
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(5): 11953–11972.
DOI: 10.3934/math.2023604
Received: 09 October 2022
Revised: 13 March 2023
Accepted: 15 March 2023
Published: 20 March 2023

Research article

Optical applications of a generalized fractional integro-differential equation
with periodicity

Dumitru Baleanu1,2,3 and Rabha W. Ibrahim4,5,6,*

1 Department of Mathematics, Cankaya University, 06530 Balgat, Ankara, Turkey
2 Institute of Space Sciences, R76900 Magurele-Bucharest, Romania
3 Department of Medical Research, China Medical University, Taichung 40402, Taiwan
4 Near East University, Mathematics Research Center, Department of Mathematics, Near East

Boulevard, PC: 99138, Nicosia /Mersin 10 - Turkey
5 Department of Computer Science and Mathematics, Lebanese American University, Beirut,

Lebanon
6 Information and Communication Technology Research Group, Scientific Research Center, Al-Ayen

University, Thi-Qar, Iraq

* Correspondence: Email: rabhaibrahim@yahoo.com.

Abstract: Impulsive is the affinity to do something without thinking. In this effort, we model
a mathematical formula types integro-differential equation (I-DE) to describe this behavior. We
investigate periodic boundary value issues in Banach spaces for fractional a class of I-DEs with non-
quick impulses. We provide numerous sufficient conditions of the existence of mild outcomes for I-DE
utilizing the measure of non-compactness, the method of resolving domestic, and the fixed point result.
Lastly, we illustrate a set of examples, which is given to demonstrate the investigations key findings.
Our findings are generated some recent works in this direction.

Keywords: fractional calculus; fractional differential equation; fractional integral operator; fractional
differential operator
Mathematics Subject Classification: 34A37, 26A33

1. Introduction

Many scholars have been drawn to fractional differential equations in recent decades, and many
good results have been obtained. This class of the differential equations with instantaneous impulses
is utilized to represent sudden events such as shocks and natural disasters, were explored by the many
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researchers and investigators. Some dynamics difficulties in the evolution process cannot be explained
by differential equations with instantaneous impulse. Drug transport through the bloodstream, for
example, is a gradual and ongoing process. Non-instantaneous impulse models, on the other hand,
can explain these issues. Mathematically, researchers modeled this situation in different types
of differential, integral and integro-differential styles. I-DEs can be used to model a variety of
circumstances in science and engineering [1], such as circuit analysis. It is, in essence, a form of
energy conservation. These types of I-DEs have been used in epidemiology and epidemic mathematical
modeling, especially when the models include age-structure or depict spatial epidemics [2, 3].

Newly, many researchers investigate the impulsive problem by using the I-DEs. For example, Wang
and Zhu modeled the BVP design of [4]

C∆νσ(τ) = Λ(τ)σ(τ) + Φ
(
τ, σ(τ),

∫ τ
0
φ(τ, ς, σ(ς))d ς

)
τ ∈ (ςi+1, τi+1], i = 0, 1, ..., n

σ(τ) = ρi(τ) + ϱν(τ, τi)
∫ τ
τi
φ(ς, σ(ς))dς τ ∈ (τi, ςi], i = 0, 1, ..., n

σ(0) = σ(⊤),

where C∆ν indicates the Caputo’ s fractional derivative of order ν ∈ (0, 1],Λ is a linear operator, ϱν
fractional supported functions and the numbers τi and ςi satisfy

0 = ς0 < τ1 ≤ ς1 < τ2 ≤ ... < τn+1 = ⊤.

Also, they defined continuous functions φi : (τi, ςi] × Ξ → Ξ, where Ξ indicates a Banach space, ϱν is
the resolvent operator generated by Λ and ρi are nonlinear functions in Ξ.

This BVP involved many recent designs, that can be seen in the efforts of Ibrahim [5], Malik and
Kumar [6], Pierri et al. [7], Agarwal et al. [8], Ahmed et al. [9], Sitho et al. [10], Saadati et al. [11],
Lu et al. [12], Chaudhary and Reich [13], Zhu and Liu [14], Hemant et al. [15] and Hadid and Ibrahim
[16].

We investigate the periodicity of fractional multi-evolution equations (FME) via non-instantaneous
impulses, which is created by the previous work:

C∆νσ(τ) = Λ(τ)σ(τ) + ϕ(τ, ς)
+

∑n
i=0

∫ τ
0
φi(τ − ς)Φi(ς, σ(ς))d ς τ ∈ (ςi+1, τi+1], i = 0, 1, ..., n

σ(τ) = ρi(τ, σ(τ))ϱν(τ, τi) τ ∈ (τi, ςi], i = 1, ..., n
σ(0) = σ(⊤),

(1.1)

The existence of mild outcomes for the FDEs (1.1), via the criteria of the non-compact semigroups
is investigated in this study; nonetheless, the linear operator Λ is τ-dependent. Moreover, we clime the
FME, where n = 1 is studied in [14]. As a result of utilizing a different strategy, the outcomes provided
in this effort improve and extend the primary conclusions in many researches.

Iterative enhancement is based on the principle of incrementally developing a engineering system,
letting the designer to benefit from what was learnt during the enlargement of previous, incremental,
deliverable varieties of the system. Wherever possible, knowledge comes from both the improvement
and usage of the system. Starting with a rudimentary implementation of a subset of the system
requirements and alliteratively improving the evolving sequence of versions until the whole system
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was developed was a key phase in the process. Every iteration includes strategy changes as well as the
addition of new functional features [17].

The article is devoted into the following sections: Section 2 deals with all preliminaries that we
request in our investigation, such as the definitions of the fractional operators and the theory of
fixed points; Section 3 pretenses, our outcomes, which are grouped into two parts depending on the
compactness of ϱν(τ, τi); Section 4 offers an example and Section 5 involves the conclusion.

