ0, λ1) = max

 mb (λ0, λ1) ,mb
(
λ0,=λ0

)
,mb (λ1,Γλ1) ,

mb(λ0,=λ0)mb(λ1,Γλ1)
s+mb(λ0,λ1)


= max

{
mb (λ0, λ1) ,mb (λ1, λ2) ,

mb (λ0, λ1) mb (λ1, λ2)
s + mb (λ0, λ1)

}
≤ max

{
mb (λ0, λ1) ,mb (λ1, λ2) ,

mb (λ0, λ1) mb (λ1, λ2)
mb (λ0, λ1)

}
= max {mb (λ0, λ1) ,mb (λ1, λ2)} .

AIMS Mathematics Volume 8, Issue 1, 1530–1549.
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If Mmb(λ0, λ1) ≤ mb (λ1, λ2) , then from (3.3), we can write

z (smb (λ1, λ2)) ≤ z (ϕ (mb (λ1, λ2)) mb (λ1, λ2)) − τ
< z (mb (λ1, λ2)) .

Applying (z1) , we have
smb (λ1, λ2) < mb (λ1, λ2) ,

a contradiction. If Mmb(λ0, λ1) ≤ mb (λ0, λ1) , then by (3.3), we get

z (smb (λ1, λ2)) ≤ z (ϕ (mb (λ0, λ1)) mb (λ0, λ1)) − τ
< z (mb (λ0, λ1)) .

Again, from (z1) , we obtain
smb (λ1, λ2) < mb (λ0, λ1) ,

Analogous to (3.3), there is λ3 ∈ =λ2 so that

z (smb (λ2, λ3)) ≤ z
(
ϕ
(
Mmb (λ1, λ2))

)
Mmb (λ1, λ2)

)
− τ

≤ z (ϕ (mb (λ1, λ2))) mb (λ1, λ2)) − τ.

Continuing with the same scenario, we construct a sequence {λn} in Ξ so that λ2n+1 ∈ =λ2n and λ2n+2 ∈

Γλ2n+1. Since the pair (=,Γ) is η-cyclic (α∗, β∗)-admissible, we have

β∗(=λ2n)α∗ (Γλ2n+1) ≥ η∗(=λ2n)η∗ (Γλ2n+1) , ∀n ≥ 0.

Subsequently, by (3.1), we get

τ + z (smb (λ2n+1, λ2n+2)) ≤ τ + z
(
sHmb

(
=λ2n,Γλ2n+1

))
≤ z

(
ϕ
(
Mmb(λ2n, λ2n+1)

)
Mmb(λ2n, λ2n+1)

)
≤ z (ϕ (mb(λ2n, λ2n+1)) mb(λ2n, λ2n+1))

≤ z (mb(λ2n, λ2n+1) , (3.4)

therefore (3.4) implies that

τ + z (smb (λ2n+1, λ2n+2)) ≤ z (mb(λ2n, λ2n+1) .

Set ρ2n+1 = mb (λ2n+1, λ2n+2) and µ2n+1 = s2n+1ρ2n+1, ∀n ≥ 0, then, we can write

τ + z (sρ2n+1) ≤ z (ρ2n) , ∀n ≥ 0.

By (z4) , one can obtain
τ + z (µ2n+1) ≤ z (µ2n) , ∀n ≥ 0. (3.5)

Repeating the inequality (3.5), we obtain

z (µ2n+1) ≤ z (µ2n) − τ ≤ ... ≤ z (µ0) − (2n + 1) τ, ∀n ≥ 0. (3.6)

AIMS Mathematics Volume 8, Issue 1, 1530–1549.
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Letting n→ ∞ in (3.6), we have
lim
n→∞
z (µ2n+1) = −∞.

It follows from (z2) that
lim
n→∞

µ2n+1 = 0.

By (z3) , there is k ∈ (0, 1) so that
lim
n→∞

µk
2n+1z (µ2n+1) = 0.

From (3.6), we get

µk
2n+1z (µ2n+1) − µk

2n+1z (µ0) ≤
(
µk

2n+1 (z (µ0) − (2n + 1) τ) − µk
2n+1z (µ0)

)
= −µk

2n+1 (2n + 1) τ ≤ 0, ∀n ≥ 0.

Taking the limit as n→ ∞ and since τ > 0, we obtain

lim
n→∞

µk
2n+1 (2n + 1) = 0.

