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Abstract
We develop and analyze a new mathematical model for intravenous drug administration and the associated diffusion process. 
We use interval analysis to obtain a system of weakly singular Volterra integral equations over ordinary functions. We then 
use the operational method based on Chebyshev polynomials for obtaining an approximate solution of the numerical form. We 
show that for a certain class of fuzzy number valued functions, their generalized Hukuhara derivatives can be reduced to the 
derivatives of ordinary real-valued functions. By using our approach, we are able to estimate numerical solutions very accurately.

Keywords  Differential equation · Chebyshev polynomials · Fractional-fuzzy differential equations · Dynamic of the 
Bromsulphthalein · Concentration of drug in the arterial tissue

1  Introduction

In connection with the rapid development of informatics 
and its hardware and software support, it is now relevant 
to consider natural and biological processes without the 
restrictions imposed by classical mathematics. The dynamics 
of nature-inspired systems are influenced by various latent 
factors so that the whole process can be described as 
“dynamic systems with memory”. These systems are the 
focus of fractional calculus. Among its recent advantages, 
demonstrated in [1], is the ability to reduce the high 
dimensional of the original model using a properly selected 
memory kernel.

Fractional calculus appeared in 1695 and is currently 
an important tool and concept in many fields of science 
[2–6], and especially, in the analysis of systems of 
differential equations [7]. Another important feature of 
the modern approach to modeling is the emphasis on 
data and the use of the so-called “data-driven” approach. 
This implies the inclusion of uncertainty as one of the 
parameters of the model. In this regard, replacing normal 
values with fuzzy ones is a common technique that is 
becoming more and more common when modeling the 
real world, see, for example, [8–11]. Recently, both of the 
aforementioned tools have appeared together in modeling 
with fuzzy fractional differential equations (FFDE) and 
their systems and have gained attention [12, 13]. In this 
connection, many attempts have been made to define 
fuzzy derivatives. The Hukuhara derivative [14, 15], the 
gH-derivative [16] and the g-derivative [8] are widely 
accepted concepts, and dynamical systems using these 
concepts are currently being actively studied, see [14, 
17–19].

The relationship between fuzzy analysis and interval 
analysis has been extensively studied in [17, 19–23]. Many 
properties of this relationship are used in our study of 
fuzzy derivatives below. In this manuscript, we develop 
and analyze a new mathematical model for intravenous 
drug administration and the associated diffusion process. 
We propose this model as a natural extension of the 
well established [24] model based on the linear ODE 
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system. The latter describes the rate of change in drug 
concentration over time in each relevant part of the 
human body. Other theoretical approaches to replacing 
linear systems of ODEs with complex models based on 
differential equations of various types appeared in e.g., 
[25–29].

Since the exact solution of the system of fractional-
fuzzy differential equations cannot be easily obtained, 
numerical methods for solving them are mainly applicable. 
This is the reason why many works have recently focused 
on numerical solutions of FFDE, see e.g., [30]. We 
consider a system of linear fractional-fuzzy differential 
equations (linear FFDE) of the form

such that CD� is a Caputo-type fractional-fuzzy derivative 
of order 0 < 𝛽 ≤ 1, A is a � × � matrix of real numbers, 
u = [u1,⋯ , u�]

T is a vector of fuzzy (source) functions, and 
y = [y1,⋯ , y�]

T is an unknown vector of fuzzy functions. 
Finally, y0 = [y01,⋯ , y0�]

T  is a given vector of fuzzy 
numbers with � as a dimension.

Here we consider the dynamic fuzzy control system 
(1), where y0 and y1 are initial values. If u(t) is crisp, 
then system (1) is a classical crisp control system. In the 
case that y0 is a fuzzy initial value and u(t) is the fuzzy 
input, we have a different system with fuzzy inputs and 
fuzzy outputs. The deterministic control system with 
fuzzy inputs can generate a fuzzy control system. Fuzzy 
control systems have several attractive features based on 
the fuzzy differential equations aspect such as stability, 
observeability and controllability. Feng et al. [31] have 
studied the observability in other forms. As a result, 
(1) can be considered a system based on the fact given 
below. If the initial value y0 ∈ ℝ

� and the input u(t) ∈ ℝ
� , 

then (1) is the well known dynamic crisp system, but the 
initial value y0 is not known exactly and the input u(t) 
sometimes needs to be vague. We are motivated to respond 
to uncertainty by implementing fuzzy set theory.

Our contribution is twofold: (1) we extend the 
applicability of fuzzy differential calculus to biological 
systems; (2) we carried out a complete numerical analysis 
of the proposed model, including issues related to 
convergence, error estimation, and stability. In the first 
area, we expanded on current knowledge by showing that:

•	 Extending (1) to fuzzy-valued functions gives its solution 
an additional meaning associated with a data-driven 
approach to problems modeled by the solution. Due to 
the presence of a fuzzy initial value, the whole problem 
becomes an instance of an inverse problem, where the 
model is parameterized by degrees of membership, 

(1)
CD�y(t) = Ay(t) + u(t), t ∈ [0, T],

y(0) = y0,

and the data are the observations of medical experts. 
The solution in the form of a fuzzy-valued function is 
matched against the expert knowledge related to the 
desired dynamics of the analyzed problem.

•	 The presence of fractionality refers to a parameterized 
approach to the concept of a derivative. This additional 
degree of flexibility turns the model (1) to a particular 
dynamic process whose response-to-time ratio differs from 
one process to another. This fact is important when the 
process is associated with the absorption of the drug by 
the human body. In this analysis, fractionality is used as a 
parameter that can be easily converted to a numerical value 
according to additional information about the process.

In the second area, our contribution is summarized as 
follows:

•	 We propose to reduce the analysis of equation (1) 
to the case when we are dealing with ordinary (not 
fuzzy) functions in order to be able to apply traditional 
numerical methods. To do this, we first assume that 
“fuzzy function” means a fuzzy-number-valued 
function (fn-function) that admits a parametric 
representation. Based on this assumption, we further 
reduce the problem to a system that includes interval-
valued functions.

•	 We use the interval analysis, and after a number of 
transformation steps, we obtain a system of weakly 
singular Volterra integral equations over ordinary 
functions. We then use the operational method based on 
Chebyshev polynomials for obtaining an approximate 
solution to (1) in the numerical form. A new feature of 
our analysis is that two different parametric models of 
the considered equation can be processed “in one go” 
(without numerous branching). This is a significant 
advantage in the area of fn-valued functions and 
commonly used generalized Hukuhara derivatives. This 
advantage is achieved using the new proposed parametric 
form of vector fn–functions and the new operation of 
“flipping” (Section 2).

•	 Another advantage is the use of an analytical 
approximation model based on Chebyshev polynomials 
for all functional components found in the equation (1). 
This allows for accurate analytical integration of the 
Caputo-type fractional derivatives and the subsequent 
application of the method of undetermined coefficients. 
As a consequence, we achieve a very good error 
estimation of the numerical solutions.