2. Preliminaries

We have two sets of information, as follows:

2.1. Theory of fixed points

• ȷ = [0,⊤];

• C[ ȷ,Ξ] = {σ : σ : ȷ→ Ξ} the space of all continuous functions on Ξ, where Ξ is a Banach space;
• Cp[ ȷ,Ξ] = {σ : σ : (ςi, τi+1] → Ξ} such that there occurs σ(τ−i ) and σ(τ+i ) satisfying σ(τ−i ) =
σ(τi), i = 1, ..., n with the sup-norm

∥σ∥Cp = sup{∥σ(τ)∥ : τ ∈ ȷ}.

2.1.1. Lemmas

Lemma 2.1. [18] Suppose that U ⊂ Ξ is a bounded closed and convex set, and Ξ is a Banach space.
In addition, suppose that the mapping F : U → U is in the strict set contraction. Then F in U must
have at least one fixed point.

Lemma 2.2. [19] Suppose that Ξ is a Banach space and Q ⊂ C[ ȷ,Ξ] is equicontinuous and bounded,
then the closed convex hull of Q C̄oQ ⊂ C[ ȷ, E] is equicontinuous and bounded.

Lemma 2.3. [20] Suppose that Ξ is a Banach space, and U ⊂ Ξ is bounded, then there occurs a
countable set U0 ⊂ U such that γ(U) ≤ 2γ(U0), where γ(U) is known as the Kuratowski measure of
non-compactness of the bounded set U ⊂ Ξ. Clearly, 0 < γ(U) < ∞ and

γ(U) = inf{ϵ > 0 :
n⋃

i=0

ui, diam(ui) ≤ ϵ}.

Lemma 2.4. [21] Suppose that Ξ is a Banach space, and let U ⊂ C[ ȷ,Ξ] is equicontinuous and
bounded, then γ(U(τ)) is continuous on ȷ, and

γ

(∫
ȷ

F(τ)dς
)
≤

∫
ȷ

γ (F(τ)) dτ, γ(F(τ)) = max γ(F(τ)).

2.1.2. Definition

If σ ∈ Cp( ȷ,Ξ) fulfills the resulting equations, it is supposed to be a mild solution to problematic
(1.1)

σ(τ) = ϱν(τ, 0)
[
ϱν(⊤, τn)ρn(ςn, σ(ςn))
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+

∫ ⊤

ςn

ϱν(τ, ς)

ϕ(ς, σ(ς)) +
n∑

i=0

∫ ς

0
φi(τ − ς)Φi(ς, σ(ς))dς

 ]
+

∫ τ

0
ϱν(τ, ς)

ϕ(ς, σ(ς)) +
n∑

i=0

∫ ς

0
φi(τ − ς)Φi(ς, σ(ς))dς

 , τ ∈ [0, τ1]

σ(τ) = ϱν(τ, τi)ρi(τ, σ(τ)), τ ∈ (τi, ςi], i = 1, ..., n

σ(τ) = ϱν(τ, τi)ρi(ςi, σ(ςi)) +
∫ τ

ςi

ϱν(τ, ς)

ϕ(ς, σ(ς)) +
n∑

i=0

∫ ς

0
φi(τ − ς)Φi(ς, σ(ς))dς


τ ∈ (ςi, τi+1], i = 1, ..., n.

2.2. Fractional calculus

The Riemann-Liouville fractional order integral is given by the following formula [22]

Iνσ(τ) =
1
Γ(ν)

∫ τ

0
σ(ς)(τ − ς)ν−1 dς, ν > 0,

where Γ indicates the gamma function. Note that

Iν+µσ(τ) = IνIµσ(τ) = IµIνσ(τ).

For a function σ ∈ Cn[0,∞), the fractional derivative operator in the form of the Caputo formula of
order ν ∈ (n, n + 1] can be expressed as

C∆νσ(τ) =
1

Γ(n − ν)

∫ τ

0
σ(n)(ς)(τ − ς)n−ν−1 dς, τ > 0, n ∈ N.

The Caputo fractional differential operator has many applications in science, computer science and
engineer.

3. Results

We have the following cases:
Define an operator O : Cp[ ȷ,Ξ]→ Cp[ ȷ,Ξ], as follows:

(Oσ)(τ) = ϱν(τ, 0)
[
ϱν(⊤, τn)ρn(ςn, σ(ςn)) (3.1)

+

∫ ⊤

ςn

ϱν(τ, ς)

ϕ(ς, σ(ς)) +
n∑

i=0

∫ ς

0
φi(τ − ς)Φi(ς, σ(ς))dς

 ]
+

∫ τ

0
ϱν(τ, ς)

ϕ(ς, σ(ς)) +
n∑

i=0

∫ ς

0
φi(τ − ς)Φi(ς, σ(ς))dς

 , τ ∈ [0, τ1]

σ(τ) = ϱν(τ, τi)ρi(τ, σ(τ)), τ ∈ (τi, ςi], i = 1, ..., n

σ(τ) = ϱν(τ, τi)ρi(ςi, σ(ςi)) +
∫ τ

ςi

ϱν(τ, ς)

ϕ(ς, σ(ς)) +
n∑

i=0

∫ ς

0
φi(τ − ς)Φi(ς, σ(ς))dς


τ ∈ (ςi, τi+1], i = 1, ..., n.

