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Abstract: The term ‘optimization’ refers to the process of maximizing the bene-
ficial attributes of a mathematical function or system while minimizing the unfa-
vorable ones. The majority of real-world situations can be modelled as an
optimization problem. The complex nature of models restricts traditional optimi-
zation techniques to obtain a global optimal solution and paves the path for global
optimization methods. Particle Swarm Optimization is a potential global optimi-
zation technique that has been widely used to address problems in a variety of
fields. The idea of this research is to use exponential basis functions and the par-
ticle swarm optimization technique to find a numerical solution for the Sine-Gor-
dan equation, whose numerical solutions show the soliton form and has diverse
applications. The implemented optimization technique is employed to determine
the involved parameter in the basis functions, which was previously approximated
as a random number in the work reported till now in the literature. The obtained
results are comparable with the results obtained in the literature. The work is pre-
sented in the form of figures and tables and is found encouraging.

Keywords: Differential quadrature method; B-spline; particle swarm optimization;
Sine-Gordan equation

1 Introduction

Whenever there is a need to optimize any one of the parameters involved in a problem there needs a tool
or technique that can be implemented to solve it. The main focus is to obtain the best feasible collection of
values to achieve a given goal while adhering to a set of constraints. The majority of real-world situations can
be modelled as optimization problems that include large dimensions, non-linearity, multimodality,
constraints, and other factors. Since traditional optimization approaches are generally incapable of
resolving these complex problems, non-traditional efficient optimization tools/techniques are implemented
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to deal with a wide range of such problems. Nature-inspired algorithms belong to the category of
optimization methods that have gained much popularity since their inception. Nature-inspired
optimization algorithms are the approaches that replicate an existing natural process to find an optimum
solution to a problem that can’t be handled using classical techniques. Swarm intelligence paradigm is an
emerging field which simulates the social behavior of organisms. Since its inception, various algorithms
have been proposed to handle complex problems arising in different spheres. Particle swarm optimization
(PSO) is one of the potential global optimization techniques in the category of nature-inspired algorithms.
PSO simulates the foraging process of swarm analogies such as bird flocks and fish schools. It is inspired
by the well-informed social behaviour of swarms and was firstly proposed by Kennedy et al. in 1995 [1].
Fast convergence to the global optimum, a simple to implement code, and a sophisticated computation-
free environment are all advantages of employing PSO. The search process in PSO is driven by the
velocity and position update equations.

The present work is intended to obtain the numerical solution for the Sine-Gordan equation, which is a
well-known nonlinear partial differential equation using exponential basis functions implementing the
particle swarm optimization technique. The implemented optimization technique is to find the involved
parameter in the exponential B-spline basis functions that was just approximated as a random number in
the work reported till now in the literature.

Sine-Gordon (SG) equation is a second-order hyperbolic partial differential equation whose numerical
solutions depict the soliton form and have intense applications in science and engineering. It appears in the
study of optics as a solution to the classical Maxwell systems [2]. This equation also appears in the literature
in the geometrical study of the soliton in view of the canonical field [3]. This study also depicts a relation
between the black hole temperature and the soliton velocity. SG equation also presents a mathematical
model to illustrate the fault dynamics of the phenomena of strain waves and earthquakes [4]. It plays a
significant role in understanding the seismic distortion effects on the earth’s crust and the theory behind
the cause of faulty natural substances. The soliton solution of the kinks form of the equation makes it a
suitable equation to understand the concepts related to the different phenomena.

The equation is given by:

utt þ a ut ¼ b uxx þ g xð Þ sin uð Þ (1)

To be solved with set of initial conditions:

u x; 0ð Þ ¼ f1 xð Þ and ut x; 0ð Þ ¼ f2 xð Þ
And values defined at the boundaries.

Here, a and b are real constants and g x; yð Þ depicts the Josephson current density. The constant a
represents the dissipative term that plays an important role in converting the equation from damped
a � 0ð Þ to undamped for (a ¼ 0).

Researchers have investigated the SG equation to study the solution based on the properties shown by
the equation. Ben-yu et al. [5] have implemented finite difference based on the concept of conserved discrete
energy to discuss the solution of the equation. Albowitz et al. [6,7] discussed the equation for the unstable
nature using the nonlinear spectrum. Various analytical and numerical approaches have been applied by the
researchers to solve this equation for its soliton solutions including the modified decomposition method [8,9]
for solving this equation 1D and 2D, the modified Adomian decomposition method [10] to solve the SG
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equation in (N + 1)-dimensions, homotopy analysis method [11], boundary element and boundary integral
approach [12,13], Compact finite difference of order-6 (CFD6) scheme [14], tension spline-based
approximation scheme [15], Modified cubic B-spline (MCB) collocation technique [16], localized method
of approximate particular solutions [17], Legendre spectral element method [18], virtual element method
[19], Barycentric rational interpolation and local radial basis functions [20], fourth-order collocation
scheme [21] and rational radial basis function [22].