Thus, there is n1 ∈ N so that

µk
2n+1 (2n + 1) ≤ 1⇒ µ2n+1 ≤

1

(2n + 1)
1
k

∀n ≥ n1.

This leads to the series
∑
n
µ2n+1 is convergent.

Now, we prove that {λn} is an mb-Cauchy sequence in Ξ. Using (Mb4) , we get

mb (λ2n+1, λ2n+3) − mbλ2n+1 ,λ2n+3

≤ s
[
mb (λ2n+1, λ2n+2) − mbλ2n+1 ,λ2n+2

+ mb (λ2n+2, λ2n+3) − mbλ2n+2 ,λ2n+3

]
−mb (λ2n+2, λ2n+2)

≤ s
[
mb (λ2n+1, λ2n+2) − mbλ2n+1 ,λ2n+2

+ mb (λ2n+2, λ2n+3) − mbλ2n+2 ,λ2n+3

]
≤ smb (λ2n+1, λ2n+2) + s2mb (λ2n+2, λ2n+3) .

Similarly

mb (λ2n+1, λ2n+4) − mbλ2n+1 ,λ2n+4

≤ s
[
mb (λ2n+1, λ2n+2) − mbλ2n+1 ,λ2n+2

+ mb (λ2n+2, λ2n+4) − mbλ2n+2 ,λ2n+4

]
−mb (λ2n+2, λ2n+2)

≤ smb (λ2n+1, λ2n+2) + s2mb (λ2n+2, λ2n+3) + s3mb (λ2n+3, λ2n+4) .

In general, for all q > p > n1 with p = 2n + 1, we obtain

mb

(
λp, λq

)
− mbλp ,λq

≤

q−1∑
i=p

si−p+1mb (λi, λi+1) ≤
q−1∑
i=p

simb (λi, λi+1) ≤
∞∑

i=p

µi.
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The convergence of the series
∞∑

i=p
µi leads to

lim
p,q→∞

(
mb

(
λp, λq

)
− mbλp ,λq

)
= 0.

By the same way and from Remark 2.16, we obtain

Mbλ2n+1 ,λ2n+4
− mbλ2n+1 ,λ2n+4

≤ s
(
Mbλ2n+1 ,λ2n+2

− mbλ2n+1 ,λ2n+2

)
+ s2

(
Mbλ2n+2 ,λ2n+3

− mbλ2n+2 ,λ2n+3

)
+s3

(
Mbλ2n+3 ,λ2n+4

− mbλ2n+3 ,λ2n+4

)
.

In general, for all q > p > n1 with p = 2n + 1, we obtain

Mbλp ,λq
− mbλp ,λq

≤

q−1∑
i=p

si−p+1
(
Mbλi ,λi+1

− mbλi ,λi+1

)
≤

q−1∑
i=p

si−p+1Mbλi ,λi+1

≤

q−1∑
i=p

si−p+1mb (λi, λi) ≤
q−1∑
i=p

si−p+1mb (λi, λi+1)

≤

q−1∑
i=p

simb (λi, λi+1) ≤
∞∑

i=p

µi.

The convergence of the series
∞∑

i=p
µi leads to

lim
p,q→∞

(
Mbλp ,λq

− mbλp ,λq

)
= 0.

Therefore, {λn} is an mb-Cauchy sequence in Ξ. Since Ξ is mb-complete, there exists λ∗ ∈ Ξ so λn −→ λ∗

as n −→ ∞, implies λ2n+1 → λ∗ and λ2n+2 → λ∗ as n→ ∞. Thus, we have

lim
n→∞

(
mb (λ2n+1, λ

∗) − mbλ2n+1 ,λ
∗

)
= 0. (3.7)

Since lim
n→∞

mb
(
λ2n+1, λ2n+1

)
= 0, then by (3.7), we get

lim
n→∞

mb (λ2n+1, λ
∗) = 0. (3.8)

It follows from (3.1), (3.4) and (3.8) that

lim
n→∞

Hmb

(
=λ2n,Γλ

∗) = 0. (3.9)

Since λ2n+1 ∈ =λ2n and
mb (λ2n+1,Γλ

∗) ≤ Hmb

(
=λ2n,Γλ

∗) .
Then after taking the limit as n→ ∞, we obtain that

lim
n→∞

mb (λ2n+1,Γλ
∗) = 0. (3.10)
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By (Mb2) , one can write
mbλ2n+1 ,Γλ