We have the following result:
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Theorem 3.1. Consider the following hypotheses:

(H1) The functions ϕ,Φi, ρi (i = 1, ..., n) : ȷ × Ξ→ Ξ are bounded and continuous in ȷ × ⊤ℓ and

lim sup
ℓ→∞

χ(ℓ)
ℓ
<

1
Ω
, (3.2)

where

Ω = max
{
χ2

1 + (⊤ − ςn) +
∫ ⊤

ςn

∫ ς

0

n∑
i=0

φi(ς − t)dtdς


+ χ

τ1 +

∫ τ

0

∫ ς

0

n∑
i=0

φi(ς − t)dtdς

 ,
χ

1 + (ςi+1 − ςi) +
∫ τ

ςi

∫ ς

0

n∑
i=0

φi(ς − t)dtdς, i = 1, ..., n

 , χ},
where

χ(ℓ) = sup{∥ϕ(τ, σ)∥, ∥Φi(τ, σ)∥, ∥ρi(τ, σ)∥, i = 1, ..., n : (τ, σ) ∈ ȷ × ⊤ℓ}

and
⊤ℓ = {σ ∈ Ξ : ∥σ∥ ≤ ℓ}.

The resolvent operator ϱν(τ, ς) is non-compact for τ, ς > 0, where

χ = max
0≤ς<τ≤⊤

∥ϱν(τ, ς)∥ < ∞.

(H2) There occur non-negative Lebesgue integrable functions Lϕ, LΦi , Lρi ∈ L1( ȷ,R+)(i = 1, 2, ..., n)
satisfying the following inequalities

γ (ϕ(τ, δ)) ≤ Lϕ(τ)γ(δ)
γ (Φi(τ, δ)) ≤ LΦi(τ)γ(δ)
γ (ρi(τ, δ)) ≤ Lρi(τ)γ(δ),

where δ ⊂ Ξ is equicontinuous and countable set. Define two sets as follows:

⊤ℓ = {σ ∈ Ξ : ∥σ∥ ≤ ℓ, ℓ > 0}

and

ω = max
{
χ2Lρn(τ) + χ

2
∫ ⊤

ςn

Lϕ(ς)dς + χ
∫ τ

0
Lϕ(ς)dς

+ (χ + χ2)
∫ τ

0

∫ ς

0

n∑
i=0

φi(ς − t)LΦi(τ)dtdς,

χLρi(τ), Lρi(τ) +
∫ τ

ςi

Lϕ(ς)dς +
∫ τ

ςi

∫ ς

0

n∑
i=0

φi(ς − t)LΦi(t)dtdς, i = 1, ..., n
}

< 1.
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Then the BVP (1.1) admits fully one mild outcome σ ∈ Cp[ ȷ,Ξ].

Proof. From (3.2) indicates there is a positive number ♭ ∈ (0,
1
Ω

) and an initial number ℓ0 > 0 with
ℓ > ℓ0 fulfilling the inequality χ(ℓ) < ♭ℓ. Also, for the initial value ℓ0, there is a number ℓ∗ satisfying
the inequality ℓ∗ ≥ ℓ0. Define a ball of radius ℓ∗, as follows:

Bℓ∗ = {σ ∈ Cp[ ȷ,Ξ] : ∥σ∥ ≤ ℓ∗}.

We aim to show that (Oσ) ∈ Bℓ∗ .We follow the next steps.

Step 1 Boundednees
For τ ∈ [0, τ1], a computation implies that

∥(Oσ)∥ ≤ ∥ϱν(τ, 0)∥∥ϱν(⊤, τn)ρn(ςn, σ(ςn))∥

+ ∥ϱν(τ, 0)∥
∥∥∥∥ ∫ ⊤

ςn

ϱν(τ, ς)

ϕ(ς, σ(ς)) +
n∑

i=0

∫ ς

0
φi(τ − ς)Φi(ς, σ(ς))dς

 ∥∥∥∥
+ ∥ϱν(τ, 0)∥

∥∥∥∥ ∫ τ

0
ϱν(τ, ς)

ϕ(ς, σ(ς)) +
n∑

i=0

∫ ς

0
φi(τ − ς)Φi(ς, σ(ς))dς

 ∥∥∥∥
≤ χ2♭ℓ∗

1 + (⊤ − ςn) +
∫ ⊤

ςn

∫ ς

0

n∑
i=0

φi(ς − t)dtdς


+ χ♭ℓ∗

τ1 +

∫ τ

0

∫ ς

0

n∑
i=0

φi(ς − t)dtdς


≤ ℓ∗.

In addition, we have for τ ∈ (τi, ςi] the following inequality

∥(Oσ)∥ ≤ ∥ϱν(⊤, τn)ρi(ςn, σ(ςn))∥ ≤ χ♭ℓ∗ ≤ ℓ∗.

Now for the interval τ ∈ (ςi, τi+1], we obtain

∥(Oσ)∥ ≤ ∥ϱν(⊤, τn)ρn(ςn, σ(ςn))∥

+
∥∥∥∥ ∫ ⊤

ςn

ϱν(τ, ς)

ϕ(ς, σ(ς)) +
n∑

i=0

∫ ς

0
φi(τ − ς)Φi(ς, σ(ς))dς

 ∥∥∥∥
≤ χ♭ℓ∗

1 + (τi+1 − ςi) +
∫ τ

ςi

∫ ς

0

n∑
i=0

∫ ς

0
φi(τ − ς)


≤ ℓ∗.

Step 2 Continuity
We aim to show that (Oσ)Bℓ∗ → Bℓ∗ is continuous. By the continuity of ϕ,Φi and ρi, we get

lim
n→∞

sup
τ∈ ȷ

∥ϕ(τ, σn(τ)) − ϕ(τ, σ(τ))∥ = 0

AIMS Mathematics Volume 8, Issue 5, 11953–11972.
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lim
n→∞

sup
τ∈ ȷ

∥Φi(τ, σn(τ)) − Φi(τ, σ(τ))∥ = 0

lim
n→∞

sup
τ∈ ȷ

∥ρi(τ, σn(τ)) − ρi(τ, σ(τ))∥ = 0.