In this work, exponential basis functions with the differential quadrature method and the particle swarm
optimization technique are implemented to find a numerical solution of the Sine-Gordan equation. To the
authors’ knowledge, there is no such optimization method reported in the literature to calculate the value
of the parameter involved in the exponential B-spline which plays a crucial role in finding the solutions.

This paper is organized in the following manner: Section 2 is concerned with the numerical scheme for
the implementation of the PSO in the exponential B-spline which is implemented in the differential
quadrature approach. In Section 3, two test problems of the SG equation are demonstrated with the
different sets of parameters. The summary of this research paper is stated in Section 4.

2 Numerical Scheme

2.1 Differential Quadrature Method

Numerical methods have always proved as an efficient tool to solve differential equations in a
programmable approach. There is a lot of mathematical software that assists researchers in obtaining the
numerical solution of differential equations by a set of algorithms. Among the numerous available
numerical approaches, the Differential quadrature method (DQM) is a higher-order method proposed by
Bellman and Casti [23] that provides accurate results with a smaller number of grid points by
discretization of the domain. One of the important characteristics of the DQM is the basis functions.
Different forms of basis functions have been successfully employed to find the underlying weighting
coefficients to obtain the solution [24,25].

Consider the distribution of domain x 2 a; b½ �as a ¼ x1 , x2 , � � � , xN ¼ b with N number of grid
points. If u x; tð Þ is a smooth function over the solution domain, it’s rth derivative with respect to x at a
grid point xi can be approximated by a linear summation of all the functional values evaluated using
weighing coefficients w rð Þ

ij as follows:

d rð Þu
dx rð Þ jxi ¼

XN
j¼1

w rð Þ
i;j u xj

� �
; i ¼ 1; 2; . . . ; N ; r ¼ 1; 2; . . . ; N � 1: (2)

2.2 Exponential B-Spline Basis Function

In the last few years, the B-Spline basis functions have been used in their different forms successfully in
DQM to obtain numerical solutions to differential equations [25,26]. These functions are very popular
because of the properties of continuity, compact support, orthogonality, and capability to handle the local
phenomenon. B-spline functions of standard [27] and trigonometric forms [27] are successfully
implemented to solve the well-known differential equations but the work reported in the literature using
the exponential form of B-spline is less because of the involved parameter, whose value is taken as a hit
and trial for reducing the errors [28,29].

As known the exponential B-spline functions are the generalization of the polynomial B-splines with a
free parameter. The exponential B-spline of the third degree can be defined as follows [30]:
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Bm xð Þ ¼ 1

h3

b2 xm�2 � xð Þ � b2
x

�
sinh x xm�2 � xð Þð Þ

�
; xE xm�2½ ; xm�1�

a1 þ b1 xm � xð Þ þ c1e
x xm�xð Þ þ d1e�x xm�xð Þ; xE xm�1½ ; xm�

a1 þ b1 x� xmð Þ þ c1e
x x�xmð Þ þ d1e�x x�xmð Þ; xE xm½ ; xmþ1�

b2 x� xmþ2ð Þ � b2
x

�
sinh x x� xmþ2ð Þð Þ

�
; xE xmþ1½ ; xmþ2�

8>>>>>><
>>>>>>:

(3)

here h is the uniform space partition and other parameters are reported as:

a1 ¼ xhc
xhc� s

; b1 ¼
x
2

c c� 1ð Þ þ s2

xhc� sð Þ 1� cð Þ
� �

; b2 ¼
x

2 xhc� sð Þ ; c1 ¼
1

4

1� cþ sð Þe�xh � s

xhc� sð Þ 1� cð Þ
� �

;

d1 ¼ 1

4

�1þ cþ sð Þexh � s

xhc� sð Þ 1� cð Þ
� �

; c ¼ cosh xhð Þ; s ¼ sinh xhð Þ:

The numerical values of the function and the derivatives at nodal point can be obtained as:

Bm xm�1ð Þ ¼ Bm xmþ1ð Þ ¼ s� xh
2 xhc� sð Þ ; Bm xmð Þ ¼ 1

B0
m xm�1ð Þ ¼ x c� 1ð Þ

2 xhc� sð Þ ; B
0
m xmþ1ð Þ ¼ x 1� cð Þ

2 xhc� sð Þ ; B
0
m xmð Þ ¼ 0

B00
m xm�1ð Þ ¼ B00

m xmþ1ð Þ ¼ x2s

2 xhc� sð Þ ; B
00
m xmð Þ ¼ �x2s

xhc� sð Þ
Further before implementation of the basis function, it is modified at the boundary mesh points to satisfy

the condition of a diagonally dominant matrix as follows

M1 xð Þ ¼ B1 xð Þ þ 2B0 xð Þ; M2 xð Þ ¼ B2 xð Þ � B0 xð Þ;
Mk xð Þ ¼ Bk xð Þ for k ¼ 3; 4; . . . ; N � 2; ð5Þ
MN�1 xð Þ ¼ BN�1 xð Þ � BNþ1 xð Þ; MN xð Þ ¼ BN xð Þ þ 2BNþ1 xð Þ;