∗ ≤ mb
(
λ2n+1 ,Γλ

∗) ,
that is

lim
n→∞

mbλ2n+1 ,Γλ
∗ = 0. (3.11)

Now, utilizing (Mb4) , we have

mb (λ∗,Γλ∗) − sup
γ∈Γλ∗

mbλ∗ ,γ

≤ mb (λ∗,Γλ∗) − mbλ∗ ,Γλ∗

≤ s
[
mb (λ∗, λ2n+1) − mbλ∗ ,λ2n+1

+ mb (λ2n+1,Γλ
∗) − mbλ2n+1 ,Γλ

∗

]
−mb (λ2n+1, λ2n+1) . (3.12)

Letting n→ ∞ in (3.12) and from (3.8), (3.10) and (3.11), we conclude that

mb (λ∗,Γλ∗) ≤ sup
γ∈Γλ∗

mbλ∗ ,γ . (3.13)

Using (Mb2) , for all γ ∈ Γλ∗, we get
mbλ∗ ,γ ≤ mb (λ∗, γ) ,

yields
mbλ∗ ,γ − mb (λ∗, γ) ≤ 0.

Thus
sup

{
mbλ∗ ,γ − mb (λ∗, γ) : γ ∈ Γλ∗

}
≤ 0,

this implies that
sup
γ∈Γλ∗

mbλ∗ ,γ − sup
γ∈Γλ∗

mb (λ∗, γ) ≤ 0.

Therefore
sup
γ∈Γλ∗

mbλ∗ ,γ ≤ mb (λ∗,Γλ∗) . (3.14)

From (3.13) and (3.14), we obtain

mb (λ∗,Γλ∗) = sup
γ∈Γλ∗

mbλ∗ ,γ .

Hence by Lemma 2.12, we get λ∗ ∈ Γλ∗ = Γλ∗. Similarly, we can easily conclude that λ∗ ∈ =λ∗.
Therefore λ∗ is a common FP of = and Γ. �

Remark 3.6. Theorem 3.5 still valid if we consider the following:

• If we put s = 1 in Definition 3.4, then generalized (α∗, β∗)-Geraghty z-contraction mappings take
the form: Hm(=λ,Γγ) > 0,

α∗(=λ)β∗(Γγ) ≥ η∗
(
=λ

)
η∗ (Γγ)

=⇒ τ + z
(
Hm(=λ,Γγ)

)
≤ z (ϕ (M(λ, γ)) M(λ, γ))
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where ϕ ∈ ξ, z ∈ zs, τ ∈ R+ and

M(λ, γ) = max{m(λ, γ),m(λ,=λ),m(γ,Γγ),
m(λ,=λ)m(γ,Γγ)

1 + m(λ, γ)
}.

Moreover, under the same conditions (1)–(3) of Theorem 3.5, = and Γ have a common FP in a
complete MMS (Ξ,m).
• If we take Mmb(λ, γ) = mb(λ, γ) in Definition 3.4, then we have a common FP of = and Γ in

complete MbMS, provided that the stipulations (1)–(3) of Theorem 3.5 hold.
• If we consider = = Γ in Definition 3.4, then the result is given quickly in the same manner as the

proof of Theorem 3.5.

The example below supports Theorem 3.5.

Example 3.7. Let Ξ = [0,∞) and mb : Ξ × Ξ −→ [0,∞) defined by

mb(λ, γ) = max {λ, γ}p + |λ − γ|p , ∀λ, γ ∈ Ξ.

Clearly, (Ξ,mb) is an MbMS with p > 1 and s = 2p.

If we take λ = 5, γ = 1 and κ = 4, we obtain that

mb (λ, γ) − mbλ,γ > mb (λ, κ) − mbλ,κ − mb (κ, γ) − mbκ,γ .

This means (Ξ,mb) is not MMS. Define =,Γ : Ξ→ CBmb(Ξ) by

=λ =


{
λ
64

}
, if λ ∈ (0, 1],{

0, 1
16

}
, otherwise,

and Γλ =


{
0, λ

48

}
, if λ ∈ (0, 1],

0, otherwise.