Now, when τ ∈ [0, τ1], this implies

∥(Oσn)(τ) − (Oσ)(τ)∥ ≤ χ2 sup
τ∈ ȷ

∥ρn(τ, σn(τ)) − ρn(τ, σ(τ))∥

+ χ2
∫ ⊤

ςn

∥ϕ(τ, σn(τ)) − ϕ(τ, σ(τ))∥dς

+ χ2
∫ ⊤

ςn

∫ ς

0

n∑
i=0

(∥Φi(τ, σn(τ)) − Φi(τ, σ(τ))∥φi(ς − t)) dtdς

+ χτ1 sup
τ∈ ȷ

(∥ϕ(τ, σn(τ)) − ϕ(τ, σ(τ))∥)

+ χ

∫ ⊤

0

∫ ς

0

n∑
i=0

(∥Φi(τ, σn(τ)) − Φi(τ, σ(τ))∥φi(ς − t)) dtdς.

We proceed to determine the upper bound when τ ∈ (τi, ςi], i = 1, ..., n

∥(Oσn)(τ) − (Oσ)(τ)∥ ≤ χ sup
τ∈ ȷ

∥ρi(τ, σn(τ)) − ρi(τ, σ(τ))∥.

And for τ ∈ (ςi, τi+1], i = 1, ..., n, we obtain

∥(Oσn)(τ) − (Oσ)(τ)∥ ≤ χ sup
τ∈ ȷ

∥ρi(τ, σn(τ)) − ρi(τ, σ(τ))∥

+ χ

∫ ⊤

ςi

∥ϕ(τ, σn(τ)) − ϕ(τ, σ(τ))∥dς

+ χ

∫ ⊤

ςi

∫ ς

0

n∑
i=0

(∥Φi(τ, σn(τ)) − Φi(τ, σ(τ))∥φi(ς − t)) dtdς.

As a conclusion, we receive the main result of this step, the continuity of (Oσ), where

lim
n→∞
∥(Oσn)(τ) − (Oσ)(τ)∥Cp = 0.

Step 3 Equi-continuity
We have three cases. The first case, η1, η2 ∈ [0, τ1], where η1 < η2.

∥(Oσn)(η2) − (Oσ)(η1)∥ ≤ ∥ϱν(η2, 0) − ϱν(η1, 0)∥∥ϱν(⊤, τi)ρi(ςi, σ(ςi))∥
+ ∥(Oσn)(η2) − (Oσ)(η1)∥

×

∥∥∥∥ ∫ ⊤

ςn

ϱν(⊤, ς)

ϕ(ς, σ(ς)) +
∫ ς

0

n∑
i=1

φi(ς − t)Φi(t, σ(t))dt

 dς
∥∥∥∥

+ sup
ς∈[0,τ1]

∥ϱν(η2, 0) − ϱν(η1, 0)∥

AIMS Mathematics Volume 8, Issue 5, 11953–11972.
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×

∥∥∥∥ ∫ η1

0

ϕ(ς, σ(ς)) +
∫ ς

0

n∑
i=1

φi(ς − t)Φi(t, σ(t))dt

 dς
∥∥∥∥

+
∥∥∥∥ ∫ η2

η1

ϱν(η2, ς)

ϕ(ς, σ(ς)) +
∫ ς

0

n∑
i=1

φi(ς − t)Φi(t, σ(t))dt

 dς
∥∥∥∥.

The second case is in the interval (τi, ςi], we have

∥(Oσn)(η2) − (Oσ)(η1)∥ ≤ ∥ϱν(η2, τi)ρi(η2, σ(η2)) − ϱν(η1, τi)ρi(η1, σ(η1))∥
≤ ∥ϱν(η2, η1)ϱν(η1, τi)ρi(η2, σ(η2)) − ϱν(η1, τi)ρi(η1, σ(η1))∥
≤ χ∥ϱν(η2, η1)ρi(η2, σ(η2)) − ρi(η1, σ(η1))∥.

The third case is obtained in the interval (ςi, τi+1], which yields

∥(Oσn)(η2) − (Oσ)(η1)∥ ≤ ∥ϱν(η2, τi) − ϱν(η1, τi)∥∥ρi(ςi, σ(ςi))∥
+ sup
ς∈[0,τ1]

∥ϱν(η2, ς) − ϱν(η1, ς)∥

×

∥∥∥∥ ∫ η1

ςi

ϕ(ς, σ(ς)) +
∫ ς

0

n∑
i=1

φi(ς − t)Φi(t, σ(t))dt

 dς
∥∥∥∥

+
∥∥∥∥ ∫ η2

η1

ϱν(η2, ς)

ϕ(ς, σ(ς)) +
∫ ς

0

n∑
i=1

φi(ς − t)Φi(t, σ(t))dt

 dς
∥∥∥∥.

Clearly, when η2 → η1 we have ∥(Oσn)(η2) − (Oσ)(η1)∥ = 0. Hence, (Oσ) is equicontinuous
in Bℓ∗ . Consequently, in view of Lemma 2.2, we obtain that C̄oO(Bℓ∗) ⊂ Bℓ∗ is bounded and
equicontinuous.

Step 4 Condensity
We aim to show that O : Bℓ∗ → Bℓ∗ is a condensing operator. In view of Lemma 2.3, there occurs
a countable set Θ0 = {σn} ⊂ Θ ⊂ C̄oO(Bℓ∗) satisfying the inequality

γ (O(Θ)) ≤ 2γ (O(Θ0)) .