•	 We complete the numerical analysis with a stability 
analysis, which gives an additional degree of confidence 
in the final selection.
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The work consists of nine sections and an appendix; the 
latter contains the necessary technical details concerning 
Chebyshev polynomials. In Sect. 2, we give preliminary 
notions and remind some statements about general facts 
regarding interval analysis and fuzzy numbers. Section 3 
shows how the original problem can be reduced to the 
ordinary one. Section 4 discusses the numerical method 
based on Chebyshev polynomials. In Sects. 5 and 6 we give 
a theoretical basis for the proposed algorithm. Sections 7 and 
8 implement the proposed method and discuss numerical 
solutions related to dynamic processes in the human body 
associated with the use of medications. We conclude the 
manuscript with a conclusion and further work.

2 � Preliminaries

In this section, we briefly recall the basic notation and some 
principal claims.

2.1 � Interval analysis

The set of all compact (non empty) intervals of the real line 
is denoted by K . Let � be a real number, A,B ∈ K closed 
intervals on the real line such that A = [a, a] , B = [b, b]. The 
operations over intervals in K are defined as follows [16, 
32] :

and

respectively. Furthermore,

is the generalized Hukuhara difference.

Proposition 1  [22] Let u ∶ [a, b] ⟶ K be an interval-
valued function where u(t) = [u(t), u(t)], t ∈ [a, b]. If the 
functions u(t) and u(t) are differentiable at t ∈ (a, b), then u 
is generalized Hukuhara differentiable (gH-differentiable) 
at t ∈ (a, b) and

The length of interval A = [a, a] is denoted as 
l(A) = a − a. An interval-valued function u ∶ [a, b] ⟶ K 

A + B = [a + b, a + b],

𝜆A =

⎧⎪⎨⎪⎩

[𝜆a, 𝜆a], if 𝜆 > 0,

0, if 𝜆 = 0,

[𝜆a, 𝜆a], if 𝜆 < 0,

A⊖g B = [min{a − b, a − b}, max{a − b, a − b}].

u�(t) =
[
min{

d

dt
u(t),

d

dt
u(t)}, max{

d

dt
u(t),

d

dt
u(t)}

]
.

is l−increasing ( l−decreasing), if l(u(t)) is increasing 
(decreasing) function with respect to t.

In what follows, we refer to case 1 (2) as (gH-) differenti-
ability of type (1) (type (2)).

2.2 � Fuzzy numbers and related analysis

In this section, we introduce details of calculus over fuzzy 
numbers that are necessary for introducing Caputo-type 
fuzzy fractional derivatives. We are identifying a fuzzy 
number and a parametric interval family. In order to avoid 
repetition, we skip the definition of LU-representation of 
fuzzy numbers [13]. We just recall that u(r) and u(r) are 
called the left and right r-cut boundaries, respectively, where 
0 ≤ r ≤ 1 . The space of fuzzy numbers is denoted ℝF  , and 
the assumed parametric representation implies that all 
important notions related to fuzzy numbers are formulated 
in terms of their left and right r-cut boundaries.

Definition 1  For arbitrary fuzzy numbers u, v, the distance 
D(u, v) is given by

It is known [15] that (ℝF,D) is a complete metric space. 
Let u = (u, u) and v = (v, v) be fuzzy numbers and k ∈ ℝ . 
Then,

the generalized Hukuhara difference is defined by

It is not difficult to show that (ℝF,+) is a commutative 
groupoid with the neutral element 0 = (0, 0) . However, the 
group equation

This leads to other rules that can be applied to (4) to get its 
solution. Below we offer some of them. We contrapose ℝF  
to ℝf

F
 by setting

and consider ℝ0
F
= ℝF ∪ℝ

f

F
 . In (5), we made use of a new 

operation (⋅)f  on ℝ0
F

 called flipping that reverse the order 
of components in a functional pair, i.e. if (u1, u2) ∈ ℝ

0
F

 , 
then (u1, u2)f = (u2, u1) ∈ ℝ

0
F

 . In fact, with the exception of 
0 = (0, 0) , the elements of ℝf

F
 are not fuzzy numbers, so we 

use this extension to characterize the (analytic) solution to 
the group equation (4). Below, we give the corresponding 
statement.

(2)D(u, v) = sup
0≤r≤1

max{|u(r) − v(r)|, |u(r) − v(r)|}.

(3)
(u⊖g v)(r) = [min{u(r) − v(r), u(r) − v(r)},

max{u(r) − v(r), u(r) − v(r)}].

(4)v + x = u, where u, v, x are fuzzy numbers,

(5)ℝ
f

F
= {uf = (u, u) ∣ u = (u, u) ∈ ℝF},
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Proposition 2  Let the equation (4) be given, where fuzzy 
numbers u, v ∈ ℝF  . Then, the equation is solvable in ℝ0

F
 , 

and 

1.	 if l(v) ≤ l(u) , the solution x = (−1)(v⊖g u);
2.	 if l(u) ≤ l(v) , the solution x = ((−1)(v⊖g u))

f  or 
xf = ((−1)(v⊖g u)).

2.3 � Fuzzy vectors and related analysis

In this section, we extend fuzzy number calculus to vectors 
with fuzzy numbers as components - simply, fuzzy vectors. 
Similarly to fuzzy numbers, we identify fuzzy vectors with 
their one-parametric families of vector-intervals.

Let y = [y1,⋯ , y�]
T , � ≥ 1 , be a vector of fuzzy numbers 

where for j = 1,⋯ , � , yj = (y
j
, yj) ∈ ℝF . Then, y , and yf  are 

represented respectively, by

where each component y
j
 or yj is a real function on [0, 1]. 

We call (6) a parametric form of a fuzzy vector. For example, 
if y = [y1, y2]

T  , and y1(r) = (r, 2 − r) , y2(r) = (2r, 4 − 2r) , 
then the parametric form of y is y(r) = [r, 2r, 2 − r, 4 − 2r]T , 
where 0 ≤ r ≤ 1 . The set of �-dimensional fuzzy vectors is 
denoted by ℝ�

F
 , and the set of r-cuts related to the 

corresponding parametric forms belongs to ℝ2� . Below, we 
give more details to the matrix multiplication. Let A = (aij) 
be a � × � real matrix, y = [y1,⋯ , y�]

T a fuzzy vector. The 
product c = Ay is a fuzzy vector c = [c1,⋯ , c�]

T , where for 
i = 1,⋯ , � , ci =

∑�

k=1
aikyk . The next proposition shows how 

the parametric form of c and cf  can be obtained directly from 
the parametric form of y and the extended forms of the 
matrix A (below in (8)).

Proposition 3  Let A = (aij) be a � × � real matrix, y a �
-dimensional fuzzy vector y with the 2�-dimensional 
parametric form y = [y1,⋯ , y� , y1,⋯ , y�]

T  . We use two 
intermediate � × � real matrices A+ and A− as those that 
differ from A in that the negative, respectively, positive 
components of the matrix A are replaced by zeros. Let us 
compose two new 2� × 2� real matrices A± and A∓ as 
follows:

(6)y = [y1,⋯ , y� , y1,⋯ , y�]
T ,

(7)yf = [y1,⋯ , y� , y1,⋯ , y�]
T .