Describe the functions α, β, η : Ξ→ [0,∞) as η (λ) = λ + 1,

α (λ) =

{
3e2λ2, if λ > 0,

3, λ = 0,
, β (λ) =

{
5λ + 1, λ > 0,

1, λ = 0.

for all λ ∈ Ξ. Now, for λ ∈ (0, 1], we have α (λ) ≥ η (λ) implies

β∗
(
=λ

)
= β∗

(
λ

64

)
=

5λ
64

+ 1 ≥
λ

64
+ 1 = η∗

({
λ

64

})
= η∗

(
=λ

)
.

When Γλ = 0, then β (λ) ≥ η (λ) implies

α∗ (Γλ) = α∗ (0) = 3 > 1 = η∗ (0) = η∗ (Γλ) ,

if Γλ = λ
48 , then, we get β (λ) ≥ η (λ) implies

α∗ (Γλ) = α∗

(
λ

48

)
= 3e2( λ

48 )2

≥
λ

48
+ 1 = η∗

(
λ

48

)
= η∗ (Γλ) .

Hence the pair
(
=,Γ

)
is η-cyclic (α∗, β∗)-admissible mappings. Consider ϕ (t) = 1

6p , so for λ, γ ∈ (0, 1],
one can write

z(sHmb(=λ,Γγ)) = z(2p(max
{

sup
a∈=λ

mb(a,Γγ), sup
b∈Γγ

mb(=λ, b)
}

))
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= z
(
2p max

(
mb

(
λ

64
,
{
0,

γ

48

})
,mb

(
λ

64
,
γ

48

)))
= z

(
2p max

(
mb

(
λ

64
, 0

)
,mb

(
λ

64
,
γ

48

)))
= z

(
2pmb

(
λ

64
,
γ

48

))
= z

(
2p

16p mb

(
λ

4
,
γ

3

))
= z

((
1
8

)p

mb

(
λ

4
,
γ

3

))
= z

(
1

23p mb

(
λ

4
,
γ

3

))
≤ z

((
16

8 × 12

)p

mb (λ, γ)
)

= z

(
1
6p mb (λ, γ)

)
.

By taking z (λ) = ln λ, we have

ln(sHmb(=λ,Γγ)) ≤ ln
(

1
6p mb (λ, γ)

)
= −p ln(6) + ln (mb (λ, γ)) ,

which implies that
ln(sHmb(=λ,Γγ)) ≤ ln (mb (λ, γ)) − τ.

Since mb (λ, γ) ≤ Mb (λ, γ) , and using the definition of ϕ, then we obtain

z(sHmb(=λ,Γγ)) ≤ z (ϕ (Mb (λ, γ))) − τ ≤ z (ϕ (Mmb(λ, γ)) Mmb(λ, γ)) − τ.

Otherwise, the inequality below holds

z(sHmb(=λ,Γγ) ≤ z (ϕ (Mmb(λ, γ)) Mmb(λ, γ)) − τ.

Analogously, for each λ, γ ∈ Ξ, we can find some τ > 0 satisfy the above inequality. Hence, all
hypotheses of Theorem 3.5 are fulfilled with τ = p ln(6) and λ∗ = 0 is a common FP of = and Γ.

4. Some consequences

This part is a reduction of the previous part by taking = and Γ are single-valued mappings.

Definition 4.1. Let Ξ , ∅ and α, β, η : Ξ → [0,∞) be given functions. The mapping Γ : Ξ → Ξ is
called η-cyclic (α, β)-admissible if for some λ ∈ Ξ,

α (λ) ≥ η (λ)⇒ β (Γλ) ≥ η (Γλ) ,

and
β (λ) ≥ η (λ)⇒ α (Γλ) ≥ η (Γλ) .

Definition 4.2. Let Ξ , ∅ and α, β, η : Ξ→ [0,∞) be given functions. The mappings =,Γ : Ξ→ Ξ are
called η-cyclic (α, β)-admissible if for some λ ∈ Ξ,

α (λ) ≥ η (λ)⇒ β
(
=λ

)
≥ η

(
=λ

)
,

and
β (λ) ≥ η (λ)⇒ α (Γλ) ≥ η (Γλ) .
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Now, we present some results related to the existence of FPs which can be proven in a similar way
to Theorem 3.5.