We have three cases, as follows: for the interval [0, τ1] there is a set Θ0 ⊂ Θ ⊂ C̄oO(Bℓ∗) such that

γ (O(Θ0)(τ)) ≤ χ2 γ (ρn(ςn, (Θ0)(ςn)))

+ χ2 γ

∫ ⊤

ςn

ϕ(ς,Θ0(ς)) +
∫ ς

0

n∑
i=1

φi(ς − t)Φi(t,Θ0(t))dt

 dς


+ χ γ

∫ τ

0

ϕ(ς,Θ0(ς)) +
∫ ς

0

n∑
i=1

φi(ς − t)Φi(t,Θ0(t))dt

 dς


≤ χ2Lρnγ(Θ)

+ χ2

∫ ⊤

ςn

Lϕ(ς)γ(Θ0(ς)) +
∫ ς

0

n∑
i=1

φi(ς − t)LΦi(t)γ(Θ0(t))dt

 dς


+ χ

∫ τ

0

Lϕ(ς)γ(Θ0(ς)) +
∫ ς

0

n∑
i=1

φi(ς − t)LΦi(t)γ(Θ0(t))dt

 dς
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≤ γ(Θ)
[
χ2

Lρn +

∫ ⊤

ςn

Lϕ(ς)dς +
∫ τ

0

∫ ς

0

n∑
i=1

φi(ς − t)LΦi(t)dtdς


+ χ

∫ ⊤

0
Lϕ(ς)dς +

∫ τ

0

∫ ς

0

n∑
i=1

φi(ς − t)LΦi(t)dtdς

 ].
The second case is obtained in the interval (τi, ςi], i = 1, ..., n yields

γ (O(Θ0)(τ)) ≤ χLρi(τ)γ(Θ).

While, for the third case in the interval (ςi, τi+1], i = 1, ..., n, we get

γ (O(Θ0)(τ)) ≤ χLρi(τ)γ(Θ)

+ χ

∫ ⊤

ςi

Lϕ(ς)γ(Θ0(ς)) +
∫ ς

0

n∑
i=1

φi(ς − t)LΦi(t)γ(Θ0(t))dt

 dς


≤ χγ(Θ)

Lρi(τ) +
∫ ⊤

ςi

Lϕ(ς) +
∫ ⊤

ςi

∫ ς

0

n∑
i=1

φi(ς − t)LΦi(t)dtdς

 .
According to Lemma 2.4, we obtain

γ (Θ0) ≤ max
τ∈ ȷ
γ (Θ0(t)) ,

which leads to
γ (Θ) ≤ ωγ (Θ) , 0 < ω < 1.

As a conclusion, we confirm that O is a strict contraction mapping in C̄oO(Bℓ∗). As a result,
according to Lemma 2.1, O has a fully fixed point in C̄oO(Bℓ∗) ⊂ Cp[ ȷ,Ξ]. Hence, Eq (1.1) has a
fully mild solution in C[ ȷ,Ξ].

□

The next result indicates the maximum value of φi and Φi. The proof is quite similar to Theorem
3.1.

Theorem 3.2. Consider the following hypotheses:

(H3) The functions ϕ,Φi, ρi (i = 1, ..., n) : ȷ × Ξ→ Ξ are bounded and continuous in ȷ × ⊤ℓ and

lim sup
ℓ→∞

χ(ℓ)
ℓ
<

1

Ωn

, (3.3)

where

Ωn = max
{
χ2

(
1 + (⊤ − ςn) + n

∫ ⊤

ςn

∫ ς

0
φ(ς − t)dtdς

)
+ χ

(
τ1 + n

∫ τ

0

∫ ς

0
φ(ς − t)dtdς

)
,
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χ

(
1 + (ςi+1 − ςi) + n

∫ τ

ςi

∫ ς

0
φ(ς − t)dtdς

)
, i = 1, ..., n, χ

}
,

where φ := max(φi(ς − t)) and Φ := max(Φi(τ, σ)),

χ(ℓ) = sup{∥ϕ(τ, σ)∥, ∥Φ(τ, σ)∥, ∥ρi(τ, σ)∥, i = 1, ..., n : (τ, σ) ∈ ȷ × ⊤ℓ}

and
⊤ℓ = {σ ∈ Ξ : ∥σ∥ ≤ ℓ}.

The resolvent operator ϱν(τ, ς) is non-compact for τ, ς > 0, where

χ = max
0≤ς<τ≤⊤

∥ϱν(τ, ς)∥ < ∞.

(H4) There occur non-negative Lebesgue integrable functions Lϕ, LΦ, Lρi ∈ L1( ȷ,R+)(i = 1, 2, ..., n)
satisfying the following inequalities

γ (ϕ(τ, δ)) ≤ Lϕ(τ)γ(δ)
γ (Φ(τ, δ)) ≤ LΦ(τ)γ(δ)
γ (ρi(τ, δ)) ≤ Lρi(τ)γ(δ),

where δ ⊂ Ξ is equicontinuous and countable set. Define two sets as follows:

⊤ℓ = {σ ∈ Ξ : ∥σ∥ ≤ ℓ, ℓ > 0}

and

ωn = max
{
χ2Lρn(τ) + χ

2
∫ ⊤

ςn

Lϕ(ς)dς + χ
∫ τ

0
Lϕ(ς)dς

+ n(χ + χ2)
∫ τ

0

∫ ς

0
φ(ς − t)LΦ(τ)dtdς,

χLρi(τ), Lρi(τ) +
∫ τ

ςi

Lϕ(ς)dς + n
∫ τ

ςi

∫ ς

0
φ(ς − t)LΦ(t)dtdς, i = 1, ..., n.

}
< 1.

Then the BVP (1.1) admits a fully mild outcome σ ∈ Cp[ ȷ,Ξ].

The next consequence can be found in [14]

Corollary 3.3. Consider the following hypotheses:

(H5) The functions ϕ,Φ, ρi (i = 1, ..., n) : ȷ × Ξ→ Ξ are bounded and continuous in ȷ × ⊤ℓ and

lim sup
ℓ→∞

χ(ℓ)
ℓ
<

1

Ω
, (3.4)

where

Ω = max
{
χ2

(
1 + (⊤ − ςn) +

∫ ⊤

ςn

∫ ς

0
φ(ς − t)dtdς

)
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+ χ

(
τ1 +

∫ τ

0

∫ ς

0
φ(ς − t)dtdς

)
,

χ

(
1 + (ςi+1 − ςi) +

∫ τ

ςi

∫ ς

0
φ(ς − t)dtdς

)
, i = 1, ..., n, χ

}
,

χ(ℓ) = sup{∥ϕ(τ, σ)∥, ∥Φ(τ, σ)∥, ∥ρi(τ, σ)∥, i = 1, ..., n : (τ, σ) ∈ ȷ × ⊤ℓ}

and
⊤ℓ = {σ ∈ Ξ : ∥σ∥ ≤ ℓ}.