2.3 Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) algorithm is developed on the communal actions of birds in
searching for food [31,32]. In this algorithm, particles are entities whose routine is measured by their
locations. Each location presents a part of the solution that needs to be optimized. The search process is
driven by changing particle’s velocity and positions at every time step. In the swarm, position of each
particle is a solution in D-dimensional space. The updating rules for velocity and position of each particle
is given by

vtþ1
id

¼ v½vt
id
þ c1 r1ðptid � xt

id
Þ þ c2 r2ðptgd � xt

id
Þ� (4)

xtþ1
id

¼ xt
id
þ vtþ1

id
(5)

where, xtid , represents c particle’s position and v
t
id represents i

th particle’s velocity in d dimension at time step
t, pgd represents the particle having the best fitness value, pid is the particle’s best position visited so far, c1; c2
are acceleration coefficients which quantifies particle personal and global experience respectively, v is called
constriction coefficient which evaluates a value in the range [0, 1] and is given by
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v ¼ 2j

2� u� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu� 4Þp�� ��

With u ¼ u1 þ u2; u1 ¼ c1r1; u2 ¼ c2r2 and j � 1.

To start with the parameter optimization the first step is to initialize the parameter by assigning random
positions to the particles in the defined range. The next step is to randomly assign velocity for all particles.
After this, the values of the function are evaluated for the particles and then the information is collected from
the particles regarding their updated values and the velocity and position are again updated to search for the
global optimum value. The working of PSO is shown below by the algorithm.

Algorithm: Particle Swarm Optimization

Begin

t→0 // iteration

Initialize a D–dimensional swarm, S

Evaluate fitness of each particle of swarm

For t = 1 to Max iteration

For i = 1 to S

For d = 1 to D

Update velocity using basic velocity update Eq. (4)

Apply basic position update Eq. (5)

end

End–for-d;

Evaluate fitness of updated positions

Update Pbest and Gbest

End-for-i;

Iteration (t)++;

End-for-t;

End

The solution thus obtained by the implementation of the approach is reliable as it is being searched for
the number of iterations with the selected number of parameters with a predetermined population size. This
approach has been successfully implemented in calculating the solution of equations using radial basis
functions [31]. The parameters considered here are as: swarm size: 20; maximum iterations: 50; inertia
weight is linearly decreased and social and cognitive coefficients are taken as c1 ¼ c2 ¼ 2:05. Some
recent and interesting studies on the theory, parameters and application of PSO are presented in [33–35].

In the present work selection of the value of the parameter in the basis function rests on certain factors
such as the degree of the function, the number of knot points and the precision of computations. It plays a
vital role in the accuracy of numerical methods. The objective of this study is to obtain the parameter based
on the optimization of the L1 error.
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2.4 The Scheme’s Implementation

To solve the SG equation a transformation ut ¼ v is used to reduce the equation in the following system
of differential equations:

ut ¼ v

vt þ a v ¼ b uxx þ g xð Þ sin uð Þ
Substituting the approximations of the space derivatives using the DQMwith exponential B-Spline basis

functions results in an ordinary differential equation (ODE) that can be solved by any appropriate numerical
method. Once the solutions are obtained for the equation with the known initial condition, then after the PSO
technique is implemented to reduce the obtained error by comparing the numerical and exact solutions to
minimize the errors. Once the value of the parameter is obtained for the minimum error, numerical results
can be calculated on predefined domain and time intervals.

The numerical scheme can be summarized and visualized as follows:

SG equation

(PDE)

Approximation 
using DQM with 

Exp B -Spline (ODE)

����� Error as 
objective function 
to minimize using 

PSO

Obtained value of 
parameter

Calculation of Error 
using optimized 

value of parameter 

3 Numerical Observations

The Sine-Gordon equation has been solved numerically for two different problems to authenticate the
effectiveness and precision of the proposed method by computing the errors.