Corollary 4.3. Let (Ξ,mb) be a complete MbMS and α, β, η : Ξ → [0,∞) be given functions. Assume
that the mapping Γ : Ξ → Ξ satisfies the following condition: There are ϕ ∈ ξ and z ∈ zs so that for
all λ, γ ∈ Ξ, s ≥ 1 and τ > 1,

α(λ)β(γ) ≥ η (λ) η (γ) =⇒ τ + z (smb(Γλ,Γγ)) ≤ z
(
ϕ
(
Mmb(λ, γ)

)
Mmb(λ, γ)

)
,

where Mmb(λ, γ) is defined in (3.2). Assume also that the following hypotheses are satisfied:

(i) Γ is an η-cyclic (α, β)-admissible;
(ii) there is λ0 ∈ Ξ so that α(λ0) ≥ η (λ0) or β(λ0) ≥ η (λ0).

Then Γ has a FP λ∗ ∈ Ξ.

Corollary 4.4. Let (Ξ,mb) be a complete MbMS and α, β, η : Ξ→ [0,∞) be given functions. Consider
the mappings =,Γ : Ξ → Ξ satisfy the assumption below: There are ϕ ∈ ξ and z ∈ zs so that for all
λ, γ ∈ Ξ, s ≥ 1 and τ > 1,

α(λ)β(γ) ≥ η (λ) η (γ) =⇒ τ + z
(
smb(=λ,Γγ)

)
≤ z

(
ϕ
(
Mmb(λ, γ)

)
Mmb(λ, γ)

)
,

where Mmb(λ, γ) is defined in (3.2). Suppose also the following two conditions hold:

(i)
(
=,Γ

)
is a pair of η-cyclic (α, β)-admissible;

(ii) there is λ0 ∈ Ξ so that α(λ0) ≥ η (λ0) or γ0 ∈ Ξ so that β(γ0) ≥ η (γ0).

Then = and Γ have a common FP λ∗ ∈ Ξ.

If we set α(λ) = β(γ) = η (λ) = η (γ) = 1 in Corollary 4.4, we have the following result.

Corollary 4.5. Let (Ξ,mb) be a complete MbMS, = and Γ be self-mappings defined on Ξ. If there are
ϕ ∈ ξ and z ∈ zs so that for all λ, γ ∈ Ξ, s ≥ 1 and τ > 1,

τ + z
(
smb(=λ,Γγ)

)
≤ z

(
ϕ
(
Mmb(λ, γ)

)
Mmb(λ, γ)

)
, (4.1)

where Mmb(λ, γ) is described as (3.2). Then = and Γ have a common FP λ∗ ∈ Ξ.

Note. The pair
(
=,Γ

)
that satisfy (4.1) is called generalized Geraghty z-contraction mappings.

5. An application

In this part, we apply Corollary 4.5 to discuss the existence of solution to the pair of ODEs. Consider
the following pair of ODEs:{

−d2λ
dt2 = f (t, λ (t)) , t ∈ [0, 1]
λ(0) = λ (1) = 0,

and
{
−

d2γ

dt2 = g (t, γ (t)) , t ∈ [0, 1] ,
γ(0) = γ (1) = 0.

(5.1)
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where f , g : [0, 1] × R −→ R are continuous functions. So, the pair of ODEs (5.1) is equivalent to the
following integral equations:

λ(t) =

∫ 1

0
G(t, s) f (s, λ(s))ds and γ(t) =

∫ 1

0
G(t, s)g(s, γ(s))ds. (5.2)

The Green’s function G : [0, 1] × [0, 1]→ R associated with (5.2) is described as

G (t, s) =

{
t (1 − s) , 0 ≤ t ≤ s ≤ 1,
s (1 − t) , 0 ≤ s ≤ t ≤ 1.

Let Ξ = C([0, 1],R) be the set of all continuous functions defined on [0, 1]. Define a function m :
Ξ × Ξ→ R+ by

mb (λ, γ) = max
t∈I

(∣∣∣∣∣λ (t) + γ (t)
2

∣∣∣∣∣)2

, ∀λ, γ ∈ Ξ.

Obviously, (Ξ,mb) is a complete MbMS with a constant s = 2.
The ODEs (5.1) will be considered under the two postulates below:

(1) there is a function ω : R −→ (0, 1) so that for all z1, z2 ∈ R, we have

| f (t, z1)| + |g(t, z2)| ≤
√
ω (t) Mmb(z1, z2), ∀t ∈ [0, 1],

where

Mmb (z1, z2) = max


∣∣∣ z1+z2

2

∣∣∣2 , ∣∣∣ z1+=z1
2

∣∣∣2 , ∣∣∣ z2+Γz2
2

∣∣∣2 ,∣∣∣∣ z1+=z1
2

∣∣∣∣2∣∣∣∣ z2+Γz2
2

∣∣∣∣2
s+|

z1+z2
2 |

2

 ;

(2) there is s ≥ 1 so that
∫ 1

0
G (t, r) dr ≤

√
12e−τ

7s , for some τ > 0.