The resolvent operator ϱν(τ, ς) is non-compact for τ, ς > 0, where

χ = max
0≤ς<τ≤⊤

∥ϱν(τ, ς)∥ < ∞.

(H6) There occur non-negative Lebesgue integrable functions Lϕ, LΦ, Lρi ∈ L1( ȷ,R+)(i = 1, 2, ..., n)
satisfying the following inequalities

γ (ϕ(τ, δ)) ≤ Lϕ(τ)γ(δ)
γ (Φ(τ, δ)) ≤ LΦ(τ)γ(δ)
γ (ρi(τ, δ)) ≤ Lρi(τ)γ(δ),

where δ ⊂ Ξ is equicontinuous and countable set. Define two sets as follows:

⊤ℓ = {σ ∈ Ξ : ∥σ∥ ≤ ℓ, ℓ > 0}

and

ω = max
{
χ2Lρn(τ) + χ

2
∫ ⊤

ςn

Lϕ(ς)dς + χ
∫ τ

0
Lϕ(ς)dς

+ (χ + χ2)
∫ τ

0

∫ ς

0
φ(ς − t)LΦ(τ)dtdς,

χLρi(τ), Lρi(τ) +
∫ τ

ςi

Lϕ(ς)dς +
∫ τ

ςi

∫ ς

0
φ(ς − t)LΦ(t)dtdς, i = 1, ..., n.

}
< 1.

Then the BVP (1.1) admits a fully mild outcome σ ∈ Cp[ ȷ,Ξ].

Corollary 3.4. Let the assumptions of Theorem 3.2 be hold. Then the maximum mild solution σ ∈
Cp( ȷ,Ξ) of Eq (1.1) can be formulated by

σ(τ) = ϱν(τ, 0)
[
ϱν(⊤, τn)ρn(ςn, σ(ςn))

+

∫ ⊤

ςn

ϱν(τ, ς)
(
ϕ(ς, σ(ς)) + n

∫ ς

0
φ(τ − ς)Φ(ς, σ(ς))dς

) ]
+

∫ τ

0
ϱν(τ, ς)

(
ϕ(ς, σ(ς)) + n

∫ ς

0
φ(τ − ς)Φ(ς, σ(ς))dς

)
, τ ∈ [0, τ1]
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σ(τ) = ϱν(τ, τi)ρi(τ, σ(τ)), τ ∈ (τi, ςi], i = 1, ..., n

σ(τ) = ϱν(τ, τi)ρi(ςi, σ(ςi)) +
∫ τ

ςi

ϱν(τ, ς)
(
ϕ(ς, σ(ς)) + n

∫ ς

0
φ(τ − ς)Φ(ς, σ(ς))dς

)
τ ∈ (ςi, τi+1], i = 1, ..., n,

where φ and Φ have the same sign.

Theorem 3.1 can be extended into 2D(n,m)-parametric designing as follows, with similar proof:

Theorem 3.5. Consider the following hypotheses:

(H7) The functions ϕ,Φ j, ρi (i = 1, ..., n, j = 0, ...,m) : ȷ×Ξ→ Ξ are bounded and continuous in ȷ×⊤ℓ
and

lim sup
ℓ→∞

χ(ℓ)
ℓ
<

1
Ωm
, (3.5)

where

Ωm = max
{
χ2

1 + (⊤ − ςn) +
∫ ⊤

ςn

∫ ς

0

m∑
j=0

φ j(ς − t)dtdς


+ χ

τ1 +

∫ τ

0

∫ ς

0

m∑
j=0

φ j(ς − t)dtdς

 ,
χ

1 + (ςi+1 − ςi) +
∫ τ

ςi

∫ ς

0

m∑
j=0

φ j(ς − t)dtdς, i = 1, ..., n

 , χ},
where

χ(ℓ) = sup{∥ϕ(τ, σ)∥, ∥Φ j(τ, σ)∥, ∥ρi(τ, σ)∥, i = 1, ..., n, j = 0, ...,m : (τ, σ) ∈ ȷ × ⊤ℓ}

and
⊤ℓ = {σ ∈ Ξ : ∥σ∥ ≤ ℓ}.

The resolvent operator ϱν(τ, ς) is non-compact for τ, ς > 0, where

χ = max
0≤ς<τ≤⊤

∥ϱν(τ, ς)∥ < ∞.

(H8) There occur non-negative Lebesgue integrable functions Lϕ, LΦ j , Lρi ∈ L1( ȷ,R+)(i = 1, 2, ..., n, j =
0, ...,m) satisfying the following inequalities

γ (ϕ(τ, δ)) ≤ Lϕ(τ)γ(δ)

γ
(
Φ j(τ, δ)

)
≤ LΦ j(τ)γ(δ)

γ (ρi(τ, δ)) ≤ Lρi(τ)γ(δ),

where δ ⊂ Ξ is equicontinuous and countable set. Define two sets as follows:

⊤ℓ = {σ ∈ Ξ : ∥σ∥ ≤ ℓ, ℓ > 0}
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and

ωm = max
{
χ2Lρn(τ) + χ

2
∫ ⊤

ςn

Lϕ(ς)dς + χ
∫ τ

0
Lϕ(ς)dς

+ (χ + χ2)
∫ τ

0

∫ ς

0

m∑
j=0

φ j(ς − t)LΦ j(τ)dtdς,

χLρi(τ), Lρi(τ) +
∫ τ

ςi

Lϕ(ς)dς +
∫ τ

ςi

∫ ς

0

m∑
j=0

φ j(ς − t)LΦ j(t)dtdς
}
< 1.