(8)A± =

(
A+ A−

A− A+

)
, A∓ =

(
A− A+

A+ A−

)
.

Then, the parametric form c (respectively cf  ) of fuzzy vec-
tor c = Ay is equal to c = A±y (respectively cf = A∓y ). 
Moreover,

Below, we will be working with fn-valued functions, 
defined on the real domain, i.e. functions F ∶ [a, b] → ℝF  , 
such that for each t ∈ [a, b] , F(t) is a fuzzy number 
F(t) = (f (t), f (t)) where functions f (t), f (t) ∶ [0, 1] → ℝ , 
are L − U  representation functions of r. If a level cut 
0 ≤ r ≤ 1 is fixed, then the corresponding function F(t, r) 
is interval-valued.

Proposition 4  Let F ∶ [a, b] ⟶ ℝF  be an fn-valued 
function, such that for each fixed r ∈ [0, 1], the corresponding 
interval-valued functions F(t, r) are l-increasing (decreasing) 
and gH-differentiable on [a, b]. Then for every r ∈ (0, 1) , 
and for all t ∈ (a, b) , d

dt
f (t, r) and d

dt
f (t, r) exist, and if F(t, r) 

is 1- (or 2-) differentiable, then F�(t, r) = [
�

�t
f (t, r),

�

�t
f (t, r)] 

(or (F�)f (t, r) = [
�

�t
f (t, r),

�

�t
f (t, r)]).

To continue our analysis, we repeat the definition of the 
definite integral of an fn-valued function from [33], based 
on the concept of the Riemann integral.

Definition 2  Let f ∶ [a, b] → ℝF  be an fn-valued function. 
For every partition P = {t0,… , tn} of [a, b] and for arbitrary 
�i ∈ [ti−1, ti], 1 ≤ i ≤ n , let us denote

Assume that there exists a fuzzy number I with the following 
property: for arbitrary 𝜀 > 0 , there exists 𝛿 > 0 , such that for 
any partition P with ΔP < 𝛿 , we have D(I,RP) < 𝜀 . We say 
that I is a definite integral of f over [a, b] and denote it as

If an fn-valued function f is continuous in the metric D, 
its definite integral exists and its parametric form with left 
and right r-cut boundaries is as follows

It should be remarked that fuzzy integral can be also defined 
using the Lebesgue approach [8].

(9)(A±y)f = A∓y.

RP =

n∑
i=1

f (�i)(ti − ti−1),

ΔP ∶= max{|ti − ti−1|, i = 1, ..., n}.

I = ∫
b

a

f (t)dt.

(10)
�

b

a

f (t, r)dt =
(
�

b

a

f (t, r)dt,�
b

a

f (t, r)dt
)
, 0 ≤ r ≤ 1.
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3 � Fuzzy fractional integral and Caputo‑type 
derivatives

Definition 3  [12] If u is a continuous fn-valued function, 
then the fuzzy Riemann-Liouville integral is defined as 
follows:

where Γ is the Gamma function.

Definition 4  [12] Suppose that u is a differentiable fn-valued 
function, and let u ∈ ACF[a, b], where ACF[a, b], denotes the 
space of absolutely continuous fuzzy functions. The Caputo-
type fractional-fuzzy derivative is defined by

for � = 1, it is defined by classical integer order derivative, 
i.e.,

Suppose 0 < 𝛽 < 1. For a real-valued and continuously 
differentiable function y,  we have

and

where L is the Laplace transform [3].

4 � Reduction of the original problem 
to the ordinary case

We have shown above (Proposition 4) that for a certain 
class of fn-valued functions, their generalized Hukuhara 
derivatives can be reduced to the derivatives of ordinary 
real-valued functions. This fact will be used in the proposed 
method for solving the problem (1). Below, we repeat its 
main equation and initial value:

J𝛽u(t) =
1

Γ(𝛽) ∫
t

0

u(x)

(t − x)1−𝛽
dx, 0 < 𝛽 < 1, t > 0,

CD𝛽u(t) =
1

Γ(1 − 𝛽) ∫
t

0

u�(x)

(t − x)𝛽
dx, 0 < 𝛽 < 1, t > 0.

CD1u(t) =
du(t)

dt
.

(11)J�(CD�y)(t) = y(t) − y(0),

(12)J𝛽 t𝛼 =
Γ(𝛼 + 1)

Γ(𝛼 + 𝛽 + 1)
t𝛽+𝛼 , 𝛼 > −1,

(13)L(CD�y(t)) = s�L(y) − s�−1y(0).

CD�y(t) = Ay(t) + u(t), t ∈ [0, T],

y(0) = y0,

In this section, we show that the Caputo-type fractional 
derivatives of fn-valued functions can be reduced to the 
Caputo-type fractional derivatives of ordinary real-valued 
functions. Then, we propose to apply the flipping and to 
reduce the original problem (1) to the two systems of linear 
fractional differential equations over ordinary functions. The 
“crossroad” goes through the choice of a set of solutions.
Theorem  5  Assume that system (1) is solvable and its 
solution y is an fn-valued �-dimensional vector-function on 
t ∈ [0, T] , such that for each r ∈ [0, 1] , the corresponding 
interval-valued vector-functions y(⋅, r) are l-increasing 
(l-decreasing) and continuously differentiable. Then problem 
(1) has two solutions ((1)-differentiable and the other one 
(2)-differentiable) on [0, T].

Proof  Let the assumptions of the case (1) be satisfied, and 
y = [y1,⋯ , y�]

T  be a solution of (1). Let 1 ≤ i ≤ � and 
0 ≤ r ≤ 1 be fixed. By Proposition (4) and the definition of 
Caputo derivative, we have

By (10), we obtain that CD�yi(t, r) is equal to

or equivalently,

and

Using vector notation, we write

and

Finally,

The proof of case (2) is similar. 	�  ◻

CD�yi(t) =
1

Γ(1 − �) ∫
t

0

y�
i
(x)

(t − x)�
dx

=
1

Γ(1 − �) ∫
t

0

[yi
�(x), yi

�
(x)]T

(t − x)�
dx.

(14)

[
1

Γ(1 − �) ∫
t

0

yi
�(x)

(t − x)�
dx,

1

Γ(1 − �) ∫
t

0

yi
�
(x)

(t − x)�
dx

]T

=

[
CD�yi(t),

CD�yi(t)
]T

CD�yi(t) =
CD�yi(t)

CD�yi(t) =
CD�yi(t).

CD�y(t) = CD�y(t)

CD�y(t) = CD�y(t).

(15)CD�y(t) = (CD�y(t), CD�y(t)).
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Corollary 1  Let the system (1) be solvable and its solution y 
fulfill assumptions given in Theorem 5. Then, the equivalent 
to (1) system of ordinary fractional differential equations 
has the following parametric form:

Proof  The proof follows easily from the equivalent 
transformations of ordinary fractional differential equations 
discussed above, where we first transform the equation (1), 
by applying flipping (as in (5)) to both sides of it, and then 
(9) to matrix multiplication, and after that we transform both 
equations using the fuzzy Riemann-Liouville integral (11), 
applied to both sides of each of them. 	�  ◻

Below we will support our theoretical elaboration with 
an example of a fuzzy fractional equation that admits two 
different fuzzy solutions: one has l-increasing corresponding 
interval-valued vector-functions, and the other one has 
l-decreasing. Both solutions are exact, and their analytic 
representation is obtained using the Riemann-Liouville 
integration (see (11)) and its application to polynomials 
(see (12)).
Example 1  Let the system (1) have the following simple 
form:

where � = 1 , A = 0 , and the fuzzy source function u in its 
parametric form is equal to u(t, r) = (t2(r − 1), t2(−r + 1)) . 