Example 1:

The numerical solutions of Sine-Gordon equation are obtained in the computational domain
x 2 �3; 3½ � for a ¼ 0; b ¼ 1 and g xð Þ ¼ �1 with initial conditions:

f1 xð Þ ¼ 4tan�1 exp cxð Þð Þ
and

f2 xð Þ ¼ �2cexp cxð Þ
1þ exp 2cxð Þ

The boundary conditions are computed from the exact solution given as:

u x; tð Þ ¼ 4tan�1 exp cx� 0:5tð Þð Þ
Here c is a parameter that depends on velocity of solitary wave given as:

c ¼ 1p
1� c2ð Þ

For numerical computation, c is taken as 0.5 with the time step as k ¼ 0:0001and space step size is
h ¼ 0:02 and 0.04 compared with results as reported in the literature [16,21,36]. The number of iteration
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used in the PSO is 50. As presented in Tab. 1, the results show the efficiency of the present approach as
compared to that available in the literature for the parameter x = 0.5579.

It can be concluded that obtained results are in good agreement and even superior as compared to results
given by other researchers. The program is created and compiled on MATLAB 2014b on Intel Processor
64 bit, the CPU time for the algorithm is presented in Tab. 2. Numerical and the exact solutions are also
depicted in the Fig. 1 at different time levels.

Table 1: Comparisons of obtained results with results reported in literature

At h = 0.04 Present results Mittal et al. [16] Singh et al. [21] Houssein et al. [34]

Time (t) L2 L1 L2 L1 L2 L1 L2 L1

0.25 6.47E−06 1.37E−05 3.66E−05 4.90E−05 1.60E−05 2.73E−05 5.67E−06 9.61E−06

0.50 8.68E−06 1.41E−05 9.00E−05 7.55E−05 2.37E−05 3.09E−05 8.39E−06 1.10E−05

0.75 9.99E−06 1.42E−05 1.60E−04 1.43E−04 2.91E−05 3.52E−05 1.05E−05 1.26E−05

1.0 1.08E−05 1.41E−05 2.27E−04 2.10E−04 3.25E−05 4.01E−05 1.24E−05 1.44E−05

At h = 0.02

0.25 3.74E−06 8.34E−06 7.10E−06 6.62E−06

0.50 4.92E−06 9.63E−06 1.23E−05 7.54E−06

0.75 5.68E−06 1.11E−05 1.60E−05 1.01E−05

1.0 6.21E−06 1.28E−05 1.79E−05 1.18E−05

Table 2: Time elapsed in seconds for different knot partitions

Time (t) CPU time (s)

h = 0.04 h = 0.02

0.25 0.2328 0.2345

0.50 0.3857 0.4023

0.75 0.5157 0.5234

1.0 0.6599 0.6672

Example 2:

Another example of Sine-Gordon equation to validate the algorithm is considered with x 2 �20; 20½ �
for a ¼ 0; b ¼ 1 and g xð Þ ¼ �1 with initial conditions:

f1 xð Þ ¼ 4tan�1 c sinh cxð Þð Þ
and

f2 xð Þ ¼ 0

Here,

c ¼ 1p
1� c2ð Þ
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The boundary conditions are computed from the exact solution given as:

u x; tð Þ ¼ 4tan�1 c sinh cxð Þ sech cctð Þð Þ
The results are calculated at c ¼ 0:5; k ¼ 0:001 and number of node points as N ¼ 300. From the

results given in Tab. 3 it can be seen that the present approach is efficiency and is comparable to results
in literature for the parameter x = 1. The results are obtained for 1oo iterations with 5 as particle swarm
size. To validate the obtained results the errors are presented and compared with results given in the
literature [16,37]. To present the behavior of the solution the results are presented at various time
in Figs. 2–5. A three-dimensional plot is given to showcase the behavior for time 1 � t � 20:

Table 3: Comparisons of obtained results with results reported in literature

Time (t) CPU time (Sec) Present results Mittal et al. [16] Uddin et al. [37]

L2 L1 RMS L2 L1 L1

1 0.4135 1.048E−5 6.845E−6 1.652E−6 - -

2 0.5261 1.077E−5 7.919E−6 1.698E−6 2.564E−5 1.818E−5 1.568E – 3

10 0.6827 3.190E−5 2.047E−5 5.027E−6 8.850E−5 5.228E−5 3.151E−3

20 0.8215 6.289E−5 3.616E−5 9.911E−6 1.713E−4 9.438E−5 1.828E−3

Figure 1: Physical profile of the SG equation example 1
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Figure 3: Physical profile of the SG equation example 2 at t = 5

Figure 2: Physical profile of the SG equation example 2 at t = 2
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4 Conclusion

Inspired by the success of PSO in optimization tasks, this approach is implemented to obtain an optimal
value of the parameter involved in the exponential B-spline basis function to solve the SG equation. The
advantage of PSO is to find the parameter value that aids in reducing the error involved in the function
evaluations. The PSO-based method is capable of evaluating the parameter in a search space with global
search ability. The obtained results are found encouraging and the scheme can be implemented to solve
linear and nonlinear partial differential equations efficiently.
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