Then the following BVP
C∆νσ(τ) = Λ(τ)σ(τ) + ϕ(τ, ς)

+
∑m

j=0

∫ τ
0
φ j(τ − ς)Φ j(ς, σ(ς))d ς τ ∈ (ςi+1, τi+1], i = 0, 1, ..., n

σ(τ) = ρi(τ, σ(τ))ϱν(τ, τi) τ ∈ (τi, ςi], i = 1, ..., n
σ(0) = σ(⊤),

(3.6)

admits at least one mild solution σ ∈ Cp[ ȷ,Ξ] formulating by

σ(τ) = ϱν(τ, 0)
[
ϱν(⊤, τn)ρn(ςn, σ(ςn))

+

∫ ⊤

ςn

ϱν(τ, ς)

ϕ(ς, σ(ς)) +
m∑

j=0

∫ ς

0
φ j(τ − ς)Φ j(ς, σ(ς))dς

 ]
+

∫ τ

0
ϱν(τ, ς)

ϕ(ς, σ(ς)) +
m∑

j=0

∫ ς

0
φ j(τ − ς)Φ j(ς, σ(ς))dς

 , τ ∈ [0, τ1]

σ(τ) = ϱν(τ, τi)ρi(τ, σ(τ)), τ ∈ (τi, ςi], i = 1, ..., n

σ(τ) = ϱν(τ, τi)ρi(ςi, σ(ςi)) +
∫ τ

ςi

ϱν(τ, ς)

ϕ(ς, σ(ς)) +
m∑

j=0

∫ ς

0
φ j(τ − ς)Φ j(ς, σ(ς))dς


τ ∈ (ςi, τi+1], i = 1, ..., n.

The following outcome indicates the maximum value of φ j and Φ j, j = 0, ...,m. The proof is quite
similar to Theorem 3.5.

Theorem 3.6. Consider the following hypotheses:

(H9) The functions ϕ,Φ j, ρi (i = 1, ..., n, j = 0, ...,m) : ȷ×Ξ→ Ξ are bounded and continuous in ȷ×⊤ℓ
and

lim sup
ℓ→∞

χ(ℓ)
ℓ
<

1

Ωm

, (3.7)

where

Ωm = max
{
χ2

(
1 + (⊤ − ςn) + m

∫ ⊤

ςn

∫ ς

0
φ(ς − t)dtdς

)
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+ χ

(
τ1 + m

∫ τ

0

∫ ς

0
φ(ς − t)dtdς

)
,

χ

(
1 + (ςi+1 − ςi) + m

∫ τ

ςi

∫ ς

0
φ(ς − t)dtdς, i = 1, ..., n

)
, χ

}
,

where φ := max(φ j(ς − t)) and Φ := max(Φ j(τ, σ))

χ(ℓ) = sup{∥ϕ(τ, σ)∥, ∥Φ(τ, σ)∥, ∥ρi(τ, σ)∥, i = 1, ..., n : (τ, σ) ∈ ȷ × ⊤ℓ}

and
⊤ℓ = {σ ∈ Ξ : ∥σ∥ ≤ ℓ}.

The resolvent operator ϱν(τ, ς) is non-compact for τ, ς > 0, where

χ = max
0≤ς<τ≤⊤

∥ϱν(τ, ς)∥ < ∞.

(H10) There occur non-negative Lebesgue integrable functions Lϕ, LΦ, Lρi ∈ L1( ȷ,R+)(i = 1, 2, ..., n)
satisfying the following inequalities

γ (ϕ(τ, δ)) ≤ Lϕ(τ)γ(δ)
γ (Φ(τ, δ)) ≤ LΦ(τ)γ(δ)
γ (ρi(τ, δ)) ≤ Lρi(τ)γ(δ),

where δ ⊂ Ξ is equicontinuous and countable set. Define two sets as follows:

⊤ℓ = {σ ∈ Ξ : ∥σ∥ ≤ ℓ, ℓ > 0}

and

ωm = max
{
χ2Lρn(τ) + χ

2
∫ ⊤

ςn

Lϕ(ς)dς + χ
∫ τ

0
Lϕ(ς)dς

+ m(χ + χ2)
∫ τ

0

∫ ς

0
φ(ς − t)LΦ(τ)dtdς,

χLρi(τ), Lρi(τ) +
∫ τ

ςi

Lϕ(ς)dς + m
∫ τ

ςi

∫ ς

0
φ(ς − t)LΦ(t)dtdς, i = 1, ..., n

}
< 1.

Then the BVP (3.6) admits a fully mild outcome σ ∈ Cp[ ȷ,Ξ].

Corollary 3.7. Let the assumptions of Theorem 3.6 be hold. Then the maximum mild solution σ ∈
Cp( ȷ,Ξ) of Eq (3.6) can be formulated by

σ(τ) = ϱν(τ, 0)
[
ϱν(⊤, τn)ρn(ςn, σ(ςn))

+

∫ ⊤

ςn

ϱν(τ, ς)
(
ϕ(ς, σ(ς)) + m

∫ ς

0
φ(τ − ς)Φ(ς, σ(ς))dς

) ]
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+

∫ τ

0
ϱν(τ, ς)

(
ϕ(ς, σ(ς)) + m

∫ ς

0
φ(τ − ς)Φ(ς, σ(ς))dς

)
, τ ∈ [0, τ1]

σ(τ) = ϱν(τ, τi)ρi(τ, σ(τ)), τ ∈ (τi, ςi], i = 1, ..., n

σ(τ) = ϱν(τ, τi)ρi(ςi, σ(ςi)) +
∫ τ

ςi

ϱν(τ, ς)
(
ϕ(ς, σ(ς)) + m

∫ ς

0
φ(τ − ς)Φ(ς, σ(ς))dς

)
τ ∈ (ςi, τi+1], i = 1, ..., n,

where φ and Φ have the same sign.