1.	 Assume that this system has l-increasing solution 
on [0, T]. Then, can be represented using (16). In the 
parametric form, we have 

 By (12), we obtain 

 The length of the corresponding r-cut, where 0 ≤ r ≤ 1 , 
is equal to 

 It is easy to see that this function is increasing with 
respect to t on every interval [0,  T] where T > 0 . 

(16)[y1,⋯ , y� , y1,⋯ , y�]
T = A±J�y(t) + y(0) + J�u(t),

(17)[y1,⋯ , y� , y1,⋯ , y�]
T = A∓J�y(t) + y(0) + J�uf (t).

(18)
CD�y(t, r) = (t2(r − 1), t2(−r + 1)), t ∈ [0, T],

y(0) = (r − 0.5,−r + 1.5),

[
y(t, r)

y(t, r)

]
=

[
r − 0.5

−r + 1.5

]
+ J�

[
t2(r − 1)

t2(−r + 1))

]
.

(19)
[
y(t, r)

y(t, r)

]
=

[
2

Γ(3+�)
t2+�(r − 1) + r − 0.5

2

Γ(3+�)
t2+�(−r + 1) − r + 1.5.

]

y(t, r) − y(t, r) =
4

Γ(3 + �)
t2+�(1 − r) + 2(1 − r).

Therefore, a fuzzy solution to the initial system (18) in 
the set of fn-valued functions with the corresponding 
l-increasing interval-valued vector-functions exists and 
is given by (19).

2.	 On the other hand, suppose that the system (18) has 
l-decreasing solution on [0, T]. Then, it can be repre-
sented using (17). In the parametric form, we have 

 and after applying (12), we obtain 

 The length of the corresponding r-cut, where 0 ≤ r ≤ 1 , 
is equal to 

 It is easy to see that if t ∈ [0, T∗] ,  where 
T∗ =

(
Γ(3+�)

2

)(
1

2+�
)

 , this length is positive for 0 ≤ r < 1 , 
and it is decreasing with respect to t. Therefore, a fuzzy 
solution to the initial system (18), considered on the 
interval [0,

(
Γ(3+�)

2

)(
1

2+�
)

] , in the set of fn-valued 
functions with the corresponding l-decreasing interval-
valued vector-functions exists and is given by (20).

Remark 1  Comments should be made regarding the 
existence of the two topologically non-equivalent solutions 
to (1). This effect is known as bifurcation and is caused by a 
fuzzy initial value and/or a fuzzy source function. Without 
going into technical details, we note that this phenomenon 
requires additional analysis beyond the scope of our current 
research. We refer to [34] where the values of the bifurcation 
of fuzzy dynamical systems were studied.

As an advantage of our approach, we emphasize that two 
systems of ordinary fractional differential equations (16) and 
(17) can be easily unified into the following general form:

where A denotes a real matrix, and � is a vector of 
real functions. As the example  1 shows, an analytical 
solution is possible if (21) contains simple functions (for 
example, polynomials) for which the application of the 

[
y(t, r)

y(t, r)

]
=

[
r − 0.5

−r + 1.5

]
+ J�

[
t2(−r + 1)

t2(r − 1)

]
,

(20)
[
y(t, r)

y(t, r)

]
=

[
2

Γ(3+�)
t2+�(−r + 1) + r − 0.5

2

Γ(3+�)
t2+�(r − 1) − r + 1.5.

]

=

⎡⎢⎢⎣

�
−

2

Γ(3+�)
t2+� + 1

�
r +

2

Γ(3+�)
t2+� − 0.5�

2

Γ(3+�)
t2+� − 1

�
r + 1.5 −

2

Γ(3+�)
t2+� .

⎤⎥⎥⎦

y(t, r) − y(t, r) =
4

Γ(3 + �)
t2+�(r − 1) − 2(r − 1).

(21)y(t) = AJ�y(t) + y(0) + J��(t), t ∈ [0, T],
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Riemann-Liouville integral has an analytical representation, 
see (12). Otherwise, the solution of (21) can only be 
approximate, obtained using suitable numerical methods. 
In the next section, we will discuss this issue in more detail.

4.1 � Fuzzy logic description of input‑output relation

As it is mentioned in the Introduction the concept of 
observability is concerned with the problem of whether 
the fuzzy inputs u(t) and the fuzzy outputs y(t) of system 
(1) over a finite interval [t0, t1] can uniquely determine the 
initial fuzzy state y0 . Let A(t), u(t), t ≥ 0 , be the same as in 
system (1). For the given initial value y0 ∈ ℝ

�

F
 and the given 

input u(t) ∈ ℝ
�

F
 , for each t ≥ 0 , in system (1), we can obtain 

the system state y(t) ∈ ℝ
�

F
 , for each t ≥ 0 . We quantify the 

input-output relations by using fuzzy logic together with the 
system model (1).

where the relation between input and output is

In the fuzzy based rule (22), since u(t) ∈ ui(0, t) for t ≥ t0 , 
then y(t1) ∈ yi(0, t1).

5 � Chebyshev polynomials and analytical 
representation of the approximate 
and solution

In this section, we focus on finding approximate solutions 
for (21), where this equation contains the Riemann-
Liouville integral applied to real vector functions. We 
propose to approximate the integrands that appear in (21) 
by polynomials close to them and use the fact that the 
application of the Riemann-Liouville integral to polynomials 
has an analytical representation. As a result, we obtain an 
analytical representation of the approximate solution. In this 
case, the quality of the approximation is controlled by the 
degree of the approximating polynomial. We propose to use 
Chebyshev polynomials, which are known for relationshipod 
approximating ability. In the Appendix, we review some 
basic definitions and results related to the Chebyshev 
polynomials [35].

(22)Ri ∶ IF u01 is ui
01

and⋯ u0� is ui
0�
;t0 ≤ t ≤ t1;

THEN y1(t1) is yi
1
(t1) and⋯ yk(t1) is yi

k
(t1), i = 1, ..., �

(23)CD�y(t1) = Ay(t1) + u(t1).