Now, we present our main theorem in this part.

Theorem 5.1. Under the postulates (1) and (2), ODEs (5.1) has at least one solution λ∗ ∈ Ξ.

Proof. Describe the operators =,Γ : Ξ −→ Ξ as

=λ(t) =

∫ 1

0
G(t, s) f (s, λ(s))ds and Γγ(t) =

∫ 1

0
G(t, s)g(s, γ(s))ds,

for all t ∈ [0, 1]. Clearly, the solution of the integral equations (5.2) is equivalent to find a common FP
of the operators = and Γ. Let λ, γ ∈ Ξ, by our assumption, for all t ∈ [0, 1], we get

[∣∣∣=λ(t)
∣∣∣ + |Γγ(t)|

]2
=

[∣∣∣∣∣∣
∫ 1

0
G(t, s) f (s, λ(s))ds

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫ 1

0
G(t, s)g(s, γ(s))ds

∣∣∣∣∣∣
]2

≤

[∫ 1

0

[
|G(t, s) f (s, λ(s))| + |G(t, s)g(s, γ(s))|

]
ds

]2

≤

[∫ 1

0
G(t, s) (| f (s, λ(s))| + |g(s, γ(s))|) ds

]2
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≤

[∫ 1

0
G(t, s)

√
ω (t) Mmb(λ, γ)ds

]2

≤

[∫ 1

0
G(t, s)

√
ω (t) Mmb(λ, γ)ds

]2

=
[ √

ω (t) Mmb(λ, γ)
]2

[∫ 1

0
G(t, s)ds

]2

≤
[ √

ω (t) Mmb(λ, γ)
]2

√12e−τ

7s

2

= ω (t)
12e−τ

7s
Mmb(λ, γ).

Consequently, we get

smb
(
=λ,Γγ

)
≤

3ω (t)
7

e−τMmb(λ, γ)

≤ e−τϕ
(
Mmb (λ, γ)

)
Mmb (λ, γ) ,

which implies that
τ + ln

(
smb

(
=λ,Γγ

))
≤ ln

[
ϕ
(
Mmb (λ, γ)

)
Mmb (λ, γ)

]
,

where z (λ) = ln λ ∈ zs and ϕ (t) =
3ω(t)

7 , for all t ∈ [0, 1]. Thus, all stipulations of Corollary 4.5 are
fulfilled. Therefore, the operators = and Γ have a common FP, which is a solution to the ODEs (5.1).

�

Remark 5.2. It should be noted that under the same conditions, we cannot obtain the solution of the
ODEs (5.1) by the classical FP theorem because of the definition of the function m : Ξ ×Ξ→ R+. It is
defined as

mb (λ, γ) = max
t∈I

(∣∣∣∣∣λ (t) + γ (t)
2

∣∣∣∣∣)2

, ∀λ, γ ∈ Ξ.

On a complete metric space, the classical theorem holds true, but the first metric space requirement is
not met as follows:

for λ, γ ∈ Ξ, i f λ = γ, then mb (λ, λ) = max
t∈I

(∣∣∣∣∣λ (t) + λ (t)
2

∣∣∣∣∣)2

= max
t∈I

(|λ (t)|)2 > 0.

So not equal 0. Hence, (Ξ,mb) is a complete MbMS with a constant s = 2 and not a complete metric
space.

6. Conclusions

After the large number of papers published in the field of fixed point, we can assert that this
technique is the backbone of non-linear analysis due to its smoothness and pivotality in many life
disciplines. Therefore, in our manuscript, a new type of contraction was defined, called η-cyclic
(α∗, β∗)-admissible type z-contraction multivalued mappings. Under this contraction, some results
concerned with FPs have been proven in the context of MbMSs. Also, our new results generalize and
unify many papers in this regard. Moreover, some examples have been discussed to clarify the obtained
results. Finally, we applied our main result to study the existence of a solution to a pair of ODEs.
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