Remark 3.8. The kernel function φ(τ−ς) can be replaced by the fractional kernel φα(τ−ς) of any types
of fractional integral operators including the classic fractional integral operator (Riemann-Liouville
integral operator, ABC-fractional integral operator [23], etc.) providing that φα(τ − ς) ≤ φ(τ − ς),
where α is the fractional power of the fractional integral operator.

Applications in optical studies

In this section, we introduce an application of the theory results in optics studies. The best-focused
point of light that a perfect lens with a circular aperture may produce is described by the Airy floppy
and 2D-Airy function in the field of optics and is constrained by light diffraction. In the fields of
physics, optics, and astronomy, the Airy floppy is significant.
We consider the following problem:

Example 3.9. Consider the BVP

C∆νσ(τ) = τσ(τ) +
τ

1 − τ
cos2 σ(τ)

+
∫ τ

0
exp(τ − ς)(

1
2
+

1
3
ς)d ς τ ∈ [0,

1
2

)
⋃

(
3
4
, 1]

σ(τ) =
1
4
ϱν(τ, 1) τ ∈ (

1
2
,

3
4

], i = 1, ..., n

σ(0) = σ(1) = 0,

(3.8)

where ∫ τ

0
exp(τ − ς)(

1
2
+

1
3
ς)d ς =

1
6

(eτ − 1)(2τ + 3).

Since Λ(τ)σ(τ) = τσ(τ) then Λ is generated the resolve operator ϱν, Ξ = [0, 1], ν ∈ (n, 1 + n]. Define
the set Θ := {σ : σ(0) = σ(1)} ⊂ Ξ. Assume that the functions

ϕ(τ) =
τ

1 − τ
cos2 σ(τ), Φ1(τ) =

1
2
, Φ2(τ) =

1
3
τ, φ1,2(τ − ς) = exp(τ − ς)

satisfy the hypotheses (H1) and (H2). Then in view of Theorem 3.1 has at least one mild solution of
the form that given in Definition 2.1.2. The exact solution of the above BVP is formulated for different
values of ν in terms of the Airy functions, which are represented as periodic functions. For instant,
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when ν = 2, we obtain different solutions in the formula of Airy functions Ai(τ) and Bi(τ) (see Figure
1) and Figure 2 for the special solution

σ(τ) =
aAi(τ) ∗ Bi(τ)

bAi(τ) − cBi(τ)
.

Figure 1. The exact solutions of the BVP from the top : (Ai(τ))′ ∗

Bi(τ),−
Ai(τ) ∗ Bi(τ)
Ai(τ) − Bi(τ)

, Ai(τ) ∗ (Bi(τ))′, where ′ indicates the first derivative respectively.
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Figure 2. One of the exact solution BVP of the form
aAi(τ) ∗ Bi(τ)

bAi(τ) − cBi(τ)
for different values of

the constants a, b and c. This formula captured the camera lens by an Airy disk. From the
left a = 1, b = 2, c = 1; a = 2, b = 1, c = −1/2; a = 2, b = 1/2, c = 1; a = 2, b = 1/2, c =
1/3; a = 1, b = 1/2, c = 1/3; a = 2, b = 1/2, c = 1/3 respectively.

In the above example, ϕ is suggested to be a convex function in the unit interval. In the next example,
we generalize it to starlike function.

Example 3.10. Consider the BVP

C∆νσ(τ) = τσ(τ) +
τ

(1 − τ)2 cos2 σ(τ)

+
∫ τ

0
exp(τ − ς)(1 + ς)d ς τ ∈ [0,

1
2

)
⋃

(
3
4
, 1]

σ(τ) =
1
4
ϱν(τ, 1) τ ∈ (

1
2
,

3
4

], i = 1, ..., n

σ(0) = σ(1) = 0,

(3.9)

where ∫ τ

0
exp(τ − ς)(1 + ς)d ς = (eτ − 1)(τ + 1)

= τ +
(3τ2)

2
+

(2τ3)
3
+

(5τ4)
24
+
τ5

20
+ O(τ6).
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Since Λ(τ)σ(τ) = τσ(τ) then Λ is generated the resolve operator ϱν, Ξ = [0, 1], ν ∈ (n, 1 + n]. Define
the set Θ := {σ : σ(0) = σ(1)} ⊂ Ξ. Assume that the functions

ϕ(τ) =
τ

(1 − τ)2 cos2 σ(τ), Φ1(τ) = 1, Φ2(τ) = τ, φ1,2(τ − ς) = exp(τ − ς)

achieve the assumptions (H1) and (H2). There is then at least one mild solution of the form given in
Definition 2.1.2 in light of Theorem 3.1.

4. Conclusions

The benefit of using I-DEs is that they allow for the investigation of the complete diffusion process,
including the start, intermediate, and long time scales of the process. As a result, this approach can
tell the difference between an evolution detail for a system that exhibits the same behavior over a long
period of time but distinct behaviors at the beginning and middle of the evolution. In order to describe
the sub-diffusive and super-diffusive regimes, an I-DE for diffusion is also introduced. Additionally,
techniques for resolving I-DEs are established, and for the instances of force-free and linear force,
differential equations have analytically solutions.

We presented the necessary criteria for the existence of a mild periodic solution of fractional BVP in
the previous inquiry, where the fractional resolve operator is non-compact. We proposed using a multi-
evolution equation. There are some examples of both unique and generic instances. To demonstrate
how the abstract theory mechanism works, a simple example is given. Our technique was based on the
fixed point theory of measure of non-compactness. For the future work, one can use the compact case
and formulate the sufficient conditions to get a mild periodic outcome.
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