5.1 � Operational Chebyshev method in algorithmic 
form

Below we describe the sequence of steps that leads to 
an approximate numerical solution yN  to (21) where 
N ≥ 2 corresponds to the maximal degree of Chebyshev 
polynomials used in the representation of yN . The following 
are inputs parameters: A, u , y0 (parameters of the equation 
(21), N (maximal degree of Chebyshev polynomials), � 
(fractional order of the Caputo-type fuzzy derivative), 
r (level of the cut), all of them must be initialized before 
the first step. The algorithm runs “in one go” and produces 
approximate numerical solution (output) yN in matrix form. 
The quality of the approximation is an offline parameter, 
so that it can be estimated by the norm of the difference 
between two consecutive solutions yN and yN+1 . colorblack 

1.	 For the chosen N,  represent the approximate solution yN 
by a linear combination of the first (N + 1) Chebyshev 
polynomials, see (A5) in the Appendix. We explicitly 
write 

 where ΨT (t) = [T∗
0
(t),… , T∗

N
(t)] is the vector of 

mentioned above Chebyshev polynomials and Y - 
unknown coefficient matrix with dimension 2� × (N + 1)

.
	   The remaining parameters in (21) are also expanded 

using the same Chebyshev polynomials in ΨT , so that 
we have 

 where Y0 = [y0, 0,… , 0]T , and the components of the U 
are computed as in (A7).

2.	 Substitute (24 - 25) into equation (21) and rewrite it as 
follows: 

3.	 By Theorem 6, we have 

 Substitute (27) into (26) and obtain 

(24)yN(t) = YTΨ(t),

(25)
y0 =Y0Ψ(t),

�(t) ≈UTΨ(t),

(26)
YTΨ(t) = AJ�(YTΨ(t)) + Y0Ψ(t)+

J�(YTΨ(t)), t ∈ [0, T].

(27)
J�(UTΨ(t)) ≈UTP�,MΨ(t),

J�(YTΨ(t)) ≈YTP�,MΨ(t).
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4.	 Multiplying the left and right sides of (28) by w∗(t) and 
ΨT (t) , respectively, and applying the integration in t 
along [0, T], we obtain 

5.	 Note that due to the orthogonality of the Chebyshev 
polynomials and the estimate (A3) of their norm squares, 
the integrals on the left and right sides of (29) are equal 
to 

 where diag([�1,⋯ , �N]) is a diagonal invertible matrix. 
Therefore, multiplying both sides of (29) by Λ−1

N
, we 

obtain a system of equations independent of t, i.e., 

 where 

6.	 To solve (30), use the vectorization operator vec [7] 
to obtain a system of linear algebraic equations in 
the standard form of a matrix equation. This operator 
rewrites m × n matrices in mn-dimensional vectors using 
concatenation of rows. In particular, the vectorization of 
a matrix is given below: 

 The vectorization vec has the property 

 where ⊗ is the Kronecker product. Thus, the system 
(30) can be converted to the standard form 

 where I�×� is the identity matrix, and vec(YT ) is the 
unknown vector.

7.	 Solve (31) as a standard system of linear equation1 and 
obtain the (exact) solution vec(YT ).

8.	 Apply the inverse of vec to vec(YT ) and get 2� × (N + 1) 
vector YT ; substitute it into analytical form (24) to get 
the desired approximate solution yN of (21).

(28)YTΨ(t) = AYTP�,MΨ(t) + Y0Ψ(t) + UTP�,MΨ(t).

(29)

YT ∫
T

0

w∗(t)Ψ(t)ΨT (t)dt =

(
AYTP�,M + Y0 + UTP�,M

)
×

∫
T

0

w∗(t)Ψ(t)ΨT (t)dt.

ΛN ∶= ∫
T

0

w∗(t)Ψ(t)ΨT (t)dt = diag([�1,⋯ , �N]),

(30)(YT −AYTP�,M) = H,

H ∶= Y0 + UTP�,M .

vec(A) ∶= (a1,1 … , am,1,… , a1,n,… , am,n)
T .

vec(ABC) = (CT ⊗ A)vec(B),

(31)
(
I⊗ I − PT

𝛽,M
⊗A

)
vec(YT ) = vec(H),

In the following section, we refer to Theorem 6, which 
guarantees the convergence of the above algorithm of the 
Chebyshev operational method. We also prove Theorem 7, 
which estimates the complexity of this algorithm as O(N3).

6 � Convergence of the operational 
Chebyshev method and complexity of its 
algorithmic form

In this section, we prove that the algorithmic form of 
the Chebyshev operational method proposed in Sect.  5 
is correct. We also estimate the complexity of the 
corresponding algorithm.

The following theorem, proved in [7], gives an 
approximate value of the Riemann-Liouville integral applied 
to the vector of Chebyshev polynomials in (A6).

Theorem 6  Let 0 < 𝛽 < 1 , ΨT (t) = [T∗
0
(t),… , T∗

N
(t)] , and 

N,M ∈ ℕ . Then, there is an (N + 1) × (N + 1) (operational) 
matrix P�,M , such that

Moreover,

where P� = limM→∞ P�,M.

The proof of the following theorem with an estimate of 
complexity was developed for this article.

Theorem  7  The total complexity TC of the algorithm 
described in Sect. 5 is O(N3).
Proof  We remind that the algorithm is focused on the 
numerical solution of equation (21) in its reduced form (30) 
or equivalently (31). The proof consists in the complexity 
estimation of calculating the parameters A , P�,M , YT 
included in (31), and estimating the computation complexity 
of the numerical method for solving the system (31) of linear 
equations. 

1.	 A is a matrix of dimension 2� × 2� . It is computed by 
the concatenation operator of A+ and A− , each of which 
requires �2 comparisons. Thus, the computational cost 
of obtaining A is O(�2);

(32)J�Ψ(t) ≃ P�,MΨ(x).

(33)pN(J
�Ψ) = P�Ψ(x),

1  We propose to apply LU (Lower-Upper) decomposition to the 
matrix of coefficients and obtain the (exact) solution vec(YT ) directly 
by forward and backward substitution.
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2.	 P�,M is a matrix of dimension (N + 1) × (N + 1) . Accord-
ing to [7], the computational cost of P�,M , where we use 
the constant M = 100 , is 

3.	 YT is a � × (N + 1) matrix. This matrix is computed by 
applying the inverse of the vectorization operator to 
vector vecYT . Thus, the computational cost of obtaining 
YT is 2�(N + 1);

4.	 vecYT is obtained by the LU decomposition with the 
computational cost of O((2� × (N + 1))3);

5.	 The summarized complexity of the algorithm is 

Therefore, the estimated total complexity of the method is 
TC = O(N3) . 	�  ◻

7 � Numerical examples

In this section, we will illustrate the above proposed 
numerical method and the entire computational procedure 
with an example. The notation system used below is the 
same as in the sections discussed above. In addition, we 
use generally accepted quality measures and denote them 
as follows:

and

where yiN is the ith component of yN(t) for i = 1,… , � . The 
corresponding maximal error is

In Tables 1, 2, we will see a stable decrease in Ei(N, r) in 
relation to N, which confirms our theoretical conclusions 
regarding the convergence of the proposed algorithmic 
method.

Example 2  Consider the two-dimensional system (1) of 
FFDEs given by A = I and

where

(1 + 2 +…+ N)NM =
MN(N + 1)N

2
≤ O(N3);

O((2�(N + 1))3) + 2�(N + 1) + O(�2) + O(N3)

=O((2�(N + 1))3) + O(N3) = O(8�3(N + 1)3).

Ei(N, t) = |yiN(t) − yi(t)|

Ei(N, t) = |yiN(t) − yi(t)|,

(34)Ei(N, r) = max
t∈[0,T]

{E
i
(N, t),Ei(N, t)}, r ∈ [0, 1].

u1 = t2(r2 + r, 4 − r3 − r),

u2 = t3(r2 + r, 4 − r3 − r),

and t ∈ [0, 1].

It is easy to see that since the initial condition is a real 
(not fuzzy) vector, the system has no l-decreasing solution. 
Therefore, we assume that the solution is l-increasing. In this 
case, the equivalent to (1) system of ordinary fractional 
differential equations has the parametric form (16), where 
A± = I4 (4-dimensional identity matrix), y(0) = [0, 0, 0, 0]T 
and y = [y1, y2, y1, y2]

T . Substituting this data into (16), we 
get

The exact solution can be obtained by iterative application 
of (12):

At the same time, we apply the numerical method proposed 
in Sect. 5 and obtain a sequence of approximate numerical 
solutions for � = 0.5, 09 , and N = 2,… , 12 . We compare 
them with the exact solution and estimate the maximum 
errors Ei(N, r) , i = 1, 2 , according to (34). Table 1 ( � = 0.5 ) 
and Table 2 ( � = 0.9 ) contain estimates of the maximum 
error for all considered values of N and three r-cuts, where 
r = 0.2, 0.5, 0.9.

These tables validate the proposed method. Note that 
somewhat better convergence is observed in the Table 2, 
where � = 0.9 , due to the increase in the regularity of the 
solution with � → 1 . In particular, and in addition to the 

y0 =

[
(0, 0)

(0, 0)

]

(35)y = J�y + J�u.

y1(t) =

∞∑
i=1

Γ(3)

Γ(3 + i�)
t2+i�(r2 + r, 4 − r3 − r),

y2(t) =

∞∑
i=1

Γ(4)

Γ(4 + i�)
t3+i�(r2 + r, 4 − r3 − r).

Table 1   The maximum error for various values of N and r with 
� = 0.5 in Example 2

N E1(N, 0.5) E2(N, 0.5) E1(N, 0.9) E2(N, 0.9)

2 1.7184e-01 2.9500e-01 1.2072e-01 2.0724e-01
3 6.8835e-03 2.9774e-02 4.8358e-03 2.0916e-02
4 9.9725e-04 9.9302e-04 7.0058e-04 6.9762e-04
5 1.9769e-04 1.1260e-04 1.3888e-04 7.9103e-05
6 9.0588e-05 1.5185e-05 6.3640e-05 1.0668e-05
7 4.3181e-05 5.8318e-06 3.0335e-05 4.0969e-06
8 2.2807e-05 2.2936e-06 1.6022e-05 1.6113e-06
9 1.2957e-05 1.0190e-06 9.1027e-06 7.1587e-07
10 7.8023e-06 4.9350e-07 5.4813e-06 3.4670e-07
11 4.9255e-06 2.5630e-07 3.4602e-06 1.8005e-07
12 3.2335e-06 1.4096e-07 2.2716e-06 9.9027e-08
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estimates in Tables 1, 2, we got that, up to a computational 
error, E2(12, 0.9) = 1.1102e − 15, for � = 0.99999999.

8 � Real world applications

After we have tested our model in Example 1, and proved 
the correctness of the related algorithm, we move on to 
two real applications. Both are associated with dynamic 
processes in the human body associated with the use of 
medications.

In the following, we consider two dynamic processes 
in which both extensions mentioned above can be useful: 
the dynamics of drug distribution in the blood and the 
evolution of the amount of cholesterol in the human 
body [24–27]. Two important factors should be analyzed: 
the memory of dynamic changes (closely related to the 
specific reaction of the human body) and the robustness 
to uncertainty (related to the initial prescription of the 
drug). The first is the result of modeling with a fractional 
derivative, and the second is due to fuzzy values. In both 
cases, linear fractional-order differential equations are 
proposed as suitable models.
Example 3  In this example, an extended fractional fuzzy 
mathematical model for drug diffusion in the human body 
through blood and tissue is analyzed, and its solution in the 
form of a dynamic process is discussed.

Consider ke , kb and kt as the corresponding rates of 
drug elimination from blood, drug transportation from 
arterial blood to tissue, and from tissue to venous blood. 
Let cab(t) , ct(t) and cvb(t) denote the concentration of drug 
in the arterial blood, tissue and venous blood at time t, 
c0 the initial dose of the drug taken. The conventional 

mathematical model [24] for the drug concentration based 
on the ODE system is reproduced below:

The exact solution of this system can be found in [24]. If we 
make a reasonable assumption that the rate of absorption 
varies from recipient to recipient, we can extend (36) to the 
following fractional model:

where 0 < 𝛽 ≤ 1 is a fractional order that indicates the 
human’s body reaction. The system (37) is the first extension 
of (36) that takes into account the specific reaction of the 
human body. If � → 1 , then the solution (37) tends to normal 
(36) dynamics. However, at lower values of � , the response 
to treatment is slower.

In Fig.  1, we plot numerical solutions of systems 
(36) and (37) on the interval [0,  15] with parameters 
kb = 0.5, ke = 0.05 and kt = 0.25 and various values of 
�. The initial state of this system with c0 = 1 . For � = 1, 
we have used the exact solution described in [24]. For 
other values of � we have used the numerical method 
described in [7]. Figure 1 illustrates our expectation that 
the solutions of system (37) approach the solutions of 
system (36) as � → 1 . Furthermore, we take into account 
that the initial values are assigned in accordance with 
the competence of the doctor. Therefore, we proposed 
to extend the system in (37) to the space of fn– valued 
functions with fuzzy numbers as initial conditions. The 
solution of this extended system shows a variety of patient 
feedback that can be compared with expert knowledge. In 
the following, we trace numerical solutions for two types 
of their l-monotonicity at different evolutionary times. In 
all the systems considered below, the fractional order is 
� = 0.95 . 

1.	 At first, we restrict system (37) to the first equation and 
assume that its fn-valued solution is l-increasing. The 
corresponding fractional-order system over fn-valued 
functions is 

(36)

⎧
⎪⎪⎨⎪⎪⎩

dcab(t)

dt
= −kbcab(t), cab(0) = c0,

dct(t)

dt
= kbcab(t) − ktct(t), ct(0) = 0,

dcvb(t)

dt
= ktct(t) − kecvb(t), cvb(0) = 0.

(37)

⎧
⎪⎨⎪⎩

CD�cab(t) = −kbcab(t), cab(0) = c0,
CD�ct(t) = kbcab(t) − ktct(t), ct(0) = 0,
CD�cvb(t) = ktct(t) − kecvb(t), cvb(0) = 0,

(38)

{
CD�cab(t) = −kbcab(t),
CD�cab(t) = −kbcab(t)

Table 2   The maximum error for various values of N and r with 
� = 0.9 in Example 2

N E1(N, 0.5) E2(N, 0.5) E1(N, 0.9) E2(N, 0.9)

2 7.8256e-02 1.1755e-01 5.4977e-02 8.2580e-02
3 4.1932e-03 1.3698e-02 2.9458e-03 9.6233e-03
4 2.7444e-04 6.1198e-04 1.9280e-04 4.2992e-04
5 1.2078e-05 3.3096e-05 8.4852e-06 2.3250e-05
6 8.0339e-06 8.1176e-07 5.6440e-06 5.7028e-07
7 3.3286e-06 5.5968e-07 2.3384e-06 3.9319e-07
8 1.6042e-06 1.9087e-07 1.1270e-06 1.3409e-07
9 8.3714e-07 7.8072e-08 5.8811e-07 5.4847e-08
10 4.6671e-07 3.4956e-08 3.2787e-07 2.4557e-08
11 2.7457e-07 1.6903e-08 1.9289e-07 1.1874e-08
12 1.6891e-07 8.7054e-09 1.1866e-07 6.1157e-09
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 with fuzzy initial condition c0(r, 2 − r) . For � = 1 we 
obtain 

 and write a solution in the form 

D2cab(t) = k2
b
cab(t),

 where A, B are arbitrary complex numbers. Then 

 Imposing the initial condition, we obtain 

 which leads to A = c0, B = c0r − c0 . Therefore, the 
exact solution is 

 If r = 1 ( c0r − c0 = 0 ), the corresponding (deterministic) 
solution 

 is asymptotically stable at infinity. However, if 
r ∈ [0, 1) , then the fn-valued cab(t) tends to ∞ as t tends 
to ∞ . This is because the exponential term ekbt with 
positive kb comes into play. In this case, the extension 
to fn-valuedness changes the asymptotically stable 
behavior to an unstable one.

2.	 At second, we continue working with the first equation 
in system (37) and assume that its fn-valued solution is 
l-decreasing. The corresponding parametric form is 

 and the solution is as follows: 

 It is easy to see that this solution is asymptotically 
stable at any level r ∈ [0, 1].

Remark 2  The conclusion about the asymptotic stability 
of the solution calculated in (43) can be confirmed by a 
theoretically substantiated analysis of stability. This is 
discussed in more detail in Appendix. On its basis, we 
check the spectra of the matrices A+ − A− and A− − A+ for 
the l-increasing and l-decreasing cases, respectively. With a 
straightforward computation we have �(A+ − A−) = {kb} and 
�(A− − A+) = {−kb}. Obviously, �(A− − A+) is a subset of

cab(t) = Ae−kbt + Bekbt,

(39)
cab(t) =

−1

kb

CD�cab(t) =
−1

kb
(Ae−kbt + Bekbt) =

Ae−kbt − Bekbt.

(40)
{

A + B = c0r,

A − B = c0(2 − r),

(41)
cab(t) = c0e

−kbt + (c0r − c0)e
kbt,

cab(t) = c0e
−kbt + (c0 − c0r)e

kbt.

cab(t) = c0e
−kbt, cab(t) = c0e

−kbt,

(42)
{

CD�cab(t) = −kbcab(t), cab(0) = c0r,
CD�cab(t) = −kbcab(t), cab(0) = c0(2 − r),

(43)
{

cab(t) = c0re
−kbt,

cab(t) = c0(2 − r)e−kbt.
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Fig. 1   Numerical and exact (thin solid lines) solutions of systems 
(37) and (36) considered in the Example 3: a First component cab(t) , 
b Second component ct(t) , and c Third component cvb(t)
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so that by (A11), the l-decreasing solution is stable. On the 
other hand, the �(A+ − A−) does not satisfies (A12), and the 
l-increasing case is not stable.

{
𝜆 ∈ ℂ ⧵ {0};| arg(𝜆)| > 𝛽𝜋

2

}
,

In Fig.  2, we show solutions to (38) and (42) 
on the interval [0,  15], and illustrate two different 
behaviors according to selected assumptions about their 
l-monotonicity.

3.	 Third, we consider the entire system (37) under two 
opposite assumptions about the l -monotonicity of 
the solution components. Based on our analysis of the 
stability of the solution (38), we leave the only case 
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Fig. 2   a The unstable fn-valued solution to (38) under the assumption of its l- increasing behavior; b The stable fn-valued solution to (42) under 
the assumption of its l- decreasing behavior. In both cases, the blue (red) surface corresponds to the left (right) r-cut boundaries
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Fig. 3   Three components of the fn-valued solution to (37) under the assumption that all of them are l-decreasing; a cab, b ct and c cvb
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when all components of the solution are l -decreasing. 
In Fig.  3 we have illustrated the three-dimensional 
evolution of the fn-valued solution on the [0, 15] under 
the assumption that all its components are l -decreasing 
(Fig. 4).

In conclusion, the extension to fn-valued solutions, 
together with the choice of the type of their l-monotonicity, 
correlates with our intuition about the dynamic behavior of 
drug transportation. In particular, if at least one component 
of the solution is unstable, then it is not feasible for a given 
model.

Example 4  In this example, we study the dynamics of 
bromsulfein (BSP) in the human liver. Let z(t),  w(t) and 
x(t) represent the amounts of BSP at time t in blood, liver, 
and bile, respectively. Suppose that the coefficients a, b,  and 
d characterize the transfer rates of the respective dynamics. 
The first-order model proposed by Watt is described as [36, 
37].

where the initial conditions (z(0),w(0)) = (z0, 0) such that 
(z0 > 0) , are known constants. As we can see, the third equa-
tion does not affect the first two. Thus, solving the system 
of the first two equations is sufficient to analyze the dynam-
ics of BSP in the human liver. Therefore, the presence of 
memory in the BSP dynamics is a natural requirement of 

(44)

⎧⎪⎨⎪⎩

dz(t)

dt
= −az(t) + bw(t),

dw(t)

dt
= az(t) − (b + d)w(t),

dx(t)

dt
= dw(t),

the model, which is better reflected in the fractional-order 
model in the Caputo sense:

In (45), the fractional order 0 < 𝛽 ≤ 1 corresponds to a cer-
tain effect of memory. The third equation from (44) with 
the dynamics of x(t) is not included in the system (45) and 
can be solved separately. To avoid dimension mismatch, we 
consider the dimension unit of coefficients t−� .

Let us first find the solution of the fractional-order system 
(45) with real value functions on [0, 80] witha = 0.102, 
b = 0.001 and d = 0.011. In Fig. 5, we illustrate the solution 
for various values of � ∈ {0.85, 0.9, 0.95} . These figures 
show that as � → 1, the solutions tend to the solution of the 
first-order system (44).

Second, we consider the extension to an fn-valued 
functions as a solution space. Let an expert measure the 
initial amount of BSP in the human liver several times 

(45)
{

CD�z(t) = −az(t) + bw(t),
CD�w(t) = az(t) − (b + d)w(t).
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Fig. 4   The initial amount of BSP in the blood with Gaussian fuzzy 
depiction ( � = 30)
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and obtain the average value z0 = 250 with the standard 
deviation � = 30 . Thus, the normal distribution (see Fig. 4) 
is used for the characterization of the fuzzy initial value:
�
z0 − �

√
− ln(r), z0 + �

√
− ln(r)

�
.

Figure 6 illustrates the 3-D evolution of some solutions 
valued fn-of (36) with � = 0.95 under assumptions about 
l-monotonicity. The blue surface corresponds to the cut 
boundaries on the left r, and the red surface corresponds 
to the right boundaries. In case (a), all components of the 
solution are functions valued at l decreasing fn-, and in case 
(b), they are all l increasing.

9 � Conclusion

The main contribution of the proposed manuscript is a new 
methodology for studying dynamic processes, which extends 
the applicability of already existing (and well-established) 
models to cases that are close enough to the cases with a 
fixed (crisp) value. The proposed methodology and technical 
solution make it possible to carry out a reasonable theoretical 
analysis based on asymptotically stable numerical methods. 
In detail: 1) we extended the applicability of fractional-fuzzy 
differential calculus to biological systems (methodology); 
2) we carried out a complete numerical analysis of the 
proposed model, including issues related to convergence, 
error estimation, and stability (technical solution). We 
showed that the combination of of fractional and fuzzy 
extensions captures two types of uncertainty in biological 
processes: one is related to the variety of human organs and 
the other is related to treatment. Finally, we discussed in 
detail our methodology for real-world applications, where 
we showed how the different types of proposed extensions 
affect the solution (individually and together).

Appendix A Chebyshev polynomials

In this section, we recall some relevant definitions related 
to Chebyshev polynomials, with an emphasis on their 
approximating capabilities [35].
Definition 5  Let x = cos(�), � ∈ [0,�]. Then the Chebyshev 
polynomial Tn(x) , can be defined either explicitly using

or implicitly using the recursive formula;

where T0(x) = 1 , and T1(x) = x.

Since the analyzed equation (21) is considered in 
the interval [0,  T], we define the shifted Chebyshev 
polynomials T∗

n
(x) as

(A1)Tn(x) = cos(n arccos(x)),

(A2)Tn+1(x) = 2xTn(x) − Tn−1(x), n ∈ ℕ,
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The corresponding shifted weight function used to prove its 
orthogonality, see [35], is w∗(x) = w(

2

T
x − 1) . Furthermore, 

the corresponding square of the L2 norm for T∗
n
(x) is equal to

The weighted orthogonality mentioned of the Chebyshev 
polynomials leads to the Cleanshaw-Curtis formula, which 
gives a good estimate of the integral.

where f is an arbitrary integrable function in [−1, 1] , and 
x1,… , xN+1 , are zeros of the Chebyshev polynomial TN+1(x) . 
For a function f in [0, T], the Cleanshaw-Curtis estimate is 
recomputed to

A function f(t) on [0, T] can be expanded using the first 
(N + 1) Chebyshev polynomials as follows:

where C and Ψ are vectors (N + 1) × 1

and

Let �N be the linear space of polynomials of degree at most 
N, where N ∈ ℕ . We define the linear operator (orthogonal 
projection) pN ∶ C[0, T] ↦ �N according to (A5) so that

T∗
n
(x) = Tn

(
2

T
x − 1

)
, n ∈ ℕ.

(A3)

𝛾n ∶= ‖T∗
n
(x)‖2 = ∫

T

0

w∗(x)(T∗
n
)2(x)dx =

T

2

� 𝜋

2
, n > 0,

𝜋, n = 0.

(A4)∫
1

−1

w(x)f (x)dx ≃
�

N + 1

N+1∑
k=1

f (xk),

∫
T

0

w∗(x)f (x)dx = ∫
1

−1

w(x)f
(
T

2
(x + 1)

)
dx ≃

T�

2(N + 1)

N+1∑
k=1

f
(
T

2
(xk + 1)

)
.

(A5)f (t) ≃

N∑
m=0

cmT
∗
m
(t) = CTΨ(t), N ∈ ℕ,

(A6)
CT = [c0,⋯ , cN],

ΨT (t) = [T∗
0
(t),… , T∗

N
(t)],

(A7)

ci =
1

�i ∫
T

0

w∗(x)f (x)T∗
i
(x)dx

≃
T�

2�i(N + 1)

N+1∑
k=1

f (
T

2
(xk + 1))Ti(xk), i = 0,… ,N.

pN(f ) =

N∑
m=0

cmT
∗
m
= CTΨ.

Stability analysis

There are different methods for parameter fitting, for instance, 
Bayesian inference, then one can deal with the system and it 
is crucial to have knowledge of the stability of the system. 
In a real evolutionary process, sometimes small uncertainty 
tends to be unbounded over time. Thus, we need to introduce 
a concept that shows during the evolution, uncertainty does 
not increase infinitely. Therefore, we propose an analysis of 
asymptotic stability for uncertainty.

Let l(y)(t, r) = y(t, r) − y(t, r) be the length of the fn-
valued function y, that shows the measure of uncertainty. Let 
the solution be l-increasing. Taking fractional derivative from 
l(t, r) with respect to t and applying Theorem  5, we obtain

Thus, the dynamic of L(t, r) = l(y)(t, r) satisfies the following 
system of fractional differential equations:

Similarly, if the solution is l-decreasing, applying Theorem 5 
leads to the following.

Fix r and consider the dynamic of l(u)(t, r). Our interest is 
in the asymptotic stability of ordinary deterministic systems 
(A8) and (A9). To eliminate the effect of a constant source 
function, let Le be an equilibrium point of the system (A8), 
i. e., (A+ − A−)Le + l(u)(t, r) = 0. Then, L − Le is satisfied in

The system (A10) is known to be asymptotically stable at 
zero if the spectrum �(A+ − A−) (the set of eigenvalues of 
the matrix A+ − A− ) of the matrix A+ − A− ∈ R�×� satisfies 
the condition.

where ℂ stands for the space of complex numbers; see [38]. 
Similarly, the system (A9) is asymptotically stable at zero if 
the spectrum �(A− − A+) satisfies the condition.

CD� l(y)(t, r) = CD�
�(t, r) − CD�

�(t, r) = A−y(t, r)

+ A+y(t, r) − (A+y(t, r) + A−y)(t, r)

+ l(u)(t, r) = A+l(y)(t, r) − A−l(y)(t, r)

+ l(u)(t, r).

(A8)CD�L(t, r) = (A+ − A−)L(t, r) + l(u)(t, r).

(A9)CD�L(t, r) = (A− − A+)L(t, r) + l(u)(t, r).

(A10)CD�(L(t, r) − Le) = (A+ − A−)(L(t, r) − Le).

(A11)𝜎(A+ − A−) ⊂

{
𝜆 ∈ ℂ ⧵ {0};| arg(𝜆)| > 𝛽𝜋

2

}
,

(A12)𝜎(A− − A+) ⊂

{
𝜆 ∈ ℂ ⧵ {0};| arg(𝜆)| > 𝛽𝜋

2

}
.
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Remark 3  If systems (A8) and (A9) have a zero equilibrium 
(i.e. Le = 0 ), uncertainty vanishes and the behavior of the 
system becomes determined. However, if Le is a non-zero 
equilibrium point, then uncertainty does not disappear but is 
bounded to |Le| + � . On the other hand, if the system is not 
stable, the uncertainty becomes unbounded.
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